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ON THE LIMITING PROCESS OF SAMPLED SIGNAL
EXTRAPOLATION USING WAVELETS*

XIANG-GEN XIA!, LI-CHIEN LIN! AND C.-C. JAY KUO?

Abstract. The extrapolation of sampled signals from a given interval using a wavelet model with
various sampling rates is examined in this research. We present sufficient conditions on signals and
wavelet bases g0 that the discrete-time extrapolated signal converges to its continuous-time counterpart
when the sampling rate goes to infinity. Thus, this work provides a practical procedure to implement
continuous-time signal extrapolation with a discrete one via carefully choosing the sampling rate and
the wavelet basis. A numerical example is given to illustrate our theoretical result.
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1. Introduction. The signal extrapolation problem is to recover a signal from a given piece of
the signal. For a continuous-time signal f(t), it is to reconstruct f(t) from f(t) in ¢t € [-T,T] for
certain T > 0. For a discrete-time signal 2[n}], it can be formulated as recovering z[n] with given z[n],
n € N, for a finite subset A of integers. The performance of the extrapolation algorithm heavily
depends on whether the signal of interest can be modeled in a proper way. For example, by assuming
the bandlimitedness of the signal, we have the band-limited signal extrapolation problem [1), [6], [7], [9],
(14], [17], [20). It has applications in spectral estimation [8], medical image processing [10), geosciences,
etc. Let

f@ = [ roeiva.

be the Fourier transform of f, we call f(¢) Q-bandlimited if f (w) = 0 for [w| > @ > 0. In this case, since
F(t) is an entire function when ¢ is extended to the complex plane, f(t) is uniquely determined by f(2),
t € [-T,T), for any fixed T > 0. The Papoulis-Gerchberg (PG) iterative algorithm [6], [14] provides a
procedure to achieve the band-limited signal extrapolation. However, the PG algorithm for continuous-
time signal extrapolation is only of theoretical interest, since one has to process a discrete-time signal
which is sampled from its continuous-time counterpart in practice. A discretized version of the PG
algorithm was studied in [17], [18], [25). It was proved that the extrapolated discrete-time sequence
from the samples of a band-limited signal in [T, 7] converges to the extrapolated continuous-time
sequence as the sampling rate goes to infinity. Thus, we obtain a practical routine for continuous-time
band-limited signal extrapolation by applying the discretized PG algorithm to its sampled discrete-time
sequences.

Recently, wavelets were extensively discussed and widely used because of their attractive properties
such as the time-frequency localization property. By using wavelet theory, Xia, Kuo and Zhang exam-
ined a scale-time limited signal model which contains both the continuous- and discrete-time signals
in [23). Besides, a generalized PG (GPG) algorithm was proposed for continuous-time signal extrap-
olation whereas a discretized GPG (DGPG) was proposed for discrete-time signal extrapolation. In
this research, we present sufficient conditions on signals and wavelet bases so that the discrete-time
extrapolated signal converges to its continuous-time counterpart when the sampling rate goes to infin-
ity. Thus, it provides a practical procedure to implement continuous-time signal extrapolation with a
discrete one via carefully choosing the sampling rate and the wavelet basis.
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This paper is organized as follows. We briefly review wavelet theory, the scale-time limited signal
model, and the GPG and DGPG algorithms in §2. The main result of the work is given in §3. A
numerical example is presented in §4 to illustrate the convergence behavior. Some concluding remarks
are given in §5.

2. Scale-time limited signal extrapolation. In this section, we review basic properties of
wavelets and the GPG and DGPG signal extrapolation algorithms. The notation and equalities intro-
duced will be needed in the proofs given in §3.

2.1. Review of Wavelet Theory. We only consider real wavelets in this work, and refer to
(2], (3], [5] for more detailed discussion. Let ¢(t) be a scaling function such that, for a fixed arbitrary
integer 7,

{$ixOiezr where  ¢(t) = 2/%(29t — k),
is an orthonormal basis of the wavelet subspace V;, and {V;} ;€7 18 a multiresolution approximation of

L*(R), i.e. V; C Vj41 and U; V; = L*(R). The wavelet function corresponding to ¢(t) is denoted by
¥(t) and ;x(t) = 29/2¢(29t - k). The associated quadrature mirror filters (QMF) can be expressed as

(2.1) Hw)=) he ™, and Gw)=) ge ™,
where g = (—1)*h;_j and k k

(2.2) $(2w) = H(w)d(w) = fIOH (%), and  $(20) = Gw)d(w).
Then, we have -

(2.3) )= i i bjx¥ix(t),

j=—00k==00

for any f(t) € L*(R) and

(24) FO = Y condae(® =) D biavir(t),
k==-00 j<Jks-0

for any f(t) € V;, where bjx = (f, ;&) and csx = (f, dsx). Moreover, the coefficients b;x with j < J
can be obtained from coefficients ¢ by the recursive formulas:

