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Abstract

Signal processing using an array of antennas is an attractive solution to prob-
lems of source detection and parameter estimation. Array processing algorithms are
originally designed to extract important phase information about the propagating
source wavefronts by cross-correlating sensor meausurements. If source processes
are non-Gaussian, then higher-order statistics (cumulants) of received signals pro-
vide additional information about the parameters of interest and are insensitive to
additive Gaussian observation noise. Our motivation of using cumulants in array
processing applications is to recover more phase information than is possible by us-
ing only second-order statistics. We start the dissertation by a compact introduction
to array processing models, spatial spectrum estimation techniques and properties
of cumulants. Then, we show how fourth-order cumulants increase the phase in-
formation that can be extracted from the sensor measurements. We introduce the
concept of virtual sensors, and explain how cumulants can be used to compute cross-
correlations among actual and virtual sensors to increase the effective aperture of
the array. Using the interpretation of cumulants, we address the joint array cali-
bration and direction-finding problem using an arbitrary antenna array. We prove
that using a single doublet, it is possible to estimate the directions, steering vectors,
and the waveforms of the non-Gaussian sources using cumulants. We determine
bounds on effective aperture extension (without knowing sensor locations) by using
cumulants. The upper bound on existing cuamulant-based methods can be exceeded
when we use minimum-redundancy array design concepts together with cumulants.
We propose designs for both linear and two-dimensional arrays. Cumulants have
long been promoted in signal processing applications for their ability to suppress
additive Gaussian observation noise. We show that it may be possible to suppress

additive non-Gaussian noise if we place a sensor far-enough from the main array,

xi



whose noise component can be non-Gaussian but independent from the noise com-
ponents in the main array sensors. Finally, we address the problem of single sensor
detection and classification of multiple linear non-Gaussian processes. This prob-
lem is solved by exploiting the fact that polyspectra possess an array of arguments,
unlike spectrum. The dissertation concludes with future research directions and an

extensive bibliography.
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Chapter 1

Array Processing Fundamentals

Signal processing using an array of sensors is an attractive solution to problems of
source detection and parameter estimation since an array offers ways of overcoming
the directivity limitations of a single element [169]. The measured signals contain
information about several parameters associated with the sources. For example,
consider a single plane wave illuminating an array of two identical sensors. If the
distance between the two sensors is known, then the time delay between the sensor
outputs can be used to determine the direction-of-arrival (DOA) of the emitter.

The main problems of interest in array processing are: detection of far-field
sources, estimation of their parameters, such as angles of arrival (azimuth and eleva-
tion), power levels, correlation structure of sources, and polarization properties, and,
estimation of the source waveforms. All these problems fall into two (overlapping)
categories: detection or estimation of signals and their parameters from multichan-
nel information provided by an array of antennas. In some applications, perfect
knowledge of the antenna responses over their field of view is required, whereas in
other applications only partial information or some constraints on array geometry
are sufficient.

In this chapter, we first describe passive antenna arrays, and the underlying
assumptions on signal model and discuss the limitations of the assumptions. Then
we describe complex representation of narrowband signals, since our major interest
is on narrowband direction-finding. Finally, we present the generic data model
associated with an array of passive sensors, its assumptions and limitations. We
refer the reader to [58, Chapterl] for further reading.

- cacemanban - »



1.1 Passive Sensor Arrays

In active sensing environments, a known waveform of finite duration is generated
to illuminate a particular sector of the field of view. Processing is performed on
the returned signals which are usually modified both in amplitude and in phase
depending on the characteristics of a possible target and transmission medium. A
radar is a perfect example of active remote sensing [117]. A passive array only
receives signals as opposed to an active array which is equipped with a transmitter.
Passive arrays are quite common in underwater acoustics [4, 17], and communication
applications (2, 3, 8, 26, 29, 80, 156, 168, 177].

Consider the array configuration in Figure 1.1. In this structure, M antennas
are spaced at equal distance on a line. This array is commonly used in practical
applications and it is called a uniform linear array (ULA). In the figure, there are
P sources (emitters) and the angles {6,,0.,...,0p} (measured counter-clockwise)
indicate the directions-of-arrival of the signals from the sources. The measured out-
put of each sensor is assumed to be a superposition of the individual contributions
from each emitter. We also assume that the emitters are located at distances that
are much greater than the aperture of the array, so that their wavefronts can be
approximated by plane waves. This assumption is called the far-field assumption.
Another restriction is that the far-field sources must keep their locations during
data collection. Under these assumptions, the wavefronts are approximately pla-
nar and the sensor outputs are delayed and scaled replicas of the emitter signals.
Let {31(¢),32(t),...,3p(t)} denote the source waveforms'; then, the measurement

recorded by the kth sensor, 7x(2), is modeled as

P
Fi(t) = D ge(0)3:(t — 7(61)) + R(?) (1.1)
=1
where the response (also known as gain, or sensitivity) of the kth sensor to a wave-
front from @ is represented by gx(#), and 7,(6;) represents the time-delay of the /th
emitter signal at the kth sensor. The additive noise term, #i,(t) stands for every-

thing that can not be explained by the modeling assumptions; e.g., measurement

1We use an overbar for real signals in order to avoid confusion with their complex representation
which will be described in the next section.
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Figure 1.1: Uniformly spaced linear array of isotropic sensors illuminated by far-field
sources. In this illustration, the antenna that measures 7(t) is selected to be the
reference sensor.

errors, ambient noise, deviations from the plane wave assumption, mutual coupling
among sensors, etc. The response function g(8) depends on the characteristics of
the sensor; for example, an isotropic sensor has equal response in all directions, i.e.,
9(0) is a constant. The time-delay function, 7(8), is a function of arrival angle (4),
array geometry and propagation speed of the wave (denoted as ¢) in the medium.
For example, if two sensors are separated by a vector d in space, then the time-delay

between the two locations can be quantified as

- -

T(0) =¢£(0) - d (1.2)

where 5(0) is defined as the slowness vector, with each of its components equal to
the reciprocal of the speed in that dimension, i.e., [|€(8)]| = 1/c.



The sensor outputs are collected in the M-vector F(t), to form the array output,

q) ] [ Sha@at-n@) | [ m@ ]
- P - -
f(t) = fzft) = El:l gz(ol)s:(t - T2(0l)) + nz.(t) (1.3)
() | | ZRaom(@)a(t —m(0)) [ | An(t) |

A special case of the uniform linear array occurs when the sensor elements are
assumed to have identical response functions (not necessarily isotropic). If there is
only one emitter, and all the sensor gains are unity, the noise free measurements can
be represented as

Fi(t) = 5(2)

.Fz(t) = §;(t — Asind/c) (1.4)

.FM(t) =3(t — (M -1)Asinf/c)

which implies in the case of a uniform linear array with identical sensors, the response
functions can be taken as gi(f#) = 1, and the time-delay functions are defined as
7:(0) = (k — 1)Asin 8 /c. In (1.4), the reference point is selected as the location of
the first sensor, and the time-delays are measured by considering the signal part of
r1(t) as a reference. Clearly, there is a redundancy in (1.4): the signal waveform
could be defined as an arbitrary (non-zero) constant times 5;(¢), by letting the
array response function at the corresponding direction be the reciprocal of the same
constant.

Array observations (snapshots) are obtained by simultaneously measuring the
sensor outputs at N different time points. Although uniform sampling is not re-
quired, simultaneous sampling is necessary. Using the array snapshots, we can es-
timate the source parameters of interest. In communications, the source waveforms
are of interest while the direction of the desired source is assumed to be known. By
spatially filtering the snapshots (delaying and summing) it is possible to suppress
interference and recover the message (source waveforms) of interest. In underwater
applications, one is mainly interested in the locations of emitters. The source wave-

forms are of interest only if there is a need to classify the sources. In an underwater



communications problem, one is interested in both the message and the direction of
sources. In order to estimate the parameters of sources, it is necessary to determine

their number (detection) first.

1.2 Representation of Narrowband Signals

In array processing, a problem is classified as narrowband if the signal bandwidth
is small compared to the inverse of the time required for the signal wavefront to
propagate across the array. This implies that the complex envelopes of the signals
(to be defined later in this section) do not change significantly over the time interval
it takes the wavefront to propagate through the array aperture. For a discussion on
bandwidth, we refer the reader to [126).

Consider a continuous-time signal 3(t), whose energy is concentrated around a
center frequency w,.. This type of signal is quite common in communications appli-
cations (except spread spectrum), where a low-frequency (slowly varying) message
is modulated by a high-frequency carrier before transmission. The signal can be

modeled as a sinusoid at w, with slowly time-varying amplitude and phase
3(t) = A(t) cos(w.t + ¢(2)) (1.5)

This expression can be rewritten as

3(t) = Re{s(t)} = 3 (s() + 5°(2)) (1.6)
where
s(t) = A(t) exp(ig(2)) exp(jiwet) (1.7)
mes'sa,ge ca;ier

The complex signal s(t) is called the analytic signal representation of 3(t), and
the parts A(t) exp(j¢(t)) and exp(jw.t) are the complez envelope and the carrier
respectively. Similarly, the analytic signal can be obtained from the real signal as
follows [57):

s(t) = 3(t) + j3u(2) (1.8)
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Figure 1.2: A narrowband amplitude modulated waveform.

where 34(t) is the Hilbert transform of 3(¢). Since the highest frequency in the
message is much less than the carrier frequency (i.e., the narrowband assumption),
the Hilbert transform of the signal 3(t) is [57]

3n(t) = A(2) sin(w.t + &(t)) (1.9)

It is possible to approximately obtain the analytic signal (1.8), without using a
Hilbert transformer as we shall show later.

Figure 1.2 illustrates an amplitude-modulated waveform (A(t) is the envelope,
as indicated by the solid line) which can be classified as a narrowband signal. Note
that during a fraction of a second, the envelope (message) stays relatively unchanged,
whereas the phase of the carrier changes considerably.

Suppose that s(t) is subject to a small delay 7, during which the message remains
approximately unchanged (A(t — 7) = A(¢) and ¢(t — 7) = ¢(t)). Then, the effect

of time delay on the analytic signal can be approximated as a phase shift since

s(t — 1) =~ A(t) exp(jp(t)) exp(jw.(t — 7)) = s(t) exp(—jw.T) (1.10)



Equivalently, we have
s(t—r1) = -;-( s(t) exp(—jwer) + 5°(2) exp(jwer) ) (1.11)

Since it is necessary to include twice as many complex signals to represent the real
waveforms, it is easier to deal with complex signals in practice. Using the fact that
3(t) is narrowband, we have the approximations

3(t - 50-) = At — 5.) cos(wet — 5+t — o)~ Alt)sin(wet + 4(1) (112)
or, equivalently
st - 2: ) 2 5u(t) (1.13)

which follows from (1.9). Hence, the analytic signal can be obtained from the rece-
vied signals, without using a Hilbert transformer:

1l'

) (1.14)

c

s(t) ~ 5(¢) + j3(t —

Due to the implementation in (1.14), Re{s(t)} is called the in-phase component of
s(t) and Im{s(z)} is called the quadrature component. The process of constructing
s(t) through (1.14) is known as quadrature sampling. In this thesis, we always assume
the analytic signal representation in array processing problems.

The above derivation does not hold for broadband signals since the rate of change
of the complex envelope of 5(t) is comparable to the carrier frequency, making the
approximation in (1.10) invalid. For example, if 3;(¢) is a broadband signal, and if

32(t) = 31(t — 7), then the Fourier transforms are related as follows:
Fy(w) = Fi(w) exp(—jwr) (1.15)

where F3(w) is the Fourier Transform of 3;(¢). We note that, although (1.15) is
similar in form with (1.11) the term exp(—jwr) in (1.15) is a function of frequency,
unlike the exponential term in (1.11) which depends only on the center frequency of

the narrowband signal.



1.3 Problem Formulation

Array processing extensively uses results related to matrices, vectors, and their func-
tions. For a successful presentation, we must establish a consistent notation. After
that, we shall describe the effects of the narrowband assumption on the data model
given in Section 1.1. We then briefly discuss the assumptions and limitations of the

data model. Finally, we state the estimation problems associated with the intro-

duced model.

1.3.1 Notation

Lower and upper case italic letters (b, B) are used to represent scalars, lower case
bold face letters (b) are used for vectors, and upper case bold face letters (B) are

used for matrices. The following matrix operators will be used frequently in this

thesis:

)
()F
()
unvec(b, M,N) ...
det(A)
tr(A)
Al
A#
Pa
Px
AOB
A®B

The books [53, 86, 135] provide a good background on linear algebra, which is

. complex-conjugate
. transpose

... Hermitian transpose

MN vector to MxN matrix conversion

. determinant of A

. trace of A, tr(AB) = tr(BA)

. Frobenius norm, ||[A||} = tr(A# A)

. left pseudo-inverse, A* = (AHA)1AH

. projection matrix, Po = A(A7A)"1AH = AA#
... complementary projection matrix, P =1 — Py

. Schur (elementwise) product

... Kronecker product

essential to array signal processing,.



1.3.2 Data Model

Recall the received signal model (1.3) for the passive sensor array presented in the

first section. Assume that quadrature sampling is applied to #(2), i.e.,

r(t) = F(t) + jE(t — 2’;

(-

) (1.16)

Consider a second sensor located at a distance Jn from the first (reference) sensor,
and assume that sensor responses are identical. For simplicity, assume that there
is only one wavefront with wave propagation vector I-c.w(O). In the case of noiseless

observations, we have the relation
Fa(t) = F(t — €(6) - da2) (1.17)
For the analytic signals, we have
ra(t) = ry(t) exp(—jwe £(6) - dra) = r1(t) exp(~5 k(0) - dia) (1.18)

where £(8) £ w, £(6) denotes the wavenumber vector (or, propagation vector) of the
wavefront (||E|| = 27/), where ) is the wavelength). For the more general case, we

can derive the following result

[ nt) | [ SRia@)een@g@) | [ n) |
r(t) = "2.(” ~ Tha 92(01)6:5”°"‘°" si(t) N nzz(t) (1.19)
| ru(t) || Shigm(@)em i@ g(t) | | na(t) |

where si(t) = 5/(t) + jai(t — =), and ny(t) = Au(t) + ju(t — 3=-). Introducing the
complex M-vector valued function a(#), to include the effects of sensor gains and

time-delays, we have

a(8) = [g1(8)e™7m), gy()e=34em9), ., gpg(8)e e ON]T (1.20)



Additionally, noise vector n(t) = [n;(t),na(t),...,nm(t)]7; hence, the observation

equation (1.19) can be expressed as

P

r(t) = '}: a(fr)si(t) + n(t) (1.21)

=1

The vector a(f) is referred to as the steering vector. It represents the complex-
envelope of the voltage induced on the array antennas when a unit amplitude wave-
front illuminates the array from the direction represented by the angle #. For sim-
plicity, we let the steering vector depend on a single parameter (angle) in (1.20). In
general, the steering vector may depend on multiple parameters, e.g., azimuth and
elevation angles, range, polarization, and center frequency. The parameter space §}
is defined as the set in which 4 is allowed to vary. The collection of steering vectors

over the parameter space is defined as the array manifold, A
A={a(9)]|0e 0} (1.22)

The definition of array manifold was introduced by Schmidt [118]. An important

point to note is that array manifold is not a subspace, it is only @ set, i.e., it is not

necessarily closed under vector addition. This point is illustrated in Figure 1.3 for
the case of two sources, and three sensors, in which we assumed the steering vectors
are real. Direction-finding algorithms to be described in the next chapter rely on
this (no ambiguity ) condition: the set of any P (P < M) steering vectors (with
distinct parameters) is linearly independent.

For simplicity, we consider the steering vectors to be described by a single pa-
rameter. In the case of P sources, the total number of direction parameters is P,
which can be put in a real P-vector §. We introduce the MxP complex steering
matriz A(0)

A(0) = [a(8),a(8,),...,a(fp)) (1.23)

and the complex P-vector of source complex envelopes

S(t) = [sl(t)’ 32(t)$ seey 3P(t)]T (124)
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Figure 1.3: Two sources, three sensors scenario: €; and €; are the orthonormal
basis vectors for the subspace (commonly known as signal-subspace) spanned by the
steering vectors @(0;) and d(f;) of the far-field sources. The ring obtained by varying
the argument in @(0), is the array manifold. Array manifold is not a subspace; it
only intersects with the signal subspace at the locations which correspond to the
source steering vectors. € is orthogonal to the signal subspace, and is called the
noise-subspace (in this case, it is one-dimensional).

which allows us to write the generic array processing model in (1.21) as
r(t) = A(9)s(t) + n(t) (1.25)

Due to the no-ambiguity assumption, A(#) has rank P. It is important to understand
the geometry of (1.25) (which is illustrated in Figure 1.3 for a special case). The
noiseless part of the M-vector r(t) is a linear combination of the columns of A(#),
with coefficients from s(t). In the noiseless case, the observation vector is confined
to the P dimensional range space of A(8), which is a linear subspace of complex M
dimensional space. In the presence of noise, the observation process will no longer

lie in the range space of A(#); however, the signal-related part will still be in the
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P-dimensional signal subspace. The goal then is to somehow “undo” the effect of
noise so as to analyze this subspace. Schmidt [118] proposed a way to accomplish
this through the eigendecomposition of the covariance matrix of snapshots.

1.3.3 Assumptions and Extensions

To arrive at the generic equation (1.25), we made the following major assumptions:
the wavefronts are planar over the aperture of the array, and the received signals
are narrowband, which means the complex envelopes of the signals remain almost
unchanged during the time it takes for the wavefronts to travel across the array.

Another important assumption in direction-finding applications is the complete
knowledge of array manifold: for each angle 8, the steering vector a(8) is assumed to
be known. This can be achieved through the costly and time-consuming task known
as array calibration: from each angle of interest, a transmitter in the far-field of the
array transmits a signal which is high in power so that the effect of measurement
noise can be ignored. The induced complex voltages on the array elements are
measured, and stored in memory; hence, the functional description of the array
manifold is not required; samples of the manifold are sufficient [118]. Estimation of
the array manifold and related hardware issues are discussed in detail in [58, Chapter
2]. Array calibration becomes even more complicated when the parameter space is
multidimensional, i.e., if one includes polarization, elevation angle [119], etc. Due
to the complexity of calibration there is interest in algorithms which can estimate
the direction parameters using only partial knowledge or constraints on the array
manifold [108], and knowledge of signal properties [2, 116, 173).

Another assumption is that: for any set of P distinct directions-of-arrival, the set
of corresponding steering vectors are linearly independent. This assunption prevents
ambiguities. For example, in the case of a uniform linear array, the steering vector
takes the form (see Figure 1.1, and note the definition of )

a(0) = [1,exp(—j2rAsin8/)),...,exp(—j2x(M — 1)Asin 8/)))]T (1.26)
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which follows? from (1.4) since w./c = 2x/A. The uniform linear array clearly has
an ambiguity: a(f) = a(w — 0). If one considers the parameter space of interest to
be the set & = {—7/2 < 6 < w/2}, and the element separation is less than A/2, then
the array becomes unambiguous in the azimuth angle (it is not possible to determine
the elevation angle with a linear array).

The previous assumptions guarantee that the noise-free array measurements
uniquely determine the DOA’s if P < M, and the signals are not coherent (not
scaled multiples of each other). For coherent signals, a smaller bound is neces-
sary [10, 162].

The noise process n(t) is generally assumed to be a zero-mean, complex and
circularly symmetric Gaussian stationary random process. Furthermore, it is very
common to assume that the components of n(t) are independent of each other and

have identical variances. These conditions imply
E{n(t)} =0, E{n({)n(¥)}=0, E{n(t)nf(t)} =0’ (1.27)

The signal waveforms s(t) are in general non-Gaussian random processes; how-
ever, for mathematical analysis purposes (e.g., developing Cramer-Rao bounds),
signals are frequently considered to be independent Gaussian random processes. In
this case, the signal covariance matrix E{s(t)s”(t)} is diagonal. In other applica-
tions, signal waveforms are modeled as deterministic processes. In this case, the

only assumption is that the sum
A . 1 N H
R,, = Alrl-?:o N gs(t)s (%) (1.28)

exists. R,, is called the signal covariance matriz. In the random case, R,, =
E{s(t)s¥(t)}. The signal waveforms are assumed to be independent of the noise

process, and the covariance matrix of array outputs takes the form

R £ E{r(t)r¥(t)} = A(O)R,,A¥(0) + o°I (1.29)

2Due to the Vandermonde structure of the steering vector in (1.26), it is possible to develop an
analogy with time-series analysis of sinusoids and devise spatial filters based on principles of FIR
filter design [130].
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There are applications in which the just-described model fails. For example, the
received signals may deviate from the narrowband assumption. This problem is ad-
dressed in the frequency-domain by preprocessing data using the Discrete Fourier
Transform (DFT) and transforming the broadband problem into a series of narrow-
band problems [161]. Alternative approaches have been developed to combine these
individual narrowband problems together [62, 68, 69, 159].

Another restriction is on the noise among the sensors. Due to mutual-coupling
among sensors and near-field noise, sensor to sensor independence assumption can
easily be violated. Talham [145] evaluates the spatial spectra for special cases.
If the noise is actually Gaussian, but the noise covariance matrix is modeled as
a completely unknown Hermitian matrix, then the number of parameters to be
estimated increases, and this problem is unsolvable in general since the stored array
manifold does not have any information about these new components. For this
reason, it is generally assumed that the noise covariance is known to within a scale
factor o2, i.e.,, Ry, = 028,. Then, prewhitening is applied on the received signals
as

r(t) = B7Y2r(t) = S;V2A(0)s(t) + B ?n(t) (1.30)

which makes the undesired component white. During this operation (known as
Mahalanobis transformation) the steering vectors change from a(8) to $;'/?a(6).
The noise covariance structure (,) can be measured if there are no signals present.
If the Gaussian noise assumption is valid, then cumulants can be used to remove its
effects provided that the signals of interest are non-Gaussian.

The planar wavefront approximation over the aperture is also invalid in some
cases. This problem is treated in [129, 138], and also addressed in Chapter 5 of this

thesis.

1.3.4 The Estimation Problem
Given the snapshots {r(1),r(2),...,r(N)}, modeled by the generic equation
r(t) = A(0)s(t) + n(t) (1.31)

the estimation problem consists of the following three subproblems:

14



e Detect the number of signals, P.
e Estimate 8, the vector of signal parameters.
o Recover signal waveforms (messages), s(t).

Algorithms that address these subproblems were originally developed using second-
order statistics. In these algorithms, the observations are used to form the sample
covariance matrix of the array,

>

N
Ry % El r(t)rf(t) (1.32)
and the parameters of interest are estimated by processing the sample covariance
matrix. Any parametric method for estimating the signal parameters requires an
estimate of the number of parameters (detection problem). In this thesis, our em-
phasis is directed at the advantages offered by using higher-order statistics in the
estimation problem. The detection problem is studied extensively in the book [149]

and in the papers [158, 162, 179] for array processing applications.
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Chapter 2

Spatial Spectrum Estimation Techniques

In this chapter, we review some of the parameter estimation algorithms that will be
used in the thesis. The parameters of interest are the directions of far-field sources.
The reader is referred to the books [55, 56, 58, 64, 147] and papers [1, 4, 10, 18, 19,
33, 39, 46, 47, 62, 63, 68, 69, 70, 77, 103, 108, 127, 128, 151, 118, 153, 157, 165, 159]

for a more complete study of estimation techiques in array processing.

2.1 Beamforming Methods

Beamforming techniques are based on estimating a spatial spectrum, P(8), which
represents the energy in the measurements received from the direction represented
by 8. A peak in P(6) indicates the presence of a source from 8.

Beamforming methods do not fully exploit the data model, compared to the
eigenstructure methods of the next section. There are advantages in this however:
beamforming methods are robust to model errors and are computationally simple.
The obvious disadvantage is the performance degradation when the model is actually

accurate.
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2.1.1 Conventional Beamformer

Conventional beamforming can be considered as a power maximization technique.
Consider a single wavefront illuminating the array from an angle 8. The noiseless

measurements (N snapshots) are modeled as

r(t) = a(0)s() (2.1)

The output power of the linear combiner y(¢) = w¥r(¢) is measured as the sample

mean N
A 1 N
Pw)= % 2; Iw’r@)|I? = wHRyw (2:2)
t=
where Ry £ & ZiL, r(t)rf(t) is the sample covariance matrix of array measure-

ments. The power function P(w) can be reexpressed as

R 1 X
P(w) = v a(@)II" 2 lls()]I? (2.3)

t=1
Clearly, P(w) is maximized when w = a(@). When these weights are used, the
spatial spectrum estimate from the conventional beamformer is obtained from (2.2),

P(6) = " (9)Rna(6) (2.4)

If the norm of a(#) is not constant over the angles of interest, then a normalization
is necessary. The spatial spectrum from the conventional beamformer can then be

expressed as

~ H :
F.(0) = %l (2.5)

The spatial spectrum from the conventional beamformer can also be expressed as

Zit1 Me [lela(d)|?

P.0) = af (6)a(0)

(2.6)

where {),..., A} and {ey,...,epn} denote the set of eigenvalues and eigenvectors

of the sample covariance matrix respectively.
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As seen from its derivation, the classical beamformer assumes a single source in
no noise. There is no consideration of multiple sources or of colored noise; however, if
the sources are well separated, so that their steering vectors are almost orthogonal, it
is possible to resolve multiple sources. In this respect, the conventional beamformer
resembles the classical Fourier analysis of time series: due to non-parametrization,
resolution is limited by the window size (here, by aperture size). Although the
resolution of multiple emitters by the conventional beamformer is not satisfactory,
in the single emitter case the conventional beamformer becomes the deterministic

maximum-likelihood processor.

