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Abstract

Advances of computing systems and communication networks have made it pos-
sible to integrate the distributed information from a wide range of data fields.
Integrated information processing systems process various data suchs as the im-
age, voice, and text in order to suppoft multi-media applications. High perfor-
mance computation of data processing algorithms in real-time applications is in-
dispensable for achieving these systems. The artificial neural network approach is
one very promising method to enhance computational capabilities with rapid pro-
gresses of VLSI technologies. In order to take advantage of the fully massive paral-
lelism of neural network computing, computations should be efficiently realized in
hardware-software codesign with a neurocomputer or neuroprocessors. The analog
neural computing approach with the assistance of digital control signals provides
efficient implementations of high-performance artificial neural network processors
with optimization on the operation speed, silicon area, and power consumption.
Based upon this design methodology, key building blocks such as synapse cells and
neuron cells are designed. With an industrial-level submicron VLSI technology,
a fully-connected general-purpose neural chip can perform more than 30 giga-
connections-per-second (GCPS). A neuroprocessor for self-organization mapping
has been fabricated and evaluated, which is aimed for pattern recognition, data
compression, and other signal processing applications. The high-precision winner-

take-all circuit, which is a key element of the competitive learning, is designed with

xvi



performance-improving techniques such as cascading, distributed biasing, and dy-

namic current steering. An application-specific neuroprocessor chip has also been

developed for the receiver in wireless communication. It js based on a four-layered

neural network. System-level analysis and evaluation have been conducted. The

accomplished research has paved an important foundation toward the construc-

tion of full-scale engineering neural systems in compact electronic hardware for

scientific and biomedical applications.



Preface

The organization of this dissertation consists of the following chapters.

Chapter I describes implementation of the integrated information processing
system which requires a significant amount of computational capabilities. Devel-
opment of VLSI technologies and artificial neural network approaches have helped
to process computationally-extensive algorithms. Hardware implementation of ar-
tificial neural network models, neuroprocessors, can be achieved based on careful
consideration of various design issues.

In Chapter 2, various hardware implementations of artificial neural networks
are reviewed. The analog signal approach is compared with the simple conven-
tional digital computing system. Several techniques to implement analog neural
networks are presented in terms of storing reliable synapse weight values. Advan-
tages and drawbacks of each method are summarized. Special design techniques
and applications for analog neural networks are intrdduced.

The detailed design of the proposed neural network is presented in Chapter 3.
Input/output neurons and synapse cells are basic building blocks of the analog
neuroprocessors. Design and operations of each building block are described and
some methods are provided to overcome the problems occurred in practical situ-

ations. The general-purpose neural network which can support programmability
and reconfigurability are described.

xviii



In Chapter 4, the self-organizing neural network is presented for pattern recog-
nition and data compression. Implementation of the competitive learning algo-
rithm must heavily depend on winner-take-all (WTA) operation. Design of the
WTA circuit, which determines the performance of the network, is described in
detail with several performance improvement schemes. Experimental results show
high-accuracy operations with a fast response time and feasibility to extend the
number of competing cells over than 1000.

Chapter 5 presents one example of system implementation of neural network
hardware. The receiver for digital communication is designed to handle the inter-
symbol interference (ISI) and white Gaussing noise. The structure of such a
neuroprocessor is optimized to a four-layered network with the switched-capacitor
analog delay line.

Finally, the summary of the foregoing research is concluded in Chapter 6. Full
system-level evaluation and suggestions for the future work are included.

In Appendiz A, the synapse cell performing the Gaussian function between
the input and synapse weight values are described. Gaussian synapse cells are
used to build the radial-basis function (RBF) neural networks in order to reduce
the convergence time compared with the conventional back-propagation neural
network.

Appendiz B presents the nonideal effects which degrade the performance of
the proposed WTA circuit - device mismatches of input transistors and parasitic

resistance on the common signal line. Methods to overcome the problems are also

suggested.

Xix



Chapter 1

Introduction

1.1 Integrated Information Processing System

Advances of computer systems and interconnection networks make it possible
to process or manipulate information from widely distributed sources in a wide
range of data fields. Different kinds of media such as the image, voice, and text
are integrated among the information Processing systems supporting the multi-
media capability [1]. Such a powerful multi-media machine can be used in many
places and will help people in their business, education, and personal lives [2].
The real-world signals are interfaced with such a system through the video and
audio channels as shown in Fig. 1.1. Various sensors receive the information as the
inputs. The pictorial data are acquired thfough the camera, image sensor, motion
detector, and so on. The acoustic data are obtained by the microphone, the sound
locator, and so on. These incoming data are processed in the main information
processing systems. The pictorial data are processed by various computations
such as image processing algorithms, pattern recognitions, or motion detection.
The acoustic data are processed through speech recognition, speech synthesis, or

sound recognition. The processed information appears as the system output in the
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Figure 1.1: Configuration of the integrated information processing system.



forms of displayed images, sound and/or speech signals, and the physical control

of movable parts.

High-speed execution of the data processing algorithms are indispensable for
achieving the above-mentioned information processing system in real-time appli-
cation. In the case of a high definition television (HDTV) (3], more than one
billion operations per second is needed for the vast amount of video data. The
recent U.S. government report in 1992 showed that the intensive computational
power is strongly required for future information Processing applications. A high-
performance system is anticipated to be able to support tera operations-per-second
in 1996 [4]. Such a high computational speed is only is possible through further
advances of the very large scale integration (VLSI) technologies. Some algorithm-
specific multiprocessor chips can be developed to fully exploit the inherent com-

putational powers of various information processing architectures.

1.2 Development of VLSI Technology

Rapid advances of VLSI technologies have made it possible to integrate several
million transistors on a single chip. The state-of-the art device feature size for
- the memory chip in the year of 1993 is around 0.25 pgm, and that for the mi-
croprocessor chip is around 0.45 um. The expected feature size for the future
VLSI technology will be 0.1 gm - 0.15 gm in the year of 2000 [5). The extensive
use of VLSI circuits can greatly reduce the size of electronic systems because the
time-consuming algorithms can be efficiently executed in hardware to enhance the
data throughput. In addition, the performance and reliability of microelectronic
systems can be improved. Future development of VLSI hardware will be inspired

by many innovative research results in data processing architectures.



Performance of microprocessors has been continuously increased for the pase
decade. Results from industrial development in microprocessors are summarized
in Table 1.1. Sub-micron CMOS or BiCMOS technologies enable the fabrication
of IC chips with die size being larger than 1 cm?, and running at the speed of
several hundred mega-floating-operations-per-second (MFLOPS) in 64-bit data
representation. The increased number of transistors in the monolithically inte-
grated signal-processing chips is shown in Fig. 1.2 [5]. A highly-integrated chip
will be expected to incorporate as many as 50 million transistors in the year of
2000. The density for dynamic random access memories (DRAM’s) has quadru-
pled every three years since their advent about 20 years ago [6]. Trend for the
DRAM development is shown in Fig. 1.3. In 1993, a 256-Mb DRAM from a
0.25-pm CMOS technology can run at the access time of 30 nsec.

1.3 Artificial Neural Network Approach

The artificial neural network is one of many approaches to enhance the compu-
tational capabilities in high-speed information processing. Hardware accelerators
such as the SAIC Sigma-1 [7] and the HNC ANZA [8] have enabled the simulations
to be carried out over 20 times faster than the regular engineering workstations.
Unlike the conventional approaches to increase the computational power of
a single processor, the artificial neural network uses a large collection of simple
processing elements which are highly interconnected as shown in Fig. 1.4.
Inspired by the physiology of the human brain and the study of the brains
of living animals, these simple processing elements can perform mathematical

algorithms to carry out the information processing through their responses to
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Figure 1.4: Several configurations of the artificial neural network consisting of
the neurons and the interconnections. (a) Single-layered network. (b) Recurrent
network. (c) Multi-layered network. (d) Multi-layered network with feedback.



stimuli. Artificial neural networks have demonstrated the ability to provide supe-
rior, powerful solutions to problems that have challenged conventional computing

approaches for the past many years.

There are several situations where neural networks are advantageous [9):

® Only a few decisions are required from a massive amount of data to be

processed.
¢ Nonlinear mapping must be automatically acquired.

¢ A nearly optimal solution to a combinatorial optimization problem is re-

quired very quickly.

Based upon these advantages, the artificial neural networks are suitable for the

following applications:

e Classification: an input pattern is applied to the network, and the repre-

sentative class appears as the output.

¢ Pattern Matching: an input pattern is passed to the network, and the

network produces the corresponding output pattern.

o Pattern Completion: after the incomplete input pattern is applied, the
network produces the output pattern that includes the missing portions of
- the input pattern.

¢ Noise Removal: the network receives a noise-corrupted input data and

produces the clearer version of the output with removal of the noise.

¢ Optimization: an input pattern representing the initial values for a spe-
cific optimization problems is presented to the network, and the network

produces a set of variables that represents a solution to the problem.



¢ Control: an input pattern represents the current state of a controller and
the desired response for the controller, the proper sequence of commands is

obtained as the network output which will produces the desired response.

According to the network topology and the types of the learning and retrieving
processes, many different classes of artificial neural networks exist [10, 11, 121 as
shown in Fig. 1.5. Some of the key network is summarized in Table 1.2. The
artificial neural network is used in various scientific and engineering applications
such as the machine vision, speech and pattern recognition, robotics, control,

telecommunication, financial analysis, and expert systems.

1.4 Hardware Implementations

To implement a high-speed artificial neural network system, it is essential to de-
velop the neurocomputing processors. It is specially optimized for the artificial

neural algorithms. Such systems employ parallel processing architecture in order

to increase the throughput.

Some challenging design factors for implementing the neural system are [13]:

e to work for one or several neural algorithms;

® to contain the maximum number of neurons, which can be monolithically

integrated;
¢ to store programmable weights reliably;
e to support the learning schemes;

® to occupy small-area neurons and synapses;

10
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Table 1.2: Major artificial neural network models and their properties.

neural models strengths limitations primary applications
perceptron simple structure cannot recognize typed-character
complex patterns recognition
Hopfield simple structure weights must be pre- | retrieval of data/
set images from fragmants
multi-layer percetron | more genral than the cannot recognize pattern recognition
with delta rule perceptron complex patterns
most popular, work required for large vol- | wide range: speech
back-propagation wall, and is simple to ume of examples in | synthesis to loan appli-
be learned advance cation scoring
simple network using long training time pattern recognition for
Boltzmann machine | noise function to reach radar/sonar
global minimum
batter performance extensive learning mapping one geometri-
self-organizing map | than many algorithmic cal region onto another
techniques
cellular neural scalability to large no formal known 2-dimensional pattem
network network size method to adapt processing
weights

12




® to consume a low power;

e to be stable, reproducible, and extendible so that larger systems can be built

by direct interconnecting neural network building blocks;

¢ to be affordable in manufacturing cost.

1.4.1 Analog (or Mixed), Digital, and Pulse Signals

According to the types of signals to be processed in neurocomputing, neural net-
work processors are classified as using the analog (or mixed-signal) data repre-
sentation, digital representation, and pulse-modulated data representation.

The analog or mixed-signal neural network processors have been widely envi-
sioned and preferred for the nature of analog signals in efficiently processing the
neurocomputing functions. Various circuit techniques are used for analog multi-
pliers as synapse cells and the summation is normally done in the current signal
format by the Kirchoff’s current law. Since the power dissipation and the silicon
area of the constituting elements is small, a large number of such components can
be easily integrated. The accuracy of synapse weights, however, is limited to a
moderate value due to the imperfect analog devices.

Digital neurocomputers (14, 15, 16, 17,18, 19, 20, 21] are based upon the mul-
tiprocessor configuration. Each processing element consists of a digital multiplier,
digital adder, and the digital memory. Many processing elements are connected
through the multiple bus and the data transfer among them is efficiently con-
trolled. The network is fully programmable and reconfigurable and it supports

the on-line learning algorithms. The operational accuracy is proportional to the

usage of the hardware resource.
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The last signal representation in the neural network processors is the pulse
trains in the pulse-modulated neural networks (22, 23, 24, 25, 26, 27, 28). The
operation is based upon the probabilistic properties and the number of the pulses
to be fired is the key information to be processed. While the input and output sig-
nals are pulse signals, the intermediate operations can be in analog representation

in the forms of electrical charges and the capacitor.

1.4.2 General-Purpose or Application-Specific

Designs of neural processor chips are directed into two approaches for general-
purpose and the application-specific neural network applications. The general-
purpose neuroprocessor chips are created for various applications. The design
process basically follows the conventional standard-cell approach. Each building
block is well characterized and made in high-precision which can be fit into the
various applications. A maximum number of the building components is put
together as long as the hardware resource allows. The constructed system must
be controlled for reconfigurability of the network topology and programmability
of the network operation.