- = 23, hn—2xc;
9.5 Cj 1,k \/_ n "n—-2kC5n,
( ) bj-l,k = \/izn In-2kCi,n,

for j =J,J—-1,J—2,--.. On the other hand, we have the following synthesis formula to compute
coefficients c; from cy,x and b;, with Jo < j < J via

29) Cirn = ﬁ(zhn-,kc,-,,,Jrz;g.,_zkb-,k),
k k

for j = Jo,Jo+1,---,J — 1. By viewing cyn as a sequence z[n], we call (2.5) the discrete wavelet
transform (DWT) with parameters Jo and J or simply DWT of the sequence z[n] and (2.6) the inverse
discrete wavelet transform (IDWT) with parameters Jo and J or simply IDWT of coefficients ¢, » and
bj k-

’ To construct a scaling function ¢(t) and a wavelet ¥(t) from their QMF H(w), there are several
ways. One of them [4], [19], [22] is the following. Let D, H and G be matrices with entries dim, Aimn
and gmn, respectively, and

diemn é 5(2’: - m), hmn g \/ihn—ma hmn 2 \/ign-mt
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where §(k) = 1 when k = 0 and 0 when k # 0. Then

27 $(t) = lim 3 [(DHYJo2’x(2t - &),
k
and
(2.8) $(t) = Jim 3 (DHY " (DG)a'x(2't - k),
k

where [A)mn denotes the (m,n)th entry Amn of the matrix A and
1, te|-1/2,1/2],
x(t) a { €[-1/2,1/2)

0, otherwise.

Actually (2.7) and (2.8) can be viewed as a consequence of (2.1) and (2.2). For more details, we refer
to [5], [19].

2.2. Signal Extrapolation Algorithms. The generalized PG (GPG) and the discrete GPG
(DGPG) algorithms were proposed in [23] for continuous- and discrete-time signal extrapolation. They
are summarized below.

To extrapolate a continuous-time signal, i.e. to recover f(t) from f(t), t € [T, T}, where f(t) € V)
for a fixed integer J, we can perform the following GPG algorithm.
Generalized PG (GPG) Algorithm:

(2.9) £O@) = Pre().

Forl=0,1,2,--,

(2.10) g0y = D <fDun > dnlt),
k

(2.11) FU0@) = Prf)+ (I - Pr)ee),

where Prf(t) = f(t) for |t] < T and 0 otherwise. When the scaling function #(t) is the sinc function,
that is, ¢(t) = 22X, the GPG algorithm (2.9) - (2.11) reduces to the PG algorithm with Q = 27,

Before stating the DGPG algorithm, we have to introduce some definitions. A sequence ¢, is said
to be (J, K) scale-time limited for certain integers J and K > 0 if its DWT coefficients (with lowest
resolution Jp) satisfies that coefficients ¢, x and b; x may take nonzero values only when |k| < K and
Jo € 7 < J. Note that when J and K are sufficiently large, the (J, K) scale-time limited sequence
provides a practical discrete-time signal model. Let z[n] be a (J, K) scale-time limited sequence. The
values of z[n], n € NV, are given, where the cardinality |N'| = N is finite. The extrapolation problem
is to recover z[n] for n ¢ N.

Let Py and P;x be the following operators:

_f yn), neN, _J dig, kKl<Kand Jo<j<,
Pwyln) = { 0, n¢gnN, and Py kdj) = { 0, otherwise

Let I be the identity operator and Dy, ,; and ‘D;: 7 be the DWT and IDWT operators with parameters
Jo and J defined as above. Then, we can state the DGPG algorithm as follows.
The Discretized GPG (DGPG) Algorithm:

(2.12) 2] = Pyz[n],
Forl=0,1,2,---
(2.13) 24+ [n) = Pyz[n] + (1 - PN)D;:' ;P1kD1o,32[n).

It is known that the PG algorithm and its discretization for band-limited signal models converge
very slowly and are sensitive to noises [17] due to the nature of the Fourier transform. In contrast, it was
shown in [11], [12], [23] that fast and robust DGPG algorithms can be obtained. For the convergence
of the iterative GPG and DGPG algorithms, we refer to [11], [12], [23].
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3. Convergence of extrapolated sampled sequences. In this section, we are interested in
the convergence of the extrapolated sequence obtained from the DGPG algorithm as the sampling rate
goes to infinity.

3.1. Problem formulation. We now look at the question raised in §1 more carefully. Consider
continuous-time signals in the wavelet subspace V;, where each f(t) € Vs has the form

(-] 0

fO = Y coxdn(®) = Y, cropdurt) + Y i bjin(t)-

k=—o00 k=—c0 JoLi<J k=~o0

In practice, f(t) is usually small for large |¢| so that ¢y, i and b;x are also small for large |k|. Thus, it
is important to consider signals in the following subspace of Vj,

k=-K Joli<J k==K

K K
Vix E) { F@): ()= Z cJo kPaok(t) + Z Z b; x¥jx(t)for some constantsc;,,k,b,-,k} .
We call signals in V¢ as (J, K) scale-time limited. For any f(t) € V; x, we have

K K
JO =) capdan(®) = Y capbrr®+ D D biabia(t),
%

k=-K Jo<i<J k==K

where

cik =< f[Ldak >, ok =< fi05k >, bix =< f, Vi >,

and ¢k, k € Z, is a (J, K) scale-time limited sequence.