2.1.2 Capon’s Beamformer (MVDR)

Array processing techniques play an important role in enhancement of signals in
the presence of interference. Capon’s minimum-variance distortionless response
(MVDR) beamformer [19] has been a starting point for both signal enhancement
and high-resolution direction-of-arrival (DOA) estimation. This method is some-
times (misleadingly) called the “maximum-likelihood (ML) method” because of its
similarity to the ML estimator of the amplitude of a sine wave of known frequency
in Gaussian noise [97, Chapter 2]. MVDR does not maximize the likelihood, instead
it is motivated as a beamformer with disturbance rejection.

Suppose we want to estimate the power of the source from an angle 8. Therefore,
we need to minimize the contribution of all sources from other directions. Then, we
need to constrain the weight vector, w, so that the signal from & passes undistorted

while minimizing the output power
min P(w) subject to wHa(8) =1 (2.7)

Since the desired signal passes undistorted, minimizing the output power implies
minimizing the contribution of all other signals. The solution to this constrained op-
timization problem can be solved by the method of Lagrange multipliers [7, 45),(147,
Appendix A], and is .

_ _ Ry'a(f)

~ aH(0)Ry'a(9)

(2.8)
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The spatial spectrum estimate from the Capon’s beamformer can then be formed as

1

0= FoRza0)

(2.9)

In terms of the eigendecomposition of the sample covariance matrix, the Capon'’s

spatial spectrum estimate becomes
Pal®)=( 3 L e a@)? ) 2.10
M()-(z)\k"eka()" ) (2.10)
=1

MVDR can be used to recover the waveform of source whose steering vector is

known. Suppose we want to estimate the waveform from a source at 8,. Then,

RITJI?(GO)
aH(OO)RI-Vla(GO)

y(t) = wir(t) where w= (2.11)
y(t) is an estimate of the waveform of the source from 6, in a mean-square sense. The
equivalence of MVDR to other processors is determined in [15]. The performance
and sensitivity of the MVDR beamformer is well-analyzed [27, 28, 31, 32, 37, 38,
50, 104, 176, 181]). The processor is very sensitive to the matrix inversion in (2.11)
and errors in the steering vector (a(6,)) of the desired source, frequently resulting
in the cancellation of the desired signal. To avoid this phenomenon, additional
constraints are necessary, such as look-direction constraints in the vicinity of 8, and
derivative constraints on the spatial response of the array at 6, [16]. If coherent
sources accompany the desired signal, then it is necessary to put nulls on them; and
this can be formulated as additional constraints. These constraints are linear in w,

hence they can be expressed as the matrix equation
Clw=f (2.12)

The nonsingular matrix C is called the constraint matriz. f is a vector whose length
and contents are determined by the number and type of constraints. The weight

vector w is then found as the solution of

min P(w) subject to CHw =f (2.13)
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The solution can again be obtained by using Lagrange multipliers [45], and is
w= Ry C(C¥RF}C)'f (2.14)

The processor with the weight vector in (2.14) is called the linearly-constrained
minimum-variance beamformer. Its adaptive implementation is discussed in [45, 54].
Bresler et al. [11] proposed a class of beamforming algorithms for coherent signal
and interferences. Friedlander and Porat [43] investigated the performance of a
null-steering signal recovery procedure based on DOA estimation.

2.2 Maximum-Likelihood Methods

The maximum-likelihood (ML) estimator requires the knowledge of conditional prob-
ability density function of the data given the unknown parameters that will be es-
timated. The ML estimator has very desirable properties that hold for sufficiently
regular likelihood functions. If the ML estimates are consistent, then they are also
asymptotically efficient; therefore, for sufficiently long data lengths, the ML es-
timator attains the Cramer-Rao bound on the estimation error variance for the
parameters of interest.

Depending on the data model of array processing, ML technique has two differ-
ent forms. The stochastic ML assumes the signals are Gaussian random processes,
whereas the deterministic ML models the signals as deterministic (but unknown)
quantities. We refer the reader to [9, 41, 105, 106, 129, 131, 132, 133, 157, 158, 160,
162, 164, 166, 172, 180] for the applications of ML estimation in array processing
problems.

2.2.1 Stochastic ML Method

Stochastic ML method assumes that the signals are distributed as jointly Gaussian
random processes. This brings considerable simplicity to develop the estimator.
Since measurements are Gaussian, their second-order statistics (the covariance ma-
trix, R) completely describe their probability structure; from (1.29) we have

R £ A(O)R,AH(0) + 021 (2.15)
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where R,, is the covariance matrix of sources. The likelihood function of a single
observation is

p(r) = m exp(-r?R7'r) (2.16)

If snapshots are considered independent and identically distributed, then the set of
measurements {r(1),...,r(N)} has the likelihood

N
ST — 1 HR-1
L{r(1),...,x(N)} = :-_-l-'ll: M del(R) exp(—r"(t)R™"r(t)) (2.17)
By considering the log-likelihood, and after standard mathematical analysis, param-

eter estimation turns out to minimize the functional (8, R,,, 02), defined as
1(6,R,,,0?) £ log (det(R) ) + tr (R Ry ) (2.18)

where Ry is the sample covariance matrix. The unknown parameters are P DOA’s,
noise variance o2, and the entries of the source covariance matrix R,,. The dimension
of optimization can be reduced [5] to the number of sources:

§ = arg min{ det (PA Ry Pa + tr(P5Rny)PX ) } (2.19)

1
(M - P)
Although the dimension of optimization is reduced to P, it is still very costly to
carry out the minimization in (2.19). There is no guarantee that the optimization
will lead to a global minimum, due to the nonlinear character of the cost function in
(2.19); it is possible that any iterative numerical approach can be trapped in a local
minimum. This may be avoided if the optimization can be initialized with reliable
estimates. In the case of global convergence, high-quality estimates are expected.

The likelihood function for the stochastic maximum-likelihood model is suffi-
ciently regular, and the asymptotic covariance of the estimates asymptotically at-
tain the stochastic Cramer-Rao bound (CRB) [87, 157, 158]. It is also known that
stochastic modeling results in better detection algorithms than the deterministic
model of the next section [157, 164].
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2.2.2 Deterministic ML Method

In many applications concerning man-made signals, it is unrealistic to make the
Gaussian signals assumption. In this case, considering signals as deterministic
processes seems to be more reasonable if one insists on ML estimation.

In the deterministic model, the observations are Gaussian, given the values of
unknown parameters. The first two statistics of r(2) are:

m(t) £ E{r(t)} = A(0)s(t) (2.20)

and
E{(r(t) — me(8))(r(t) — m«(2))7} = 031 (2:21)

The unknown parameters are the angles 8, the source waveforms {s(1),...,s(N)}

and the noise variance o2

n*

The estimate for the noise variance takes the form [180]
1 -~
5 = —— L
%= ar—py v (PAR) (2.22)

whereas the direction and waveform estimates are obtained through the optimization
n S . 2
{0,5(1)} = arg min g lix(t) — A(6)s(t)ll (2.23)
The source parameters can be estimated as [180]
8(t) = A¥(0)r(t) (2.24)
and, therefore,
§ = argmintr (PX(0) Ry ) = argmaxtr (PA(6) Rw) (2.25)

Although the deterministic ML formulation leads to a cost function (2.25) which
is less complicated than the stochastic counterpart (2.19), the optimization is still

computationally costly. In both cases, the criterion functions possess local minima
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since they are highly nonlinear in the unknown parameters; however, if there is only
one emitter, then the ML cost function simplifies to

R o H(o)Rya
0 = arg max tr (Pa(f)Rny ) = arg max iaL’fz)j?)—aN(—ﬂ()O) = arg max P.(0) (2.26)

(since Py = aa” /(a¥a) ) which demonstrates that the deterministic ML beamformer
is equivalent to the conventional beamformer.

It is important to note that number of the parameters in the deterministic ML
method grows with the number of snapshots, since the source waveforms are treated
as unknown (deterministic) parameters. As pointed out in [132], this makes the de-
terministic ML function non-regular. Although j1 is consistent, unless the number
of sensors (M) tends to infinity, it is not efficient. In [87], it is shown that the esti-
mation error variance from deterministic ML is equal to or greater than than that
of the stochastic ML method for large number of snapshots if the signals are uncor-
related. If the emitter signals are uncorrelated, then the asymptotic variances of the
DOA estimates obtained from stochastic ML depend only on the second moments
of the source signals [87], and the stochastic ML estimator is always superior to the
deterministic ML estimator regardless of the actual probability density functions of
the independent sources.

Although the ML approaches have certain optimality properties, they require the
solution of nonlinear multidimensional optimization problems that introduce a severe
computational load (stochastic ML is optimal for large N, whereas deterministic ML
is optimal for large M). Due to these computational concerns, much array processing

research is focused on suboptimal approaches.

2.3 Subspace Methods

The eigenstructure-based suboptimal methods (signal subspace methods) originated
from Pisarenko’s harmonic retrieval algorithm [98] which was developed to estimate
pole locations from impulse response measurements. More powerful algorithms, such
as the multiple signal classification (MUSIC) [118], or estimation of signal parameters
via subspace rotation techniques (ESPRIT) [108], exploit the geometrical structure
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of the estimation problem represented in terms of the sample covariance matrix.

The array covariance matrix has the form
R = AR,,A" 4 421 (2.27)

R is Hermitian and has the eigendecomposition
M
R= Z ,\kekef = EAEH (2.28)
k=1

where the real and positive eigenvalues of R are arranged in non-increasing order,
and the eigenvectors are normalized so that they have unity norm. The following

observation is the foundation for the signal subspace methods.

e Fact [118]): Assume the signal covariance matrix R,, is full-rank P. Then, it is
possible to partition the eigendecomposition of R as

E = [E,,E,], A =diag(A,,As), A, =diag(}y,...,2p), An=0l1 (2.29)

where E, is MxP, and E,, is Mx(M — P). The first P eigenvalues are all greater
than o2 which has multiplicity of M — P. More importantly, the columns of E, are
the basis vectors for the subspace which is spanned by the columns of A, i.e.,

span(E,) = span(A) (2.30)

where span(E,) denotes the range space of E,. Proof of this fact follows directly
from the observation that the eigenvectors of R are also the eigenvectors of the
positive semi-definite matrix AR,,A¥ [118].
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2.3.1 Multiple Signal Classification (MUSIC)

If the emitter signals are not fully correlated (i.e., not coherent), then the signal
covariance matrix R,, has full-rank P. Then, since the range spaces of E, and A

are identical, by (2.30) and span(E,) 1 span(E,), we have the important result
span(E;) L span(A) (2.31)

where span(E,) is called as the noise subspace and the columns of E, are called
the noise eigenvectors. If the signals are not coherent, then steering vectors of the
sources that contribute to the measurements are orthogonal to the noise subspace,
i.e.,

Efa(0,)=0, 1<k<P (2.32)

Due to the unambiguity assumption on the array manifold, (2.32) determines the
source directions uniquely by a one dimensional search procedure. A consistent

estimate of E,, is obtained from the sample covariance matrix
Ry = E,AEF + B A EY (2.33)

and then, considering the property in (2.32), the normalized MUSIC spectrum is

calculated, as

___af(#a(e) a”(8)a(6)
~af(0)E.E¥a(0) — Tip, | eff a(d) I?

Pn.(0) (2.34)
The MUSIC estimates are the P mazima of Pp.(0). Note the similarity of (2.34)
to the Capon beamformer (2.10). MUSIC estimator uses only the noise subspace
eigenvectors, whereas the Capon beamformer uses all the eigenvectors, by scaling
them with the reciprocal of the corresponding eigenvalues. If the norm of the steering
vector is constant over the array manifold, and the signal to noise ratio tends to
infinity, the Capon estimator has the same structure as the MUSIC estimator.
Generally, the MUSIC algorithm offers superior estimates as compared to beam-

forming methods: MUSIC requires a full eigendecomposition, which brings a slight
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increase in computational load. Recent work [175] has addressed recursive eigende-
composition for subspace analysis.

MUSIC estimates are consistent, and they converge to true values as the number
of snapshots grow to infinity [66, 118]. A drawback of the MUSIC algorithm is
its sensitivity to model errors [44, 141]: MUSIC requires the costly procedure of
array calibration for all parameters of interest, and is very sensitive to errors in the
calibration procedure. Although the cost of array calibration can be decreased by
the manifold interpolation technique of Schmidt [120], calibration remains to be a
major problem. Friedlander [42] proposed a signal subspace method that uses the
properties of the signal of interest for blind adaptive interference cancellation. The
cost of calibration increases as the parameters that define the the array manifold
increase, e.g., polarization [39]. An experimental implementation of the MUSIC
algorithm is described in [119].

For uncorrelated sources, MUSIC can compete with the computationally more
expensive deterministic ML method [42, 132, 133). In the case of a uniform lin-
ear array, MUSIC resembles a root-finding procedure, and the resulting algorithm is
called root-MUSIC. The resolution of root-MUSIC has been proved to be better than
the MUSIC algorithm [101]. In the case of large arrays, beamforming and subspace
(beamspace direction-finding) ideas can be combined to improve the estimation re-
sults [182].

When the sources are coherent, the rank of R,, is less than the number of emit-
ters. In the case of a linear array, spatial smoothing algorithms are proposed to re-
store the rank of the source covariance matrix [94, 96, 104, 123, 124, 144, 170, 171).
In the case of arbitrary arrays, the deterministic ML algorithm or the so-called
multidimensional MUSIC algorithm [18] can be used, with an added expense in
computational requirements. If the emitter waveforms are broadband, then DFT
can be used to separate the wideband problem into several narrowband problems
which can be properly averaged to cope with source coherency [62, 68, 69, 159].

2.3.2 Rotational Invariance Techniques (ESPRIT)

Due to the array calibration problems of the MUSIC algorithm, the ESPRIT al-

gorithm (estimation of gignal parameters via rotational invariance techniques) is

26



wavefront 1

1)

6 z(t) /

wavefront 2

X1 (t)

<
>3
B

xa(t) ya(t) W)
[ [ ] [ J
xM(t)g A »g(m(t) A »H zm(t)

Figure 2.1: Array configuration for the ESPRIT algorithm. The filled sensors are
sufficient for single DI-ESPRIT, but additional redundancy can be added using un-
filled sensors for multiple invariance ESPRIT [140]. The sensors that have different
shapes are presented to emphasize the fact that ESPRIT can be applied to any array
consisting of sensors of arbitrary response.

introduced [108]. ESPRIT requires a specific type of redundancy in the array struc-
ture to eliminate the requirement for the knowledge of the array manifold. In this
section, we describe the total-least squares version of the ESPRIT algorithm [108]
(TLS-ESPRIT). Performance of TLS-ESPRIT algorithm is analyzed in [88, 134].
An experimental ESPRIT direction-finding system is described in [65).

Assume that there are P narrowband far field sources illuminating an array of
M sensor doublets. The elements in each doublet have identical response patterns
and are translationally separated by a known constant displacement vector A (A =
lAllF). The responses of each sensor in a subarray are quite arbitrary except for
the requirement that the response of sensors are nonzero over the region of interest.

Figure 2.1 illustrates the array set-up.
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Received signals for the two subarrays S, and S, are expressed as

P
zi(t) = Y sk(t)ai(0e) +nsi(t)
k=1
P
vi(t) = ;,Z_; si(t)ai(0x) exp(—jw.A sin Oi/c) + ny, () (2.35)

where 1 < i < M, 6, is the direction-of-arrival of the kth source with respect to the
direction of the translational displacement vector &, w, is the center frequency and

c is the propagation speed. The above equations can be expressed in vector form as

x(t) = As(t) + ng(2)
y(t) = Ad®s(t) +ny(t) (2.36)

in which x(t) and y(t) are M dimensional vectors, A is the MxP (M > P) full-rank
steering matrix and ® is a diagonal PxP matrix of the phase delays between the

doublet sensors for P wavefronts, i.e.,
® = diag {exp(—jw.Asinb,/c),...,exp(—jw.Asindp/c)} (2.37)

The PxP unitary matrix @ relates the measurements from subarray S; to those
from subarray S,. Clearly, ® is nonsingular.

If we concacanate observations from the two subarrays as

| x(®)
z(t) = [ v ] , (2.38)

then the covariance matrix of z(t) is

H
R.. = E{z(t)z"(t)} = [ A ] R., [AA{) ] + %1 (2.39)
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in which R,, is the covariance matrix of P non-coherent far-field sources. The

eigenvectors of the covariance matrix R, corresponding to its P largest eigenvalues

s[E] [ A
E,-[Ey]-[AQ]T (2.40)

A
for a nonsingular PxP matrix T. Since E; and E, share a common column space,
the rank of [E,, E,] is P; therefore, the 2Px2P matrix E.,

will satisfy

E,, & [ E; ] [E. E, (2.41)

is a non-negative definite Hermitian matrix of rank P, so it has P null eigenvalues;
therefore, there is a rank P, 2PxP matrix' F, such that

0 = [E,,E,JF = E.F, +E,F, (2.42)

This can be rewritten as
0 = ATF, 4+ A®TF, (2.43)

Since A is full-rank, this is equivalent to

or

T-'@T = —F.F;" (2.45)

which implies that the eigenvalues of ¥ = —F.F;! must be equal to the diagonal
elements of ®, and the columns of T~! are the eigenvectors of ¥ (Eg = T™!);
hence, the DOA parameters can be obtained directly from an eigenanalysis of W.

The remaining problem is to find such a matrix F. Since, F must span the nullspace

1Such a matrix is not unique, as incorrectly claimed in [108], since FQ satisfies (2.42) with
the same rank condition if Q is nonsingular; however, the arbitrary matrix Q does not effect the
estimation procedure because it is canceled in (2.45).
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of [E.,E,], the obvious choice is to select F as the eigenvectors of E;y with null
eigenvalues.

In summary, the TLS-ESPRIT algorithm: forms R.; in (2.39); performs an
eigendecomposition of R., to obtain E,; determines E,, E, in (2.40) to get E,, in
(2.41); computes F,, F, from the null-space eigenvectors of E.,; and obtains DOA
parameters by computing the eigenvalues in (2.45). In this way, a total-least squares
(TLS) cost function is optimized and the resulting algorithm is called TLS-ESPRIT.

It is also possible to estimate the steering vectors (up to a scale factor) corre-
sponding to the far-field sources whose bearings are already estimated. This can be

accomplished by computing
E,Ex =ATT '=A (2.46)

In the presence of noise, this estimate will not conform to the invariance structure
imposed by the array. An improved estimate for the subarray steering vector can be
computed as .

=3 (E:Eg¢ + E,Eg &™) (2.47)

(note that ®~! = &*). In this way it is possible to associate the steering vectors
with the estimated bearings. After estimating the steering vectors, it is possible
to construct a linearly-constrained minimum-variance beamformer to recover the
emitter waveforms.

High-resolution algorithms such as multidimensional-MUSIC, deterministic ML,
and TLS-ESPRIT can be analyzed within the framework known as subspace fit-
ting [157, 158], which produces insight to their asymptotic relations. It is also shown
in [157] that, by introducing certain weighting factors (which are determined from
the received data) for the subspace fitting problem, it is possible to achieve the
stochastic Cramer-Rao bound. Furthermore, weighted subspace fitting leads to bet-
ter detection algorithms [158]. By using subspace-fitting arguments it is also possible
to extend the ESPRIT algorithm to use multiple invariances [140, 143].
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Chapter 3

Cumulants

In this chapter, we first review definitions and properties of cumulants and polyspec-
tra. Rather than presenting an exhaustive overview of work that has been done in
this field, we refer the reader to [78, 82] for a tutorial introduction, and proceed by
illustrating properties of cumulants by an application to speech processing. Finally,
we define cumulants for complex random processes, in a form applicable to the signal
model of Chapter 1. For more detailed information on cumulants, reader is referred
to the books [14, 84, 107, 183].

3.1 Definitions and Properties

Let {z1,22,...,2,} be a collection of random variables and {v;,v,,...,v,} be a
collection of deterministic variables. We can stack these variables in vectors x =
[#1,%3,...,2,)T and v = [vy,v2,...,v,]T. Then, the nth-order cumulant of the
random variables is defined as the coefficient of (v;,v;,...,v,) in the Mac-Laurin

series expansion of the cumulant-generating function
Ka(v) = log (E {exp[jv"x]}) (3.1)

An alternate approach that defines the nth-order cumulant in terms of a weighted

sum of joint moments of orders up to n is provided in [78].
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For zero-mean random variables that we frequently encounter in applications,

the second-, third-, and fourth-order cumulants are expressed, as
cum(z;,23) = E {z; 23}

cum(zy, 22,23) = E {z; 2223} (3.2)
cum(z,,z3,73,24) = E {z1222324} — E {z122} E {z324} —
E {z123} E {2324} — E {z124} E {2223}

The expressions for non-zero mean random variables can be found in [85). Through-
out this thesis, we treat the zero-mean case.

There are several ways of collecting these random variables, e.g., in array pro-
cessing, samples of sensor outputs separated in time, or, in system identification,
samples from a random process. In the system identification context, if z(¢) is a
random process, stationary up to order n, then the nth-order cumulant function
of z(t), Cnz(71,72y...,Tn=1), is defined as the nth-order cumulant of the random
variables {z(¢),z(t + 11),-..,z(t + Ta-1)}, i.e.,

Cnz(T1, 725+ oy Tac1) = cum(z(t), z(t + 71), ..., (¢ + Tne1)) (3.3)

Due to the stationarity assumption, the nth-order cumulant of the random process
z(t) has (n — 1) degrees of freedom {r1,72,...,7a—1}. Since the nth-order cumulant
can be expressed as a sum of joint moments of the random variables of orders up to
n, its existence is established if all absolute moments of orders m < n exist and are
bounded.

Note that for zero-mean processes the second- and third-order cumulants are
identical to covariance and third-moment, respectively. The third- and higher-order
cumulants of Gaussian processes are identically zero. This fact can be used for
detection and characterization of deviations from non-Gaussianity [48]. In the next

section, we will provide an experiment on speech processing.
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e The following properties of cumulants will be used frequently in this thesis [78]:

[CP1] If {o;}%., are constants and {z;}%, are random variables, then

n
cum(a Zy, 23, . . ., AnTn) = ( H a; ) cum(zy, Zg,...,2y) (3.4)
=1

[CP2] If a subset of random variables {z;}%., are independent of the rest, then
cum(z1,Z2,...,2,) =0 (3.5)
[CP3] Cumulants are additive in their arguments,
cum(z; + y1,%2,...,2q) = cum(zy, Z3,. .., Z,) + cum(y;, T2, ..., Zp) (3.6)

[CP4] If the random variables {z;}., are independent of the random variables
{%:}i,, then

cum(z1 +y1,Z2 + Y2, « - y T + Yn) = cum(zy, Z2, . .., ) + cum(ys, y2,- .., ¥n) (3.7)

[CP5] The permutation of the random variables does not change the value of the
cumulant.
[CP6] Cumulants suppress Gaussian noise of arbitrary covariance, i.e., if {z;}%, are

Gaussian random variables independent of {z;}%, and n > 2, we have
cum(zy + 21,22 + 22, . . - , Tn + 2,) = cum(zy, z3,. .., Tn) (3.8)

[CP7] If a, is a constant, then

cum(ay, + 1, T2,. .., Tp) = cum(zy, g, ..., Ty) (3.9)
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The nth-order polyspectrum is defined as the (n — 1)-dimensional Fourier trans-
form of the nth-order cumulant function. For discrete-time signal processing appli-

cations, this can be expressed as

o0 ne1
Snz(@ryeswnc1) = Y Cuz(m,..., o) exp[—3 () wimi)]  (3.10)
Ty ooy TRy =—00 =1

Following the existence condition for Fourier transform, absolute summability is a
sufficient condition for existence of the nth-order polyspectrum. Since cumulants are
symmetric in their arguments so are their Fourier transforms. Exploiting symmetries
provides computational advantages in implementation.

Cumulants are blind to phase shifts and scale factors. This originates from their
definition. This observation is used in [23, 112, 150] for pattern recognition and
reconstruction purposes. Third-order cumulants are blind to processes that have a
symmetric probability density function; consequently, fourth-order cumulants must
be used in such environments. Cumulants of independent and identically distributed

(i.i.d.) random processes are delta functions, i.e., if u(t) is such a process, then

Cn,u(fla Tg, s Tn_l) = ‘Yﬂnu Jﬂoh.---.‘l'n-l (3'11)

where 4,4 is the nth-order cumulant of a single time sample from u(t). It is impor-
tant to note that joint moments do not possess this property. Suppose z(t) is the
output of the linear time-invariant system with impulse response k(t) and driven by
i.i.d. input u(t). By using cumulant properties, the cumulant function of z(t) can

be expressed as

Cn,z(‘rl, T2ye00y Tu—l) = T Z h(t)h(t + 1'1) s h(t + Tn—l) (3.12)

t==00

The polyspectra of z(t) can be computed through its definition as

n-—1
Sn,z(wlsw% s swn-l) = Tnu H(wl)H(w2) e H(wn-l)H(" Z wk) (3-13)
k=1
where H(w) is the frequency response of the filter. If the impulse response is real,

then H(—w) = H*(w).
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Cumulants of order higher than two are blind to Gaussian noise and can re-
veal phase characteristics of the system under consideration. On the other hand,
covariance-based approaches are blind to phase information and sensitive to Gaus-
sian noise. The use of these properties, as initiated in [74], make higher-order-
statistics promising candidates to previously unsolvable problems. Several system
identification methods are described in the tutorial [78].

In applications, we do not have access to true cumulants; we estimate them from
the received data. The presence of additive Gaussian noise does eflect the quality
of the estimates, due to finite sample averaging in the estimation procedure. In
order to get satisfactory results, longer data lengths are required for higher-order
processing. An analysis of the asymptotical behavior of estimates of polyspectra can
be found in [13].