In the application-specific neural networks, the configuration of the network
is optimally customized by the designated purpose. The network topology is
determined before the design and the synapse values are fixed in usual. Trade-off
factors among the accuracy, the speed, the power dissipation, and the resource
amount should be considered for optimal design. Some special circuitry can be

included before the input layer and/or after the final output layer of the neural

network.
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1.4.3 Supervised or Unsupervised Learning

The strongest advantage of the neural network is its ability of learning according to
the response to the applied stimuli and the changing environments. Thus, learning
makes the neural system be powerful in the adaptive signal processing applica-
tions and be robust with respect to the undesired faults. Both the supervised
learning and the unsupervised learning are supported by implementation of
VLSI neural network processors.

In the supervised learning [29), a pair of the input and the desired response of
the network is appled at each time when the learning algorithm is processed. The
difference between the desired response and the actual output is used as the error
signal for the learning algorithm. Back-propagation learning is popularly used
in the various scientific and engineering applications due to its well-established
characteristics. The neural network hardware implemented for the general purpose
can usually support this supervised learning.

In the unsupervised learning [12], the desired responses of the neural network
are unknown in advance. The synapse updating process evolves itself sponta-
neously according to the computed strengths between the neuron nodes. Several

self-organizing neural networks have been implemented which support the cor-

petitive learning,

1.4.4 On-Chip Learning

When the learning algorithms are implemented with the companion DSP board
or the dedicated DSP processor chip, the genuine operations of the weighted-

summation and nonlinear transformation are used in the neural network processor.
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The processor performs only retrieving or recall process. Since the implementa-
tions of the learning rules are fully programmable, various learnings can be used
in this approach. In addition, the required operational accuracy is not restricted
due to the limited hardware resource.

On the other hand, the circuitry for learning can also be implemented on the
same chip for the on-chip learning. Both feedforward operations and feedback
operations are included. Most digital neurocomputing processor supports the on-
chip learning [30]. A lot of researches have also been done in the analog signal
representation for their simplicity of implementations. In the case of the analog
neural network implementation, due to the lack of data transfers between the chip
and the off-chip supporting devices, the complicated interface such as the analog-
to-digital conversion and the digital-to-analog conversion is not needed. Since
the accuracy, however, is limited by the non-ideal effects of the chip due to the

fabrication, some learning algorithms which require very high resolution cannot

be realized.
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Chapter 2

Design of Analog Neural Network Processors

2.1 Analog Neural Computing

In order to exploit all of the speed and fault-tolerance advantages inherent in
the full-parallelism of neural networks, we need to implement them on a fully
parallel architecture. Like any other processing system, a neural network consists
of basic building elements for the computation and communication. Except
inr the pulse-stream signal representation approach, the data having the multi-
level values are processed in the analog domain or in the digital domain. The
choice between analog and digital processing of these individual elements can be
made independently for the different subsystems, with the purpose of optimization
in terms of silicon area, speed, accuracy, and power consumption for the whole

network.

The basic neural computation consists of multiplications between the input
signals and the synapse weights and summations of these products. The oper-
ational behaviors of this computation are discussed with respect to the analog

neural networks and digital arithmetic units. Several design issues such as the .
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computational time and accuracy as well as the consumed silicon resource are
considered.

Figure 2.1(a) and (b) show the typical weighted summations performed in
the digital arithmetic unit and the analog neural network, respectively. In the
analog signal scheme, a large number of the multipliers are distributed forming
the matrix of the synapse cells. Each synapse cell stores the weight value and
multiplies this value with the applied input producing the output current. For
each neuron, a simple current-summing node is used for the summation according
to the Ki;'chhoﬁ" ’s current law.

In a typical digital processor, the processing element (PE) consists of a par-
allel multiplier, an adder used as the accumulator, and the digital memory. The
multiplier fetches the operands from the input data buffer for the input signals
and from the memory for the synapse weighted values. In each operation cycle,
one multiplier and one accumulator are used to produce the weighted summation.
Extensively iterative uses of these devices are needed in order to process the large
amount of data for neural computations because a limited number of processing
elements can be integrated in a signle chip.

For comparisons on both approaches, a single layer is considered which consists
of an array of M input neurons, an array of N output neurons, and a matrix of

M-by-N fully connected synapses. The following definitions are used,

® Nm,: the number of the available analog multipliers per system (chip or

board);

® Nmp: the number of the available digital multipliers per system (chip or
board);

18
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Figure 2.1: Block diagram of the processors for neural computation. (a) Digital
arithmetic unit. (b) Analog neural computing processor.
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+

® Nay: the number of the available analog adders per system (chip or board);
¢ Nap: the number of the available digital adders per system (chip or board);
o Tm,: the operational time of the available analog multiplier;

e T'mp: the operational time of the available digital multiplier;

o Ta,: the operational time of the available analog adder;

. Tap: the operational time of the available digital adder.

The speed-up factor of analog implementation over digital implementation is

defined as the ratio of the total execution times in both appréa.ches as follows,

M-N M-N

__ Tezecp ~ max(NmD’ Nap
Fapecd = T - MN N v (2.1)

erecy ma.x(m, N—M

Considering the normal condition, F,y..s can be simplified to,

P = () (222 =

The high speed-up factor of the analog implementation approach mainly results

from the fact that a significantly large number of components can be integrated.
For example, when Nmp and Nm, are 2 and 1000, respectively, the speed-up
factor of the analog implementation over the digital implementation reaches 25 if

the clocking frequency of the digital processor is 200 M Hz and that of the analog
processor is 10 M Hz.
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Power disspation is one of the important factors which makes the analog signal
approach be preferable in neural network implementation. Power consumed in one

digital gate such as an inverter can be expressed as,

Pyate = CL(Vbp — Vss)? far, (2:3)

where Cy, is the load capacitance and f,; is the operating clock frequency of this
gate [31). When Cp = 100fF,Vpp = 5V,Vss = OV, and far = 100M Hz, the
power dissipation per gate is 0.5 mW. In one implementation example with an
8bit fully-parallel multiplier and an 8-bit the Manchester carry-chain adder, the
numbers of fhe gates are about 350, and 150 respectively. Thus the total power
dissipation required for the basic weighted summation is 250 mW. On the other
hand, the total power dissipation of the combination of the input neuron, the
synapse cell, and the output neuron is about 50 mW. Large power consumption
makes the digital VLSI neural network undesirable for portable applications.

The main drawbacks of analog neural networks are the lack of very accurate
computing devices and programming flexibility. While the operational accuracy
of the digital network is linearly proportional to the word-length of the network,
there are limitations on the precision which an analog computing block can achieve
as shown in Fig. 2.2. The analog neural network is best utilized for processing the
feedforword signals in the retrieving phase. Since the learning algorithms requires
a high-resolution computation, the analog neural network cannot easily support
the on-chip learning in the pure analog signal domain. The analog network is
inferior to the digital one in terms of the flexibilities such as the configurability,
controllability and the programmability.
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The analog neural network chip is not suitable for an independent system.
It is ideal for serving as a co-processor to handle the computationally intensive
tasks. Learning and controlling schemes are processed in the digital processor
or the host computer, of which out;puts are interfaced with the analog neural
network chip through the data conversion modules. On the other hand, the digital
neural network can be realized in digital signal processor chips or executed on the
computer. -

Three different approaches are compared for realizing the neural computing
algorithms which requires 32 giga-conneqtions-per-second (GCPS). Performances
of the advanced reduced-instruction set computer (RISC) microprocessor [32], the
digital signal processor [33] and a high-performance analog VLSI neural network
processor are studied. Summary of the comparison is listed in Table 2.1. Here, the
performance of the analog neural processor in a 0.8-um technology is estimated

from the results of prototyping building blocks fabricated in a 2.0-pm CMOS
technology.

2.2 Various Synapse Storage Scheme

There have been many researches on the storage of synaptic weight values in
the analog neural networks. In this section, comparison of several main storage
schemes which are quite promising for implementing analog neural networks are
considered. The desired features of the synapse cells are to provide multiplication

and a reliable, long-term storage of the synapse value.
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Table 2.1: Performance comparison of three different approaches to achieve the
32 GCPS for neural computation.

microprocessor | alsgnal | * ansiog neur)
characteristics dual-issue micropro- | vector-pipeline arch. g-p analog neural
cessor chip DSP chip net. processor chip
technology 0.754um 3M CMOS | 0.8um 2M CMOS | 0.8-um 2M CMOS |
200 MHz 60 MHz 2.5-5 MHz
operational speed 400 MIPS 60 MIPS 32 GCPS
200 MFLOPS 2 GOPS
accuracy 64 bits 16 bits (fixed) 7-8 bits
chip size 16.8 x 13.9 mm? 12.38 x 12.90 mm? 10 x10 mm?
power dissipation OW@33V 24W@5V swewsv |
# of transistors 1.68M 930K 160K
Target Connection 32 GCPS
# of chips required 60 12 1 l
power consumption 1800 W 288W 5W
total silicon area 14011 mm? 1916 mm? 100 mm?
# of transistors 101M 11.2M 160 K

* The specification of the analog neural processor in a 0.8-um technology are estimated

from the fabricated chip in a 2.0-um CMOS technology

24



2.2.1 Dynamic Capacitor

The analog synapse cell with the capacitance for weight storage has the main
advantage of full functionality over other approaches [34, 35, 36, 37). The mature
designs of analog multipliers have been used with capacitors which are easily
implementable in the CMOS technology. The use of capacitance to store synaptic
weights make the synapse cell very compact. The synapse cell provides four-
quadrant multiplication with a large operational range.

Figure 2.3 shows two examples of the synapse cell using the capacitors for
weight storage. Figure 2.3(a) shows the circuit schematic of a modified Gilbert
multiplier [36). The differential output current is used for the synapse output
current. The circuit is capable of four-quadrant multiplication between the input
signals and the synapse values. In Fig. 2.3(b), four matched transistors biased in
the triode region are used to cancel the nonlinear term of (1/2)V2 in the drain-
current expression [38]. The output currents are obtained from the difference of
two current branches.

The voltage on the capacitor is continuously decayed dﬁe to the leakage cur-
rent through the reverse-biased pn-junctions between the diffusion area and the
substrate of the pass transistors. By using the fully differential scheme as shown
in Fig. 2.3, the effect of the leakage current can be eliminated to the first-order. In
order to maintain the weight value for a long term, the refreshing scheme should be
included. This refreshing scheme increases the circuit complexity for the on-chip

method [39, 40] or the interface complexity for the off-chip method [34, 41, 42, 43].
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Figure 2.3: Circuit diagrams of the synapse cells with dynamic capacitor stor-
age. (a) Using the modified Gilbert multiplier [36]. (b) Using the four matched
transistors [38].
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2.2.2 Digital Memory

The synapse value can be stored in the internal D-flip flops to represent the weight
value by the digital signals. These synapse cells are again divided according to
the number of the bits used in the memory. The single-bit synapse cell includes
the one D-flip flop and relevant switches generating only ON-current or QFF-
current for weighting operations [44, 45). The multi-bit synapse cell consists of
multiple D-flip flops and a digital-to-analog converter so that the analog values
can be provided as the synapse output in proportional to the stored digital weights
[46, 47, 48, 49].

In the multi-bit synapse cell, the digital-to-analog converters can be con-
structed with passive elements such as resistors and capacitors or the active devices
such as transistors. The active devices are widely used since their performance
are better than the passive counterparts in terms of the occupied area and accu-
racy. By using the binary-scaled current mirror, the CMOS transistor circuitry
easily provides the binary-weighted currents as shown in Fig. 2.4(a) [47]). The con-
tribution from each binary current branch is controlled by the associated switch
which is turned on or off according to the content of the memory. The above-
mentioned current sources (or sinks) can be also used to provide the tail current
in the differential pair as shown in Fig. 2.4(b) [48).

Main advantages are that treatment of the synapse weight is quite easy because
the synaptic representation is directly in a digital signal format. The digital output
from a main processor is directly applied to the network without digital-to-analog
conversion. D-flip flop is usually used due to simple operation without refreshing

and some simple ma.hipulations are made for on-chip learning [49).
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Figure 2.4: Circuit diagrams of the synapse cells with the digital memory schemes.
(a) Binary-weighted current mirrors are used for directly providing the output

current [47]. (b) Binary-weighted current mirrors are used for producing the tail
current of the differential pair [48].
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The occupied area, however, becomes quite large since the size of the current
mirrortransistor increases by 2V, where N is the number of bits. In addition,
the unit transistor size should be large to minimize the device mismatch effects
across the entire chip. In the current mirror synapse cell, the area of the synapse
cell is doubled to provide the positive and negative currents. The synapse cell
using the binary-weighted tail current has severe functional Lmitations. The lin-
ear operation range is proportional to the amount of the weight value so that the
early saturation can occur for a large input signal which will reduce the achiev-

able accuracy of the enitre network. Additionally, the multiplying operations are
performed only in two quadrants.