3.2 An Application to Speech Processing

In this section, we illustrate the basic properties of higher-order-statistics by an ap-
plication to speech processing. The aim in this experiment is to propose a robust
method for speech state detection and pitch period estimation. This will be ac-
complished by observing the behavior of a cumulant-based adaptive predictor which
processes the speech signal. Higher-order-statistics is proposed for discimination of
speech states. Comparing the energy of the original speech signal with that of the

prediction-error residual yields the decision method.

3.2.1 Speech Production Model

The state of speech signal belongs to three categories: voiced, unvoiced and silence.
Silent periods can be detected easily by monitoring zero crossing rate and energy of
the received signals [102]. For this reason, we shall concentrate on voiced/unvoiced
classification of speech.

Unvoiced sounds are generated by forming a constriction at some point in the
vocal tract and forcing air through the constriction at a high velocity to produce
turbulence. This creates a broad spectrum noise source to excite the vocal tract.

The energy concentration is shifted to the high-frequency end of the spectrum for
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Figure 3.1: Typical speech signals: (a) Unvoiced speech, (b) Voiced speech.

unvoiced sounds, but the spectrum is relatively flat when compared with that of
voiced speech. Due to large number of random effects involved in the production of
unvoiced speech, Gaussian noise is a valid candidate as the excitation source. This
assumption is validated by Wells [167]. In his work, the bispectrum is used to make
V/UV decision. It has been found that bispectrum of English fricatives tend to
zero, but for vowels the situation is just the opposite. A typical unvoiced segment
of speech is shown in Fig. 3.1.a.

For voiced sounds, the vocal tract can be modelled as an all-pole linear system.
The same model also holds for unvoiced sounds but the AR order is less. Correlation
between adjacent samples is high for voiced sounds. On the other hand, unvoiced
speech resembles white noise since its spectrum is relatively flat, yielding small
correlation between adjacent samples.

The differences in the excitation and correlation properties for these two cases
can be used to discriminate between them; however, with second-order statistics we
can only use the correlation properties but can not utilize the information about
the excitation model. This motivates the use of higher-order cumulants of speech

signals.
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3.2.2 Cumulants for Speech Analysis

In our work on speech processing we employ fourth-order cumulants since the third-
order cumulants are blind to sources with symmetric probability density function.
Although it is hard to propose an explicit density function for speech signals, a
symmetric probability density function appears to be a reasonable one [102, pg.176).

Linear-prediction is a popular method to analyze speech signals. This method
assumes an autoregressive (AR) model for speech production

s(n) = i ars(n — k) + u(n) (3.14)
k=1

where s(n) is the speech signal and u(n) is the excitation sequence. In [78] it is
shown that the AR parameters ( i.e., the a; ’s ) satisfy the following equations,

gak cum(s(n), s(n + ko), s(n + m — k), s(n),...,s(n)) = 0 (3.15)

where m > 0, ap = 1 and ko is a parameter whose selection is addressed in [78].
Concatenating (3.15), for m = 1,2,...,p + M, where M > 0, we obtain the so-

called cumulant-based normal equations,
C(ko)a=0 (3.16)

where C(ko) is a Toeplitz matrix and a = [1,a,,4a3,...,a,]T. The AR parameters
can be obtained by solving (3.16) if the matrix C(ko) is full-rank. Note that, if
the excitation sequence u(n) is Gaussian and we employ higher than second-order
cumulants, then the cumulant matrix C(ko) becomes the all-zeros matrix, at least in
theory. Due to finite-sample averaging, this condition will not hold but the identifi-
cation problem becomes ill-posed since C(kg) does not carry information about the
speech production system. This observation is the starting point on the application

of cumulants to speech processing.
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3.2.3 Adaptive Filtering

In the previous section, we mentioned the distinctions between voiced and unvoiced
sounds: correlation among adjacent samples and excitation models. In this section,
we shall investigate methods that fully utilize this information.

Linear prediction (LP) methods are employed to accomplish our goal; however,
we shall not use batch-type methods for reasons outlined in the introduction. Linear
prediction can be based on second-or higher-order statistics, however the former is
usually employed. Linear prediction is essentially identifying the inverse of a linear
system driven by white noise; hence, it can be considered as a system identification
problem. The system under consideration can be approximated by an AR model,
so an FIR prediction filter will whiten the spectrum of the incoming signal. We
shall investigate the differences between cumulant-and covariance-based adaptive

prediction methods in this section.

Second-order statistics based adaptive filtering

Correlation-based adaptive prediction filters tend to minimize the prediction error

power at the output of the filter. Since correlation among adjacent samples is high
for voiced signals, we can remove a large proportion of energy from the original
speech signal using prediction. On the other hand, in the case of unvoiced sounds,
LP will not be that successful due to small correlation among samples. Therefore, a
comparison of the input signal power with the power in the prediction residual may
reveal the state of the speech signal.

Lattice prediction filters enable monitoring the variation of prediction error
power with model order due to their specific structure. Autoregressive model-
order-selection can be performed by selecting the tap which results in minimum
prediction-error power. This leads to another discrimination between voiced and

unvoiced sounds, since this order will be relatively lower for the unvoiced case.

Fourth-order statistics based adaptive filtering

We now investigate the behavior of a fourth-order cumulant-based adaptive filter.

An adaptive algorithm for estimating the parameters of nonstationary AR processes,
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excited by non-Gaussian signals is proposed in [136], and some modifications are sug-
gested in [40]. The ideas for the covariance-based filter directly apply to this case
with one important ezception: the cumulant-based adaptive filter provides the solu-
tion to the cumulant-based normal equations, and this solution is not the one that

minimizes the prediction-error power; however, one may argue that if the speech

production system can be identified accurately, then the prediction error should be
close to the minimum possible value.

With higher-order statistics, we have the diversity of using the excitation in-
formation: for voiced sounds, the excitation is non-Gaussian; hence, the speech
production mechanism can be identified by cumulant-based AR equations. On the
other hand, for unvoiced sounds the ezcitation can be characterized as Gaussian,
making the identification problem ill-posed'. The cumulant-based adaptive filter
will not be able to identify the system and, since there is no_associated output-power
minimization criterion, prediction-error power may arbitrarily increase. In this case,

a cumulant-based filter may even amplify the speech signal making the power re-

duction by prediction comparison more clear than when using a covariance-based
method.

To validate our ideas about covariance and cumulant-based adaptive prediction
of speech signals, we summarize them in Figure 3.2. We also performed experiments
using data from the TIMIT speech recognition database. The results verify our

claims and are provided in the next section.

3.2.4 Experiment

To analyze the behavior of adaptive predictors in voiced and unvoiced speech states,
we selected a 250 msec period of speech segment in which there are two transitions:
voiced (0-75 msec), unvoiced (75-190 msec) and again voiced (190-250 msec). We
used an order ten predictor for adaptive filtering of the speech waveform.

To make better comparisons concerning the energy of the original speech and

prediction residuals, obtained via the two different filters, we illustrate the energy

1A cumulant-based filter provides the solution of cumulant-based normal equations in an adap-
tive fashion; however, this set of equations becomes trivial when the input to be analyzed is a
Gaussian linear process, because higher than second-order cumulants of Gaussian processes are
zero.
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Figure 3.2: Summary of the properties of adaptive predictors for different speech
states.

estimates in Fig. 3.3. Energy is estimated by first squaring the signal and then
performing low-pass filtering using a 15 point Hamming window. Figure 3.3 shows
that, by comparing the prediction-residual power and the original-signal power, it
is possible to make reliable V/UV decisions. With the cumulant-based method,
even better results are obtained, because it amplifies the input data during unvoiced

periods.

3.2.5 Remarks

In this section, we have described a speech analysis system which exploited the speech
model and the properties of cumulants together. The lesson from this experiment
is: in applying cumulants to a problem, first develop an insight to the conditions of

the problem and then provide a clear interpretation.
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Figure 3.3: Energy estimates. (a) Original speech signal; (b) energy estimate of orig-
inal speech signal; (c) energy estimate of prediction-error residual from covariance-
based filter, (d) energy estimate of prediction-error residual from cumulant-based
filter.
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3.3 Cumulants of Complex Random Processes

In this thesis, we shall mainly consider direction-finding for narrowband signals.
Hence, our signals of interest are non-Gaussian (possibly complex) narrowband ran-
dom processes, e.g., communication signals. Measurement noise components, being
the outcome of many unknown, independent factors can be assumed to be Gaus-
sian random processes with unknown covariance. Not knowing the noise covari-
ance reflects our lack of knowledge about the spatial propagation of noise. Spatial
correlation of noise creates problems in covariance-based processing (e.g., biased
direction-of-arrival (DOA) estimates), but with HOS this will not be an issue since
higher-than second-order cumulants are blind to additive Gaussian noise. However,
Gaussian noise suppression is only one benefit of using cumulants and it is not the
major issue that we address in our work.

To handle symmetric probability density functions from the sources of interest
(e.g., communication signals), we must use fourth-order cumulants of sensor outputs.

Fourth-order (zero-lag) cumulants are defined in a balanced way as follows [137):
cum{ri(t), (), ri(2), (&)} £ E {ri®)rs@)ri&)ri (@} = E{r()ri()} E {ri(d)ri ()}

— E{ri(t)ri(t)} E{r;(t)ri(¥)} — E{ri(®)ri ()} E {r;(t)ri(t)} (3.17)
for (1,7,k,0) € {1,...,M}
in which {ry(t)}}, denotes the received signal vector from an array of M sensors.
This definition is in-keeping with the definition of cross-covariance, which can be
expressed as, E{ri(t)rj(t)}, and which has only two arguments. The richness of
cumulants in terms of arguments will prove to be an interesting feature.
If the signal of interest also possesses a non-zero third-order cumulant, then we

may also consider third-order cumulants. However, third-order cumulants can not

be defined in a balanced way

cum{ri(t), r3(t), 7i(1)} £ E{ri®)r;()ri(t)} (3.18)

since the number of arguments is odd.
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Chapter 4

An Interpretation of Cumulants for Array

Processing

In this chapter, we propose a novel interpretation for the use of fourth-order cu-
mulants in narrowband array processing problems. We show that fourth-order cu-
mulants of multichannel observations double the directional information available
compared with second-order statistics. Based on our interpretation, we explain how
cumulants can increase the effective aperture of antenna arrays. We give several
examples to illustrate our interpretation. In addition, we extend our results to third
order cumulants. Finally, we describe the role of our interpretation in the following

chapters of the thesis.

4.1 Fourth-Order Cumulants

Conventional array processing techniques utilize only the second-order statistics of
received signals. These methods require the computation of the sample covariance
matrix as described in Chapter 2. Second-order statistics are sufficient whenever the
signals can be completely characterized by knowledge of the first two moments, as in
the Gaussian case; however, in real applications, far-field sources emit non-Gaussian
signals, e.g., as in a communications scenario.

Whenever second-order statistics can not completely characterize all of the sta-
tistical properties of underlying signals, it is beneficial to consider information em-
bedded in higher than second-order moments. Higher-order statistics (HOS) prove
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to be rewarding alternatives to second-order statistics; there are many signal pro-
cessing problems that are not solvable without access to HOS [78)]. In this section, we
provide an interpretation for the use of fourth-order cumulants in array processing
problems based on the properties of higher-order statistics summarized in Chapter 3.

As we summarized earlier in Chapter 2, high-resolution direction-finding methods
such as MUSIC and ESPRIT, which use second-order statistics of array measure-

ments, have been developed for the model
r(t) = As(t) + n(t) (4.1)

where A is the full-rank steering matrix, s(t) denotes the source waveforms and
n(t) is the noise contribution. If there are M sensors and P sources, then r(t) and
n(t) are M-vectors, s(¢) is a P-vector and A is an MxP matrix. If the noise is

spatially-white, then the covariance matrix of r(¢) takes the form
R 2 E{r(t)r¥(t)} = A Bes A¥ + 0°1 (4.2)

where Xgg 2 E{s(t)s”(t)}. If there are P sources, and they are all incoherent, then

the source covariance matrix R is diagonal, and it can be reexpressed as

P
R=AZc A" +0°1=Y olasall + 0’1 (4.3)

k=1
where o} and a; denote the power and the steering vector for the kth source respec-
tively. If at another data collection time, the power of the kth source is scaled by

B, then the array covariance matrix R for this scenario takes the form

P
R =) Biolaal + 0’1 (4.4)
k=1
High-resolution direction-finding methods use the structure of (4.3) to eliminate the
noise component (o?I), and then search for the vectors in the array manifold that lie
in the range space of A g5 Af. If the noise is spatially-colored, elimination of noise

in the array covariance matrix is not possible unless one knows the noise covariance



matrix and whitens the received signals. If the noise is Gaussian, then cumulants
can be used to suppress its effects.

In order to provide an interpretation for the use of second and higher-order
statistics in array processing applications, we illustrate an array set-up in Figure 4.1.
For convenience, the elements of the array (represented by circles) are assumed to
be isotropic, and the narrowband sources that illuminate the array are assumed to
be statistically independent. In this case, we can further assume the presence of a
single source s(t) (without loss of generality due to [CP4]), with propagation vector
k, where k = ki, + kyay (a5 and Gy, denote the unit vectors along the x and y-axis,
respectively), power o2 and fourth-order cumulant .,.

Suppose we compute the cross-correlation (ignoring noise effects) between real
signal r(t) and virtual signal v(t), E{r*(t)v(t)}, assuming the reference point to
be the position of the sensor that records r(f). We call such a cross-correlation
a “virtual” cross-correlation. Because r(t) = s(t), and v(t) = s(t) exp(—jié . J),
it follows that the directional information provided by the correlation operation is
embedded in the dot product, k- (T, i.e.,

E{r(t)o(t)} = o exp(—j k- d) (4.5)

The source power o2 does not provide any directional information; hence, the infor-
mation recovered by cross-correlation of two sensor outputs can be represented by
the _vector extending from the conjugated sensor, to the unconjugated one, i.e., cross-
correlation is a vector in the geometrical sense. After giving such an interpretation
for cross-correlation, the problem is how to interpret fourth-order cross-cumulants

that have four-arguments. Consider the cumulant,

cum(r*(t), 2(t), r*(¢), y(t)) = cum(s"(2), s(t) exp(—jk - d.), 5°(t), s(t) exp(—jk - 4,))
(4.6)
and use [CP1] to obtain:

cum(r*(t), z(£), 7*(t), y(2)) = 14,0 exp(—jk - &) exp(—jk - d,) (4.7)
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Figure 4.1: Mechanism of second-and higher-order cumulants for array processing:
the sensors that measure r(t), z(t), y(t) are actual sensors, whereas v(t) is a virtual-
process measured by a virtual-sensor.

Finally, by comparing (4.5) and (4.7), we observe the following:

0.2
74‘:’ctmfl(r‘(t),:c(t),r'(t),y(t)) (4.8)

E{r(th(t)} =

Equation (4.8), which relates a fourth-order statistic to a second-order statistic,
demonstrates that it is possible to recover directional information which is provided
by channels r(t) and v(t) without actually using a real sensor to measure v(t). We
refer to (4.8) as a “virtual cross-correlation computation” (VC3?)!.

From the development of (4.8), we see fourth-order cumulants can be interpreted
as addition of two vectors each extending from a conjugated channel to an unconju-
gated one. It can be shown that (4.8) holds for both: multiple independent sources
(due to [CP4]) and in the presence of additive colored Gaussian noise (due to
[CP6]). Furthermore, [CP5] which indicates that cumulants are invariant with
respect to a permutation of the random variables is a restatement of the fact that

addition of two vectors is a commutative operation.

1A patent for the VC3 has been filed for by the University of Southern California.
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Our geometrical interpretation gives an idea why cumulants have a great poten-

tial for array processing: cumulants virtually increase the effective aperture of an

array without any design procedure or configuration constraints (as in minimum
redundancy arrays, which are constrained to be linear). To investigate the virtual
aperture eztension by using fourth-order cumulants we redraw the three element ar-
ray of Figure 4.1 and indicate the laitice structure defined by the vectors d-;,J;,J;
in Figure 4.2. We only have 3 sensors available: the ones labeled as r(t),z(t) and
y(t). The intersections of the lines in the lattice determine the candidate locations
for virtual-sensors. To implement a covariance-like subspace algorithm, we need to
compute the cross-correlation of all sensor outputs, actual or virtual. In other words,
we need to connect the sensors to be used, with a single vector. With fourth-order
cumulants, we have the liberty of using two vectors for connection purposes. These
connecting vectors must be selected from the set of vectors that define the lattice.
In Figure 4.2 we have indicated a group of sensors (not a unique selection) that con-
sist of four virtual and three actual sensors which can communicate by two jumps
(vector additions). It is possible to form a 7x7 matrix in which we use cumulants
to compute the required covariances (see Figure 4.3). Observe, from (4.8), that the
computed cumulants are scaled versions of the cross-correlations. This is the case
covered by (4.4), where B; = 741/0%. The resulting matrix R, will take the form of
the covariance matrix of array measurements, in which source powers are changed

by an unknown factor B = v44/0}, that results in

P
R=Y v« aall = ATA¥Y (4.9)

k=1

Note also that, because R is computed using cumulants, 0% = 0 (cumulants sup-
press additive Gaussian noise). In (4.9), the steering vectors (a;) are 7x1, i.e., they
fully represent the delays encountered by the wavefronts as if we have 7 actual ele-
ments at the locations selected in Figure 4.2. The diagonal matrix I" consists of the
fourth-order cumulants (which can be negative) of sources. Therefore, the cumulant
matrix R is not necessarily positive-definite, unlike the covariance matrix of sen-
sor measurements. This difference does not pose a problem in the direction-finding

processor, when the eigenvalues are sorted with respect to their magnitude.
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Figure 4.2: Virtual aperture extension by cumulants: lattice indicates the possible
locations for virtual sensors. To be used in a DOA algorithm all sensors must be
connected by at most two vectors. One such group (not unique) is illustrated in the
figure.

For the example in Figure 4.2, a covariance-based algorithm can estimate the
bearings of two sources, whereas the cumulant-based virtual aperture eztension ap-
proach can estimate the parameters of six sources (one less than the number of ele-
ments that form the effective aperture). In addition, the cumulant based approach
can survive in the presence of colored noise due to [CP6). In the next section, we
provide more examples with different array configurations.

Note that it is possible to compute cross-correlations among the actual sensors by
cumulants, because cross-correlation is a “vector”, and any vector can be expressed
as the addition of the zero vector to itself. In other words, cross-correlation between
two channels can be computed by using two of the arguments of the fourth-order
cumulant as required by correlation, and then using the remaining two arguments

by repeating one of the channels twice, e.g.,

o

Bla(Ou(0)} = Z-cum(e"(2) (0, 2°(0), 20) (4.10)

repeat
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Figure 4.3: Construction of a matrix (R) to be used in the direction-finding processor
using cumulants.

The advantage of computing E{z*(¢)y(t)} by (4.10) is that additive Gaussian noise
can be suppressed by the cumulant calculation. If, E{z*(¢)y(¢)} were computed
directly, it would be severely affected by additive Gaussian noise. Equation (4.10) is
the approach taken in the initial attempts to incorporate higher-order statistics into
direction-finding algorithms for Gaussian noise suppression purposes [24, 41, 83, 91].
In this section, we showed that cumulants have more important properties than just
Gaussian noise suppression. Chapter 7 addresses the issue of non-Gaussian noise

suppression.
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(a)

Figure 4.4: Circular arrays and element reduction by cumulants: (a) circular array
for linear-prediction direction-finding, (b) the empty sensors become redundant with
the use of cumulants.

4.2 Examples of Aperture Extension

We illustrate three different array geometries: circular, linear, and rectangular.

e Circular Array

In Figure 4.4a, we illustrate a circular array with a sensor at the center. Such a
configuration is very suitable for linear-prediction direction-finding when the sensor
at the center is used as the reference [46]. However, some sensors are redundant if
we use cumulants; the empty sensors in Figure 4.4b indicate the virtual elements
whose second-order statistics can be computed by higher-order statistics.

A more careful investigation (see Figure 4.5) of the circular array reveals that
with the actual sensors of Figure 4.4b, it is possible to extend the aperture so that the
effective aperture is even larger than that of the original array in Figure 4.4a. This
result indicates that cumulants are very promising in the design of two-dimensional
minimum-redundancy arrays. Chapter 6 investigates this issue.

e Linear Array
Consider the fully-redundant linear array of N isotropic sensors in Figure 4.6a.
In [122] it is proved that the aperture can be extended to 2N — 1 elements. We

now provide a very simple and geometric proof for this fact: the most distant point
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Figure 4.5: It is possible to generate 12 more virtual sensors by using cumulants.
These new locations are obtained by picking one of the 6 possible vectors among the
4 actual sensors (4!/(2! 2!)=6) on the circle (excluding the sensor at the center), and
attaching this vector to the sensor at the center. There are 2 ways to do this, hence
we have 12 new locations. Since these 12 new locations communicate with the center
sensor with only one vector, they communicate with the sensors of previous design
(virtual sensors on the circle) with at most two jumps, implying that the aperture
can be extended to 21 elements using cumulants.
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Figure 4.6: Linear and rectangular array aperture extension: (a) fully-redundant
linear array (N, filled sensors), and virtual-sensors that can be generated by cumu-
lants (N, — 1 empty sensors), (b) fully-redundant rectangular array (N, - N, filled
sensors), and virtual sensors that can be generated by cumulants. Effective aperture
consists of (2N; — 1)(2N, — 1) sensors.

from the origin that we can reach by two vector additions is (2N — 2), (since the
maximum length vector among the available sensors is (N — 1) units long), i.e., the
effective aperture consists of 2N — 1 sensors! The proof is this simple because of the
interpretation developed in this chapter. In addition, design of linear non-redundant
arrays can be formulated based on our geometric interpretation. In Chapter 7, we
provide a simulation, in which virtual aperture extension is accomplished for a two
element array in the presence of spatially-white but spatially-nonstationary non-
Gaussian noise.

e Rectangular Array

We can now analyze the more general case of the fully-redundant rectangular array
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in Figure 4.6b. We have an array of N - N, sensors. With similar reasoning to the

linear case, the effective aperture consists of (2N, — 1)(2N, — 1) sensors.

4.3 Third-Order Cumulants

Third-order cumulants are used less frequently in array processing applications than
fourth-order cumulants [35, 41, 92, 139]. This is due to the non-symmetric nature of
the definition of the third-order moments for complex random processes. Another
important reason is that third-order cumulants of almost all man-made signals are
identically zero (communication signals, telemetry signals); however, there are phys-
ical processes that have non-zero third-order statistics, such as signals associated
with rotating machinery, radar returns, and voiced speech signals. For localiza-
tion of these processes, it is advantageous to use third-order cumulants, since they
are more computationally attractive than fourth-order cumulants, their data length
requirements are less when compared with fourth-order statistics, and they can sup-
press symmetrically distributed ambient noise.

An important observation about third-order moments is that they are not spa-
tially stationary even in the case of independent sources. This is a result of the
asymmetry in the third-order moments with respect to conjugation. For example,

refer to Figure 4.1, and consider

cum(r(t), 1*(t), r(t) = o # cum(z(t), 2"(t), 2(t) = Yo exp(—ik - d.) (4.11)

‘This indicates that third-order cumulants have a reference point problem, unlike
second and fourth-order statistics. They are floating in this sense. However, this
can be cured very easily by allowing the third-order cumulant 43 , to be an unknown
complex quantity so as to include the multiplication by an unknown phase term
due to the floating reference point. This is possible since the statistic of the source
waveform does not provide information about the location of the source as pointed
earlier.
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Aperture extension (for identical sensors) starts by computing the autocorrela-

tion as

E{r(t)r"(t)} = E{=(t)z"(t)} = E{y(t)y"(8)} = :;:%cumv(t),r'(t),r(t)) (4.12)

Next, we must compute the cross-correlation between actual sensors, which can be

done as follows (direct extension of the fourth-order cumulant results)

E{r*(t)z(t)} = ;’3 cum(r*(t), z(2), (1)) (4.13)
B0} = 2 cuml( (1) 1(0), (1) (414
Ble (O} = 2 cum(e* (1) (0, (1) (4.15)

Observe that we always fix the last component of the cumulant in (4.13)-(4.15)
to be r(t). We call r(t) the “common element”. Now we shall complete the de-
scription of virtual aperture extension by demonstrating the way to compute the
cross-correlations between real elements and and the lone virtual sensor (since we
have only one virtual location, we can not calculate cross-correlations between two

virtual sensor measurements), i.e.,

2
E{r(t)v(t)} = % cum(r*(t), 2(t), y(t)) (4.16)
Equation (4.16) implies that for aperture extension purposes, the third-order cumu-
lant can be considered as addition of two vectors, which are constrained to originate
from the same sensor (the conjugated one). Therefore aperture extension is possible
with third-order statistics, but it is not as powerful as using fourth-order cumulants.
For example, in Figure 4.2, we can take the set {r(t), z(¢), y(¢), v1(¢)} as an extended
aperture with third-order cumulants, whereas with fourth-order cumulants the aper-
ture can be extended to seven elements (see Figure 4.2). A third-order 4x4 cumulant
matrix can be set-up as described in the fourth-order cumulants case (Figure 4.3).
In the circular array example (Figure 4.4), using third-order cumulants, it is pos-

sible to extend the aperture to nine elements (show as an exercise) as in Figure 4.4b;

54



however, this is less than the result obtained by using fourth-order cumulants (see

Figure 4.5), since fourth-order cumulants can be viewed as unconstrained vector
addition.

4.4 Conclusions

We have proposed a novel interpretation for describing the potential of cumulants in
array processing applications. It has led to the virtual cross-correlation computer?
(VC3). The VC?® can be used to: calibrate arbitrary arrays and jointly estimate
the direction parameters of far-field sources, design minimum-redundancy arrays,
and suppress undesired signals. Figure 4.7 summarizes these applications and their
treatment in this thesis.

The most surprising result of this chapter is the explanation of how cumulants can
increase the effective aperture of an arbitrary array. This fact is reasonable when one
considers that forming the covariance matrix is a date reduction technique (rather
than storing multichannel snapshots, we compute the sample covariance matrix).
It is a well known fact of information theory that we always lose information by
data reduction. Forming a cumulant matrix can be considered as an alternate data
reduction technique, but it is much better than using only second-order statistics,
since it is possible to recover more information from the cumulant matrix about the
sources illuminating the array. The interpretation provided for cumulants can be

extended for cyclostationarity-based array processing applications [116, 121, 174].

2A patent for the VC3 has been filed for by the University of Southern California.
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APPLICATION

PROBLEM

SOLUTION

DESCRIPTION

Aperture Extension

To extend the effec-
tive aperture of an
array without adding
real sensors.

Compute all the
required  second-
order statistics virtu-
ally, by fourth-order
cumulants.

Chapter 4, 6.

Array Calibration

An identical copy of
the array at a known
displacement is
required o compute
cross-correlations.
This requires extra
hardware and preci-
sion.

Compute the required
cross-correlations vir-
tually by using a sin-
gle doublet and
fourth-order cumu-
lants.

Chapter 5.

Antenna Array Design

Minimum redun-
dancy array design is
limited to linear
arrays. Linear arrays
have ambiguity prob-
lems.

Use the interpretation
of cumulants to
design 2-D minimum
redundancy arrays.

Chapter 6.

Noise and Interference
Suppression

To decorrelate the
undesired compo-
nents, another array
which is far-away
from the existing one
is required. This
means doubling the
hardware.

A single  sensor
which is far-away
from the existing
array is sufficient.
Compute the required
statistics virtually, by
using fourth-order
cumulants.

Chapter 7.

Figure 4.7: An overview of the possible applications of our interpretation.
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Chapter 5

Array Calibration Issues: Virtual-ESPRIT
Algorithm

We proposed a novel interpretation for the use of cumulants in narrowband array
processing problems in Chapter 4. Based on this interpretation, we investigate the
amount of partial information necessary to jointly calibrate an arbitrary array and
estimate the directions of far-field sources in this chapter. We prove that the pres-
ence of a doublet and use of fourth-order cumulants is sufficient to accomplish this
task. Our approach is computationally efficient and more general than covariance-
based algorithms that have addressed this problem under constraints. A class of
beamforming techniques is proposed to recover the source waveforms. All of the
developed estimation procedures are based on cumulants, which bring insensitivity
to the spatial correlation structure of additive Gaussian measurement noise. Simu-

lations indicate excellent results by the proposed algorithms.

5.1 The Array Calibration Problem

During the last decade, there have been revolutionary advances in high-resolution
direction-of-arrival estimation problems. Some of these algorithms were described
in Chapter 2.

Among the algorithms proposed in the literature, the so-called subspace methods
that are based on the eigendecomposition of the sample covariance matrix possess
very appealing features: they have modest computational requirements when com-

pared with the maximum-likelihood method [180]; there exists solid work on the
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detection of sources problem [162]; and they provide asymptotically exact values for
the parameters of interest.

The MUSIC algorithm [118] is most popular, due to its applicability to arrays
of arbitrary orientation and response. In addition, it can estimate a multitude of
parameters for each far-field source, such as azimuth, elevation angles, and polariza-
tion. This generality results in a major drawback: array response must be measured
and stored for every possible combination of source parameters. This procedure,
known as array calibration, is very undesirable, since it requires an enormous amount
of memory to store the array manifold, especially in the case of multiple parame-
ters. In addition, the MUSIC algorithm is very sensitive to calibration errors [44].
The direction-finding (DF) step of the MUSIC algorithm is also computationally
expensive except for some specific array configurations. These problems limit the
applicability of the MUSIC-like subspace algorithms.

In this chapter, we address the problem of joint array calibration and direction-
of-arrival estimation (DOA) with arbitrary arrays. Our goal is to determine the
minimal information necessary about the array structure to accomplish this task
and develop an algorithm that utilizes this sufficient information. The problem
resembles the blind equalization problem in data communications, where the data
symbols are distorted by finite-memory channels. In blind equalization, the goal is
to “open the eye” so that it is possible to jointly estimate the impulse response of
the channel and recover the symbols. In the array problem, the aim is to “open the
eye of the processor”, so that it can “see” the far-field sources (DOA estimation),
and “listen to” each of them (waveform recovery).

The blind equalization problem is known to be unsolvable for non-minimum phase
systems if processing is limited to the power-spectrum. Higher-than second-order
statistics (cumulants) have been shown to be invaluable for solving this problem,
since it is possible to recover phase information [78] with cumulants. In array pro-
cessing, we obtain phase information by cross-correlating channel measurements. It
is this phase information that makes eigenstructure-based high-resolution spatial-
spectrum estimation possible. In the array processing context, the motivation for
using cumulants is to recover more phase terms than is possible by using only second-

order statistics. This goal is accomplished in Chapter 4.
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Given an arbitrary array, joint calibration and DOA estimation problems can
be solved, if we have an identical copy of the array displaced in space, by using
the ESPRIT algorithm [108]. In this way, the problems associated with the array
calibration procedure are alleviated by incorporating a specific type of redundancy
into the array configuration. The ESPRIT algorithm can blindly identify the steering
vectors and DOA’s of sources whose number is limited by the subarray size; hence,
waveforms of the sources whose directions are identified can be estimated.

The special array geometry required by ESPRIT is not available in general, so it
is difficult to calibrate arbitrary arrays in practice. Rockah and Schultheiss [105] did
pioneering work on the conditions required for calibrating isotropic sensors of arbi-
trary arrays. They proved that if there are three non-colinear spectrally /temporally
disjoint sources with unknown bearings, the calibration errors tend to zero as the
signal-to-noise ratio (SNR) of the sources tends to infinity. In addition, if the di-
rection of one sensor to the reference sensor is known, then DOA estimation can be
done by taking the known direction vector as a reference. These results give us hope
that not all of the redundancy required by ESPRIT is necessary, and, that one may
do well by using a single doublet rather than having all the sensors occur in pairs.

In this aspect, the benefits of incorporating redundancy in an array structure is
analogous to the benefits of channel coding for communication sytems which incor-
porates redundancy into the actual data. In the channel coding problem, the natural
question is “How much redundancy is needed to transmit information with sufficient
protection?” For high-rate transmission objectives, the task of the communication
engineer is to minimize the required redundancy while maintaining the specifications
for error correction. Similarly, the task of the antenna signal processing engineer is
to minimize the redundancy required by the ESPRIT algorithm, while maintain-
ing the capability of DOA estimation, array calibration and waveform estimation
so that the algorithm can be applied to a wider class of array processing scenarios.
In Section 5.2, we propose a solution to the redundancy minimization problem so
that it will be possible to calibrate an arbitrary array, by using a single doublet and
fourth-order cumulants. Our results are in agreement with the results of Rockah
and Schultheiss, although their paper takes the approach of evaluating Cramer-Rao
bounds for the unknown parameters and assuming Gaussian processes, whereas ours

uses cumulants which are blind to Gaussian processes. The results of Rockah and
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Schultheiss [105], about the conditions required for calibration and estimation, play
the role of the Shannon Theorem for the capacity of a communication channel; they
provide the conditions necessary for calibration but not the way to achieve it without
further a-priori information. Qur approach is totally different: we propose a method
for calibration and then address its consistency.

Following the excellent work of Rockah and Schultheiss [105], work on direction-
finding in the presence of sensor uncertainities continued [106], based mainly on
the maximum-likelihood approach [166], or utilizing calibration sources whose bear-
ings are known [76]-[89). Problems with the existing methods arise from iterative
nonlinear optimization procedures that require good nominal knowledge about ar-
ray geometry, unrealistic constraints about sensor responses (e.g., all sensors are
assumed to be isotropic), computational complexity of optimization techniques, lo-
cal convergence problems and sensitivity to noise spatial correlation structure. The
method that is proposed in this chapter is non-recursive, depends on the eigende-
composition of cumulant matrices obtained from the observed data, and does not
involve any computationally intensive optimization or search procedure. In this way,
local convergence problems and noise effects are avoided. In Section 5.3, we provide
simulation experiments to illustrate the effectiveness of our method. We conclude

the chapter with some final observations and extensions.

5.2 Joint Calibration and Parameter Estimation

In this section, we propose the use of VC? for calibrating arrays which are illumi-
nated by multiple incoherent far-field sources from unknown directions. The calibra-
tion problem can be summarized as estimation of the directions of far-field sources,
with an array of unknown array manifold (i.e., sensor locations and responses). Con-
trary to [105], we allow sources to overlap in time and frequency, do not assume a
nominal knowledge for the array geometry and spatial correlation of measurement
noise. Clearly, there is need for some information about the array; here we investi-
gate what that sufficient information is.

Given an arbitrary array, joint array calibration and source parameter estimation
can easily be solved if we have an identical copy of the array displaced in space with
a known displacement vector A so that we can apply the ESPRIT algorithm of [108].
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v(®) )

Figure 5.1: Virtual-ESPRIT algorithm: it is possible to reach any virtual sensor
location from an actual sensor location by addition of two vectors between actual
sensors when v,(2) is available. In other words, cross-correlation between actual and
virtual sensor elements can be calculated by using cumulants, since cumulants can
be interpreted as vector addition, whereas cross-covariance can be interpreted as a
single vector.

The main questions we will answer in this section are: given an array of arbitrary
geometry and sensor responses: (1) Is it necessary to have a full-copy of the array
for calibration? (2) If not, how much redundancy is necessary? (3) How can such
an algorithm be implemented? We provide the answers based on the results of
Chapter 4.

Consider the arbitrary array and its image in Figure 5.1. In order to use the

ESPRIT algorithm to jointly estimate the DOA parameters of multiple sources and
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the associated steering vectors, we need to compute the cross-correlations between

subarrays. For example (see (4.5) and Figure 4.1),
E{r}(t)vm(t)} = o?ajan exp(—jk - diar) exp(—jk - A) (5.1)

where aps denotes the response of the Mth sensor to the wavefront from the source.

Unfortunately, we can not compute (5.1) since we do not have vps(¢). Next, consider
B{ri(tra()} = olaian exp(—ik - dunr) = E{ri(t)om(t)} exp(iE- 8)  (5.2)

which is computable and is highly related to the correlation in (5.1). If we knew
¢4 then we could solve (5.2) for E{r{(t)vam(t)}; however, this is not possible since
we do not know the propagation vector k.

From Figure 5.1 we observe that all vectors joining two sensors in separate sub-
arrays can be decomposed as the addition of two vectors, one in the actual subarray,
and the other one being the displacement vector A, e.g., dhg = dya + A. All the
computable correlations (5.2) lack the common term exp(— jk« A). It is necessary
to form a bridge between the subarrays to recover this phase term.

From our results in Chapter 4, we know that by using fourth-order cumulants,
and assuming that only one doublet {r;(¢),v:(t)} is available, we can compute the

cross-correlations between subarray elements, e.g.,

E{ri(tu(t)} = ﬁT cum(r3(£), a(8), r3(8), i(8)) (53)

4,s

Use of fourth-order cumulants provides the magic touch necessary to compute cross-
correlations between actual and virtual sensors so that the ESPRIT cross-correlation
matrix can be generated. Similarly, the cross-correlation of actual sensors can be

computed by cumulants, e.g.,

2

B{ri®n(0)} = Z—f cumlri) ra(8), ri(t), r(®)) (5-4)

In this way, (5.3) and (5.4) can be used to form the covariance matrix required

by ESPRIT [108] by using cumulants. For obvious reasons, we call the single pair
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of sensors that form the doublet “guiding sensors”, and the method the virtual-
ESPRIT algorithm (VESPA). Note that the VESPA requires only a single doublet
rather than a full-copy of the array, resulting in enormous hardware reductions.
VESPA also alleviates the problems resulting from the perfect sampling synchro-
nization requirements of the covariance-ESPRIT for the two subarrays. In VESPA,
synchronization must be maintained only between the elements of the single doublet.
A flowchart for VESPA is provided in Figure 5.2.

In applications, we do not have the true cumulants; they are replaced by con-
sistent estimates which converge to true values as the data length grows to infinity.
The results in [81] indicate that convergence to the true values is rapid at high SNR.

The requirement of a single doublet with known orientation A is in fact the nec-
essary requirement in [105]. Rockah and Schultheiss [105] derive this result assuming
isotropic sensors and Gaussian processes that are disjoint in time or frequency. Our
approach utilizes fourth-order cumulants which are blind to Gaussian processes, yet
we obtain the same requirement about the necessary information for identifiability!
In addition, the consistency results for both methods require high-SNR and long
data lengths. On the other hand, the requirements of our approach are very mild
when compared to those in [105] and its extensions: (1) We allow multiple sources
sharing the same frequency band due to [CP3], (2) Our approach is applicable to
arbitrary arrays (the isotropic sensor arrays of [105] are a subclass); (3) Our ap-
proach is also applicable to nominally-linear arrays, whereas [105] fails theoretically
in this case; (4) The cumulant-based approach does not require information about
noise spatial correlation, unlike the covariance-based algorithm; (5) From an imple-
mentation point of view, our approach is non-iterative, and eliminates parameter
search by using ESPRIT, unlike the method in [166] which requires iterations, and
very good nominal knowledge about the array to start a multidimensional search; (6)
In the presence of white observation noise, it is possible to initialize the maximum-
likelihood approach proposed in [166] by the results of VESPA to get even better
estimates; (7) In the presence of colored Gaussian noise, a trispectral maximum-
likelihood approach can be designed along the lines of [41] initialized by VESPA to
calibrate arbitrary arrays in a maximum-likelihood fashion without the knowledge of
noise color; and, finally, (8) The next chapter sets the stage for removing the effects

of non-Gaussian colored noise, which can be followed by a ML approach.
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Figure 5.2: The role of virtual cross-correlation computer (VC?) in the joint array
calibration and DOA estimation problem. VC? provides ESPRIT the required co-
variance matrix without the need for a full copy of the sensor array. The matrices
provided by VC? are also insensitive to colored Gaussian noise.

To recover the waveforms associated with the far-field sources we first estimate
the steering vectors by subspace rotation [108]. If the measured signals are repre-
sented as r(t) = [r1(2),r2(2), . ..,rm(t), v1(¢)]7, then we augment the steering matrix
by the estimated response of the sensor that measures v;(¢). Let a, be the (M +1)x1
steering vector of the signal of interest (SOI) s;(t) with estimated bearing 6,, and
let the augmented steering matrix be decomposed as A = [a;, A1]. The augmented
steering matrix A can be estimated from (2.47). We propose two approaches for
signal-recovery:
¢ Minimum-Variance Distortionless Response Beamformer (MVDR):

This beamformer estimates the SOI waveform in the mean-square sense, i.e.,

51(t) = wilr(t) = (R~ a;)"r(2) (5.5)



where R = E{r(t)r(t)}. In (5.5), we ignored a scale factor since it does not effect
the output SNR.

e MVDR with Perfect Nulling (null-MVDRY):

This beamformer estimates the SOI waveform in the mean-square sense while putting

perfect nulls on the interferers, i.e.,
32(t) = wilr(t) (5.6)

where the weight vector w; is the solution of the linearly-constrained minimum

variance problem:

" . .
. H . H 0
w2 =minw" Rw subject to [ a;, Aj ] w=Ff=| (5.7)
b 0 -
which has the solution
w, =R TAAPR'A)f (5.8)

Both of the above beamformers do not require knowledge of the measurement

noise covariance matrix. Derivations of (5.5) and (5.8) can be found in [80].

5.3 Simulations

In this section, we present simulation experiments to demonstrate the performance of
the joint parameter estimation and calibration algorithms proposed in this chapter.

We assume the presence of two far-field equal power BPSK broadcasts, with
steering vectors:

a; = [1.0,0.5e773,1.2¢9701,0.8¢/™07, 1.0e7705, 2.0e7™12, 0.0e7™00, 107" sin(~27/180)|T
az = [1.0,0.1e5708,0.5¢/70-5, 1.5¢7701, 0.1e7712, 1.0¢9702, 0.667™04, 1.0 mein( 27/180)]T
(5.9)

where 0, = —2° and 8; = 2°. The first and last components of each steering vector

correspond to the responses of the doublet sensors whose orientation is known. A
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separation of half-wavelength is assumed between guiding sensors. Conventional
covariance-ESPRIT can not be applied to this scenario, since it requires a full-copy of
the array. To compare our cumulant-based virtual DOA finding algorithm (VESPA)
with the conventional ESPRIT algorithm we assumed the existence of a second
subarray for the latter (for the former this is not necessary and not available). In
this case, the last element of the steering vectors (5.9) represents the response of the
first element of the second subarray required for covariance-ESPRIT. We compare
the performance of cumulant and covariance based algorithms in the presence of
colored noise. We also present results for steering vector estimation and waveform
recovery by the proposed two beamformers. Finally, we compare the waveform
recovery performance of our approach and Capon’s MVDR beamformer [19] which

uses a perfectly known steering vector.

5.3.1 Direction-Finding

We created the following scenario to demonstrate noise suppression performance
of VESPA: two sources from £2° illuminate the array with an SNR of 10dB with
respect to the noise level at the guiding sensors (noise components at the guiding
sensors are uncorrelated and their power is unity). The remaining sensors have the

. . A
correlation matrix R, = LL¥, where

10.00 0.00 0.00 0.00 0.00 0.00
9.41¢2.08 8.41 0.00 0.00 0.00 0.00

L2 6.08¢=7162 3 05¢261 6.18 0.00 0.00 0.00
1.52¢71:11  0,76¢=70-94  0.29¢9273 5.60 0.00 0.00
5.48e7341 2757036  1,06e~228 (,24¢!-30 5.97 0.00

| 2.87¢9237  1.44¢7%22  0.55e7923° (.12¢9116 (04177014 5.66

This example shows us how to calibrate a poorly conditioned array by two better
conditioned sensors. The success of the results can motivate the use of such a
doublet as a carry-on unit to calibrate different antenna arrays. Table 5.1 shows
DOA estimates as the sample size increases. As noticed, ESPRIT totally fails to
estimate the parameters given the number of signals. On the other hand, VESPA
performs better with increasing sample size. In this experiment, we tried ESPRIT

by setting the number of signals to be 4 (overestimate). This setting provided
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the best possible results (which are still not acceptable). Table 5.1 indicates total
inconsistency for the covariance-ESPRIT.

To understand the reason why the standard deviations of covariance-ESPRIT
are very large, we display the estimates from 200 Monte Carlo runs for 5000 snap-
shots in Figure 5.3. As clearly seen in the figure, covariance-ESPRIT breaks down
many times. This is the result of the overparametrization and strict violation of
the ESPRIT data model due to the presence of spatially-colored noise. Covariance-
ESPRIT estimates are within 0.5° of the true values for 88 of 200 runs, whereas
VESPA yields estimates always within this range.

5.3.2 Waveform Recovery

In this experiment, we illustrate the difference between the MVDR and null-MVDR
beamformers proposed earlier in the chapter. Null-MVDR puts exact nulls on the
interferers to eliminate the effect of changes in the jamming strategy after weights
are computed. This results in a slight increase in the output noise power since some
degrees of freedom (equal to number of interferers) are lost in this way. The way in
which these beamformers use directional information from VESPA is illustrated in
Figure 5.2.

Suppose two sources (one BPSK and one CW) illuminate the array from +2° and
—2° respectively, as described earlier. Both sources have an SNR of 10dB and noise
is white. We are interested in the message of the BPSK source. After collecting 1000
snapshots, we estimate the steering vectors and construct the two beamformers. Fig-
ure 5.4 illustrates the results for the MVDR beamformer, which recovers the message
almost perfectly. After weights are computed with the first 1000 shapshots, they are
fixed and the beamformers continue processing the received signals; however, the
CW jammer then increases its power to 60dB. With the MVDR weights already
computed for the equal power sources, the message is totally destroyed; however,
null-MVDR recovers the message since it puts a null on the jammer regardless of its
power. It must be clearly understood that when the steering vector of the jammer
can not be estimated reliably (short data lengths and very low SNR), it is better to
use the MVDR, since the null-MVDR zero-forcing constraint will be useless.
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Table 5.1: Results from 200 Monte-Carlo runs for spatially-colored noise

01 =-2° 02 =2°
Data Length VESPA ESPRIT VESPA ESPRIT
mean std mean std mean std mean std
50 -1.7500 | 1.1232 | -4.6519 | 8.1553 | 1.2851 | 1.6423 | 5.0800 | 10.0122
100 -1.8426 | 0.8788 | -4.3408 | 8.7436 | 1.3006 | 1.2729 | 3.5067 | 7.3308
200 -1.9282 | 0.6016 | -4.1822 | 6.7576 | 1.6772 | 1.0005 | 3.5192 | 8.2243
500 -1.9355 | 0.3403 | -3.4685 | 6.9108 | 1.8930 | 0.4597 | 2.7725 | 6.2439
750 -1.9942 | 0.2717 | -3.5411 | 6.1400 | 1.9308 | 0.2692 | 2.9638 | 6.3929
1000 -1.9937 | 0.2551 | -3.0133 | 5.6189 | 1.9402 | 0.2457 | 3.9767 | 8.0984
1500 -1.9909 | 0.2088 | -3.3463 | 7.9549 | 1.9749 | 0.2056 | 3.4459 | 7.6065
2000 -2.0075 | 0.1616 | -3.2354 | 6.2054 | 1.9920 | 0.1903 | 3.4155 | 7.4958
2500 -1.9998 | 0.1622 | -3.2337 | 6.5632 | 2.0008 | 0.1593 | 3.2515 | 7.6784
3000 -1.9933 | 0.1251 | -3.1169 | 6.3253 | 1.9953 | 0.1360 | 3.3567 | 6.9544
3500 -2.0002 | 0.1224 | -4.5073 | 9.9299 | 1.9876 | 0.1430 | 2.6196 | 5.5402
4000 -1.9990 | 0.1089 | -3.0528 | 6.2277 | 1.9952 | 0.1308 | 2.8882 | 6.5228
4500 -2.0032 | 0.1120 | -2.4213 | 4.1917 | 2.0010 | 0.1130 | 3.3673 | 6.6588
5000 -2.0032 | 0.1044 | -3.3839 | 7.3596 | 1.9994 | 0.1026 | 3.5328 | 8.2402
10000 -2.0016 | 0.0738 | -2.6734 | 5.7416 | 2.0025 | 0.0794 | 3.3571 | 6.7082
Cumulant-Based Approach
20 T T H
lo-...-.---%---------.--....... ........é.o---no.. esessesssiscnscssee o-o-....-:: ...................
[1] X8 .'.'.;._. ................. POYRp——— :;: ...... Lr: ........ T I :f: ...................
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205 zo 40 so so (ugo) 1;0 140 120 180 200

Figure 5.3: Cumulant (VESPA) and covariance-ESPRIT DOA estimates from 200
runs: (a) VESPA estimates are very close to the true values, (b) Covariance-ESPRIT
with overparametrization breaks down many times.
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Figure 5.4: CW and BPSK sources illuminate the array: (top left) received signal
at the reference sensor, (top right) MVDR output which nulls the CW component,
(bottom left) CW jammer increases its power and penetrates through the MVDR
processor destroying the BPSK message, (bottom right) null-MVDR nulls the inter-
ference with the precomputed weights and recovers the message.

5.3.3 Signal Enhancement Comparison

In this experiment, we compare the performance of the cumulant-based signal re-
covery techniques and Capon’s MVDR beamformer with perfectly known steering
vector in terms of the signal-to-interference-plus-noise (SINR) at the output of the
processor.

Capon’s MVDR beamformer is a very sensitive processor to mismatches about
the steering vector of the source whose waveform is to be estimated. In this ex-
periment, we assume that perfect knowledge of the steering vector is available to
the Capon processor to implement (5.5). Even in this case, Capon’s MVDR has

problems due to the sample matrix inversion in (5.5).
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There are two major techniques to address the mismatches created by sample
matrix inversion: (1) Robust adaptive beamforming technique [31] which constrains
the weight vector of the MVDR processor to lie in a hypersphere, and (2) Steering
vector projection approach of [37] which, as its name implies, first projects the known
steering vector on the signal subspace of the sample covariance matrix, and then
computes (5.5). We decided to investigate the performance improvement offered by
the second method since the hypersphere constraint in the former approach prevents
the directional interference to be sufficiently removed from the output.

This experiment compares the performance of four beamformers: (1) Capon’s
MVDR which uses exact knowledge (MVDR1), (2) Capon’s MVDR improved by
the projection method (MVDR2), (3) MVDR beamformer that uses the estimated
steering vector by the cumulant-based technique (VESPA) developed in this chapter
(CUM1), and (4) Cumulant-based MVDR beamformer (VESPA) improved by the
projection method (CUM2). We assume two BPSK sources of the previous exper-
iments illuminate the array with the same directional parameters. Sensor noise is
assumed to be white and of equal power at each sensor. We first let SNR be 20dB for
both sources and designate the source from —2° as the signal of interest. We illus-
trate our results in Figure 5.5. Each data point in the figure is obtained by averaging
results from 200 Monte-Carlo runs. The range from 50 to 1000 snapshots is sampled
intensively. The SINR at the output of the Capon’s beamformer with true statis-
tics and steering vector is 29.6892 dB. We observe that cumulant-based approaches
are very close to providing the maximum-possible output SINR if more than 500
snapshots are available. For short data lengths, MVDRI is 15-20 dB away from
the expected SINR. Projection helps MVDR2 to recover, but it can not outperform
CUM1 for any data length! After 1000 snapshots, CUM1 and CUM2 performance
is indistinguishable, i.e., we do not gain very much by projection since the estimates
are in harmony with the sample covariance matrix. Figure 5.6 illustrates the case
when SNR is increased to 30 dB. MVDRI1 and MVDR2 can not recover with the
available snapshots: even at 4000 snapshots, MVDRI is 14 dB, and MVDR2 is 4dB
away from expectations which are perfectly met by CUM1 and CUM2 only after 500
snapshots. Note that CUM2 offers little improvement over CUM1 whereas MVDR2
offers a large improvement over MVDRI1. This is important since the projection

method only applies when the signal subspace can be identified (white noise case).
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Figure 5.5: Performance comparison for the beamformers with two sources illumi-
nating the array with SNR=20dB at the reference sensor.
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Figure 5.6: Performance comparison for the beamformers with two sources illumi-
nating the array with SNR=30dB at the reference sensor. The crosses on MVDR1
performance curve indicate the sampling points.
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The situation encountered here resembles the impedance matching problem in
transmission line theory. The moral of that story is: “Always match your line with a
load of equal impedance”. Similarly the moral of our story is: “Always match your
(inverted) sample covariance matrix with a steering vector of equal quality” (an

estimate consistent with the received signals rather than a perfectly known one).