2.2.3 Floating-Gate Analog Memory

The charge in the capacitance formed by the MOS transistor is decayed due to the
leakage current through the diffusion-substrate junction. In addition, the dynamic
capacitor memory and the digital flip-flop will suffer from data loss when the power
of the system is turned off so that there might be complicated up-loading and
down-loading operation in setting up the network through non-volatile medium
such as hard-disks. This problem can be avoided by using the floating-gate analog
memory [50, 51, 52, 53, 54, 55]. The main advantage of the floating-gate storage
technique is its capability of very long data-retention time, which can be longer
than 10 years, at the room temperature [56).

By varying the pulse width and the pulse numbers, the threshold voltage of
the transistor can be modified. This is an effective method for programming the
synapse values. Two examples to illustrate this method are shown in Fig. 2.5.

In Fig. 2.5(a), the threshold voltage of one transistor in the differential pair is
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changed so that the current difference appears as the synapse output current [53)].
In Fig. 2.5(b), the threshold voltage of a transistor providing tail current in one
differential pair is different from that of the other differential current [54]).

Main drawbacks of this method are the requirement of special silicon fabrica-
tion technology and the difficulty of precise programming. The floating gates can
be implemented only in the double-polysilicon technology or specialized EEPROM
technology. Since programming is done through controlling various parameters of
the programming pulses, some complex pulse-generator is necéssary. In addition,
the magnitude of the programming pulse is usually much larger than that of the
power supply voltage. The electrical programming of synapse weight values is
mainly a stochastic process. Therefore the achieved results cannot be very precise

and is typically in the range of 5-6 bits accuracy.

2.2.4 Summary

Summary of the three approaches is shown in Fig. 2.6, where comparison is done
in four aspects. The functionality criterion determines how good the synapse
cell performs multiplication in terms of the linearity and operating range. The
limitation due to poor functionality restricts the designed neural network to only
specific applications. The weight storage schemes are compared in the data stor-
age criterion in terms of maintenance of the data for a long term. The pro-
grammability criterion determines how easily the content of the synapse cell
can be updated. The amount of resources needed for the synapse cell such as
the occupied area, power dissipation, and fabrication technology limitation are

compared in resource efficiency criterion.
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Figure 2.5: Circuit diagrams of the synapse cells with the floating-gate transis-
tor. (a) The floating-gate transistor is used in the differential pair [53). (b) The
floating-gate transistor is used in the modified Gilbert multiplier [54).
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Resource efficiency.
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In a synapse cell with the dynamic capacitance, programmability of the ana-
log weight value is well supported by the efficient use of the analog-to-digital
converter which can be easily controlled by the entire system. The issue of con-
tinuously decaying weight values on the dynamic capacitances can be overcome by
the additional refreshing scheme which is implemented by the on-chip or off-chip
methods. Since refreshing is the learning process without modifying the weight
values, it is naturally fit into the neural network hardware supporting the general
learning process. The synapse cell with the dynamic capacitor have been more at-
tractive for their full functionality. In the following chapters, the modified Gilbert
multiplier with the MOS capacitor will be described for efficiently constructing the
analog neurocomputing processor in various applications. The detailed operations
and limitations of this type of synapse cells will be presented. In addition, the

input neuron and the output neuron are discussed which is optimally combined

with the synapse matrix.

2.3 Applications with VLSI Neuroprocessors

The neural networks, especially the analog implementations are well suited for var-
ious scientific and engineering applications. The general-purpose neural network
processors can be reconfigured and programmed to solve specific problems. On
the other hand, the architecture of the application-specific analog neural network
Processors can be fixed during the hardware design phase.

A biologically-inspired model is used in order to build the efficient neural
processor for sensory data. For the front-end visual reception function, several
silicon retina chips have been implemented: the basic silicon retina model [57),

the adaptive retina [58), the contrast-sensitive silicon retina [59], and the silicon
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retina with correlation-based and velocity-tuned pixels [60). The front-end visual
processing is followed by early vision processors such as the edge detection chip
[61), optical motion sensor [62], object position and orientation IC [63], and the
analog VLSI chip for figure-ground segregation [64]). The front-end auditory data
is processed through the electronic cochlea [65]. Several silicon chips have been
developed for further auditory processing and computer peripherals [66, 67). In
addition, microelectronic tactile sensing has been reported in [68].

Various analog neural processors have been implemented to process the wide-
range of information such as the image, audio, and text data. Several neural-based
image processing algorithms have been mapped onto the hardware (69, 70, 71, 72,
73). Some hardware implementations were conducted for recognizing the text data
(74, 75, 76). Artificial neural networks have been implemented for processing the
speech data as reported in [77, 78] and for control applications [79]. In addition,
the analog neural network have been implemented for signal processing [80, 81]

and communication fields [42, 82].

2.4 Various Design Techniques

Various circuit design techniques have been developed to improve the hardware
performance. In the charge-manipulation circuits, the charges on the capacitor,
rather than the voltage, represent the synaptic and neuronal signals. Electric
charges can be efficiently manipulated with a quite small power dissipation. In
the self-learning neural network chip [83], the charge pumps are used to update
the synapse values which are the charges stored on the capacitors. In the capaci-

tive synapse matrix, charges are processed throughout the network as the neuron
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signals [84, 85]. In the MOS technology [86], one MOS transistor operates as a
functional unit to perform a weighted summation.

The switched-capacitor (SC) networks have been widely used for performing
the neural computations (87, 88, 89, 90]. The well-developed SC integrators are
used for summation of the weighted charges or currents in the capacitor. In addi-
tion, simple arithmetic manipulations are achieved by arranging the configuration
of capacitors and interconnections.

Several different technologies have been adopted for implementing the analog
neural network processors. The charge-coupled device (CCD) processors have
been used especially for low power consumption and easy data manipulation as
reported in [91, 92]). The field programmable gate array (FPGA) technique has
been also chosen for implementing analog circuits [93]. The BiCMOS technology
was extensively used to build the synapse matrix because the bipolar transistors

have better matching property [41] and larger dynamic range [94).
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Chapter 3

Design of General-Purpose Neural Networks

The generic neural operation consists of a weighted summation and nonlinear

function, which are summarized as,

v =/, (Z wj,ivi) (3.1)

where v; is the j** neuron output voltage. Here v; is the output voltage of teh it»
neuron from the previous layer in a multi-layer network of from the same layer
in a recursive network. The synapse value between the i** and the j** neurons is
represented by w;; and f, is the nonlinear transfer function for the output neuron,
which is usually a sigmoid function. This operation describes the feedforward
or the retrieving process in the artificial neural network operations. Figure 3.1
shows the block diagram of a multi-layered neuroprocessor chip. It consists of
an array of input neurons which function as drivers, an array of output neurons,
and the synapse matrix. In order to support the feedback or learning process, the
weight value should be programmable. 1t is to be efficiently updated and reliably
maintained. Calculation of the new synapse weight values can be done by the
companion digital signal processor chip or the host processor outside the chip or
by the dedicated on-chip learning circuitry or DSP module.
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Figure 3.1: Block diagram of the multi-layered neural network.
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There have been many researches on analog VLSI neural network implemen-
tations using various design technologies. Significant numbers of synapses and
neurons are included in order to achieve a high computational throughput by us-
ing fully massive parallelism. Some major analog VLSI neuroprocessor chips and
their properties are listed in Table 3.1 [54, 41, 95, 48, 83, 96, 97, 34, 47, 98, 99.

In this chapter, design methods for the synapse and neuron circuits will be
presented in detail. In addition, solutions to effectively address physical design
constraints will be discussed and system-level design issues such as the timing
scheme and the network-dimension scaling methods will be outlined. The experi-
mental results will be given.

3.1 Programmable Synapses

Since the number of synapse cells is dominant over the number of neurons, char-
acteristics of the analog multiplier used to realize the synapse cell determines the
overall accuracy, silicon area, and power consumption of the neuroprocessor chip.

Several design issues should be considered for performance optimization of the

synapse cell.

3.1.1 Linear Multiplication Operation

In order to understand the operation of the analog multiplier circuit, the differen-

tial pair shown in Fig. 3.2(a) should be considered as a basic building block. The

output currents can be expressed as,
2
_B(Va 1 f2Iss _,
Il - E 2 + 2 B/2 ‘/lﬂ b (3’2)
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and

_B(Va _1 25 | ')’
I’—§(T—§ ﬂ_/2—V.'3. ' (3.3)

where § is the transconductance parameter of the transistor. The differential

output current is expressed as,

Al=I—-I= gv.-,.‘/% -2, (3.4)

For a small differential input voltage V;n, (3.4) can be approximated as,

21,
Al ~ gvz-,.‘/?% = \/BlssVin. (3.5)

In order to implement a linear multiplication between the input voltage and
the stored synapse weight voltage, the Gilbert multiplier circuit can be used.
Figure 3.2(b) shows the circuit schematic of the Gilbert multiplier core. All tran-
sistors operates in the saturation region. The output current is obtained from the

difference of two currents, I+ nd I,

Lu=I*—I"=(L+ )~ (L+T) = (- L) - (ls—I). (36)

By substituting (3.5) into (3.6), we can obtain

Lout 22 \[Buli(Va = Vi) = JBu1a(Vs = Vi) = B/l = V) Vs - Vi),  (3.7)

where 8, = f3 = B3 = fs = fs. From (3.2) and (3.3), (3.7) can be refomulated

as,

ﬂuﬂl
2

Iout =

(i - Wa)(Vs - V), (3-8)

where gy = B = B,.
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Figure 3.2: Circuit schematics of the differential pair in (a) and the basic Gilbert
multiplier in (b).
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Figure 3.3 shows the complete circuit schematic of the multiplier used for the
synapse cell [99]. Two upper differential pairs of Fig, 3.2(b) are converted to the
PMOS differential pair in order to achieve large operational ranges by reducing
the number of transistors stacked Between two power supply lines. The input
voltage Vin,; is applied to the NMOS differential pair of M,-M;, while the synapse
weight value Wj; is applied to the PMOS pairs of Mg — M7 and My — M. The
differential input and weight values ensure the balanced-operations of the positive
and negative signals as well as can achieve the common-mode rejection. The
differential output current is converted into the single-ended current through the
cascode current-mirror stage consisting of transistors M, through Mj,. Based on

(3.8), the synapse output current can be determined as,
1 - -
Ly = K\[5BpBN(Vilvs — Vin ) Wi = W3) = GuVin Wi, (3.9)

where K is the current gain from transistor M, 3(14) to transistor M35). Here
Bp and By are transconductance parameters of a PMOS transistor and an NMOS
transistor in the differential pairs, respectively. Table 3.2 lists the sizes of all
transistors in a prototype design.

Figure 3.4 shows the SPICE-3 [100] circuit simulation results on the DC char-
acteristics of the analog multiplier for differential weights of -2.0 V to +2.0 V in a
step size of 0.5 V. The integral errors and total harmonic distortions for various
weight values are plotted in Fig. 3.5. The figure shows that the available operation
range with the 1 error is + 2.0 V both for the input and the weight voltages.
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Figure 3.3: Circuit schematic of the synapse cell based on the wide-range Gilbert
multiplier.
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Table 3.2: Transistor sizes of the synapse cell.

Transistor W/L [um / pm)

M‘|'M2 4,40

44



30 L L} L]

20

10 g

lji [uA]
o

Figure 3.4: Simulated results of the DC transfer characteristics of the synaptic
multiplication. The differential weight value W;; increases from -2 V to 2 Vina
step sizeof 0.5 V.
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Figure 3.5: Simulated results of the linearity error and the total harmonic distor-
tion of the synaptic multiplication.
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3.1.2 Weight Value Storage

The learning algorithm can be performed in the host computer or the companion
digital signal processing (DSP) chip or plug-in board and the calculated synapse
values are stored in the digital memory. Each synapse value is converted into the
analog voltage and loaded into the capacitor of the synapse cell. This synapse
value is dynamically stored on the capacitance which are contributed by MOS
transistor and possibly augmented by the additional capacitor. Address decoders
are used to direct the common signal line to the desired synapse site as shown
in Fig. 3.6. Two types of errors can degrade the operational accuracy: the error
voltage due to the switching transient and data loss due to the leakage current.

Although the neural computation is performed in the continuous-time fash-
ion, the physical weight modification is processed in the sampled-data format
which might result in the charge feedthrough problem. The synapse value is
sampled-and-held by the access switches. During the switch-off transient period,
charges remaining in the channel and the overlap capacitance between the gate
and the source/drain terminals of the MOS transistor make the actual stored
weight voltage deviate from the desired value [101, 102). In addition to using
the minimum-sized pass transistors as the switches, the differential weight signal
scheme circumvents the charge feedthrough problem by rejecting the common-
mode error. If necessary, a dummy transistor tx.)ntrolled by a complementary
clock signal can be added.

The voltage stored on the capacitor is decayed due to the leakage current
flowing through the reversed-biased PN junction between the diffusion region and
the substrate of the acess switch transistor as shown in Fig. 3.7. Periodic refresh is

required to maintain the accurate synapse weight values [34, 41, 42, 43]. Figure 3.8
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Figure 3.6: Synapse weight programming scheme.
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Figure 3.7: Synapse weight storage on the capacitance through the access switch
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49



error voltage [V]

Pwen
1/2 LSB(7-b)

ey wn o - - - -

emor voltage [V]

10 10 10° 102 10"
time [sec)

Figure 3.8: Synapse weight accuracy versus the charge retention time under dif-
ferent values of leakage current.
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shows the calculation results of the data loss for several magnitudes of the leakage
current. Please note that refreshing in every 1 msec is sufficient to maintain the

8-bit accuracy for a given leakage current of 10 pA.

3.2 Input Neurons

The input neuron buffers the input signa.l. and provides the high-speed driving
capability for a large capacitive load. The proposed input neuron consists of an
operational amplifier configured as the unity-gain buffer. Since there is a large
number of synapse cells to be driven by one input neuron, the equivalent load
capacitance to the input neuron might be quite large. Thus, a fast settling re-
sponse of the input neuron needs careful design. It is desirable to let the input
neuron occupy a compact silicon area and dissipate very low power. Figure 3.9
shows the circuit schematic diagram of the input neuron which provides the dif-
ferential input to the synapse cells. In Fig. 3.9(a), the input voltage is applied in
the differential format and two amplifiers are needed. In Fig. 3.9(b), the input
voltage is applied in the single-ended format in order to reduce the number of the
I/O pins. Two amplifiers and two resistors are needed. The circuit diagram of
the operational amplifier used in the input neuron is shown. In order to reduce

the power consumption in the output branch while maintaining the speed, the

class-AB output stage is used [103].
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Figure 3.9: Input neuron. (a) Differential-to-differential input neuron. (b) Single-
ended-to-differential input neuron which requires two additional resistors. (c)
Circuit schematic diagram of the operational amplifier.
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3.3 Owutput Neuron

The output neuron converts the summed current into the voltage and performs

one of several types of functions such as the thresholding, linear amplification,
and sigmoid function.

3.3.1 Linear Current-to-Voltage Conversion

In Fig. 3.10, the detailed circuit schematic of the output neuron is shown [99].
Summation of the weighted prociucts is naturally done by hard-wiring according
to the Kirchoff’s current law. Current-to-voltage conversion is performed by the
transresistance amplifier consisting of an operational amplifier and a feedback
resistor. Since the output impedance of the synapse cell is finite, the synapse
current is dependent on the output voltage, which is the input node voltage of
the output neuron. In the proposed design, this node is connected to the virtual
ground of the operational amplifier to eliminate the the synapse current variation.

Since the current summation results from a large array of synapse cells, the
transresistance amplifier should have a sufficient capability to handle a large mag-
nitude of the current for proper linear conversion. Thus, the operational amplifier
includes the source follower as an output stage as shown in Fig. 3.10(a). In addi-
tion, six active transistors are used to implement the feedback resistor, which can
achieve higher accuracy in the wide operational range and less silicon area [104].
The low-precision passive resistor is not recommended. The summed current is

converted into the voltage according to the following expression,

i M: I
V - . I',’ = $= 43 ,
LIN,; R"J ; § 8 2ﬂR(VRF — ]/tllp)

(3.10)

53



2-stage output buffer
h— = “opamp  stape

M
Vss |aois - VRF

(a)

(b)

Figure 3.10: Circuit schematic of the output neuron. (a) Linear current-to-voltage
converter. (b) Sigmoid function generation circuit.
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where Vi is the control voltage to tune the equivalent feedback resistance value

R;. Here Br and Vi, are the transconductance parameter and the threshold
voltage of transistors M, R1(2), respectively.

3.3.2 Sigmoid Function Generation

Sigmoid function generation is required for performing the back-propagation learn-
ing algorithm. The sigmoid function is approximately realized by cascading simple
inverting amplifiers with the input and feedback resistors as shown in Fig. 3.10(b).

The voltage gain of the sigmoid function is determined as,

Rega 3
Vios _ = (3.11)
VLN, 1+400+ %ﬁ) )

where A is the voltage gain of the inverting amplifier. Since the resistors are

realized by transistors biased in the triode region, their equivalent resistance values

can be controlled,

1
B(Vriz) — Van)’ (3.12)

where 8, Vi, are transconductance parameter and the effective threshold voltage

Regazy =

of the transistors, respectively. The control voltages, Vry, and VrH, are used to
reduce the offset voltage of the sigmoid function generator due to process-induced
nonideal device characteristics. Their values can be set during the chip-initializing
phase. The entire gain of the output neuron are controlled by the gate voltages
of the PMOS transistors of the feedback resistor in the transresistance amplifier
(Vrr in (3.10)) and the voltages of the input and the feedback resistors in the
sigmoid function generator (Vg, and Vi, in (3.12)). Figure 3.11 shows the SPICE
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circuit simulation results on the DC characteristics of the output neuron with
various voltage gains.

In order to provide programmability and flexibility, the output neuron can be
reconfigured into several operational modes. This can be done by multiplexing
several operations with switches. Figure 3.12 shows the detailed circuit schematic
of the improved output neuron. By controlling the interconnection switches, 4

different operations can be achieved.

3.4 System-Level Considerations
3.4.1 Required Refreshing Frequency

As mentioned earlier, the analog synapse weight value stored at the capacitor could
gradually lose its initial value due to the leakage current. The refreshing process
is required so that the analog value can be maintained within the allowable error
imposed by the system specification. In the proposed design, the digital synapse
weight information in the system memory is periodically converted by the digital-
to-analog converter and written into the analog memory site. The amount of time

to write the computed weight value into the synapse storage, Trite, consists of

wry

the following items [42),

Twrite = Taata + Tpac + 6RonCiw, (3.13)

where Tyq, is the amount of time for fetching the digital data from the system
memory, Tpac is the digital-to-analog conversion time, R,, is the ON-resistance

of the switch transistors, and Ciy is the effective storage capacitance. If there
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Figure 3.11: Simulated results of the sigmoid function generation circuit with gain
controllability. (a) DC analysis. (b) AC analysis.
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Figure 3.12: Improved output neuron for reconfigurability.
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are M synapse cells in the entire system, then the total time for updating or

refreshing the network is,

Tupdate =M. Twritc- (3.14)

The amount of time for the synapse value to experience a change equivalent to
the 1/2-bit resolution, AT, can be determined as,

( )(2,,+l )s (3.15)

where I, is the leakage current, Vr is the full-dynamic range of the synapse weight
value, and N is the number of bits to represent the data. From (3.14) and (3.15),
the timing requirement of the system for a reliable refreshing scheme is determined
as,

AT > Tupdate~ (3.16)

Figure 3.13 shows the numerical examples of the size and accuracy relationship

of the synapse matrix for different values of the storage capacitances.

3.4.2 Scalability of Network Size

The proposed general-purpose neural network is programmable not only in terms
of synapse weight values but also in the light of the network size scalability. The
chip is based upon the one layer of an artificial neural network consisting of the
input neuron array, the synapse matrix, and the output neuron array. Due to
the constraint of finite chip area, the number of components must be restricted,
so0 the size of a network is fixed. In this section, the methods to implement the
multi-layered neural network by chip-partitioning and to implement a larger size

network by chip-cascading are presented.
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Figure 3.14 shows one exa.inple of chip-partitioning to implement a four-
layered perceptron. Only diagonal portion of the synapse matrix is effectively
used and the other area shown in the shaded region is not used in order to avoid
conflicting use of available input/output neurons. The output voltage of an output
neuron in one layer can be externally fed into the input of the input neuron in
the other layer because the input and output neurons are designed to be directly
compatible.

The network size can be increased by cascading the identical neuroprocessor
chips as shown in Figure 3.15. In order to increase the number of the output
neurons, the inputs of multiple chips are connected to the common input signal
bus. In order to increase the number of the input neurons, each current summing
node is connected and the array of the output neuron in one chip is activated to

produce the output voltage. The above two ways can be combined to implement

neural networks of any sizes.

3.5 Experimental Results

A prototyping general-purpose neural network chip consisting of an array of the
input neurons, an array of the output neurons, and the synapse matrix performs
the neural computation of one layer. The chip was fabricated in a 2-gm double-
polysilicon CMOS technology from the MOSIS Service of USC/Information Sci-
ence Institute at Marina del Ray, CA, 90292, USA (105, 106).

Figure 3.16 shows the measured DC characteristics of a synapse cell perform-
ing linear multiplication. One cell can be arbitrarily accessed by the row/column
address decoders from the synapse matrix. The differential synapse values in
Fig. 3.16(a) and the input voltage in Fig. 3.16(b) range from -2.0 V to +2.0 V
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Figure 3.14: Partitioning the fixed-dimension chip into several layers.
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Figure 3.15: Cascading the chips to increase the dimension of the network. (a)

To increase the number of output neurons. (b) To Increase the number of input
neurons.
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in a step size of 0.5 V. The operation ranges for the input signal and the synapse
weight value corresponding to a linearity error of less than 1 % is -1.75 V to +1.75
V. The small offset currents can be easily compensated through modification of
synapse values and/or the use of an additional synapse weight connecting to a
fixed input voltage for a output neuron.

Figure 3.17 shows the measured dynamic synapse weight value changes as a
function of time due to the leakage current. The rate of the output current change
is about 12.5 nA/sec. For the conductance value of the synapse cell of 5 pAlV,
the voltage change rate is 2.5 mV/sec, which corresponds to the time elapse of
about 4 sec for the 1-bit resolution change of the synapse weight value in 8-bit
operations.

The measured dynamic range of the input neuron is from -3.0 V to +3.0 Vv,
which is sufficient to drive the synapse cell. The settling time with 1 % error is
about 300 nsec for the capacitive load of 7 pF.

Measured result of the linear current-to-voltage converter as a part of the
output neuron is shown in Fig. 3.18(a). This converter can handle the input
current level of more than 250 yA. In the measurement, the active feedback
resistance was set to 4 k2. The measured sigmoid function with various voltage
gains of 6.5, 2.8, and 0.8 are shown in Fig. 3.18(b). The achievable maximum
voltage gain is around 2,000.

The physical layout of one synapse cell is shown in Fig. 3.19. It occupies an
area of 124 x 186 A?. The weight-storage capacitor shown in the wide solid line
occupies an area of 1,046 A? which is implemented by an efficient use of the silicon

area. The realized capacitance is around 0.95 pF value in the given 2-ym CMOS
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Figure 3.16: Measured results on the multiplication operation of the synapse

cell. (2) Synapse current versus input voltage. (b) Synapse current versus weight
voltage.
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Figure 3.17: Measured results of the synapse weight retention characteristics.
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technology. In the scalable CMOS design supported by the MOSIS Service, one
A corresponds to one micron fro the 2-pm CMOS technology.
System-Level Measurement

The system-level experiments were conducted with the fabricated synapse cells
in our laboratory in order to understand the feasibility of neuroprocessing system
implementation. Figure 3.20 shows the schematic diagram of the measurement
setup, which consists of four synapse cells and a linear current-to-voltage converter
as a single output neuron. Here, the sigmoid function is not included in the simple
learning. The host processor executes the learning algorithms. An analog-to-
digital converter is used to interface the output voltage of the network. Update
of the synapse values is performed sequentially by the digital-to-analog converter
and the address control signals. An additional digital-to-analog converter is used
for determining the analog input voltages.

The primary goal of the learning experiment is to compensate the bias which
was intentionally added so that the desired output voltage will return to zero.
The bias current is provided by the constant voltage source V;;,, and the resistor

Riias. The generalized Delta Rule can be expressed as [11],

w;i(n + 1) = w;ji(n) + Aw;;(n), (3.17)

and

Aw;i(n) = 7 [tj(n) - 0j(n)] - ii(n), (3.18)
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where 7 is the learning rate constant and tj(n) is the desired output value at the

n® iteration. The ith input and j** output at the n'» iteration are ti(n) and o(n),

respectively. In our experiment, (3.18) can be simplified to

Awi(n) = —1-o(n) - ij(n) = 9 - o(n), (3.19)

because the desired value is zero and the input is fixed to -1 V.
Figure 3.21 shows the measurement results. In the initialization phase (marked

A), four weight values are set to be very small random numbers. Thus, the

summation current results mainly from the bias term as follows,

I —)3:G wj s + e —Zaj48-1o-“(0)(—1)+ e
sum = ~ MW; i R&“ = 2 . 594109 — SuA,

and the output voltage is

ofinitial) = —Rp - Ium = —19.5-10% - (—57.5 - 10~%) = 1.12V.

After the learning proceeds for a sufficiently long period as shown in the figure

marked by B, the weight values are updated in order to compensate the effet of
the added bias as follows,

-3.013

524108 — 0-1u4,

Ium = zaj4.8- 10-%(—3)(~1) +
=0

and the output voltage is

N

o( final) = -19.5-10°- 0.1 - 10~® = —1.95mV.