5.4 Conclusions

In this chapter, we applied virtual cross-correlation computation (Chapter 4) to
the joint array calibration and direction-finding problem. We established several
relationships between the proposed method and existing work.

The algorithms of this chapter (DOA estimation, array calibration and wave-
form recovery) are asymptotically insensitive to the spatial correlation structure of
additive Gaussian sensor noise. Furthermore, our cumulant-based algorithms are
computationally simpler than covariance-based counterparts, which require multidi-
mensional search and suffer from local convergence problems [166]). The consistency
requirements of cumulant and covariance-based approaches are found to be similar;
but the latter are applicable to a very limited class of scenarios, i.e., isotropic sensor
arrays [105), whereas the former can calibrate arbitrary arrays using only a doublet
of unknown characteristics.

When compared with existing cumulant-based signal recovery algorithms [20, 25,
34, 148, 110}, virtual-ESPRIT provides both source bearings in addition to source
waveforms with minimal information on the array manifold. Extensions of virtual-
ESPRIT are provided in the Appendix.

5.5 Appendix—Extensions

In this section, we extend the application of the virtual-ESPRIT algorithm to dif-
ferent scenarios. We start with the use of third-order cumulants for the joint array
calibration and direction-finding problem, which in turn leads to a new class of al-
gorithms suitable for fourth-order cumulants. We also extend the virtual-ESPRIT

algorithm to wideband signals and near-field source localization problems.
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5.5.1 Virtual-ESPRIT with Third-Order Cumulants

In Chapter 4, we showed how to compute cross-correlations between sensors by
using third-order cumulants. In this section, we extend our results to compute the
statistics required by the ESPRIT algorithm by using third-order cumulants and a
doublet of guiding sensors.

Let {91(2), 92(t)} denote the guiding sensor measurements and consider the loca-
tion of the first guiding sensor as the reference point. The cross-correlations among
the rest of the array measurements {ry(t),r2(t),...,rap(t)} can be computed by
using our previous results (4.13)-(4.15) as:

E{ry(t)re(t)} = :3 =cum(ry(8), (L), 41(t)) 1<pg< M (5.10)

Our goal is to compute the cross-correlation matrix between the actual sensor mea-
surements and their virtual counterparts denoted as {v(t), va(t),...,vm(2)}. Before

proceeding we note that
vp(t) = rp(t) exp(—jk-A) 1<p< M (5.11)

and similarly,
9:(t) = g1(t) exp(—jk - A) (5.12)

which implies that we can compute the required statistics by using cumulants as

follows:

2
9,

E{r; (t)un(t)} = B{r5 (t)re(t)} exp(=jk-A) = —L-cum(r}(t),ry(t), 91(t)) exp(~sF-B)

= T2 cum(r2(),ro(t), s (8) exp(—i% - ) = Z-cum(s3(t), ry(0),02(t))  (5.13)
73,2 73

These expressions indicate that three arguments in a cumulant are sufficient to
generate the statistics required by the ESPRIT algorithm. The interpretation of
(5.10) and (5.13) is that if we change the location of the so-called common element
(a1(?) in (5.10)) by A, then we obtain the cross-correlation matrix of the actual

array measurements and their virtual counterparts which are displaced by A, due
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to the spatial-nonstationarity of the third-order cumulants. This result indicates
that one of the arguments of the fourth-order version of the virtual-ESPRIT may be

redundant; and it can be used in alternate ways as we shall see in the next section.

5.5.2 Modifications of Virtual-ESPRIT

In the previous section, we indicated that three arguments in a cumulant expres-
sion are sufficient to implement the virtual-ESPRIT algorithm; hence, the question
is “how can the fourth-argument be utilized when fourth-order cumulants are em-
ployed?”. The first two parts of this section are devoted to this issue. The third
part describes use of multiple guiding sensors.

Consider an array of M elements that measures {ry(t), r2(t),...,rp(t)}, and the
two guiding sensor measurements, {gi1(t), g2(t)} which are actually obtained from
the first two-sensors (i.e., g1(t) = r1(f) and g2(¢) = ra(t)). Let a(t) be a linear
function of the array measurements (i.e., a(t) = w¥r(t)). Assume there is only one
source s(t), and the signal part of a(t) is equal to As(t). The fourth-order cumulant
obtained by fixing one of the arguments to be a(t) is functionally identical to the

third-order cumulant for direction-finding purposes, i.e.,

cum(@” (0, 9(2), 30 rlt) = 2 cum(ry(e) o) (514
'3
because we can view the constant term in (5.14) as a scaling of the new third-order
cumulant of the source which does not affect the direction-finding performance.
Covariances computed by using cumulants as in (5.14) are used to form the auto-

correlation matrix required by the ESPRIT algorithm. Similarly,

cum(a*(£), ga(t), r2(t)s rolt)) = 11‘;‘—”'cum(r;(t),rq(t),gz(t)) (5.15)

It

can be used to compute the cross-correlation matrix required by the ESPRIT algo-
rithm. The way to obtain a(t) is important, and it will be discussed in the following.
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5.5.2.1 Increasing Dimensionality

The process a(t) can be selected as one of the M sensor measurements. Let

[C1(N))p,q = cum(a®(2), g1(2), r(t), Ty )

a(t)=ri(t) (5.16)

[C2(D))pq = cum(a®(2), 92(2), rp(2), 75(2))

In this way, there are M selections for a(t). In the original development of virtual-
ESPRIT, we let a(t) = g(t), which in turn is only a small subset of all possible
choices. Of course, the reason behind that selection was to illustrate the operation
of the virtual-ESPRIT more clearly. With each selection of a(t) in (5.16) and (5.17),
we obtain a third-order virtual-ESPRIT problem. All (M) of these problems can be
combined to provide the direction estimates, if we construct the following M2xM

a(t)=ri(t) (5.17)

matrices: X - X .
Ca(1) C2(1)
Ci(2 C2(2
n=| @ | - @@ (5.18)
| C1(M) | | C2(M)
which take the form
Ty =(A"®@A)T4s A¥ Ty =(A"®@A)BIyAY (5.19)

where B = (A* ® A) can be viewed as an effective steering matrix. I4s is a
diagonal matrix that contains the fourth-order cumulants of the far-field sources.
The derivation of (5.19) is possible by using (5.14) and (5.15). @ contains the
directional information and was defined earlier in (2.37). We can use the ESPRIT
algorithm to solve for the elements of @ which contain the direction information
and the effective steering matrix B, which consists of the effective steering vectors
of sources. After the columns of B are determined (b = a* ® a), the M2-vectors can
be reconfigured in a Hermitian matrix which is rank one (unvec(b, M, M) = aaf).
Then, the steering vectors can be determined by taking the principal components of
these reconfigured matrices. This provides additional smoothing for the estimation

of the steering vectors.
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5.5.2.2 Beamforming and Virtual-ESPRIT

In the previous section, we indicated a computationally demanding extension to the
original virtual-ESPRIT. An alternate approach which can parallelize the computa-
tions is possible by the selection of a(t) to be spatial-filtered array measurements, i.e,
a(t) = wHr(t). The weight-vector can be determined (using the MVDR) to suppress
all but one of the sources illuminating the array by using the initial estimates of the
steering vectors provided by virtual-ESPRIT. Performing this procedure for all of
the P sources, we generate P separate, theoretically rank-one virtual-ESPRIT prob-
lems in which the cross-correlation matrices between the subarrays can be computed
as:

cum(a”(t), g2(t), rp(t), r3(¢)) (5.20)

Generating rank-one virtual-ESPRIT problems is motivated to alleviate the effects of
finite-sample estimates of cumulants by suppressing the residual cross-terms between
multiple signals which only decay to zero asymptotically. These problems can be
solved in parallel for each source of interest.

This technique can be further improved by reducing the dimensionality of the
main array by putting null-constraints on all but one of the sources. If A is an
Mx(P — 1) matrix that contains the estimates of steering vectors of the undesired
sources, and a, is the estimate of the steering vector for the desired source, then the

modified array measurements can be obtained by the transformation
¥(t) = E¥r(t) (5.21)

where the columns of E constitute an orthonormal basis for the left-nullspace of
A. This transformation can not suppress the desired signal, since a; can not be
represented as a linear combination of the columns of A. Due to the tranformation in
(5.21), #(t) is an (M — P+1) vector. The virtual-ESPRIT subarray cross-correlation

matrix can be computed as

cum(a*(2), 92(2), 75(2), 73 (2)) (5.22)
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5.5.2.3 Multiple Guiding Sensors

We now investigate how to use multiple guiding sensors in the virtual-ESPRIT algo-
rithm. One approach is to lay the guiding sensors as a minimum-redundancy array
so as to generate as many copies of the main array as possible. This is motivated
by the 2-D MRA design procedure of Chapter 6. Figure 5.7 illustrates an example
in which four guiding sensors are used to generate six virtual copies of an arbitrary
array. The seven subbarrays can be grouped as two overlapping super-subarrays
such that each super-subarray contains four subarrays (other grouping options are
also possible). The ESPRIT algorithm can be applied with the effective subbarray
size being equal to the super-subarray size. An alternative approach is to perform
beamforming on the virtual covariance matrices as suggested in the previous section
(on the received signals). Here we do not have the virtual signals, so we do the
processing on the statistics.

In some applications, both azimuth and elevation information is necessary. Mod-
ifications of the ESPRIT algorithm (see the introduction of [143] for an extensive
summary of algorithms) can be applied if the array contains displaced copies of a
subarray for every dimension. We can compute the virtual statistics with VC3 if we
have three guiding sensors. Figure 5.8 illustrates the guiding sensor configuration

for this application. For example,

cum(g3 (1), ga(t), ra(2), 7 (2) = Lo E{ue(t)={ ()} (5.23)

5.5.3 Wideband Signals

In this section, we extend the virtual-ESPRIT algorithm to wideband signals. The
spectrum of interest can be divided into L narrowbands around the center frequency

w,. Let r¢(¢,w;) denote the measurement from the kth sensor at frequency w;, and
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Figure 5.8: Azimuth elevation direction-finding is possible if we use VC? and three
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{91(t,we), 92(¢,w.)} denote the guiding sensor measurements at the center frequency
we. Let

Y4,s

2
O,

[C1(wj)lkt = cum(gi (2, we), g1 (2, we), ra(t, w5), i (8, wj)) = == E{rx(t,w;), r} (¢, w;)}

(5.24)
and

[Ca(wj)]kg = cum(gy (2, we), g2(2, we), re(t, wj), 1 (L, w5)) = '?; E{vi(t,w;),r7 (2, w5)}

! (5.25)
where vi(t) is the process recorded by a virtual sensor, which is located at d away
from the sensor that measures ri(t) (d is the vector from g, (t) to go(2)).

If A(w;) denotes the steering matrix at frequency w;, we have
C1(wj) = A(w;)T, A" (w)) (5.26)

where I’y , = diag(v4,1lg111%, - - - s 74,Pl91,P|?), in which g; x represents the response of
the first guiding sensor to the kth source at the center frequency. Similarly,

Cz(w;) = A(w;)®T , A (w;) (5.27)

where ® is the diagonal matrix that contains the direction information as in the
ESPRIT algorithm (see (2.37)). Using all the frequency bins (L of them), we obtain

two matrices

[ Ciwr) | [ Alw) ]
T, = | O || AW | o g (5.28)
| Cilwn) | | Al
———
2B
o]
T, = sz“'z) -B&r,,B” (5.29)
ch(wL).
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Figure 5.9: A uniform linear array in the near-field localization problem.

Now, we can use the ESPRIT algorithm to solve for the elements of ®, which contain
the direction information, and the effective steering matrix B, which consists of the
steering vectors for individual narrowbands over the spectral band of interest. The
dimensionality of the cumulant matrices Ty and T2 can be increased along the
lines of the previous section. Chapter 8 further investigates the use of higher-order

statistics for wideband signals.

5.5.4 Near-Field Direction-Finding

In this section, we extend the virtual-ESPRIT algorithm to the case when the guiding
sensors lie in the Fresnel region of the sources. This region is intermediate between
the true near-field case where the wavefronts are spherical and the true far-field case
where the wavefronts are very well approximated as planar.

Let the ith source be located at an unknown range R;, from the first guiding
sensor (reference point), with an unknown bearing §; with respect to the vector

joining the two guiding sensors. Figure 5.9 illustrates an M element uniform linear
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array for the near-field problem, with interelement spacing A. The distance from

the ith source to the kth sensor is given by applying the law-of-cosines:

R = \/R;{, + (k= 1)2A% — 2(k — 1)AR;,; sin 6; (5.30)

For sources in the far-field, R;; > A, and R;; is approximated by taking only the
first two terms of the binomial expansion of (5.30):

Rir~ Ry — (k—1)Asin6; (5.31)

In many applications, the distances from the array to the emitters are on the order of
only a few apertures, and the plane-wave approximation (5.31) is not valid. Retain-
ing an additional term from the binomial expansion of (5.30) leads to an expansion

that is quadratic in k:

—1)Acos §;)?
2R;,

Ry~ R;y — (k—-1)Asin; + ((k (5.32)
Equation (5.32) is called the Fresnel approximation; it models the spherical wave-
fronts as quadratic surfaces in the vicinity of the array; therefore, the received signal

model for the linear array can be approximated as:

re(t) = Z si()ads Y g% 4 ni(t) (5.33)
i=1
where
a;(6;) = exp(—j(27/A)Asin §;) (5.34)
and (A . )
cos
ﬂt(oh Rt l) - exp(3(21r/z\) ) (535)
In this case, the steering vector for the uniform hnear array takes the form:
a(fi, Riz) = (1, By} .., o0 MU (5.36)

It is interesting to note that the array manifold for the uniform linear array does not

conform directly to the displacement invariance structure required by the ESPRIT
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algorithm since the Vandermonde structure of the steering vector is lost. Therefore,
even for this simple array configuration a search over the array manifold is necessary.
Starer and Nehorai [129] proposed a path following algorithm for localization of
sources using a uniform linear array and parellelized computations. Swindlehurst
and Kailath [138] proposed a spatial Wigner-Ville analysis (a heavy computational
load) which is followed by the ESPRIT algorithm.

We now investigate how to calibrate arbitrary arrays with the virtual-ESPRIT
algorithm using a guiding doublet that measures {g;(t), g2(t)}. If the location of
the first guiding sensor is chosen as reference, the response of the doublet can be
expressed as

[1 ) O ﬂt] (5'37)

which follows from viewing the guiding sensors as a uniform linear array with only
two elements and using (5.36). If there is only one signal s(t), then the autocovari-

ance matrix required by ESPRIT can be computed as before by using cumulants.

cum(g}(£), 91(8), re(t), 77 () = 257 B{ra(t), i ()} (5.38)

s

A difference appears in the cross-correlation matrix required by ESPRIT, i.e.,

cum(g} (2), g2(2), ra(2), 77 (2)) = cum(gi(2), 91(2), r(t), 77 (1)) e N2n% g (5.39)
Due to near-field effects the additional term 8 appears in (5.39) instead of « alone.
This determines the generalized eigenvalue for the ith source provided by virtual-
ESPRIT to be ); = a; §; instead of a; alone; hence, the DOA can not be estimated
as simply as in the far-field case; but, the steering vector estimates corresponding to
the sources are not affected by this modification (since we assumed no modeling for
them), which implies that signal recovery can be done without any difference from
the far-field case. Using the definition of );, the direction of the ith source can be

found as the minimizer of:

)2
b = scgyp | exp(~3 (o /A sin ) explian/ 0 S0y o (5.40)
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The minimization is implemented for each source separately, and this parallelization
provides fast throughput.

Our approach based on virtual-ESPRIT works even when the sources are very
close in the near-field in which case the Fresnel approximation is not valid for the
entire array but only for the guiding sensor part of the aperture that consists of only

two elements.
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Chapter 6

Minimum Redundancy Array Design

In this chapter, we first determine bounds on virtual aperture extension. We pro-
vide a summary on minimum redundancy arrays indicating design methods based
on second-order statistics. Finally, we provide algorithms to design minimum-

redundancy arrays based on cumulants.

6.1 Bounds on Aperture Extension

In this section, we derive lower and upper bounds for cumulant-based virtual-
aperture extension as described in Chapter 4. The results are given for uncorrelated
sources illuminating an array of identical sensors. The sensors can be at arbitrarylo-
cations. We are interested in identical sensor arrays because they play an important
role in the design of minimum-redundancy antenna systems. The bounds are derived
by letting the sensors have no area in the physical space, i.e., by representing them
by dots; however, all the results apply to the real case, where the sensors consume
a volume in three-dimensional space because the virtual aperture created by using

actual sensor outputs and cumulants do not occupy any area either.
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6.1.1 Lower Bound

Definition 1: Consider an antenna array of M identical sensors, where the set of
vectors {ri}*, denote sensor locations. The diameter d of such an array is defined

as the maximum distance between any pair of the sensors, i.e.,

e

d= max lIfi—7illr (6.1)

Definition 2: A pair of sensors is called limit-point sensors if the distance between
them is identical to the diameter (d) of the array. For a given array, there may be
more than one pair of limit-point sensors.

Fact 1: For a given antenna array configuration, let (7}, ;) denote the locations of a
limit-point pair. The rest of the sensors must lie in the intersection of the following
two spheres:

S:: centered at 7j, with radius d,
S, : centered at 73, with radius d. (6.2)

Proof: If there is a single sensor that does not lie in the intersection of spheres de-
fined above, then its distance to at least one of the limit-point sensors must be larger
than d. But this implies the diameter of the array must be larger than d, which is a
contradiction. Figure 6.1 gives an illustration. The intersection of the two spheres

S1,S; that contain all the actual sensors is defined as the region of support.

Theorem 1: Using the measurements from a limit-point pair, it is possible to extend
the effective aperture from M to at least 2M — 1, regardless of array geometry. The

uniform linear array satisfies this lower bound.

Proof: Suppose that the limit-point sensor measurements are used as in the virtual-
ESPRIT algorithm and let the vector from the first limit-point sensor to the second
one be d. Then, it is possible to generate a virtual array which is the shifted version
of the actual array using VC3. The virtual sensors do not coincide with the actual
sensors except for one of the limit-point sensor positions, due to Fact 1; hence,
the effective aperture can be extended to 2M — 1 sensors. See Figure 6.2 for an

illustration. The aperture extension result for the uniform linear array was also
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Figure 6.1: An antenna array of identical elements: the pairs (1,2) and (3,4) con-
stitute limit-point sensors. All sensors must lie within the intersection of the two
spheres. This intersection is defined as the region of support.

Figure 6.2: Aperture extension by using the limit-point sensors (sensors 1 and 2) as
guiding sensors as in virtual-ESPRIT. Actual and virtual sensors must lie in distinct
support regions due to Fact 1, and the two support regions intersect only at the
guiding sensor 2. Each of the virtuz_i‘l sensors (e.g., 5°) is obtained by shifting an

actual sensor (e.g., 5) by the vector d.
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reported in [122] by using Carathedory’s theorem. We displayed this result earlier
in Section 4.2. Using the VC3 construction, it is very easy to obtain the result
in [122).

Comment 1: Theorem 1 indicates that we can extend the aperture to at least 2M —1
sensors when we know which sensors are the limit point sensors. This raises the issue
of whether it is possible to accomplish this extension without this knowledge. We an-
swer this question affirmatively in the next subsection, in the context of a direction-
finding method proposed by Porat and Friedlander [99] (an equivalent method is
described by Cardoso [21]).

6.1.2 Upper Bound

Consider an M element array that measures the signals {ry(t),r2(¢),...,rm(¢)}, and

consider cumulant matrices defined as

[C(a,b))ky = cum( r5(t),rs(t) ,re(t),r7(t)) 1<La,bk,l<M. (6.3)

guiding sensors

Hence, C(a,b) is equivalent to the cross-correlation matrix of the actual array and
its virtual copy which is shifted by the vector from r,(t) to r3(t). For example, in
Figure 6.2, if we select @ = 1 and b = 2, then, C(a,b) is cross-correlation matrix
between the actual array and its virtual copy. Similarly, C(a,a) is equivalent to the
autocorrelation matrix for direction-finding purposes.

Porat and Friedlander [99] propose to form the following M2xM? matrix:

[ c(1,1) C(1,2) ... C(,M) |

c(2,1) C(2,2) ... C@2,M) (6.4)

LC(A.'I,I) C(A:I,2) C(M.,M)-

If a; denotes the steering vector of the kth source, then C can be decomposed as

C= ,é: vax(al ® ag)(a} ® ax)? (6.5)
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where 74 denotes the fourth-order cumulant of the kth source.

The following interpretation of the matrix C is very important: we fix one sen-
sor (e.g., r1(t)) to be one of the guiding sensors, and pick one of the remaining
M — 1 sensors (say r4(t)) as the second guiding sensor, and extend the aperture as
in virtual-ESPRIT using the matrix C(a,1) (which shifts the actual array by the
vector from r,(¢) to ri(t)). Then, pick another sensor from the remaining M — 2
sensors (say r3(t)), and use it as the second guiding sensor by computing C(b,1).
This explains the first block-column of C. Of course, the cross-correlations between
the two sets of virtual sensors must be computed, and it can be done by evaluating
C(a,b) = CH(a,b). Figure 6.3 gives an illustration of this operation. For exam-
ple, if we select sensor 1 as the reference sensor, and select sensor 4 as the second
guiding sensor to compute C(4,1) and then select sensor 2 as the second sensor and
compute C(2,1), these two sets of virtual sensors can be connected by the vector
from sensor 4 to sensor 2, i.e., by computing C(4,2). This explains the remaining

block-components of C.

Theorem 2: The effective aperture provided by C is at least 2M — 1 elements. This
result is valid regardless of the selection of the reference sensor among the M actual

Sensors.

Proof: Let us pick an arbitrary sensor from the M actual sensors and consider this
sensor as the reference sensor (so it measures ry(t) in Figure 6.4). Then, extend the
aperture by shifting the actual array by using the two vectors between the reference
point and a pair of limit-point sensors {rq(t), rs(t)}. Virtual sensors obtained by this
process only coincide at the reference point (where there exists an actual sensor),
because actual sensors must lie in the original region of support, which forces the
virtual sensors to lie in the shifted regions of support and in this construction, these
two shifted regions intersect only at the reference point. Therefore, if we only count
these sensors as the effective aperture (even without counting the actual sensors),
then the lower bound becomes 2M — 1. The subtraction is due to the overlap at the

reference point.
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Actual Sensors Using (1,4) as guiding sensocs. Using (1,2) as guiding seasors.

Using (1,5) as guiding sensors. Using (1,3) as guiding sensors.

Extended Aperture Using Cumulants

Figure 6.3: An interpretation of the matrix construction proposed in (6.4). We select
sensor 1 as the reference sensor, and shift the actual array by the vectors from the
other actual sensors to the reference sensor to obtain the effective aperture. Note
that there exist virtual sensors at all actual sensor locations and this redundancy
decreases the capacity to extend the effective aperture.
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ALL ACTUAL
SENSORS LIE
IN THIS AREA.

o @

limit-point
sensovr

(a) Actual array.
ALL VIRTUAL ALL VIRTUAL
SENSORS OBTAINED SENSORS OBTAINED
BY SHIFTING THE ARRAY BY SHIFTING THE ARRAY
USING { (D) , np(t) } MUST USING ( rj(®) , ry(t) } MUST
LIE IN THIS INTERSECTION. LIE IN THIS INTERSECTION.

(b) Effective aperture.

Figure 6.4: The lower bound on aperture extension: (a) Three elements of the M
element actual array are represented by filled circles. The rest of the elements must
lie in the support region as pointed out in Fact 1. (b) By aperture extension, the
support regions can only overlap at the reference sensor. Here, v2(t) (1 <z < M) is
the virtual sensor created by shifting the actual sensor r;(¢) by the vector between
ro(t) and ry(t). Similarly, z;(t) is the virtual sensor created by shifting the actual
sensor 7.(t) by the vector between r4(t) and ri(2).
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Fact 2: The effective aperture provided by C does not depend on the choice of the

reference sensor. This is obvious from the structure of the effective steering vectors,
which take the form:

a* ® a = [a]a;,a%as,...,a}apn, 301,302, . . ., a3ap, . . ., AN G1, AhGa, - - -, agarr]T
(6.6)
Suppose we change the labels on the first and second sensors, i.e., the second sensor
is named as the first, etc. Then, the effective steering vector for this labeling takes

the form:

a* ® a = [a3a2,a3a1,...,03a0, 02,030y, ..., a}an,. .., Qa2 a}a1,. . ., alan]T
(6.7)
The elements of the vector in (6.7) are a permutation of the elements of the effective
steering vector in (6.6), which means a relabeling of the actual sensors result in a
relabeling of the virtual sensors.
Comment 2; Fact 2 provides an alternate way to prove Theorem 2. Because the
choice of the reference point does not affect the effective aperture, we can choose
one of the limit-points as the reference sensor. When the other limit-point sensor is
chosen as a guiding sensor to shift the array, the resulting virtual sensors that do not
overlap with the actual ones will be M — 1, as stated in Theorem 1, and displayed
in Figure 6.2. Then, the effective aperture consists of at least 2M — 1 elements.
Theorem 3; The effective aperture provided by C can be at most M? — M + 1
elements.
Proof: After choosing the reference sensor (this choice does not affect the result,
due to Fact 2), we shift the array as in virtual-ESPRIT by using the reference
sensor as a guiding sensor and picking another sensor (say r4(t)) from the remaining
M — 1 sensors as the other guiding sensor. With each such shift, there is at least
one overlap between the virtual sensor locations and the actual ones (the reference
sensor position coincides with the virtual sensor location created by the shift of r4(t),
see Figure 6.3). Hence, each shift adds at most M — 1 virtual sensors. We can make
M —1 such shifts, that results in a total of (M —1)? = M2 —2M + 1 virtual sensors.
Adding the number of actual sensors, M, to the number of virtual sensors, we obtain

the upper bound for the number of effective sensors as M? — M + 1. The number
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of the effective sensors clearly depends on the array geometry, but it is always lower
bounded by 2M — 1. The result reported in Theorem 3 is also claimed in [21] without
proof. The remaining question is whether there exist a class of arrays which always
achieve the upper bound. We shall provide an affirmative answer in the context of

two-dimensional array design later in this chapter, in Section 6.3.1.