The output value obtained after the learning can be significantly close to the

desired output one.
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Chapter 4

Neuroprocessor for Self-Organization Mapping

There are several types of unsupervised learning schemes: the Hebbian learning,
the competitive learning, the differential Hebbian learning, and the differential
competitive learning. A self-organizing network using competitive learning has
the desirable property of effectively producing spatially organized representation of
various features of the input signals. Competitive learning depends on competition
between output nodes of the neural network. In the competitive learning layer of
a self-organized neural network, the winner-take-all (WTA) operation is executed
as lateral inhibition operation. In this operation, the node with the largest output
value is selected as the winning node and it inhibits all other nodes.

There have been several VLSI implementations of the Hamming network and
Kohonen self-organization mapping algorithms. In [107], the modular CMOS de-
sign of a Hamming network was described. In [108], the charge-based Hamming
network was designed for high-density and low power consumption. In [109), the
basic study of implementing a Kohonen mapping network was outlined. In [39],
the Kohonen neuron was designed based on a multi-level storage technique. In

3



[37], the analog neural network processor for self-organizing mapping was pre-

sented. The on-chip learning implementations of the Kohonen neural network

were reported in [110, 111)

4.1 Basic Architecture

A self-organization neural network mainly consist of two layers as shown in Fig.
4.1. The first layer contains an array of input neurons and the second layer
is the competitive layer performing the winner-take-all operation. These two
layers can reside on two separate chips as a chip set or the latter circuitry can be
combined with the existing general-purpose neural network module in a standard
cell approach.

The block diagram of thee proposed self-organization neural network processor
is shown in Fig. 4.2. The synapse matrix computes the distortion or the distance-
measure between the applied input and the stored weight values {37]. The (j,)*-

synapse cell produces the current,
L = Gu(U; — W;,)?, (4.1)

where U;, W;; are the input voltage and the stored synapse value, respectively.
The above distance measure is computed by the multiplier in the voltage scheme
with Vi, = Wk =U;and V5, = W;; = Wj; from (3.9) of the previous chapter.

In the j**-output neuron, all currents from the corresponding synapse array are
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summed. The linear current-to-voltage conversion and sigmoid function genera-

tion are performed on the summing current as follows,
M
Vi = (1) fla 3 (Ui = Wia)?] forj =1, (42)
where « is the proportional constant and S(-) is the sigmoid function.

This output voltage appears as the input to the winner-take-all circuit. The

output voltage of the WTA circuit is defined as,

Y={ logic—1 if V; > V for all k

4.3
logic— 0 otherwise. (4.3)

Thus, the minimum distortion or distance-measure js selected as the output of the
self-organization network. The digital encoder of the final stage is used to reduce
the required pin numbers. Since the WTA circuit is the key building block for a
self-organization neural network, the main emphasis is placed on the design of a

high-performance WTA circuit.

4.2 Considerations of WTA Circuit

In order to make the WTA circuit be useful for large-scale problems, several design
considerations are carefully addressed:

¢ high accuracy,
¢ high operation speed, and
¢ compactness.

Several WTA circuits have been reported in various technologies as listed in Table
4.1 (112, 113, 114, 87, 107, 115, 116, 117].
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Table 4.1: Summary of varioys WTA circuit implementations.
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The WTA circuits built with transistors biased in the subthreshold region [113,
114}, are quite promising and consume an extremely small amount of electrical
power. The approach is suitable for implementing biologically inspired artificial
neural systems where billions of transistors can be integrated on a single substrate
within the next decade due to efficient use of electrical power. However, it has
some significant limitations such as low operation speed, small dynamic range,
and poor noise immunity. The current signal input scheme [107, 114] prevents
the network from being well compatible with the available general-purpose neural
network chip of which outputs are in the voltage format. They usually does not
provide fully binary output voltages so that additional circuitry is required to
interface with digital processors for post data processing. Finally, several circuits
can not operate in the continuous-time mode. The switched-capacitor version [87]
must use the clocking signals. The circuit in [115] should use the global ramp
signal and the operation of the circqit in [116] should be divided into two phases.

In the proposed WTA circuit, all transistors are biased in the strong inversion
region to achieve high-speed operation. Its input is the voltage of the output
neuron and the fully-binary values are produced as the output of the WTA circuit.
Since the operation is performed in the continuous-time mode, there is no need to
use the global clock or the comparison signal. This circuit can be easily interfaced
to a digital processor for efficient learning. It can also be a.rra.ngéd to process
more than 1,024 inputs in practical scientific and industrial applications. Several
key design techniques such as cascading, distributed biasing, and dynamic current

steering are used to enhance the circuit performance.
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4.3 Basic WTA Circuit

A detailed schematic diagram of the WTA circuit is shown in Fig. 4.3. All tran-
sistors operate in the saturation region. Each WTA cell consists of two branches.

The first branch (M;, M, and Mj) converts an input voltage into the cell current
as,

1 = LAV Vorr = Viaa)* for j =1 .-, (44)

where 8; and V;;; are the transconductance parameter and the effective threshold
voltage of transistor M;, respectively. These currents are compared and redis-

tributed along the common signal line Vgp. In the second branch (M and M,),

the current in each cell is converted into the output voltage as,

S | omIY)
v = c — 1| + Ves, 45
‘T A Bu(VBB2 — Vss — Vip 4)? ] +Vss (45)

where J; is the channel-length modulation parameter and m is the current gain
between transistors M; and M;. Vg is the common node voltage to which all
source terminals of the input transistors M;’s are tied. Since the source terminals
are at the same ‘potentia.l for all the cells, the current flowing through each cell
is related to the square of the input voltage. Thus, the strongest input can bring
the largest amount of current out of the total bias current. This largest current
is converted and amplified to produce the largest voltage as the output of the
winning node. If the input voltage differences are sufficiently big, the wiﬁner
output is saturated at the positive supply value. while the other outputs are
saturated at the negative power supply value. Through the use of a common

voltage node, the total bias current is provided by the transistor Mj in every cell.

80



As the number of inputs increases, the WTA circuit can be extended linearly by
simply abutting the common signal node through cells.

To facilitate the analysis, consider P different input voltage groups. The i*-
group ¢ has n; elements and its input is V;. The current flowing through each cell
in the i**-group is

Fi= BV~ Veour = Vi) (4.6)

The bias current from transistor M5 in each cell is

I = B4 (Vs = Ves — VY [1 + Mn(Von — Vss)] 47)

The total current is distributed as,

P
En;-I;=N-IB, (4.8)

1=1

where

Here N is the- total number of the competitive cells. From (4.6) to (4.8), the
common node voltage Vcu is determined and the output voltage of each cell is
uniquely decided according to the applied input. When the input voltage value
to the j**-group is the largest, the number of cells in the 7**-group should be one
(i.en; =1). The current flowing in this cell, I ;> should be larger than the current
flowing through a single cell in any other groups in order to ensure the proper
winner-take-all function. This largest current is designed to make the output
node saturated to the positive power supply voltage.

In a simple case of two cells only, this winner-take-all circuit is degenerated

to a simple differential amplifier with differential voltage outputs. In Fig. 4.4(a),
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Figure 4.3: Schematic diagram of the winner-take-all (WTA) circuit.
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the simulated DC characteristics of a two-cell WTA circuit are shown. A single
power supply voltage of 5 V is used. One input is set to 2.5 V, and the other
input is increased linearly from 2 V to 3 V. To obtain the fully binary output
values for the winning and losing nodes, the required input voltage difference is
found to be at least 100 mV for the single stage configuration. The simulated
transient response is shown in Fig. 4.4(b). The response time of the single stage
is 60 nsec with a capacitance load of 0.2 PF at each cell. Please note that the
circuit performance can be enhanced by cascading the identical stages as shown
in Fig. 4.4, which will be described in detail in the following section.

4.4 Analysis and Design Considerations

To effectively illustrate the behavior of this WTA circuit in a large-scale network,
three groups of input voltages are considered: the winning voltage Vi, the second
largest input voltage Vjs, and the smallest voltage Vz. The number of cells in
each group is 1, M,and N - M —1, respectively. From (4.6), the current flowing
through a single cell in each group can be expressed as,

Iw = %(Vw — Vem — Van)?, (4.9)
Iy = %‘-(VM - Veum — Vg}.)z, (4.10)

and
I = %(VL - Vem — V)3, (4.11)

respectively. The total current is obtained from (4.8) as,
Lot =1-Iw+M-Iy+(N=M—1)-Ip = N - Ip. (4.12)
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In Fig. 4.5, calculated results for a 1000-input WTA circuit are shown. The voltage
levels of Vir, Var, Vi, are set to 2.525 V, 2.500 V, and 2.475 V, respectively. As the
number of the second largest input, M, increases, a larger portion of the total bias
current flows through this group and the current flowing through the winner cell
decreases. This results in reduction of output DC level and increases the rising

time of the winning output.

4.4.1 Cascading of Stages

Performance improvement due to cascading of identical single stage is apparent as
shown in Fig. 4.4 for a 2-input network. Cascading configuration makes the entire
voltage gain of the cell drastically increase so that the transition region between
the winner and losers is greatly narrowed. The operation speed is improved since
a large load capacitance can be efficiently driven by the stronger output signal.
For a large-scale network as discussed in Fig. 4.5, due to the loss of the available
current in the winner cell, the output levels of the winner and losers cannot be
fully binary (0 and 5 V) although the winning output is still larger than the
rest. The corresponding response time becomes quite long since a less amount of
charging current is provided for transistor Ms in the winner cell. By using the
cascading configuration, the output voltage level of the winner can be maintained
to be saturated toward the positive supply voltage and the operation speed can

be greatly increased as shown in Fig. 4.5.

4.4.2 Distributed Biasing

In Fig. 4.3, the total bias current is provided by the transistor M from each cell

in the distributed manner instead of having a fixed amount of tail current source.
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Figure 4.5: Calculation results on a 1000-input WTA with different number of the

cells having the second largest inputs. (a) DC level of the winning output. (b)
Response time of the winning output (Cr = 1.0pF).
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Thus, the total bias current is proportional to the number of competitive circuit
cells. This approach makes the circuit response time be quite independent of the
number of cells. In Fig. 4.6, the simulated response time of the winning output
is shown. Here the winning input is 2.6 V and all other inputs are set to 2.5 V.
In the fixed bias current case, the response time of the winning output increases
rapidly as the number of the cells increases. On the other hand, in the case of
the distributed biasing, the response time is almost constant because the available

charging current is increased proportionally.

4.4.3 Dynamic Current Steering

If input voltages to multiple cells have very large values as compared to the values
to the rest of the cells, then most of the total biasing current is consumed by these
cells. In such a case, more than one output voltage might saturate at the positive
power supply value. This results from the fact that the currents of these cells
are large enough to make output values saturated though they are still smaller
than the winning current as shown in Fig. 4.7(a). Here, the critical current,
I, is used to describe the value which the current flowing in the cell should
exceed in order that the output can be interpreted as a logic-high value. This
value is determined from the circuit parameters as shown in (4.5). The circuit
schematic shown in Fig. 4.7(b) is proposed to ensure that only the winning output
will have the logic-high value by dynamically adjusting the current levels. The
multi-input source-coupled configuration consists of transistors Mp’s in the cells
and the shared My transistor. The input to this transistor is the output of the
corresponding WTA cell. As the number of competing inputs increases, the circuit

can still be easily extended. The drain terminal of transistor Mp in each cell is
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tied together to provide the necessary bias current. When the number of outputs
with high voltage values is more than one, the currents can flow in transistors
MFr and Ms in each cell so that the current in each WTA cell is decreased by the
same amount. This steering current is strongly dependent on the number of high
outputs. The operation continues until only one output has a high voltage value
and the currents of other cells are below the threshold to make the corresponding
output voltage values low as shown in Fig. 4.7(a). In this condition, the multi-
input differential pair is reduced to 2-input one and all tail source current flows
through transistor My, since its size is much larger than the Mg’s. The amount

of steering current in each cell is determined from Fig. 4.7(a) as
Ig"") - < AI,gm;,,g < Igv) — I, (4.13)

Fig. 4.8 shows the simulation results of the operation of the dynamic current
steering circuit for a 10-input WTA circuit. After the current steering technique
is applied, large steering current flows since several outputs are high. This reduces
the current levels of all outputs. Once all cell currents corresponding to the
secondary inputs are below the threshold current, the steering current decreases
so that only the winning output rises up to the positive supply voltage. The
transistor sizes in one complete WTA cell are listed in Table 4.2.

4.5 Experimental Results

4.5.1 The Winner-Take-All circuit

Each experimental prototype chip consists of 50 cells in a standard TinyChip
package provided by MOSIS Service at USC/Information Sciences Institute in
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Table 4.2: Transistor sizes of the WTA cell shown in Fig. 4.3.
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Marina del Ray, CA (105, 106]. Four chips are used to construct the 200-input
WTA circuit in the experiment. Cell 1 to Cell 50 are in Chip 1. Cell 51 to Cell
100 are in Chip 2, and so on. This extension can be done by directly connecting
the common signal pin from each chip. In the prototype design, the cascade
configuration of winner-take-all cells are used. In Fig. 4.9(a), measurement results
of the DC characteristics are shown. Here, the input to Cell 101 is increased
linearly from 2.50 V to 2.55 V along the z-axis. The input of Cell 102 is set
to 2.52 V, and the other inputs are set to 2.50 V. As V2% exceeds V%2 the

corresponding outputs are reversed as the new winner and the loser emerge. All

other outputs are near the negative supply voltage. In Fig. 4.9(b), the output
waveform of the winner (Cell 101) is shown. The input to the winner is 0.1 Vo—p
pulse around the center of 2.5 V and the load capacitance is 7 pF. The rise time
and the fall time are 202 nsec and 400 nsec, respectively.

In Fig. 4.10, the output behavior of Cell 101 as the winner is shown. The input
is set to 2.58 V.. The second largest inputs, and the other inputs are set to 2.50 V,
2.42 V, respectively. The output levels and the response time against the number
of the second largest inputs are shown in Fig. 4.10(a) and (b), respectively. The
solid lines show the calculated results. All output levels of the winner are above 90
% of the full operation range. The operation speed can be significantly increased
when the circuit is integrated with other blocks in the VLSI chip because the
internal load capacitance will be much less than 7 pF of the measurement setup.

Fig. 4.11 shows the variation of the competition threshold for a winner across
the chips. Five curves correspond to the outputs of Cell 1 (Chip 1) with different
positions of the second largest input (set to be 2.52 V) at Cell 2 (Chip 1), Cell 50
(Chip1), Cell 100 (Chip 2), Cell 150 (Chip 3), or Cell 200 (Chip 4), respectively.
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Figure 4.9: Measured results of a 200-input WTA circuit. (a) DC characteristics
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The other inputs are set to 2.50 V. The variation range is shown to be less than 15
mV. Apparently, intra-chip variation has been found to be less than the inter-chip
variation.

Figure 4.12 shows the measured operation of the 10-input WTA circuit with
the current steering circuit. In Fig, 4.12(a), Vin(1) is the square wave between 3.4
V and 3.9 V, V;,(2) is set to 3.5 V. All other inputs, Vin(3) to Vin(10), are 2.0
V. When the V;,(1) pulse goes up to 3.9 V, the winning input is V;,(1) and the
corresponding output rises to 5 V. On the other hand, when Vin(1) goes down to
3.4 V, the winning input is V;,(2) and the corresponding outputs are flipped. In
Fig.. 4.12(b), the winning input Viy(1) is set to 3.75 V, the second .largest input
Vin(2) is set to 3.50 V, and all other inputs are 2.0 V. The upper curve is the
bias control signal so that the dynamic current steering circuit can operate for
Vesc = 1.5V and can be disabled for Vggc = 0.0V. Only one output is ensured
to have a high output value corresponding to the winner with the dynamic current
steering circuit.

Figure 4.13 shows the die photo of a 50-input WTA circuit and an enlarged
picture of one cell, which consists of the cascaded stages without the current
steering circuit. Each cascaded competitive cell occupies 58 um x 96 um in a
scalable 2-um CMOS technology. The power dissipation per each cell is 120 zW at
a 3 V supply voltage. Additional silicon area and power consumption are required
to support the various performance-enhancing schemes. Silicon area and power
consumption are doubled for the cascading configuration because two identical

stages are used. The dynamic current steering scheme requires an additional 25

% of the silicon area.
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Figure 4.12: Experimental results of a 10-input WTA circuit with the dynamic
current steering technique. (a) Experiment 1. (b) Experiment 2.
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Figure 4.13: Die photos of the WTA circuit fabricated in a 2.0-um CMOS tech-
nology from MOSIS. (a) Enlarged die photo of the one WTA cell containing the

cascaded stage. (The current steering circuit is not included in this die photo.)
(b) Die photo of a 50-input WTA circuit. ‘
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4.5.2 Self-Organization Neural Network

Figure 4.14 shows the measured result of the linear multiplier performing the
distance-measure calculation. The multiple curves correspond to the weight volt-
ages of -1.0 V, 0.0V, and +1.0V from the left to the right.

Figure 4.15 shows the simulated behavior on one benchmark problem for the
network with a 64-input winner-take-all circuit. The input pattern is obtained
from the distance-measuring network in [71). Since the differences between the
winning input and others are not large enough, the intermediate output levels are
produced by the single stage configuration. Cascading makes the outputs as fully
binary logical values and the dynamic current steering technique ensures only one
winner.

The physical layout of a self-organization neural network processor chip is
shown in Fig. 4.16. The die size is 4.6 x 6.8 mm? in the standard SmallChip
frame provided by MOSIS Service (105, 106]. The number of input neurons is 25
and the number of output neurons is 32. There are 800 fully-connected synapses
between them. Thirty-two WTA outputs are digital values and encoded by the
32-to-5 digital encoder for efficient interfacing outside the chip.

The network size within the one chip is limited by the area of the building
blocks. In the proposed design, the lateral interaction is done only in the com-
mon signal lines among the winner-take-all cells, which makes the easy scaling of
the network size without additional complicated devices. Figure 4.17 shows the
system architecture combining 4 chips and the relevant supporting sub-system

environment.
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Chapter 5

Analog VLSI Neuroprocessor for

Communication

5.1 Background

Rapid integration of communication, computer, and multi-media technologies has
become the key driving force toward global information networking for scientific
and engineering applications. A growth in data communication has created a
strong need for building adaptive filters to overcome problems inherent in the
transmission channels. Traditionally the adaptive filter is cascaded with an un-
known linear channel which has an associated transfer function. The purpose
of the equalizer is to approximate the inverse of the transfer function in order
to compensate the undesired channel response which may vary in time in most
mobile communications.

The performance of digital communication systems over band-limited, multi-
path fading channels is largely determined by the ability to overcome channel
impairments introduced during signal propagation. Various compensation tech-
niques [118] such as maximum-likelihood sequence estimation (MLSE) and the

decision-feedback .equalizers (DFE) were developed and extensively used. The
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MLSE method which is generally implemented by the Viterbi algorithm, can re-
sult in an optimum data detection in terms of the error rate performance. This
optimum performance is achieved with the exact knowledge of channel character-
istics. Since the channel response is also estimated from received signals, any error
in the estimated channel response may cause performance degradation. The com-
plexity increases exponentially as the number of channel states increases. Since it
also requires a large memory size, the MLSE method severely limits the practical
applications. On the other hand, the DFE method is used in practical communi-
cation systems due to their relatively simple architecture and computation com-
plexity. The performance, however, is not optimal and may be degraded severely
when an incorrect estimate is fed back to the equalizer.

In this chapter, an analog VLSI neural network processor for channel equaliza-
tion is described [42). The performance of the proposed neural network receiver is
superior to those of conventional approaches [119]. Prior estimation of the channel
characteristics is not required. Furthermore, unlike most of the other detection
algorithms, the noise statistics for the proposed receiver needs not to be a white
Gaussian.

Each programmable synapse cell is made of a compact and wide-range analog
multiplier circuit. The arrays of the input neurons and the output neurons are
optimized for large current-driving capability. The floor-planning of the processor
chip makes good used of the silicon area. The neural network processor chip
- performs the feedforward operation and a companion DSP board executes the
back-propagation algorithms. This approach is a.pi)ropria.te for quick system-
level demonstration. In addition, the synapse weight is stored permanently and
precisely in the digital memory with system back-up on the hard-disc or magnetic
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tape, which makes the proposed learning system be non-volatile in contrast to the
purely analog on-chip learning scheme, which will lose the weight information if
the electric power is turned off. .

The chip was fabricated in a 2-um double-polysilicon CMOS technology from
the MOSIS Service. The well-characterized building blocks for analog neural
network processors are optimized for the proposed communication receiver. Such

an approach makes the design and improvement of VLSI hardware more quickly.

5.2 System Architecture

The block diagram for the neural-based equalizer is shown in Fig. 5.1. In order to
accommodate the possible rapid changes in channel characteristics, network train-
ing is performed by the extended Kalman filtering (EKF) algorithm which has
been widely used for the identification of nonlinear dynamic systems. Although
the system behavior is quite sensitive to the initial conditions of the states, it pro-
vides a good solution to improve the slow convergence speed, and the imperfect
operation of the conventional back-propagation training methods for a network
with moderate complexity. The advantage of this scheme over the conventional
equalizer of the MLSE method lies on the fact that the channel estimator and in
principle, the matched-filter are not needed because they are already embedded
in the training operations. The EKF training algorithm is executed on a compan-
ion digital signal processor and is interfaced to the analog VLSI neural network
Processor through the control circuitry.

The neural network processor consists of a 4-layered feedforward network and
is built with compact analog circuit cells. The input signal is first sampled at a

rate greater than or equal to the data symbol rate. As the sampled input signal
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z(k) propagates into the analog delay line, its delayed-versions are applied to
the network in parallel. Here, the analog delay line serves as the input layer.
The network has two hidden layers and one output layer. Since we deal with
binary pulse-amplitude modulation (PAM) communication systems, the output
layer contains only one node.

In the analysis, we assume for simplicity that the symbol timing is perfect so
that the residual inter-symbol interference due to transmitter and receiver Nyquist
base-band filters is negligible. Also the frequency offset between the received and
the local oscillator signals is assumed to be zero. By using the discrete-time model,
the received signal r(k) is a convolution of the transmitted signal d(k) and the

channel response k(k), plus additive white Gaussian noise n(k) with a zero mean

and the variance §2,

r(k) = d(k) % h(K) + n(k) = g h(D)d(k — 1) + n(k). (5.1)

Then the input to the network becomes
zi=r(k—i) fori=0---M-1, (5.2)

where M is the number of the input nodes in the input layer. This number is to
be greater than or equal to the maximum delay-spread of the signal through the
channel, normalized by the symbol duration Ts. The number of neurons in the
hidden layers can be judiciously chosen and has to be supported by the analog
VLSI processor chip.

The complexity of the EKF algorithm is a quadratic function of the total

number of nodes. For a network with M input nodes, it can perform equalization

109



up to M-ray channel models. In comparison, the complexity of a DFE with
standard recursive least square (RLS) algorithm is proportional to N2, where N
is the number of tabs in the equalizer. The MSLE receiver requires the operations

proportional to P? for the P-ary system, where Q is the number of states to be

estimated.

5.3 Training Algorithm

The generalized-delta rule is a simple training algorithm in which the weights W,

at time & are updated in order to decrease the average of squared errors

1
E=) E,= 5 E(dp — 0)?, (5.3)
PeER peEN

where 2 is a set of training sequences, d, and o, are the desired and actual outputs,
respectively.

Here, we assumed that the channel characteristics are totally unknown and
no channel estimation mechanism is proveded. The lack of g priori information
on the channel implies that a exact decision boundary is not available for the
network training and thus the correspondence between the network input and
the output does not exist in general. In the real-world communication systems,
the preamble sequence which is normally used for synchronization and estimation
of the channel response at the receiver with stored replica, may corresponds to
the training sequence. Duration of two consecutive preamble sequences is long
enough such that they enclose a packet of data, but short enough compared to
the rate of changes in channel characteristics, which thus can be regarded as

constant values during the interval. Therefore, in the present application, learning
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is performed every time a new training sequence is received and the obtained
weights are effective until the next update. If the received data following the
training sequence is buffered, the trainings need not to be real-time.

In our design, the extended Kalman filtering algorithm is used to provide faster
network training [120]. In each iteration, the EKF algorithm approximates the
optimum estimate by expanding a nonlinear system function into the Taylor series

around the normal operating point and discarding the higher-order terms. For the

given nonlinear system model,

d(k) = o(k) + z(k) = W (k), z(k), K] +2(k), k>0, (5.4)

where W is the state of the network, = is the input, and z is the observation noise.

An iterative method of updating the state can be expressed as,

K(k) = P(k — 1)HT()[R(k) + H(k)P(k)HT (k)]-, (5.5)
P(k) = P(k - 1) — K(K)H(K)P(k — 1), (5.6)
e(k) = d(k) — o(k)’ (5.7)
and
W(k) = W(k - 1) + e(k) K (k). (5.8)

Here K is the Kalman gain, R = E(22T) is the covariance of the observation

noise, and H is the partial derivative of f() with respect to W, evaluated at the

point W, i.e.,

HT(k) = Iaf(W(k)’ ) ')

W (k) (59)

W(k)=W(k) ’
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for given dy, Ds,---,d;. The nonlinearity and its dynamic behavior are denoted
by f ('a Y k)'

5.4 VLSI Implementation

Figure 5.2 shows the block diagram of the prototyping analog VLSI neural network
processor chip. This VLSI processor chip contains four layers: the input layer, two
hidden layers, and the output layer. The numbers of neural units in the input layer,
two hidden layers, and the output layer are 8, 12, 12, and 1, respectively. The
input layer is constructed by an array of input neurons incorporating the switched-
capacitor analog delay circuits. The hidden layers consist of the combination of
the output neurons for the present layer and the input neurons for the next layer.
The output layer contains only one output neuron. The whole network includes
a total of 252 synapse cells, which are fully connected between the corresponding
adjacent layers.