6.2 Minimum Redundancy Arrays (MRA)

The structure of the array covariance matrix in the case of incoherent sources illumi-
nating a uniformly spaced linear array of identical sensors has led to algorithms that
can estimate the directions of more sources than sensors. This section is devoted to
reviewing this concept within the framework developed in the previous chapter for
the role of cumulants in array processing.

Consider a uniformly spaced antenna array of M identical sensors which is illu-

minated by P incoherent sources with waveforms {s(%),...,sp(¢)}

P
mk(t) = ZSk(t) exp(—j(k — 1) sin(0,)) + ni(t) (68)

I=1
where the noise components {n,(t),...,num(t)} are uncorrelated with the same vari-
ance o2. In (6.8) we assume the sensor separation is a half-wavelength to eliminate
additional parameters. We also assume that noise components are independent of
signals. After these assumptions, the cross-covariance between sensor outputs can

be expressed as

E{zn(t)z;(t)} = zp:a'z exp(—j(m — n)sin(;)) + o%8(m — n) (6.9)

i=1
where o is the power of the kth far-field source, and §(m — n) is the Kronecker
delta function which is unity if and only if m = n. Clearly, (6.9) indicates that the
cross-covariance between two sensors can be interpreted as an integer which is the
difference of their locations, i.e., E{zm(t)z}(t)} = rm—n. This is also obvious from
our previous results: covariance can be interpreted as a vector between two sensors,

and when the sensors are constrained on a line, the sign and the magnitude of this
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vector is sufficient to represent cross-covariance. In [95], this interpretation for cross-
covariance is proved by using the Caratheodory theorem. We have extended this
interpretation to fourth-order cumulants: cumulants are addition of two “covariance”
integers.

From (6.9), the array covariance matrix takes the form
R=AXx A" + 0% (6.10)

in which A is the MxP steering matrix and its columns are the steering vectors.
The diagonal matrix g contains the source powers. The steering vectors take the
form

a(8) = [1,exp(—jsin(8)),...,exp(—j(M — 1)sin(8))]¥ (6.11)

and as a result, the steering matrix possesses a Vandermonde structure. Further-
more, since signals are independent and because of the structure of the steering

vectors, the array covariance matrix R is Toeplitz, i.e.,

re 1) 3 o Ty
r ro  SUEELI & Vo]
R= ro ™ To .. . (6.12)
| ™ TM-1 TM-2 °*°* To

which implies that if we can compute the set of covariances {ro,r1,...,7sm}, then we
can reconstruct R due to the Toeplitz property. For an arbitrary scenario, a KxK
covariance matrix has K(K + 1)/2 parameters due to Hermitian property. When
the covariance matrix is constrained to be Toeplitz, the number of free parameters
reduces to K. This highlights the redundancy in the uniform linear array: we do not
need all the sensors in order to compute the set of necessary covariances ((M+1) of
them). To eliminate redundancy, we must remove some of the sensors, such that we
can still compute R from the remaining sensors as if the number of actual elements
remained the same.

The problem of eliminating redundancy by exploiting the special signal model

in (6.8) and the array covariance matrix (6.12) can be restated as the following
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Figure 6.5: Elimination of redundant sensors in a uniform linear array where iden-
tical sensors are separated by A/2: (a) Redundant array with seven sensors; (b)
Nonredundant array obtained by removing 3 sensors; as shown, it is possible to gen-
erate all integers from zero to six, which means that the 7x7 covariance matrix of
(a) can be constructed using only four sensors.

combinatorial problem [73]: “Represent 1,2,...,N by differences of M (M < N)
non-negative integers drawn from non-negative natural numbers up to N.” In this
problem, N corresponds to the number of sources that can be resolved. The math-

ematical description of this problem is as follows:

o Find a set of integers {d1,dz,...,dpm} such that every positive integer
k (0 < k £ N) can be represented in the form k = d; — d; with the

constraint

0=d<dy<:--<dy=N (6.13)

The set of integers that satisfy (6.13) is called the restricted difference basis with
respect to N [73]. The minimum number of integers in the restricted difference basis
for given N is denoted as My. In the array processing context, My corresponds

to the minimum number of elements to estimate the directions of M sources, and
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the difference basis indicates the sensor locations. Similarly, given M, Njs denotes
the length of the longest restricted difference basis. Figure 6.5 gives an example
for the case with N = 6 in which the restricted difference basis {0,1,4,6} is used.
Table 6.1 illustrates the optimal locations of the sensors for minimum redundancy
up to M = 17 [93]). These locations were obtained by exhaustive search methods
whose running time grows exponentially with the size of the array.

Finding the minimum number of elements to construct restricted sets and their
locations has been of interest for a long time and results are published in different
contexts [36, 59, 61, 71, 72, 73, 75, 79, 95, 146, 154]. The first important result is
that given M integers, it is possible to generate at most () = M(M —1)/2 integers
that satisy (6.13) which are not necessarily unique; hence, an upper bound for Ny
is:
< MM -1)
- 2
Bracewell [6] showed that the strict inequality holds for M > 4. Leech [73] provided
the asymptotic result

Ny (6.14)

2
My (375 _3348... (6.15)

2.434...51\1,1_1’20 N <1

More importantly Pearson et al. [93] proved the following result by providing a

constructive method to generate a restricted difference basis:

e For any given M > 3, it is always possible to chose a restricted difference basis
such that
M?/N <3 (6.16)

which implies M%/N < 3. Note that this is not just an asymptotic result. For
M =3, M?/N = 3 (see Table 6.1). We refer the reader to [93] or [97, Chapter 2]
for the proof of (6.16). It is important to note that asymptotically it is not possible
to find configurations that use 10 percent fewer elements than the design procedure
of [97, Chapter 2). This follows from the lower bound (6.15) of Leech [73].

There are also improved search procedures for finding the optimal configuration of
antennas. A recent approach [109] uses a numerical annealing method for the search
and provides identical results with the exhaustive search method up to M = 17.
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Table 6.1: Interelement spacing for optimal restricted difference basis determined
by exhaustive search [93] (M is the number of sensors and Ny is the array length).
Note that the first sensor is always located at the origin (d, = 0).

M | Ny Interelement Spacing M?*/Ny
3 3 o]l e2e¢ 3.0
4 6 ele3e2e 2.667
51| 9 el1e3e3e2e 2.778
6| 13 olelededele 2.769
7117 elelede4e4e03e 2.882
8| 23 0130606020302 2.783
9| 29 elede0d407¢70302010 2.793
10| 36 olededeT7e7070302¢1e 2.778
11| 43 oledede070707070302¢le 2.814
12 | 50 olede40707070707030201le 2.88
13 | 58 0le403040909¢90¢90¢50102020 2.914
14 | 68 eleleGoGoebollellelle5e5e30lele 2.882
15| 79 eloeleboe6oebellellellelle5e5e30l0le 2.848
16 | 90 olele6eGeGollolloellellelle5e5030lele 2.844
| 17 ] 101 oleleGobebellellollellellelle5e5e3elele | 2861

Additional results are also given for M > 17, but there is no proof that these
designs are optimal.

The minimum redundancy array concept is only applicable to linear arrays, which
can only provide the azimuth of the far-field sources. In many applications, both az-
imuth and elevation information is necessary; this requires at least a two-dimensional
array configuration. Bracewell [6] has noted that there is no two-dimensional ana-
log to the minimum redundancy arrays except for the case of a four-element “T”
shaped array. Because of the lack of a solution, two-dimensional resolution can
only be obtained by linear minimum redundancy arrays if the array is physically
rotated. For example, in astronomy the earth rotation synthesis technique of [111]
exploits the rotation of the earth with respect to the far-field source, which in turn
changes the orientation of the linear array. The collection times are very large, and
the performance depends on the actual direction of the source. In addition, during
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the rotation time of the array, the source is assumed to be stationary. These as-
sumptions will never hold in small-scale applications such as radar and sonar. In
the next section, we show methods to design two-dimensional minimum redundancy
arrays based on the interpretation of cumulants and already existing design pro-
cedures for linear minimum redundancy arrays (see Table 6.1). We also propose
cumulant-based minimum redundancy linear arrays based on cumulants which can
significantly outperform the existing covariance-based designs.

6.3 Cumulant-Based MRA Design

In this section, we first design two-dimensional minimum-redundancy arrays based
on the existing one-dimensional covariance-based designs. We then concentrate on

cumulant-based design of linear arrays.

6.3.1 Two-Dimensional Arrays

Suppose we wish to design a rectangular array so that both azimuth and elevation
estimation is possible through the use of subspace rotation techniques (ESPRIT).
Specifically, if we have MM, elements, then it is possible to generate a rectangular
grid of length M, and width M, and put the sensors in the intersection points. For
example, if we have 49 sensors, then a square array can be generated by using the
intersections of the grids in Figure 6.6. To implement a direction-finding algorithm
all the connections between the sensors must be completed by a single vector between
actual sensors. Any vector in the rectangle can be decomposed into two parts: x-
component and a y-component. If one uses fourth-order cumulants, then it is possible
to add two vectors between actual sensors to obtain virtual cross-correlations; hence,
the 2-D design problem reduces to designing two linear minimum-redundancy arrays
which can cover the axes of the rectangle. This design was described in the previous
section (the restricted difference basis). Figure 6.6 illustrates the design procedure
with four actual sensors per axis. It is possible to extend the aperture to 49 sensors
by using 7 actual elements. Note that this design breaks the bound of the existing
linear minimum-redundacy arrays (see Bracewell’s bound in (6.14), which upper

bounds the number of resolvable sources to be 21).
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Set of vectors that can be generated in this dimension.

Figure 6.6: 2-D minimum redundancy array design: combining two 1-D arrays and
using VC? allows the computation of cross-correlations among all the 49 grid points,
using the data available just from the 7 real sensors (filled circles).
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Our approach provides both two-dimensional resolution and more virtual sensors
than covariance-based designs. Given a number of actual sensors, the best displace-
ment is the one in which the extended aperture will be close to a square. The reason
is that the perimeter of the rectangle is proportional to the number of actual ele-
ments, and the area of the rectangle is proportional to the number of sensors in the
extended aperture. The minimum redundancy problem requires us to maximize the
aperture (area) while the number of actual sensors (perimeter) is kept constant and
the solution is the special rectangle; namely, the square. If the number of actual
sensors M is odd, then we can use (M + 1)/2 sensors per axis to form a linear
minimum-redundancy array, whose length is lower bounded by (M + 1)?/12, which
comes from the constructive method of Pillai [97]. The total number of elements
in the square aperture is the square of this number; hence, the effective aperture is
lower bounded by (M +1)%/144. Figure 6.7 gives a comparison of our two-D method
and the optimal linear array. Qur two-D method provides more virtual sensors than
the conventional minimum-redundancy array based on second-order statistics. Next,
we describe the general design steps for our approach (CUM-REC) given the number

of sensors (M):

1. If M is even, then let M; = (M +2)/2 and M, = M/2. If M is odd, then let
M, =M,=(M+1)/2.

2. Decompose the two-dimensional design problem into two separate linear array

design problems, with number of sensors equal to M, and M,, respectively.

3. Use Table 6.1, or the extended results reported in [109] to find the solutions
to the linear array design problems. Let N[M;] denote the effective number of

sensors with M, actual sensors, and define N[M,] similarly.

4. Put the array with M, actual elements on the x-axis with the locations ob-
tained from the previous step. Put the array with M, actual elements on the

y-axis such that the first actual elements of both arrays coincide.

5. It is now possible to compute the cross-correlations between any pair of sensors
located at the grid points of the rectangular structure of area N[M;|N[M,] by
using the VC3. An example was given for the M = 7 case in Figure 6.6.
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Comparison of Minimum-Redundancy Arrays
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Figure 6.7: CUM-REC outperforms other designs and provides two-dimensional
resolution. CUM-ALL also represents the upper bound of Section 6.1.2.

Based on the design procedure described above, we compare the covariance-based
MRA and the cumulant-based two-dimensional MRA (CUM-REC) in Table 6.2 for
a small number of actual sensors. In this table, CUM-ALL indicates the effective
aperture generated by the sensors designed for CUM-REC, but whose measurements
are processed by the algorithm in Section 6.1.2, by forming the matrix C in (6.4).
An example with four actual sensors is given in Figure 6.8 for CUM-ALL. COV-
1D is the effective sensors from the one-dimensional covariance-based MRA design.
In Table 6.2, we observe that when the number of available sensors is less than 7,
CUM-REC provides less sensors than CUM-ALL, and does not provide dramatic
improvement over COV-1D. Particularly, CUM-REC results in an array whose ef-
fective number of sensors is less than the upper bound (M2 — M + 1) without the
MRA design concept if M < 7, e.g., with six actual sensors the effective number
of sensors from CUM-ALL and CUM-REC are 31 and 24 respectively. The reason
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Effective aperture from the CUM-ALL construction.

Figure 6.8: An example for aperture extension with CUM-ALL: there are four actual
sensors: M, = 3 and M, = 2 from the CUM-REC procedure. Sensor 1 is selected
as the reference sensor.

for this is that the partitioning of the available elements reduces the number of sen-
sors per axis to less than four, which in turn causes an inefficiency by insisting on
a rectangular shaped array. If we can guarantee that there exists a class of array
configurations that meet the upper bound M2 — M +1, then, we can use the matrix
C defined in (6.4) to increase the aperture for M < 7. We now show that Costas

arrays achieve the upper bound.

Definition 3: For each positive integer M, construct an MxM permutation matrix
with the property that for all possible x-y shift combinations at most one pair of ones
coincide with the unshifted matrix [30]. The resulting structure is called a Costas
array. An alternate definition is to construct an MxM permutation matrix with

the property that the () vectors connecting two 1’s of the matrix are all distinct
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Table 6.2: Comparison of aperture extension for small number of actual sensors.

Actual Sensors |3 4 | 5 | 6 | 7
CUM-REC |4]| 8 (16|28 49
CUM-ALL 711321 (31]43

COV-1D 47 |110{14]18

vectors [52]. An example is given for the case M = 6 in Figure 6.9.

Theorem 4: If the M sensors are placed at locations determined by a Costas array of
order M, then the effective aperture consists of sensors M? — M +1 for the direction-
finding method based on processing C in (6.4).

Proof: The virtual array is obtained by shifting the actual array by vectors between
the actual sensors. In Theorem 3, we indicated that in each shift operation, one of
the virtual sensors coincides with the reference sensor, regardless of the sensor that
is chosen to shift the array. Therefore, by definition of the Costas arrays, there can
be no other overlaps, i.e., each shift creates M — 1 more virtual sensors. There are
(M — 1) possible shifts, hence (M — 1)? virtual sensors that do not overlap with
each other and the actual sensors. When we add to (M — 1)?, the number of actual
sensors M, we obtain M2 — M + 1.

6.3.2 Linear Arrays

An initial attempt to design linear MRA’s based on cumulants is to take an existing
design from Table 6.1, and recall that cumulants are addition of two integers, and,
can be used to double the aperture. Therefore, to obtain an effective aperture of N
units long, we need to look for a covariance-based design for an aperture N/2 units
long; hence, replacing N by N/2 in (6.16), we determine the upper bound for this

simple cumulant-based procedure as

(6.17)

1
N <33
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Figure 6.9: An example of a Costas array of order six.

Equation (6.17) implies that the effective aperture (/N) is still proportional to the
square of the number of actual sensors. Cardoso [21] also claimed that linear MRA’s
can be designed with an effective aperture of M2 — M + 1 sensors, which is slightly
better than (6.17). Cardoso did not prove whether or not the resulting effective
aperture has “holes”, i.e., whether it constitutes sensors configured as a uniform
linear array with no missing sensors.

Of course these results are somewhat primitive because we already showed that it
is possible to design two-dimensional MRA’s (a harder problem than the linear array
problem) whose effective aperture is proportional to the fourth power of the number
of the actual sensors. However, for illustrative purposes we start with a simple
method which generates similar primitive results without using existing covariance-
based MRA results.

We know that cumulants are addition of two integers in the linear array problem;
hence, if we have all the odd numbers, then we can generate even numbers by adding
existing odd numbers. Let us place our sensors with this idea in mind: let the first
sensor be the reference element; put the second sensor one unit to the right of the

first one; put the third sensor three units to the right of the second one; put the
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fourth-sensor five units to the right of the third sensor; etc. With six sensors, this

placing method results in the following array:
ele3e5e709¢ (6.18)

with the sensor locations {0,1,4,9,16,25}. This method actually puts the sensors
at the squares of integers. This observation can be proved as follows: if M actual
sensors are available then the location of the last sensor is

le(% -)=(M-1)? 1<M (6.19)
k=1

The next thing to show is that the effective aperture that can be created using
cumulants has no holes in it, at least for the range 0 < k < (M —1)? (end points
are guaranteed to be sensor locations, by design). This can be proved by induction
as follows: for M = 1 or M = 2, it can be proved by observing (6.18). Then, for
any M, we observe that the last two elements of the M element array are located
at {(M — 2)%,(M — 1)?}, and these elements are separated by 2M — 3 units (just
subtract the numbers). By construction (see (6.18)), we have the odd numbers
{1,...,2M — 3} available between the actual sensors. Now, all the even (odd)
numbers between {(M —2)%,(M —1)?} can be generated by adding the appropriate
number from the set of odd numbers to (M —2)2 if M is odd (even). Similarly, all the
odd (even) numbers between {(M — 2)%,(M — 1)?} can be obtained by subtracting
the appropriate number from the odd numbers set from (M —1)? if M is odd (even).
For example, if M = 6 (even), the last two sensors are at 16 and 25. An odd number
in this range can be generated by adding 16, an integer between the actual sensors
(see (6.18)), e.g., 21=16+5. Similarly, for the even numbers, we subtract from 25,
e.g., 22=25-3. This completes the proof that the effective aperture has no holes in

itfor0 <k <(M-1)>~
Actually, this simple design can extend the aperture to more than (M — 1)2
sensors. For example, using a four element design with sensor locations {0, 1,4,9},
it is possible to create effective sensors at the locations {0 — 14,16 — 18}, with a
sensor missing at 15 (a total of 18 sensors). Our aim was not to find the exact
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number of effective sensors for this design, but to show how to reach claims made
at the beginning of this section.

We now propose a cumulant-based linear MRA design method (CUM-LIN) that
uses results from covariance-based designs, and achieves an effective aperture pro-
portional to the fourth-power of the number of actual sensors. The proposed method

is actually a mapping of our two-dimensional array design method to a single di-
mension. The CUM-LIN method is described below:

1. Given M actual sensors, divide them into two groups: the first group has
M; sensors and the second group has M, sensors. If M is even, then let
M;=(M+2)/2 and M, = M/2. If M is odd, then let M, = M, = (M +1)/2.
This step is identical to the first step of the two-dimensional method, however,
the ordering M, < M, is important in the linear MRA design problem and is
explained in the last item of this list.

2. Given M, actual sensors, design a one-dimensional MRA based on the results
presented in Table 6.1. Let N[M.] denote the effective length of the array (one

less than the number of sensors) using second-order statistics.

3. By adding two vectors between the M, actual sensors located in the previous
step (using cumulants of measurements), it is possible to extend (double) the
aperture to have a length of 2N[M;]|. Therefore, if we put new sensors at
multiples of 2N[M_]+1, then we can generate all integers using the M, element
array of Step 2 and these new sensors. For example, if & = [(2N[M,] +1) +m,
where 0 < k and 0 < m < 2N[M;], then k can be represented by addition
of two vectors between actual sensors; if m < M,, then m can be obtained
as the difference between the locations of the M, element array of Step 2, if
M, < m < 2N[M,], then we rewrite k = (I4+1) (2N[M,]+1)—(2N[M;]+1-m),
where the second term (2N[M;] + 1 — m) is not larger than N[M,] and hence
can be obtained as the difference between the locations of the M, element

array of Step 2.

4. The next step is to minimize the number of sensors which are separated by
2N[M;] + 1 units, but maintain the maximum length possible. This is no

different than a covariance-based MRA design problem with M, sensors, but
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the separation between each sensor is a superunit, which is defined as 2N[M, ]+
1 units. The first element of this array coincides with the first element of the
M array. The design can be done by using Table 6.1. Let N[M,] be the length
of the MRA array from Table 6.1.

5. Clearly, it is possible to obtain an array of length N[M,])(2N[M.]+1) by using
cumulants and the actual sensors deployed as stated in the previous steps.
We can also generate integers from N[M,](2N[M;] + 1) to N[M,])(2N[M,] +
1) + N[M.] by adding vectors from the M, element array to the last element
of the M, element array which is located at N[M](2N[M;] + 1). Finally,
the difference between the last element of the M, element array (with location
N[M,]) and the second element of the M, element array (located at 2N[M;]+1)
is N[M_] + 1, which can be added to the last element of the M, element array
to obtain an effective aperture of length L[M,, M,] = N[M.]J(2N[M,]+1) +
N[M,]+1 without holes. The expression for L([M;, M,] explains our selection
for M, < M, in Step 1.

An example is given below for the M = 7 case. We let M, = M, = 4 and
find the locations of the M, array (from Table 6.1) as {0,1,4,6}, which indicates
that N[M.] = 6. Now, a superunit is 13 units (i.e., 2- 6 + 1). We design the
M, array by using Table 6.1, and multiplying the results by a superunit, i.e., loca-
tions are 13 - {0,1,4,6} = {0,13,52,78}; hence, the locations of all 7 sensors are
{0,1,4,6,13,52,78}. Integers from 79 to 84 can be obtained by adding the differ-
ences between the M; array to 78. Finally, 85 can be obtained as (78 —0) + (13 —6).
The aperture is 85 units long, or it consists of 86 sensors. For comparison, CUM-
REC provided 49 sensors, and COV-1D provided 18 sensors. In Table 6.3 we provide
designs for 3 < M < 17. In Table 6.4 we compare the length of the effective aperture
with that of COV-1D and previously described two-dimensional designs. The results
from Table 6.1 can be used to design CUM-LIN and CUM-REC arrays for up to
M = 34. For M > 34 the results from [109] can be used.

From the results in Table 6.4, we observe that for large M, CUM-LIN provides
twice the number of effective sensors that CUM-REC can provide. This is due to ease

of designing linear arrays as compared to two-dimensional arrays. This observation
can be proved as follows: let M be odd, so that M, = M, = (M + 1)/2. Then
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Table 6.3: Cumulant-based linear MRA design (CUM-LIN) for 3 < M < 17.

Actual Sensors M, ARRAY M, ARRAY

M Sensor Locations Sensor Locations

3 0.0} {0,3)

1 {0,1,3) {0,7)

5 {0,1,3} {0,7,21)

6 {0,1,4,6} {0,13, 39}

7 {0,1,4,6} {0, 13,52, 78}

8 {0,1,4,7,9} {0,19,76,114}

9 {0,1,4,7,9} {0,19, 76,133,171}

10 {0,1,2,6,10,13} {0, 27,108, 189, 243}

11 {0,1,2,6,10,13} {0, 27, 54, 162, 270, 351}

12 {0,1,2,6,10,14,17} {0, 35,70, 210, 350, 455}

13 {0,1,2,6,10,14,17) {0, 35,70, 210, 350, 490, 595}

14 10,1,4, 10, 16, 18, 21, 23} {0, 47, 94, 282, 470, 658, 799}

15 10,1,4,10, 16, 18, 21, 23} {0, 47, 188, 470, 752, 846, 987, 1081}
16 10,1,5,9, 16, 23,26, 28,20} | {0, 59, 236, 590, 944, 1062, 1239, 1357}
17 {0,1,5,9, 16, 23, 26, 28, 29} | {0, 59, 295, 531, 944,1357,1534, 1652,1711}

Table 6.4: Comparison of CUM-LIN, CUM-REC, CUM-ALL (M? — M + 1) and
COV-1D designs for total number of effective sensors.

M | CUM-LIN | CUM-REC | CUM-ALL | COV-1D
3 6 4 7 4
4 12 8 13 7
5 26 16 21 10
6 47 28 31 14
7 86 49 43 18
8 | 125 70 57 2
9 | 182 100 73 30
10| 258 140 91 37
11| 366 196 111 44
12| 474 252 133 51
13 | 614 324 157 59
14| 824 432 183 69
15 | 1106 576 211 80
16 | 1388 720 241 91
(17 1742 900 273 102
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Table 6.5: Sensor locations for CUM-SL method.