The building components such as the synapse cell, the input neuron and the
output neuron were described in detail in the previous chapter. In monolithical
integration of the multi-layered network into one micro chip, the input signals
are used in the single-ended format instead of the differential approach in order
to reduce the number of interconnection lines and to save the silicon area. The
slightly degraded performance can be circumvented during the network learning
process.

The input neuron in the front-end portion of the network is optimized for
the communication receiver. The input voltage to a given input neuron is the
delayed version of the voltage to the preceding input neuron and an analog delay
circuit is used [121]. Figure 5.3 shows the schematic diagram of the proposed
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first layer. which is implemented by the switched-capacitor analog delay circuit
scheme. Each sample-and-hold (S-H) circuit is connected in parallel and an array
of switches operates as the rotating connector. The unity-gain amplifier in each
S-H circuit functions as an input neuron for the first layer. The parallel connection
in the delay chain avoids accumulation of the offset voltages from the unity-gain
amplifiers, which could become very significant in the cascaded version of S-H
circuits. The input operational amplifier buffers the input signal and establishes
the feedback loop so that any error due to the finite amplifier gain and the offset
voltage in the input neuron is divided by the voltage gain of this input amplifier.
Performances on the offset voltages of the operational amplifier are simulated
using the SWITCAP switched-capacitor network simulator (122] and shown in
Fig. 5.4. A DC voltage of 1 V is applied and the offset voltage is assumed to
be 10 mV. Apparently, the cascaded version suffers from the accumulation of
the offset voltages along the delay line. In the proposed parallel version, the
improved feedback configuration makes all nodes having the same offset voltage
of the operational-amplifier building block. Since the error voltages due to the
offset of the operational amplifier are accumulated in the output neuron, their
effects are critical as shown in Fig. 5.4(b).

Prior to the input operational amplifier, a D/A converter converts the digital
input signal into the analog value. In addition, one A/D converter is dedicated
to receiving the output data from the network. All required clocking and control
signals are generated by the digital finite state-machine circuitry built in the same

chip. They are globally synchronized with the external control clock which comes
from the DSP chip.
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5.5 System Environment

The fabricated chip was mounted on the custom-made circujt board. Standard
IC’s were used to support the efficient manipulation of control signals. This
board is interfaced to an IBM/PC-AT through the DSP56000ADS digital signal
processing board and the DSP56ADCI16 data conversion board from Motorola
Inc. [123]. The host computer is also used for displaying the output results.
Figure 5.5 shows the interfacing block diagram for forward and learning processing
operations.

In the learning experiments, the DSP board controls the entire operations by
providing the control and the clock signals for global synchronization. It executes
the learning algorithm. The companion interface board is dedicateed to data
conversion from the digital memory to the analog storage in the neural network
chip. The digital weight signals calculated in the DSP board are converted into the
analog values by an embedded digital-to-analog converter and into the differentjal
signals by additional operational amplifiers. Another digital-to-analog conversion
block is used for the input signal voltage from thg communication channel. The
analog-to-digital conversion block sends the output data from the neural network
chip to the DSP board. They consist of the data converters, the analog scaler, the
Iével-shifter, and the digital data latches. The control circuitry on the custom-
made board produces the required clocking signals by frequency-dividing of the
global clock and generates the synchronized addresses for storing analog synapse
weight values on the neural network chip.

The clock frequency for updating one synapse cell is 48 kHz when the serial
interface is used. The corresponding refresh cycle for the entire network is 252/(48-
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10%) = 5.25 msec. This value is long enough to prevent the synapse value from
changing due to the leakage current. Notice that the clock rate can be significantly
increased up to 2-3 M Hz by using the advanced DSP chips instead of the low-cost

general-purpose DSP board. The input/output sampling clock rate of the network
is 1.024 MH .

5.6 Experimental Results and System Analysis

A neural network processor chip was specially designed for the specific 4-layered
perceptron network. The prototype chips was fabricated in a 2-pum double-
polysilicon CMOS technology from the MOSIS Service of USC/Information Sci-
ences‘ Institute at Marina del Rey, CA [105, 106].

Figure 5.6 shows the measured transient characteristics of the 4-layered neural
network. The input signal was applied to the input neuron of the first layer and
the output waveform was monitored from the output neuron of the final layer.
The response time of the neural network processor chip is 0.66 usec. In the
experiment, the AD7524 chip was used in the preprocessing step to perform the
digital-to-analog conversion for the input signal. The TLC5502 chip was used in
the postprocessing step to perform the analog-to-digital conversion [124). Their
response times are 100 nsec and 50 nsec, respectively. The total operation time
for the entire feedforward path is 810 nsec, which is well suited for the designated
operating frequency of 1.024 MHz.

Figure 5.7 shows the die photo of the prototyping 4-layered perceptron chip
for the communication receiver applications. This neural network processor chip

occupies an area of 4.6 x 6.8 mm?. In our design, all output nodes of the hidden

119



LSU=: 2008 [P 1 G.2k
time H
input: 0.5 V/div.
output: 0.2 V/div.

Figure 5.6: Measured waveforms of the input and the output voltages for the
retrieving process.

120



layers and the output layer can be accessed externally for easy debugging and
monitoring of the network operation.

System analyses were performed for both the minimum-phase and
nonminimum-phase channels [125]. Figure 5.8(a) shows a decision boundary
of the network for the channel with the minimum-phase transfer function of
H(z) = 0.89443 + 0.447212z? and a signal-to-nose ratio (SNR) of 6 dB. As the
number of training symbols increases, the decision boundary closely approximates
that of the optimum receiver. The equalizer is trained against the additive noise
as well as the multi-path fading. Figure 5.8(b) shows a decision boundary of the
equalizer when the channel has a transfer function of H (2) = 0.44721+40.894432?

?

which is a typical nonminimum-phase characteristics. Here the signal-to-noise ra-
tio is 12 dB.

In Fig. 5.9, the convergence speed is plotted for several signal-to-noise ratio
values. The mean-squared-error of the network output was monitored in the
experiment. Figure 5.9 shows the results for a channel with the transfer function
of H(z) = 0.89443 + 0.447212"! and Fig. 5.9(b) shows the results for a channel
with the transfer function of H(z) = 0.407 + 0.815z~ + 0.407z-2. Notice that
the equalizers settle to their normal operating values within 300 iterations for the
minimum-phase channel and 700 iterations for nonminimum-phase channel.

Figure 5.10 shows the measured error rate as a function of the signal-to-noise
ratio for different channels. In the experiments, the neural network receiver was

trained with 2,500 symbols and the error rate was averaged over the execution of

10,000 symbols.
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Figure 5.8: Simulated results on the decision boundary of the neural-based re-
ceiver. (a) For the minimum-phase channel. The left portion and right portion

are the decision regions for the -1 and +1 symbols, respectively. (b) For the
nonminimum-phase channel.
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Chapter 6

Conclusions and Further Works

In this dissertation research, many analog-digital neural computing chips have
been designed and fabricated for the scientific and engineering applications such
as signal processing and communication. Several versions of the prototype chips
and the complete chips were fabricated in a 2.0-pm double-polysilicon, double-
metal CMOS technology through the MOSIS Service.

The building blocks were designed for the purpose of optimum use in a large
network construction. The programmable synaése circuit uses the wide-range
modified Gilbert multiplier with the dynamic capacitors which are inherent in the
CMOS technology. The output neuron consists of the transimpedance amplifier
and the sigmoid function generation. Several different kinds of operations can be
achieved by reconfiguration signals in addition to the modifiable gain. The input
neuron is the unity-gain buffer which is obtained from the conventional operational
amplifier. All building blocks and the subsystems with a small dimension of the
network were successfully measured in the laboratory.

The self-organizing neural network was implemented in an efficient hardware.
The multipliers are used for representing the distances between the applied input
and the stored data. The high-precision winner-take-all (WTA) circuit, which
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is the key element, was designed and fabricated. Several performance-improving
techniques such as cascading, distributed biasing, current steering are employed.
Successful experimental results support the possible extension of the network size
up to at least 1,000 competition cells.

The general-purpose analog neural network is customized to the application
in digital communication. The microchip includes a four-layered network and
the switched-capacitor (SC) analog delay line. Selected measured results on the
components and the entire chips were presented. The system-level simulations
have been performed on the minimum-phase channel and the nonminimum-phase
channel.

For future works, the microchips incorporating the complete system can be
explored. In order to investigate the neural network chips for the system-level
applications, the supporting measurement scheme as well as an improved version
of the microchips, should be implemented. It can consist of the designed chip, the
customized board for signal interference, and the host computer processing the
learning algorithms. All basic operational behaviors such as checking the input-
output waveform and programming the synapses throughout the chip, which were
already done, will be controlled and displayed by the host-computer control in
the user-interfu;e mode. Finally, the analog-digital neuroprocessor systems can
be applied to the study of models from biological systems toward the better lives

for the human beings.
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Appendix A

Gaussian Synapse Circuit

The conventional error back-propagation network usually requires a quite long
convergence time for correct weight adjustment. The sigmoid function of a con-
ventional multi-layer network gives a smooth response over a wide range of input
values. In contrast, the Gaussian function responds significantly only to local re-
gions of the space of input values. Backward propagation training is more efficient
in neural networks based on Gaussian functions, Radial Basis Function (RBF) net-
works, than those based on sigmoid functions in the hidden layers. Up to two or
three orders of magnitude speed-up in training has been reported in applications
for pattern recognition such as phoneme classification by using Gaussian function
neural networks [Al, A2).

In this chapter, the design of compact analog VLSI circuits for Gaussian func-
tion neural networks is presented. The proposed circuit is biased in the strong-
inversion region and optimized for several design issues such as high precision,

high operation speed, and area compactness to make it suitable for scalable neu-

ral network implementations.
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A.1 Gaussian Function Networks

Figure A.1 shows the portion of a complete Gaussian function neural network.
Input neurons are fully connected to output neurons through the synapse matrix. |
Input neurons can belong to the input .la.yer or a hidden layer of the complete
neural networks, while the output neurons can belong to another hidden layer
or the output layer of the complete network. The resultant operation of input
neurons, synapses, and output neurons can be expressed as

_(Xi=wy?

M
Y; = 2 Age F , forj=1..-N, (A1)

i=1

where Wj; is a weight value of the synapse cell which connects the i** input
neuron and the j** output neuron. The input neurons layer has M neurons and
the output neurons layer has N neurons. Each synapse between an input neuron
and an output neuron can perform the Gaussian function with the mean value
being a weight value. Changing the mean value W;; means to increase or decrease
connection strength of a input neuron X; to an output neuron Y; [A3]. The oy
| determines the standard deviation value of the Gaussian functjon characteristic.

In conventional back-propagation networks, linear multiplications between the
input and synapse values, Wi - X;, are used and easily implemented by the ana-
log multipliers. In self-organization networks, 'squared-diﬁ'erence functions be-
tween the input and the synapse values, (Xi: — W;)?, can be implemented by
the differential-input Gilbert multipliers in the analog neuroprocessor design [A4].
On the other hand, in a Gaussian function network, each synapse needs to com-

_(xi—wy)?

pute the exponential nonlinearity, e 5. The exponential nonlinearity was

computed in simulations on digital computers of the conventional approach. One
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Figure A.1: A portion of a complete neural network with Gaussian synapse char-
acteristics.
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hardware implementation of analog Gaussian functjon computing with transis-
tors biased in the subthreshold region was reported [A5]. In the subthreshold
region, the drain current of an MOS transistor has an exponential dependence on
the gate bias so that the exponential nonlinearity can be easily achieved. The
subthreshold-region VLSI circuits are suitable for implementation of biologically-
inspired artificial neural systems [A6]. Millions of MOS transistors can be inte-
grated on a single silicon chip because of extremely low power consumption in
each transistor. In the strong-inversion region, however, MOS transistors have a
power-law dependence of the drain current on the gate voltage. Since the strong-
inversion operation of MOS devices provides features of high current driving, large
dynamic range, and high noise immunity, high-speed analog VLSI neural network
processors can be built with MOS transistors biased in the strong-inversion region

for engineering applications.

A.2 Circuit Analysis

Figure A.2(a) shows the circuit schematic diagram and transistor sizes of a basic
synapse cell with single-ended input data. The Gaussian function synapse cell
consists of the MOS differential pair and several arithmetic computational units
operating in the current-mode configuration. The power-law of a drain current on
the gate voltage in the MOS transistor biased in the strong-inversion region makes
an implementation of the Gaussian function to be a piecewise approximation.
Transistors with non-minimum channel lengths are used to avoid the channel-
length modulation effect. The input voltage is applied to the gate terminal of one
transistor in the differential pair and the weight value is stored on the total gate
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capacitance of the other transistor. The two currents in the differentjal pair can

be expressed as [A7],

I1 (Vm w) ,3/2 - (Vm - Vw)zy (A’2)

and

L=1I+ (Vm Vo) 3 /2 = (Vin — Vo3, (A3)

with the differential input voltage in a finite region of

21

[Vin = V| < 22 I7a (A4)

Here I, is the tail current of the differential pair, and 8 = u-C,. - X is the
transconductance value of transistors M; and M. The output current of this

synapse cell can be determined by

Iwg =A- Ix - (Is + Ig), (A.5)

Where A is the drain current ratio of transistor M;; to M;e. When Vin — Vi <0,
then 1 > I, and I, < I.. In this case, g =11 —B-I_and I = 0. Here,
B is the drain current ration of transistor My(M7) to My,. On the other hand,
when Viu —~V, > O, then I < I and I, > I.. In this case, I = 0 and Iy =
I; — B- I,. Then the input voltage V;, is comparable to the synapse weight value
Vo, transistors Ms, Mg, Mg, and M, nearly turn off and the output current is
mainly contributed by a transistor M;;. Current gain values A and B can be
chosen to better approximate the ideal Gaussian curve. Their typical values are
quite close to one. The SPICE-3 [A8] circuit simulation result with weight value
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being zero is shown in Fig. A.2(b). The simulated output current closely matches
the ideal Gaussian function curve within the operational range.

An enhanced synapse cell with differential input/weight has also been devel-
oped. The circuit schematic diagram and transistor sizes are shown in Fig. A.3(a).
Figure A.3(b) shows the comparison of the simulated output current curve of this
enhanced synapse cell and the ideal Gaussian function curve. A better approxi-
mation than the basic synapse cell has been achieved due to symmetric handling
of the positive and negative signals. Both the symmetric input and the synapse
voltages are obtained with reference to the analog ground by inverting voltage
amplifiers, which <.:onsist of operational amplifiers with the input and feedback
resistors. The enhanced synapse cell approximates the Gaussian function with an
accuracy better than 98 % over the input voltage range of = 3 V in the ideal case
when device imperfections suchs as mismatch, offset and so one are not considered.
Device mismatch induced by fabrication process will cause some degradation to
this accuracy. In fact, the usable output signal range of the enhanced synapse .
cell is almost doubled due to the use of differential circuit architecture. However,
the area of the énha.nced synapse cell is approximately twice of that of the basic
synapse cell. The required silicon area for the basic synapse cell is 125 x 69 )2,
and that for the enhanced cell is 146 x 99 )2 for the CMOS scalable design rule
from MOSIS Service of USC/Information Sciences Institute at Marina del Rey,

CA [A9).
A.3 Programmability

A great power of artificial neural networks results from their ability to adapt to

the changing environment. Therefore, good programmability is of fundamental
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Figure A.2: Basic Gaussian synapse cell with single-ended input/weight values.
(a) Circuit schematic. (b) SPICE simulation result. The solid line is the simu-
lation results of the Gaussian synapse cell with the maximum magnitude of 9.14

1A, mean of 0, and standard deviation of 0.302. The dashed line is the ideal
Gaussian curve.
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Figure A.3: Enhanced Gaussian synapse cell with differential input/weight val-
ues. (a) Circuit schematic. (b) SPICE simulation result. The solid line is the
simulation results of the Gaussian synapse cell with the maximum magnitude of

13.91 A, mean of 0, and standard deviation of 0.55. The dashed line is the ideal
Gaussian curve.
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importance in designing circuit building blocks for VLSI neural network proces-
sors. Three values are to be programmed in a Gaussian function: the maximum
magnitude Aj;, the mean value Wj;, and the standard deviation gj in (A.1).
Mazimum magnitude

As seen from the previous section, the output current is controlled with respect
to the tail current I, of the input differential pair. By changing this reference
current, the magnitude of the Gaussian output can be adjusted.
Mean value

The mean value is stored on the gate capacitance of an MOS transistor in
the differential pair. Due to the possible leakage through the reverse-biased pn-
junctions, periodic refreshing is necessary to keep the accurate synapse value. If
the EEPROM device is used, the mean value can be stored permanently at the

room temperature. Each mean value of a synapse cell can be accessed by an
address decoder.

Standard deviation

The standard deviation of the Gaussian function can be changed according to
the constraints given by (A.4). For a fixed value of I, the shape of the output
current curve can be varied by changing the W/L ratio of input transistors of
the differential pair. In the differential pair, transistors with different sizes can
be connected together through MOS switches which are controlled by the data
stored in a local D-flip flop [A10]. By combining these programmable data, various
sizes of input transistors in the differential pair bring the corresponding standard
deviation of the Gaussian function.

The simulated results on the programmability of the proposed enhanced Gaus-

sian synapse cell are shown in Fig. A.4 for different values of the amplitude, mean,
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and standard deviation. In Fig. A.4(a), three Gaussian curves are created by set-
ting the reference current to 5 uA, 10 A, and 20 pA, respectively. Here, the
input voltage is set to be equal to the weight value. In Fig. A.4(b), the weight
value is changed to -0.5 V, 0.0 V, and 0.5 V, respectively. Here, the reference
current is kept to a constant value of 10 4. In Fig. A.4(c), the W/L ratio of
transistors in the differential pair is changed to 1, 2, and 4, respectively.

Figure A.5 shows an example network for demonstrating the performance of
the proposed Gaussian function network. Input neurons consist of unity-gain am-
plifiers as data buffers. The same input voltage value is applied to the four input
neurons. A linear resistor in the output neuron converts the summed current into
the output voltage. A minimum value of this feedback resistor is determined by
the allowable output voltage which can be differentiated from the noise. When
the number of synapses increases, the summed current may drastically increase
because all current are unipolar. Thus, a proper value of the maximum feedback
resistor value should be determined from the network size. Since the inverting in-
put of the output neuron is virtﬁally grounded, the contribution from one synapse
cell current is independent of the output resistance of the synapse cell.

Figure A.6 shows the SPICE simulation results of four Gaussian synapses as
shown in Fig. A.5. Here, four synapse values are set to be -1.6 V,02V,13V,
and 2.5 V. In Fig. A6(a), DC characteristics of four synapses are shown. The
output current of each Gaussian cell is shown in solid lines and their summed
current in the dashed line as the input voltage changes from -2.5 V to 2.5 V.

Typical response time less than 100 nsec is achieved for the internal capacitive
load as shown in Fig. A.6(b).
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Figure A.4: Programmability of the enhanced Gaussian synapse cell. (a) Different
amplitudes with Ix being 5 A, 10 A, and 20 pA. (b) Different mean values
with Vi being -0.5 V, 0.0 V, and 0.5 V. (c) Different standard deviations with
0.7308, 0.5515, and 0.3768 produced by the input transistor W/L ratios being 4
A[4)X,8) /41 and 16 A/ 4 ).
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Figure A.5: An example network with four Gaussian synapse cells.
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Figure A.6: (a) DC characteristics of the example network. Synapse-I: mean of
-1.6, standard deviation of 0.55, Synapse-II: mean of +40.2, standard deviation
of 0.38, Synapse-III: mean of +1.3, standard deviation of 0.38, and Synapse-IV:
mean of +2.5, standard deviation of 0.55. Output currents from four individual
synapse cells are shown in the solid lines and the summed current is shown in the
dashed line. (b) Speed response of the example Gaussian network.
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Appendix B

Nonideal Effects in WTA Circuit

B.1 Device Mismatches of Input Transistor

Since the proposed winner-take-all circuit is based on the multi-input source-
coupled amplifiers, device mismatches of the input transistors M, in Fig. 4.3
mostly influence the operation to decide which cell is a winner. Common de-
vice mismatches resulting from the fabrication process are the threshold voltage

change and device geometry variation. The drain current expression for an input

transistor M, of each cell is given by,
L= B~ Vou — VP forj=1...N, (B.1)

where f; = uCo ¥ and Vi, ; are the transconductance parameter and the effective

threshold voltage of an input transistor in the 7** cell, respectively.

Consider the drain currents given in (B.1) of the winning cell (Iw) and the
losing cell (I). These currents can be expressed as,

Iy = ‘ﬂz—w(VW — Verm — Vaw)? (B.2)
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and

Ir= %"(VL —Vom — Van)?, (B.3)

where Wiy and V;, are the winning input voltage and losing input voltage, respec-
tively, so that Viy should be sufficiently larger than V;. The minimum requirement

in order to achieve the proper winner-decision operation should be
Iy > I (B.4)
The worst case occurs when
Bw < Br and Viw > Vi . (B.5)

The differential-mode components and the common-mode components for the 8

and Vi, values can be defined as follows,

AB = BL— Bw, (B.6)
Bc = mTﬁw'a (B°7)
AVi = Vaew — Van, (B.8)

and

Vi Vi
Ve = W (B.9)

Based upon these equations, (B.2) and (B.3) can be changed into the following

equations, respectively,

1 A AV \2
Iy = E(ﬁc - Tﬂ (Vw - Vem — Vine — 2"') (B.10)
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and

I = -(ﬂc + = ﬂ) (VL —Vom — Ve + —A%ﬁ) (B.11)

The differential-mode and common-mode components of the input voltages can
be defined as,

AV=Vy -V, (B.12)
and
Ve =W + Vo —2(Vou + Vis). (B.13)

Then, the differential current of Iy — I, can be expressed as,

Iw-1, = l(ﬂo— )(V +ﬂ—%)

2
AB AV | AVy\?
2 (ﬂ * )(V"'T+T)
= -ﬁc(AV AV)(2Ve) — ’iﬂ (2V3+¥+ATVJ‘—AVAV,,.)
~ B(AV - AVu.)Vc—Azﬂ (B.14)

by neglecting the higher-order terms of differential-mode components. According

- to (B.4), the minimum voltage difference between the winning input and loser

input values can be expressed as,

AV > AV + 2By, (B.15)
ﬁc

Figure B.1 shows the calculation results of the minimum input voltage difference
of (B.15) for B error of 1 %.
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Figure B.1: Minimum input voltage difference between the winning input and
the loser input. The mismatch error of a transconductance parameter 8 is 1 %.
In the axis of Vih variation, AV, changes from 0 V to 10 mV. In the axis of
common-mode input voltage, V; changes from 2 V to 4 V.
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B.2 Parasitic Resistance

In the proposed WTA circuit, one of main sources to restrict the number of cells
to be connected side by side is a parasitic resistance along the common signal
line. Through this line, all input currents are redistributed and compared one
another. In general, the common signal line is made of the metal, of which sheet
resistance is very small. However, when the number of cells are significantly large,
the length of this line should be so long that the resistance value between two far
ends on this line cannot be ignored. The voltage drop across the common signal
line causes a gate-to-source voltage of each input transistor to be different from
the applied input voltage subtracted by the potential of the common sign line.
To analyze the effect of this finite resistance value along the common signal
line on the number of the cells, simple model is introduced in Figure B.2, where
each cell is represented by the equivalent current source flowing the cell current.
The current flowing through each cell is I, the bias current of each cell, for a
state of equilibrium when all input voltages are same. Thus the different input

voltage applied to the cell results in deviation from the equilibrium value Ig such

as’
I;=Ig+ Al (B.16)
with the condition of
N
Z Al; =0, (B.17)
j=1
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where N is the number of the competing cell. If the largest input voltage is
applied to the cell — 1 as the winning input, then the difference of the input
voltages between this cell and cell - § is expressed as,

. A j
V) v = \/g (\/IB +AL=Is+AL) + Rt - 3 2(i - )AL, (B.18)
k=1

where Ry, is the unit resistor value of the common signal line between two
adjacent cells. The first term in (B.18) is a voltage difference for the different
current assuming the perfect device mismatch and no parasitic components. The
second term in (B.18) is the voltage drop along the common signal line from
cell -1 to cell — j due to the parasitic resistor R. For the proper WTA operation,
the magnitude of the first term must be larger than that of the second term.

For illustration purpose, the following condition is assumed: The winning input
is applied to the cell—1 and the other input voltages are applied to the next cells in
the descending order so that V) > AZEN VO > ... VM, and the difference
of input voltages in the adjacent cell is identical so that V,g ) V'-g“) are identical

for all j. From these assumption, the following condition for the currents can be

derived as,

L=Iz+ (% ~G-1)-Al (B.19)

where AT is the constant differential current value. Here, the winning cell current
LisIg4 N—z“- - AI, the middle cell current Iinyayp2 i Ip, and the last cell current
Inis Ig - ”—;"- - AI. Based upon this condition, two, components in (B.18) are
shown in Figure B.3 for AT of 80 nA. From the fabrication results, because the
sheet resistance value of the metal line is 0.026 per square and there are 20

squares in the common signal between the adjacent cells, the unit resistor Ryq;
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value is 0.52 . Figure B.3 shows that more than 400 cells can be connected in

series and Figure B.4 shows the method to increase the number of competing cells
over 400.

160



W1 W— see—t—e0e —MW—4¢

Ruﬂit Rum Rum

Figure B.2: Simplified model of the proposed WTA circuit.
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Figure B.3: Signal and offset components due to the parasitic resistance in the
common signal line versus the number of competing cells.
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Figure B.4: Method to extend the number of competing cells regardless of the
parasitic resistor.
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