M | New Sensor Location Effective Sensor Locations

2 1 {0-2)

3 {5} {0-6,8-10}

4 {13} {0 - 14,16 — 18, 20, 21, 24 - 26}

5 {28} {0 — 33, 35, 36,38 — 43, 46, 50, 51, 54 — 56}

6 {57} {0 - 62,64, 65,67 —73,75,79 — 81,83 — 86,
88, 96, 100,101, 104, 108,109, 112 — 114}

N[M;] = N[M,] are lower bounded by (M + 1)%/12 (due to (6.16)), which implies
the effective length L[M,, M,] is lower bounded by (M +1)4/72, for large M, which
is twice the lower bound for CUM-REC.

We now present a final linear MRA design for small M (M < 7) which does not
employ covariance-based MRA methods and is competitive with CUM-LIN (actually
slightly better) with the very important property that whenever a new sensor is
available, the locations of the sensors from the previous design remain the same, so
that calibration problems are not repeated every time the designer can afford a new
sensor. This new design procedure (called CUM-SL) starts with the observation
that given an existing linear array, cumulants can be used to double the aperture.
Therefore, given a previous design, we put the new element as far as possible from
the reference element with the constraint that all integers from 0 to the location of
the new element can be produced by addition of two integers between the actual
sensors. The procedure starts by putting the reference sensor at the origin (M = 1).
When a second sensor is available, it can be put at 1. When the third sensor is
available, it can be put 5 units to right of the reference sensor, since all the integers
{0,1,...,5} can be generated from the set of integers between actual sensors (i.e.,
{0,1,4,5}) by addition or subtraction of two elements. If we put the third element
more than 5 units to right of the second sensor, holes appear, so we fix the location
of the third element to be 5. The continuation of this search produces the results
in Table 6.5, where effective sensor locations are the integers that can be obtained
by adding/subtracting two integers between the actual sensors. CUM-SL is always
better than CUM-LIN in this range, and by construction it guarantees an effective
aperture without holes whose length is lower bounded by the location of the last
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Figure 6.10: Comparison of minimum-redundancy arrays.

actual element. In addition, whenever a new sensor is available we do not have
to alter the locations of the previously available sensors as in the other methods
CUM-LIN, CUM-REC, COV-1D.

6.4 Conclusions

In this chapter, we determined lower and upper bounds on aperture extension by
using the interpretation described in Chapter 4. We proved that cumulants can be
used to at least double the effective aperture with an upper bound of M2 — M +1
sensors where M is the number of actual sensors.

We showed ways to exceed the upper bound by designing arrays for cumulant-
based processing. We started with two-dimensional MRA arrays and proposed the
CUM-REC algorithm. We showed that the CUM-REC algorithm can significantly
outperform the covariance-based optimum design (COV-1D), particularly when the
number of actual sensors is large. After investigating the issues related to small
number of sensors in the two-dimensional MRA design problem, we returned to
the linear MRA design, and proposed the CUM-LIN method which is inspired by
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the CUM-REC method. CUM-LIN provides twice as many effective sensors when
compared to CUM-REC for large M. Finally, we described the CUM-SL method,
which addresses the problem of linear MRA design in which availability of a new
sensor does not affect the locations of the previous sensors, thus less calibration
efforts are required. The effective sensors provided by all of the investigated methods

are summarized in Figure 6.10.
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Chapter 7

Non-Gaussian Noise Suppression

The main motivation of using higher-order-statistics in signal processing applications
has been their insensitivity to additive colored Gaussian noise. The main objection
to those methods is their possible vulnerability to non-Gaussian noise.

Our interpretation for the use of cumulants as presented in Chapter 4 assumed the
hypothetical case, when there is additive Gaussian noise present in the measurements.
In array processing, it is commonly assumed that the measurements are corrupted
by additive Gaussian noise which is independent from sensor to sensor. In addition,
measurement noise power is assumed to be identical for each sensor. Then, it is
possible to separate signal and noise subspaces, and estimate the source directions
and the noise power using the eigendecomposition of the source covariance matrix. If
the ambient noise is spatially colored but its covariance matrix is known to within a
scale factor, then prewhitening can be applied to the received signals, which in turn
enables the separation of signal and noise subspaces. The problem of identifying the
signal subspace is impossible to solve if one models the noise covariance matrix as a
completely unknown Hermitian matrix; however, if the additive noise is Gaussian,
then its covariance structure is not needed for the cumulant expressions which have
been described in Chapters 4-5.

In this chapter, we investigate the possibility of combating the effects of non-
Gaussian noise using cumulants. Using the geometric interpretation of cumulants,
we describe a way to suppress spatially independent non-Gaussian sensor noise.
Then the conditions necessary to suppress the effects of noise in more general situ-

ations are described. Noise suppression properties of the virtual-ESPRIT algorithm
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(which can achieve joint array calibration and direction-finding with only a sin-
gle doublet in the array) are also addressed. Finally, we propose a method, that
combines second and fourth-order statistics, to achieve even better results. We

demonstrate our theoretical results by simulations.

7.1 Weak Law of Non-Gaussian Noise

Suppression

Theorem 1: Consider an array of isotropic sensors, which is illuminated by statis-
tically independent non-Gaussian sources. Furthermore, assume that measurements
are contaminated by additive non-Gaussian sensor noise, which is independent from
sensor to sensor, and whose noise components can have varying power and kurtosis

over the aperture. If one uses cumulants, it is possible to:

1. identify the signal subspace, although noise statistics vary from sensor to sen-
sor; this implies the directions of far-field sources can be estimated using sub-

space techniques; and,
2. extend the aperture regardless of the sensor noise.

Proof. Since the far-field sources are assumed to be independent, we can consider
the presence of a single source without loss of generality. Since noise components
are independent from sensor to sensor, statistical expressions such as E{r*(¢)z(t)}
or cum(r*(), z(t),r*(t),r(t)) are not affected by the noise. Noise affects the com-
putation of variance at a sensor, i.e., if () = s(t) + n.(¢), then E{r*(t)r(t)} =
o2+ o2 # o? whereas E{r*(t)z(t)} = o2 exp(—jk - d.).

When noise power changes from sensor to sensor in an unknown way, it is not
possible to remove its effects by an eigenanalysis of the sample covariance matrix,
since the diagonal terms of the covariance matrix are corrupted by unknown (not
necessarily identical) positive numbers; however, if one uses cumulants to compute
correlations, then it is possible to exploit the sensor-to-sensor independence of noise,

ie.,

2
a » »
7_: cum(r (t),:t(t),z (£),r(2) Iwith non-Gaussian noise =
3
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= E{s*(t)s(t)} = E{r*()r(t)} Ino noise (7.1)

The left-hand side of (7.1) (to within the scale factor 0%/v,, is computed in the
actual scenario where additive non-Gaussian noise is present. To derive (7.1), let
r(t) = s(t) + n.(t) and z(t) = s(t) exp(—jk - d;) + n(t). Then, because the noise
components n,(t) and n,(t) are independent of the signal component s(t), it follows
that

cum(r*(t), 2(t), z*(¢), r(t)) = cum(s"(t), s(t)e ¥ %=, 5" (t)eF %=, s(2)) +

o

Ya,s

cum(nz(t), nz(t), nz(t), nr(2)) (7.2)

Since the noise components are independent of each other, the second term in the
right-hand side of (7.2) is equal to zero due to [CP4]. Scaling (7.2) by 02/7,,, gives
the left equality in (7.1). If there is no noise, i.e., n,.(t) = 0, then r(¢) = s(t), which
results in the right equality in (7.1).

The right-hand side of (7.1) can only be computed in the hypothetical case
where there is no measurement noise, in which case r(t) = s(t); however, when
noise is present, E{r*(¢)r(t)} # E{s*(t)s(t)}, but E{s*(t)s(t)} is still equal to
cum(r*(t), z(t), r*(t)r(t)) to within the scale factor 3, £ 62/, since the noise con-
tributions in r(t) and z(t) are independent. This way of computing the variance at a
sensor is illustrated in Figure 7.1. The scale factor 02 /v,, does not cause a problem
if all the required covariances are computed through cumulants. For example, (with
proof similar to that of (7.1))

cum(r*(t), 2(), ~(8), () = Tt E{r*(t)a(t)) (7.3)

In the case of multiple sources, if one constructs a matrix of covariances which
are computed by using cumulants through the equivalence relations (7.1) and (7.3)
by ignoring the scale factors 8 = v4,x/0%, then the resulting matrix will be identical
to the covariance matrix in which the source powers (o2’s) are scaled by Bi’s, and
hence it takes the form (see (4.4)) AT'ssA¥, where ' is the fourth-order cumulants
of sources. This matrix has a rank that is equal to the number of sources, i.e.,

the noise subspace will be spanned by the eigenvectors that have zero eigenvalue;
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Figure 7.1: Weak law of noise suppression: The dashed lines indicate the unobserv-
able signals and virtual processors that utilize them. The goal is to compute the
variance of s(t) which is present in r(t), but is corrupted by noise. The virtual cross-
correlation computer VC? exploits the fact that the noise components n.(t) and
n,(t) are independent, and computes the required second-order statistic to within a
scale factor.

therefore, the signal subspace can be identified as the eigenvectors of this cumulant
matrix that have non-zero (but, perhaps negative since scale factors may be negative)
eigenvalues. This proves part 1 of Theorem 1.

Virtual aperture extension is the term coined in Chapter 4 to explain how cumu-
lants increase the aperture of antenna arrays. Aperture extension is accomplished
by using the cumulants of received signals to compute the cross-correlation between
actual and virtual elements (e.g., see Figure 4.1, where d=d,+ d-;) From our inter-
pretation, this can be viewed as going to a virtual location by adding two non-zero
vectors (otherwise we can not move to a virtual location) that extend between actual
array elements. A non-zero vector implies that its tail and head do not coincide, i.e.,
in the cumulant expression to compute the virtual cross-correlation, at least one of
the four components must be different than the other components; for example, (see
Figure 4.2)

cum(r*(t), z(t), 7*(¢), () lwith non-Gaussian noise = %E{r‘(t)vg(t)} Ino noise
(7.4)
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E{r*(t)vs(t)} is not computable since we do not have v,(t) (virtual sensor); however,
we have r(t) and z(t), and the noise in these two channels are independent; hence,
equality in (7.4). We have therefore shown that E{r*(t)v,(¢)} (virtual statistic) can
be computed using cumulants by processing the measured signals r(¢) and z(t), even

in the presence of non-Gaussian noise. This proves the second part of Theorem 1.

nts;

¢ The convention established in (7.1) will be used throughout this chapter. It is
important to note that (7.1) is valid for ensemble averages. With finite samples, the
standard deviations of the two sides will be different.

¢ The geometric interpretation of (7.1) is: with cumulants, we move from one sensor
to another one (which has non-Gaussian but independent noise), and come back to
the starting point using the same path. This approach is in fact an interpretation of
the technique proposed by Cardoso [21] for accomplishing non-Gaussian noise insen-
sitivity by cutting off the diagonal elements of quadricovariance steering matrices.
¢ The limitation of the weak law comes from the assumption about the sensor-to-

sensor independence of the non-Gaussian noise.

7.2 Strong-Law of Non-Gaussian Noise

Suppression

Theorem 2: Consider an array of arbitrary sensors which is illuminated by linearly-
correlated non-Gaussian sources. Assume that array measurements are contaminated
by non-Gaussian sensor noise of arbitrary cross-statistics. Then, it is possible to
identify the signal subspace to estimate the DOA parameters by subspace techniques
if there is a single sensor whose measurements are contaminated by non-Gaussian
noise which is independent of the noise component of other sensors. Furthermore,

there is no need to store the spatial response of that sensor.

Proof. To begin, we assume the sources are independent. Later we consider linearly-
correlated sources. Consider Figure 7.2, in which there is an array of M sensors
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x;(1)

Figure 7.2: Strong-law of non-Gaussian noise suppression: an arbitrary array of M
sensors whose measurements are corrupted by colored non-Gaussian noise can still
be used for direction-finding if the noise in g(t) is independent of the noise present
in the rest of the array elements. Such a unit can be imposed in the field to correct
the performance of existing systems which suffer from colored noise.

which measure {z;(¢)}}L, and there is another sensor that measures g(t) where
g(t) = g7s(t) + ny(2) (7.5)
whereas the main array measurements take the form
x(t) = As(t) + nx(t) (7.6)

We assume the noise component n,(t) in g(¢) is independent of the noise component
nx(t) in the main array. The satellite sensor, g(t), can be used to compute the
second-order statistics by using cumulants (assume a single source for the moment),

because:;

cum(x;(i), g(t),g'(t),:ck(t)) Iwith non-Gaussian noise =

— 74o8|90|2 E{z* . 7.7
= T2 {xj(t)zk(t)} Ino noise (7.7)

8
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where g, is the response of the satellite sensor to the source wavefront. In this way,
the following noise-free array covariance matrix can be constructed using cumulants
to replace the second-order statistics (see (7.7)) as in Figure 4.3 (assuming multiple
independent sources where superposition holds):

C = ATA"Y (7.8)

where A is the steering matrix for M sensors (except the satellite sensor), I is a
diagonal matrix whose kth diagonal entry is 4 4|gx|*, and g is the response of the
satellite sensor to the kth source (the vector g is the collection of such responses).
Equation (7.8) follows from application of (7.7) to (4.4) and the fact that in the
absence of noise the array covariance matrix takes the form A g5 AH | where Bgs is a
diagonal matrix that contains source powers (see (4.4)). Note that, B = vax|gx|*/03-

Any subspace method can be applied to C in (7.8), whose elements are computed
using (7.7). There is no need to know the response of the satellite sensor to the far-
field sources (i.e., g in (7.5)); but, the elements of g must be nonzero in order to
make I a nonsingular matrix. We just need the time series recorded by the satellite
sensor to actually compute the left-hand side of (7.7).

Next, consider the source signals s(¢) correlated in the following way:

s(t) = Qu(t) (7.9)

where Q is non-singular (but arbitrary), and components of u(t) are independent.

Then the observation equations (7.5) and (7.6) change to

g(t) = hTu() + ny()

(7.10)
x(t) = Bu(t) + ng(t)

where B £ AQ and h7 & T Q. Since the components of u(t) are independent,
they can be viewed as the actual source waveforms of (7.5) and (7.6) with an effective
steering matrix B, and a response vector h. The cumulant matrix C, computed as

described in (7.7) for the independent sources scenario, now takes the form
C =BI'B¥ (7.11)
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which was obtained by substituting B for A and h for g in (7.8). In (7.11), T is
defined as the diagonal matrix whose kth diagonal entry is 44 x]hx|? and 744 is the
fourth-order cumulant of ux(t). Note that Qf‘Q” is full-rank, so that C, expressed
as

C = A(QI'Q")A¥, (7.12)

maintains all the requirements for subspace algorithms like MUSIC and ESPRIT for
direction-finding, even in the presence of correlated sources, correlated non-Gaussian
noise, and arbitrary array characteristics. It is also important to note that we do
not need to know the response of the satellite sensor to the waveforms (i.e., g), as
long as the components of h (h” = gT Q) are non-zero. This completes the proof of
Theorem 2.

omments:

¢ This method can be interpreted as follows: consider a totally different problem
in which the sensors {z;}}, are viewed as mobile communication antennas which
suffer from interference effects, so that they can not communicate directly. It is
necessary to use a satellite transponder (¢g(t)) to maintain communications among
sensors. Remember, from the Chapter 4, that communication between sensors means
implementing cross-covariance. Here we can not do that because of non-Gaussian
sensor noise of arbitrary statistics; however, the satellite sensor, g(t), can be used
to make that communication possible: to implement E{z}(t)z(¢)} first move from
z;(t) to the satellite sensor g(t), then let the satellite distribute the message; i.e.,
move from g(t) to zi(t).

e A similar technique was developed in [172] as a covariance-based approach; how-
ever, it requires an additional array of sensors whose noise component is independent
of the noise in the existing array. Consequently, [172] ends up doubling the number
of sensors for direction-finding. We have accomplished noise reduction by using only
one extra sensor. This gain on the number of required sensors is similar to the gain
observed in the virtual-ESPRIT algorithm (Chapter 4) as compared with covariance-
ESPRIT. The reason for this difference is that cumulants, unlike cross-correlation,
have an array of arguments.

o If the original array is linear and consists of uniformly spaced sensors of identical
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response, then it is possible to apply the spatial-smoothing algorithm of [123] to
the covariance matrix in (7.12) to estimate the parameters of coherent sources (i.e.,
when Q is singular). Simulations in Section 7.5 investigate the coherent sources in
non-Gaussian noise scenario.

e Virtual aperture extension using the strong law of noise suppression is possible: it
requires fixing one of the four arguments of the cumulant to be g(t). Consequently,
this problem reduces to aperture extension using third-order cumulants, since we

now have three free cumulant arguments with which to extend the aperture.

7.3 Virtual-ESPRIT and Non-Gaussian Noise

The virtual-ESPRIT algorithm (VESPA) calibrates arbitrary arrays using a single
doublet and fourth-order cumulants (see Chapter 5). Here, we discuss the properties

of VESPA in non-Gaussian noise.

Theorem 3: Assume independent non-Gaussian sources illuminate an array of arbi-
trary sensors whose measurements are corrupted by non-Gaussian noise of unknown
statistics. Joint array calibration and direction-finding is possible, if we have a
doublet and at least one of the doublet element’s measurement noise component is

independent of the noise components measured by the rest of the sensors.

Proof. We apply the strong-law of non-Gaussian noise suppression to VESPA. Con-
sider {z1(t), z2(t),...,zm(t)} to be the measurements from an arbitrary array. Let
us assume that we have an identical copy of the first sensor (that measures z;(t))
whose noise component is independent of the rest of the sensors. The measurement
recorded by this sensor is denoted as g(). Let a, denote the response of the first
sensor to the wavefront.

ESPRIT autocorrelation matrix for the measurements {zi(¢)}}£, can now be

generated using cumulants as

x L 43 Qs 2 »
cum(zk(t), 9(t), 9" (), 21(t)) Inon-Gaussian noise = ’)ialg_lE{zk(t)xl(t)} lno noise
(7.13)
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where 1 < k,l < M. This is in fact the idea presented for the strong-law of non-
Gaussian noise suppression: we first move to the satellite sensor g() and then come
back. A slight modification of this idea can be used to virtually compute the ESPRIT
cross-correlation matrix. Let vi(t) denote the virtual-process received by the virtual-
twin of z;(¢t) where 1 <! < M. We can compute
. . 4,010 2 .
cum(zi(t), 9(t), z3(t), 1(t) ) Inon-Gaussian noise = T E{zi(t)vi(£)} Ino noise
(7.14)
although v;(t) is not physically available. This completes the proof of Theorem 3.

7.4 Combination of Second and Fourth-Order

Statistics

We have shown several ways to use higher-order statistics to suppress non-
Gaussian noise. In this section, we investigate possible use of second-order statistics
along with fourth-order cumulants. We show that the strong law of noise suppression
can be improved by using second-order statistics.

Consider the cross-correlation vector d, defined as
d £ E{x(t)g"(t)} (7.15)

where x(t) denotes the measurements of the main array and g(t) is the measure-
ment of the satellite sensor (see Figure 7.2). Since the noise component of x(t) is
independent of the noise component in g(t), d is free of the effects of noise (when
ensemble average is considered). If A is the steering matrix for the main array,
and the sources are linearly correlated (s(z) = Qu(t); see (7.9)), then, since the
noise components ny(t) and ny(t) are independent, we can consider only the signal

components of measurements to obtain

d = E{x(t)g(t)} = E{A Qu(t)u”(:)Q"g"} =AQ3,, Q" g" = Az  (7.16)
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where 3, = E{u(t)u”(¢)}. If none of the components of z are non-zero, then d is
a superposition of steering vectors from the sources; hence, it is possible to estimate

the directions-of-arrival by minimizing the cost function

0 = arg rrolizn J(6) £ argr?izn |d—-A(8)z|3 (7.17)
It is possible to eliminate z in the optimization procedure, since given the optimal

estimates for 6, namely 8, % can be estimated as
%= A(G) A" (H)AB) AT () d (7.18)
Substituting (7.18) into (7.17), we obtain
§ = argmjn |[(1-A(6) (AP (0)A(0))™ A¥(0) ) dIk = argmin [Py dli} (7.19)
(where Px denotes the projection matrix on the range of X) or, alternatively
§=arg max ||Pag) dll7 (7.20)

The direction estimation from (7.20) requires a P dimensional search procedure
(P is the number of sources). This search is quite complex unless we have good
initial estimates. We use the estimates provided by the strong law of non-Gaussian
noise suppression for initialization. The maximization in (7.20) can be performed
by the alternating projection (AP) method, as suggested by Ziskind and Wax for
the cost function associated with the deterministic maximum-likelihood method for
direction-finding [180]. We refer the reader to [180] for the implementation of the
AP algorithm.

Since this approach of suppressing non-Gaussian noise uses second-and fourth-
order statistics together we call it the SFS method. Simulations presented in Sec-
tion 7.5 indicate that the SFS method can decrease the variance of the estimates

from the cumulant-based approach which is now only used for initialization.
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7.5 Simulations

In this section, we provide simulations that demonstrate the performance of non-
Gaussian noise-insensitive direction-finding methods. Our first simulation experi-
ment illustrates virtual aperture extension in the presence of spatially non-stationary
but independent non-Gaussian sensor noise. Qur second simulation compares previ-
ous cumulant and covariance based algorithms with our strong law of noise suppres-
sion. Our third simulation investigates direction-finding for coherent sources in non-
Gaussian colored noise; it also investigates the performance improvement obtained
by using both second-and fourth-order statistics. Our final simulation illustrates the

non-Gaussian noise suppression properties of VESPA.

7.5.1 Virtual Aperture Extension in Non-Gaussian Noise

In this experiment, we consider a two-element linear array illuminated by two equal-
power, independent BPSK sources from +10°. We assume the sensors are isotropic.
We define SNR as the ratio of the signal power to noise power at the first (reference)
sensor. We let the non-Gaussian noise component at the second sensor be 3 dB
above that of the reference sensor. The non-Gaussian noise is due to the near-field
QAM communications equipment. We collect 1000 snapshots from the array.
Using cumulants, it is possible to extend the aperture to 3 sensors. If the noise
components in the actual sensor measurements are independent, then it is possi-
ble to apply the weak-law of noise suppression to construct a 3x3 matrix which is
asymptotically independent of the presence of non-Gaussian noise. If we are con-
strained to use only second-order statistics, we can not identify the bearings of the
sources, since the number of actual sensors is not larger than the number of sources.
Figure 7.3 illustrates the results obtained by using the ESPRIT algorithm (other
direction-finding methods are applicable, but ESPRIT is chosen for its simplicity)
on the 3x3 cumulant matrix. It is observed that cumulant-based results are unbiased,

and they improve as the SNR increases.
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Figure 7.3: Properties of the estimates from virtual aperture extension in the pres-
ence of spatially-nonstationary but independent non-Gaussian noise. SNR is in-
creased from 0dB to 20dB, and each result is obtained from 100 independent real-
izations.

7.5.2 Incoherent Sources in Non-Gaussian Noise

Here we estimate the DOA’s of two far-field sources which illuminate a uniformly

spaced linear array of five sensors from —5° and 5°. Both sources broadcast BPSK

waveforms of unity variance. The noise covariance matrix has the following structure

(R, = LL¥):
1.4142¢70-0 0.0 0.0 0.0 0.0
1.4051e70.9548  (.1606¢700 0.0 0.0 0.0
L=/ 1.3987¢/01997 (,1355¢/00548 (1588600 0.0 0.0
1.2585e/0-7928  (),2487¢724038 () 3460e—724584  (),4844¢700 0.0
| 1.1820e-70-6831  (,4201¢~70-7380 (,4378¢70-7928 (,4535¢71-6656 (),1702¢700 |

The SNR is defined as —201log,, 3. The signal power is 20 dB above the noise power
at the satellite sensor. The noises at all sensors are 4-QAM type; they represent the
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effect of near-field communications equipment on the direction-finding system. We
tested three versions of the ESPRIT algorithm: (1) The original covariance-ESPRIT
of [108] (denoted “cov”); (2) The cumulant-ESPRIT as suggested in [91] (denoted
“PN™) which is designed for suppressing colored Gaussian noise; and (3) Our strong-
law of noise suppression method, which uses the satellite sensor to obtain the non-
Gaussian noise free matrix in (7.8) (denoted “DM”). All versions use the total-least
squares ESPRIT.

At a sample size of 1000 snapshots, we varied SNR from -10dB to 10dB and
averaged the results from 200 experiments. Figure 7.4 depicts the mean values of
estimates. Observe that below a certain SNR, cov and PN yield biased results; after
a threshold SNR (around 3-4dB) their estimates get close to the true values; but,
the DM algorithm provides unbiased results for all SNR levels.

The standard deviation plot in Figure 7.5 is more interesting. At low SNR cov
yields the least variation, but the estimates are biased. Both PN and DM estimates
have higher deviations, but DM estimates vary around the true values. As SNR
increases, the variation in the DM estimate decreases monotonically; however, there
is a hill-climbing effect in the variation of the estimates for cov and PN. This effect
takes place around the threshold SNR (see Figure 7.4 for the mean of the estimate
corresponding to the —5° source.). This is where, due to sufficiently high SNR, the
effect of colored noise no longer is very significant, i.e., the leakage-to-noise subspace
is less important due to the larger difference between noise and signal subspace
singular values. However, SNR is still not high enough to prevent the breakdown of
the cov and PN algorithms when the noise in the experiment is bad (outcome is worse
than the ensemble average). In this case, both PN and cov break down many times,
i.e., the estimates are far away from the true value. This increases the deviation
of the estimates and results in the hill-climbing. Further SNR increase eliminates
this phenomenon and standard deviations decrease; but DM always results in less
variation for all SNR levels.

An important (and expected) observation is that the PN algorithm starts hill-
climbing before cov. The reason for this is due to the role of cumulants in harmonic-

retrieval problems [137]. For non-Gaussian noise, cumulants boost the SNR if it is
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Figure 7.4: Performance comparison for the direction-finding algorithms with 1000
snapshots: the mean of the estimates.
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Figure 7.5: Performance comparison for the direction-finding algorithms with 1000
snapshots: the standard deviation of estimate for the source from —5°.
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already above a threshold (below that threshold the opposite happens). For example,

if v(t) = PBs(t), then o2 = B?0? whereas v, = #*7,,; hence

4,8 a2 \2
Yaw (0—3) (7.21)
which implies that for two identically distributed signals the ratio of fourth-order
cumulants is the square of the ratio of variances. This is the reason why PN achieves
the top of the hill before cov: PN boosts the signal subspace singular values, so that
the variation of noise singular values can be ignored, and hence bias in the bearing
estimates approach zero sooner than for cov.

7.5.3 Coherent Sources in Non-Gaussian Noise

To compare the performance of the algorithms described in Experiment 2, for the
case of coherent sources, we increased the number of main array sensors to 8 in order
to improve resolution and enable spatial smoothing. First we investigate the case
of spatially-white non-Gaussian noise. We consider a BPSK source illuminates the
array from 5°, and due to multipath a perfectly coherent equal-power replica illumi-
nates the array from —5°. The extra sensor for the DM algorithm is located at 10
wavelengths away from the first (left) element of the linear array. The noise compo-
nents are assumed to originate from QAM communications equipment. We assume
the noise power is identical (unity) at all sensors including the satellite sensor. We
assume the signal power is equal to the noise power (0 dB). We use MUSIC algorithm
after one-level of spatial-smoothing [123] to analyze all of the methods: covariance-
based (cov), cumulant-based (PN), and our approach which uses the satellite sensor
(DM). We use 1000 snapshots to estimate the required statistics and display spatial
spectra for 50 independent realizations. From Figure 7.6 we observe that in many
realizations, cov is unable to resolve the sources in a satisfactory way. In addition,
the estimates are biased, whenever cov can resolve the sources (indicated by the
two vertical lines). In this case, both of the cumulant-based algorithms are able to
resolve the sources, and their performances are similar. We illustrate the spatial

spectrum from DM in Figure 7.7.
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Figure 7.6: Covariance-based MUSIC algorithm is unable to resolve the sources in
general. Even when resolution is possible, the estimates are biased.
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Figure 7.7: Cumulant-based algorithm which uses an extra (satellite) sensor suc-
cessfully resolves the sources and estimates the directions without bias.
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Next, we investigate the effects of colored non-Gaussian noise. To make matters
even worse, we assume the two coherent wavefronts are closer to each other: the
bearings are now {—2.5°,2.5°}. We assumed the noise covariance matrix for the
main array takes the form: R,, = a(0)a”(0) + 0.01I where a(0) is the steering
vector that corresponds to 0°, i.e., a(0) = [1,1,...,1]. Ry, represents an ambient
noise structure whose major component illuminates the array from 0° and shadows
the presence of sources. The noise power at the satellite sensor remains at unity,
and the signal power remains at 0dB. Figure 7.8 illustrates the PN algorithm in this
scenario: sources are never resolved since the processor confuses the noise as a signal
and indicates the arrival from the corresponding direction 0°. The covariance-based
approach does not do any better; hence, we do not show its spatial spectrum. On
the other hand, DM algorithm successfully resolves the two sources and suppresses
the noise. However, DM estimates are slightly biased. The reason is that the sample
size is not enough to suppress the effects of the high-power noise source from 0°,
which leaks into the spatial smoothing algorithm and pulls the estimates towards
0°. This observation is in accordance with the results of Xu and Buckley [174],
which indicate that as the correlation increases between closely separated sources,
bias plays an increasingly important role.

Finally, we illustrate the improvement provided by the SFS algorithm of Sec-
tion 7.4. We initialized the search required by SFS by the results of DM. We display
the estimates provided by DM-MUSIC and SFS algorithms from 50 trials in Fig-

ure 7.10. SFS reduces the variation and bias in the estimates significantly.

7.5.4 Virtual-ESPRIT and Non-Gaussian Noise

In this experiment, we used the 8 element array of Experiment 3 with the same noise
correlation structure and strength. Two equal power, independent signals illuminate
the array from £2.5°. Non-Gaussian noise suppression can be achieved in VESPA
in two ways: (1) Use one new sensor that is a copy of an existing sensor, but whose
additive noise is independent of noises in the other sensors; or (2) Use a doublet
located sufficiently far away from the original array so that the noise contribution of
the doublet measurements are independent of the noises in the original array. The

first method applies only when one of the responses of the main array elements is
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Figure 7.8: Cumulant-based MUSIC algorithm (PN) is unable to resolve the sources
when the non-Gaussian noise is colored.
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Figure 7.9: Cumulant-based algorithm which uses an extra (satellite) sensor suc-
cessfully resolves the sources in colored non-Gaussian noise. The estimates can be
fine-tuned by the SFS algorithm which uses DM estimates for initialization.
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DM and SFS estimates for coherent sources in colored non-Gaussian noise
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Figure 7.10: SFS and DM-MUSIC performance comparison: SFS decreases the vari-
ation and the bias (due to finite number of samples) of DM-MUSIC estimates, since
it uses second-order statistics for estimation and fourth-order statistics for initial-
ization.

known. This is the major reason for using the second approach. In addition, the
second method is insensitive to noise correlation structure between the two guiding
sensors if we only create a copy of the original array; i.e., an 8x8 cross-correlation
matrix between the original array and its virtual copy rather than a 9x9 matrix.
Specifically, we used two guiding sensors separated by A/2. The guiding sensors
are located on the axis of the main array, and the first one of which is 10X left
of the leftmost element of the main array. The noise power at the guiding sensors
is identical to the noise level at the satellite sensor of the third experiment (unity
power). The signals are at 0db with respect to noise at the guiding sensor.

We performed 1000 independent experiments to estimate source directions using
virtual-ESPRIT. The distribution of estimates are given in Figure 7.11. VESPA
resolves the sources as well as the DM-MUSIC algorithm described in Experiment
3. The biases in the estimates are less than that of the DM algorithm, since sources
are independent for this experiment. In the next chapter we propose a combined

beamforming and calibration method to improve the results from VESPA.
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Figure 7.11: Virtual-ESPRIT algorithm can estimate the source bearings in the
presence of non-Gaussian noise. The graph indicates that the sources are resolved
successfully.

7.6 Conclusions

We have developed algorithms which are capable of suppressing the effects of non-
Gaussian noise in array processing problems. We also compared the performance of
existing cumulant-based work for suppressing non-Gaussian noise and explored the
effects of SNR. We found out that cumulant-based algorithms tend to remove the
effects of noise color above a threshold SNR by boosting the singular values of the
signal subspace.

We also showed that it is possible to improve cumulant-based results by using
second-order statistics. The vector d 2 E{x(t)g*(t)} is noise-free, and a least-
squares optimization that uses d is proposed for DOA estimation. This algorithm can
be initialized by the results of subspace algorithms. Our simulations indicated that
this combined method significantly improves the bias and deviation in the estimates
provided by cumulant-based algorithms. For even better asymptotic performance

the covariance matrix of the cross-correlation vector d can be computed from data,
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as suggested in [99], and a weighted least-squares procedure can be adopted at the
expense of computational complexity.

Some remaining research issues related to non-Gaussian noise suppression are
listed below:
¢ Use the interpretation for third-order cumulants for non-Gaussian noise suppres-
sion purposes. Next chapter addresses noise suppression in addition to array cali-
bration and aperture extension using third-order statistics.
¢ Spatially-filtering main array measurements in a way to enhance the signal com-
ponent from a location sector, and using this enhanced signal as the satellite sensor
measurement, g(t), to decrease the effects of non-Gaussian noise in direction-finding
algorithms. For example, if the noise contribution can be decreased to -20 dB with
respect to signal power (8 = 1/10 in (7.21)) by spatial filtering of array measure-
ments, then the contribution of noise in the cumulant matrix in the way it is con-
structed for the DM algorithm will have noise contribution scaled by 1/100. Slightly
biased bearing estimates can be obtained from the DM algorithm. The results can

be improved by processing the cumulant vector c, defined as
() £ cum(g*(2), 9(), g°(), zx(t)) 1 Sk < M (7.22)

in which the g(t) corresponds to spatially filtered array measurements. The noise
contribution in ¢ will be scaled by 1/1000 (due to the properties of cumulants the
noise contribution to the cumulant vector ¢ will be scaled by 8%). The fourth-order
statistics vector c can then be processed by the alternating projection algorithm [180]
to obtain better (relatively unbiased) results.
¢ Combine spatial filtering with direction-finding problem, and perform beamspace
processing without decreasing the number of sensors by noting the fact that cumu-
lants have an array of lags which can substitute for the reduction of the aperture in
regular beamspace processing.

Finally, we note that third-order cumulants can be used for non-Gaussian noise
suppression. We also indicate the noise suppression capability of virtual-ESPRIT
based on third-order cumulants.
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Consider the scenario in Section 7.2, in which an array of arbitrary sensors
{z1(t), za(t),...,2a(t)} is illuminated by linearly correlated non-Gaussian sources,

and there exists a satellite sensor measurement g(t), i.e,

x(t) = A Qu(t) +ny(t) (7.23)
8(t)
and
o(t) = g7Qu(t) +ny() (7.24)
hT

Due to the superposition property of cumulants, consider a single source, with third-
order cumulant v3,. Then, we have the following result for non-Gaussian noise
suppression:

cum(x}(t),xk(t), 9(%)) lwith non-Gaussian noise = 73:: - E{z;(t)zk(t)} Ino noise
’ (7.25)
where h, is the response of the satellite sensor to the wavefront. Equation (7.25)
can be derived as in the fourth-order cumulant case which was presented in Chap-
ter 7. The cumulant matrix C, computed by replacing the required correlations by

cumulants, takes the form:
c=A(QI'Q")a¥ (7.26)

where T' is defined as the diagonal matrix whose kth diagonal entry is F3khi, and
¥sk is the third-order cumulant of uk(t). This third-order cumulant matrix C (as
its fourth-order cumulant counterpart in (7.12)) satisfies all the requirements for
subspace algorithms like MUSIC and ESPRIT for direction-finding, even in the
presence of correlated sources, correlated non-Gaussian noise, and arbitrary array
characteristics.

The virtual-ESPRIT algorithm based on third-order cumulants was described in
Chapter 5. If the noise components of both of the guiding sensors are independent
of the rest of the array, then these sensors can be thought of as two satellite sensors,
indicating that the covariance matrices computed by using cumulants as in (5.10) and

(5.13) are not affected by additive non-Gaussian noise. We note that the fourth-order
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cumulants only require one of the guiding sensor noise components to be independent
of the rest of the array.

The extra-argument offered by the fourth-order cumulant provides an advantage
when the measurements of the satellite sensor are contaminated by non-Gaussian
noise which is weak, but is correlated by the noise in the main array. To see this
more clearly, if the response of the satellite sensor to the signal is unity, and to noise
is § < 1, then the fourth-order cumulant of non-Gaussian noise will be scaled by
|B|? whereas the third-order cumulant will be scaled by only 3; hence, fourth-order
cumulants can offer less biased results. Similar arguments were made in Chapter 7
where we compared the bias of second-and fourth-order statistics due to colored
non-Gaussian noise by introducing the hill-climbing concept. On the other hand, if
the source signals of interest are not symmetric, then third-order cumulants offers
insensitivity to a broader class of disturbances since they suppress undesired signals

with symmetric probability density functions.
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Chapter 8

Single Sensor Detection and Classification

In many problems in signal processing, observations can be modeled as a superpo-
sition of an unknown number of signals corrupted by additive noise. An important
issue is to detect the number of sources that emit the waveforms and classify them
using a priori information about their statistical characteristics.

Existing approaches to the multiple source detection problem employ multichan-
nel data and utilize information-theoretic criteria for model selection, as introduced
by Akaike (AIC) or by Schwartz and Rissanen (MDL) [162, and the references
therein]. The number of signals is determined as the value for which one of these
criteria is optimized. If, however, multichannel data is not available (e.g., when
observations are limited to data from a single sensor), these approaches are not
applicable. This is the problem we address in this chapter.

It is shown that by using multiple frequency lags of the trispectrum of single
sensor measurements, it is possible to form a trispectral matrix C that possesses the
same structure as the array covariance matrix of narrowband multisensor measure-
ments. Consequently, techniques that are applicable to narrowband array processing
can be adapted for the analysis of single sensor data: rank of C reveals the number of
sources, and a multiple signal characterization (MUSIC)-like method can be used for
source classification using a directory of candidate source spectra. Simulations are
included to illustrate the proposed methods. We conclude the chapter with several

extensions of the proposed method.
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8.1 Problem Formulation

In this chapter, we address the problem of detecting the number of sources®hat
emit non-Gaussian signals, where we have access to only the superposition of the
waveforms, and this observation may be further corrupted by additive Gaussian

noise of unknown covariance. Mathematically, we have the measurements

P
z(t) = Y zi(t) + n(t) (8.1)
k=1

where n(t) represents the Gaussian noise with spectrum S,(w) and {zx(t)}{-, are

the waveforms from sources, which in turn can be modeled as
zi(t) = he(t) xu(t) k=1,2,...,P (8.2)

where {ux(t)}f-, are real, stationary, white, non-Gaussian excitation sequences
which are statistically independent among themselves, with variance o and fourth-
order cumulant 44 &, and, the filter hx(t) models the waveform generation process of
the kth source, with a frequency response Hi(w). The signal model is illustrated
in Figure 8.1. The linear process model is used extensively in the cumulant-based
time-delay estimation problem [152, and the references therein], which has significant
underwater military applications. The algorithms to be proposed in this chapter for
source detection and classification will assume the linear model.

The detection problem is to determine the number of sources, P, whereas, the
classification problem is to sort the signals into specific categories based on some
characteristics of the emitted waveforms. In an underwater military application,
the detection problem can be to determine the number of submarines in a specific
zone with only a single sensor. In this scenario, the classification problem will
be to identify the submarines as friendly/hostile, or as conventional/nuclear. In
the speaker verification problem of speech processing, it is desirable to identify the
presence of the true speaker in the presence of noise, interference, or an imitating
speaker.
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Figure 8.1: (a) Signal generation process, (b) Proposed system.

For purposes of classification, there exist a need for templates. In this chapter,
we consider the availability of spectrum shape information of sources, i.e., we have
in our directory

Si(w) = Hi(w) Hy (w) (8.3)

for all sources that we want to classify. If z(¢) contains signals from sources with
spectral shape that do not exist in our directory, the corresponding sources will be
classified as “unknown”.

Neither the detection nor the estimation problem can be solved by second-order
statistics of the observations alone. To demonstrate this fact more clearly, we con-
sider the vector formulation of the problem. We first define source spectrum vector

for each source as

st 2 [Sk(@r), Se@a)y -+, Se(wm)]T 1<k<P (8.4)
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in which! w; = 2w(k—1)/M. Due to independence of the non-Gaussian sources and
noise, the received signal spectrum (Sz(w)) is the superposition of the spectra of non-
Gaussian sources and measurement noise. Therefore, the received signal spectrum
vector (an M-vector) can be expressed as

8; = f: oisy +ols, (8.5)
k=1

If all contributing sources (including noise) have their spectrum vectors in our
directory, (i.e., full knowledge of spectral shape of all possible sources) and the spec-
trum vectors are linearly independent, then it is possible to identify the sources,
since (8.5) can be uniquely expressed as a linear combination of spectrum vectors.
However, with unknown contributions (such as colored noise or a source with un-
registered spectrum), which may also have linearly independent spectrum vectors, it
is not possible to express (8.5) as a linear combination of known spectrum vectors.
This implies that second-order statistics of the measurements is not sufficient to
detect and classify the sources. Even when all the observed sources are registered
in our directory and the noise spectrum is of known shape (e.g., white), then the
detection and classification task will require an exhaustive search procedure over our

directory of spectral information, which will stop only after

> ( ’ ) 85)
=1 \ !

iterations where d denotes the total number of sources registered in the directory.
The exhaustive search procedure stops when there is no improvement in approxi-
mating 8, with the spectra of P + 1 sources. As a numerical example, in order to
detect and classify 5 sources which contribute to the received data, and which are

registered in a 10 source directory, we need 847 iterations. Each iteration requires

the construction of a projection matrix that spans the columns of selected source

1For real signals, the Fourier transform has the symmetry property, H(—w) = H*(w), and the
source spectrum vectors have a redundant part: for even M, the first L (L = M/2 + 1) samples
of a spectrum vector are sufficient to completely characterize it. However, we shall continue to use
M for possible extensions to complex signals.
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spectrum vectors; therefore, even in this simplified case of known noise spectrum
and all registered sources, computations become very excessive.

Next, we consider the trispectrum of the single sensor data T,(w;,ws,ws), which
can be expressed in terms of the trispectra of individual source trispectra Ti(wy, w2, ws3)
(1<k<LP)as

Tz(wl,wz,ws) = Ef:l ’74.ka(0-‘1,¢02,“3)

= YO, YaxHi(wi) He(we) Hx(ws) He(— (w1 + w2 + ws)) (87)

which can be proved by using the properties of cumulants and polyspectra [78].
The trispectrum of the additive measurement noise n(t) is identically zero by the
Gaussianity assumption.

In Chapter 4, we showed how cumulants can be used to increase the effective
dimensionality of an antenna array; however, the single sensor problem has received
very little attention except for [113], which is an excellent paper in which the prob-
lem of separating the spectrum for the sum of two time-series is treated. That
paper utilizes a particular submanifold of the trispectrum of the observed signal,
T (wi, wk, w;), for which wx = —w;. For the multiple sources case, using (8.7), it is

possible to obtain

P
T (wiy —wiyw;) = kz Yo+ Se(wi) Se(w;) 1 <4,5 <M, w;=2r(i —1)/M. (8.8)
=1
Unfortunately, the approach in [113] does not handle measurement noise (since it
also employs the spectrum of received data) and is limited by the assumption that
it requires one of the sources to have a null in its spectrum where the other source
must have a finite value in its spectrum. The authors claim that their method can
be extended to the case where there are more than two time-series, but this makes
the assumption about the spectra of the sources even less reasonable.

There are two major approaches to estimate the trispectrum: (1) Direct Method,
which utilizes the Fourier Transform samples of the received signal z(¢) (this ap-
proach is reported in [13] and further analyzed in [113] for the specific slice (sub-
manifold) of (8.8)); (2) Indirect Method, which first computes the cumulants of the
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received signal and then computes the Fourier Transform (this approach is recom-
mended in [13] for the computation of polyspectra on submanifolds as in (8.8), and
is further analyzed in [67]). We shall use the latter method in the simulations.

In this chapter, we assume the presence of an unknown number of sources. The
detection algorithm to be presented in Section 8.3 estimates the number of sources.
For the classification problem, the information about the shape of the source spectra
plays the role of a steering vector in an array processing scenario; this duality will

be utilized to construct a subspace-based approach for the classification problem.

8.2 Analogy with Array Processing

In this section, we construct an analogy between our problem stated in the previous
section and a narrowband array processing problem, in which the goal is to detect
the number of far-field sources and estimate their directions-of-arrival (DOA).

Let us consider a narrowband array processing scenario, where there are M
sensors and P far-field sources (P < M) with steering vectors a;. The measured

signal M-vector y(t) can be expressed as

P
y(t) = lgl a,y(t) +n(t) (8.9)

where n(t) represents the effects of spatially white measurement noise with power o?,

and the source waveforms, yi(t), are assumed to be not fully correlated (coherent)
among themselves [118]. Then the covariance matrix of measurements takes the
form

R=AR,AY + o1 (8.10)

in which MxP matrix A is the steering matrix and R, is the positive-definite co-
variance matrix of sources.

Now, let us return to our single channel problem. We can form an MxM trispec-
trum matrix C (P < M) that contains samples of the trispectrum of the received

signal z(t), as

cij = T(wi, —wi,w;) 1<4,7< M, wi=2n(i-1)/M. (8.11)
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Table 8.1: Analogy between two problems.

Array Problem Single Sensor Problem ||
Steering Vector: a; Spectrum Vector: s ||
Steering Matrix: A Spectrum Matrix: S

Source Covariance Matrix: R, | Source Cumulant Matrix: T

Noise Covariance Matrix: oI | Noise Cumulant Matrix: 0

Array Covariance Matrix: R Trispectrum Matrix: C

Then using (8.8) and the definition of source spectrum vectors, we obtain

P
C=) vxses; = STST (8.12)

k=1
where S, which we refer to as a source spectrum matriz, has columns which are
the source spectrum vectors (hence, ST = S$¥), and the PxP diagonal matrix I’
consists of the fourth-order cumulants 44 of the sources (hence, 44« are real). The

trispectrum matrix C has the following properties:
e It is real, since all of its terms are the product of real factors (8.8).
e It is symmetric, i.e., C = CT = CH. This follows from (8.12).

o Therefore, C can be viewed as a pseudo-covariance matrix; but, it is indefinite,

since fourth-order cumulants of driving sources are not necessarily positive.

The analogy between the array problem and the single sensor problem is summarized
in Table 1. Based on this analogy, we can utilize the detection and direction-finding
algorithms already formulated for array processing for the single sensor detection
and classification problem. Although the observation dimensionality provided by
second-order statistics is inadequate to solve the problem in a realistic way, multiple
lags of the trispectrum enable us to cast the single sensor problem as an array
processing problem.
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8.3 Detection and Classification of Sources

In this section, we propose methods for detection and classification of multiple
sources from single sensor data. The proposed methods are based on the anal-
ogy developed in the previous section which enable us to adapt standard methods

of array processing to single sensor data analysis.

8.3.1 Detection of the Number of Sources

It is a common assumption in array processing to have the steering vectors (M-
vectors) corresponding to the sources illuminating the array be linearly independent.
The equivalent assumption for the single sensor trispectral detection problem is that
all the source spectrum vectors corresponding to the sources in the field must be lin-
early independent. For the classification problem, a stronger condition is necessary:
in addition to the linear independence of the source spectrum vectors that belong
to the contributing sources, no linear combination of the source spectrum vectors
of sources present in the field is equal to a spectrum vector in the directory which
belongs to a source that is not in the field. Clearly, when this assumption is violated,
solution becomes impossible even with the exhaustive search scheme (that requires
full information about the source and noise spectra) described in Section 8.1; hence,
in this chapter we assume that this is a valid assumption. Note that this is a very
mild assumption, and is less restrictive than the one used in [113].

If the source spectrum vectors are linearly independent (there are P of them),
then the rank of the matrix C must be P (since P < M). This follows from the
above assumption and (8.12), and is motivated by the similar use of covariance
matrix R in array processing [118]; hence, the number of sources can be detected by
computing the rank of C. In practice, C is always full-rank because of estimation
errors due to finite-length data. A test is required to compute the effective rank of
C. In this chapter, we accomplish this heuristically; we sort the eigenvalues of C
in a descending order ({\:}},) and determine P as the number such that the ratio
(ZF_, M)/ (M, )A,) first exceeds a threshold less than unity (we use 0.9).

In the proposed detection method, the sources show their effect on the trispectral

matrix through their spectrum vectors. The components of the spectrum vectors
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are real and positive. Due to this constraint, spectrum vectors must lie in the subset
(not subspace) of the M dimensional complex space where each component is real
and positive; hence, the angle between any two such vectors is upper bounded when
compared to the general unrestricted case. The angle between steering vectors plays
an important role in the direction-finding problem; if the angle between steering
vectors is small (i.e., sources are very close to each other), the sources may not be
resolvable, and their number may be underestimated due to the values of the signal
subspace eigenvalues approaching the noise subspace eigenvalues. Similarly, a small
angle between spectrum vectors causes underestimation of the number of sources in
single channel data; however, there is a way to circumvent this effect by changing
(8.11) to

&ij(p) = To(wi, —wi + 2n(p — 1)/M,w;) 1<4,5,p<M (8.13)

Then, instead of (8.12), we have:

P
Clp) = ,§ 144be(p)ff (p) = B(p) T F7(p) (8.14)

where (bi(p))i = Hi(27(: — 1)/M)H;(27(: — 1 — p)/M) and (fi(p)); = He(27 (5 —
1)/M)H;(2x(j + p)/M). Now, C(p) is not a pseudo-covariance matrix (it is not
Hermitian) unless p = 1, and an SVD is required instead of an eigendecomposition.
Note that the vectors in B(p) can be complex and they are not constrained to liein a
subset of M dimensional complex space, so that the angles between the vectors can
be larger. Here we only use p = 1 (C=C(1)) to reduce computation, since (p = 1)

slice is necessary for classification from spectral information.

8.3.2 Classification of Sources

Using the MUSIC algorithm, the DOA’s of sources in array processing are deter-
mined by a search procedure [118]. A vector from the array manifold is selected and
its distance from the so-called noise subspace is computed. If the vector is in the
signal subspace then this implies that we have an arrival from a source with this
particular steering vector.

The MUSIC algorithm can be used to classify the sources in the single sensor

problem as follows:
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(1) Compute the rank of C to reveal the number of sources P. This is the detection
algorithm.

(2) Form the Mx(M — P) matrix E, containing the eigenvectors of C, associated

with its noise-subspace eigenvalues, as its columns.

(3) Pick a source spectrum vector 8 € {s;}J-; from our directory that contains
spectral shape information about the kth source, and compute

sfsk

f(k) = m for k = 1,2,. .. ,d. (815)

The numerator is included to provide normalization. After f(:) is computed
for all the sources in the directory, an optional normalization can be done to

force this function to have a maximum of unity.

(4) The higher the value of f(k), the higher the possibility of existence of the kth

source in the field.

(5) If only K sources (K < P) from our directory are classified to be in the field,

then there must be (P — K)) sources of unknown spectra.

8.4 Simulations

We tested our method with a directory of size eight. The available spectral informa-
tion about eight sources is illustrated in Figure 8.2. The last source of the directory
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