We can use two examples to illustrate the scale-time limited signal model defined above. First,
let #(t) be the sinc function. Then, the scale-time limited model reduces to the well known band-
limited signal model. Second, consider the cubic cardinal B-spline wavelet [2], where we approximate
a function by the linear combination of a set of basis functions, which are second-order polynomials
between the knots with continuous first-order derivate at the knots. Thus, for a function f(t) with only
continuous first-order derivative, it is better to represent the function with the cardinal B-spline wavelet
basis rather than the conventional Fourier basis. The advantage of using wavelets is that it provides
many bases with good time-frequency localization for signal modeling. The signal extrapolation results
obtained in this research are generally applicable as long as the wavelet bases of consideration satisfy
the sufficient conditions of the theorems.

Since ¢(t) behaves like a lowpass filter, ¢ is close to the sampling sequence z,{k] & 9-Ji3g (k/27)
[13], [16] for sufficiently large J. Therefore, the sampling sequence z,{k] is roughly (J, K) scale-time
limited and we may use the discretized GPG algorithm for (J, I{) scale-time limited sequences to recover
the sequence z;[k] when z,{k] for |k/27| < T are known. More generally, even if J is not large enough
so that ¢;x cannot be well approximated by 2-9/2f(k/27), we can oversample the continuous-time

signal f(t) as z,, [k] & 9-nn2 f(k/271) with appropriate scale parameter J, > J. When J; is large,
z4,[k] = c5, k =< f,64, 5 > which is still (J, K) scale-time limited because f(t) € Vsx. Then, we
may use the discretized GPG algorithm for (J, K) scale-time limited sequences to recover z, [k] with
knowns z,,[k], |k/27| < T. The question is that, when the sampling rate in [—T, T] goes to infinity
(or Jy goes to infinity), if the extrapolated sequence of z, [n] from the knowns z;,[k), |k/27] £ T,
converges to f(t) in a certain sense.

In what follows, we consider f(t) € V3 x where the scale and time parameters J and K are
arbitrary but fixed. Without loss of generality, we assume that samples f(k/2”*) are known in the
interval [-T,T] = [-1,1] with J; > J. Since f{(t) € V;x C Vy, k,

(3.1) O = cnpbanelt).
k
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Let
Ny &{n: =2 <ng2h),

and

n

zy[n] = Q’J’lzf(zT,

), n €Ny,

The DGPG algorithm (2.12)-(2.13) can be rewritten in the current setting as:
(3:2) 250 = Pz, [0,
andforl{=0,1,2,--

(3.3) 2§ n) = Pu, 2, [n] + (I = Pw,,) D32 5 P g Do, 0,25 ).

Therefore, from the samples f(k/2”!), k € Nj,, we obtain a discrete-time signal zf,? [n], n € Z. With
zf,? [n], we form a continuous-time signal via

(3.4) Fra® =Y 2 Klesn(t), te R
k

Our main result is on the convergence of f, i(¢) to f(t). Before going to the convergence result, we
need a preparation for (J, K) scale-time limited sequences.

3.2. Representation of (J, K) scale-time limited sequences. We introduce two operators
H and G related to the quadrature mirror filters H(w) and G(w) in (2.1) as follows:

Hyl} & V2Y hn_aetln), and  Gylk] £ V23 gn_neyln).
. n n
Let H* and G* be their duals, respectively, i.e.

H*yn] & \/iz hn-2kylk], and Gyln] 2 V2 E gn—2ky[k].
k k

Then, from (2.6), we have
zln] = (H*) " csgp + (H*Y 771G by p + -+ H* G by + G*by_1 1) [n].
We can rewrite the above equation as
(3.5) z[n]) = wnp, n€Z,
where p and w,, are, respectively, column and row vectors of length (2K + 1)(J — Jo + 1) of the form

P = (cJasbJo,bJoi-lt"’er—l)T,
Wn = ((H‘):”Jot ((H.)J-JO-IG'),, IR (H.G')H)Gr‘u) )

and where
¢y = (cJo.—K’cJo.—K'l'l' * "cho,K) )
bj = (bj,-x,bj—Kk41,-+ -1 b5k),
G, = \/E(g—lf—2mg—l{+l—2m ~+* 8K-2n),

(H'¥G"), = (V&Y* ((DHY (DG)n,-x, (DHY (DG)ln,-k+1,- -, (DHY (DG)ln,x) ,

#)Y = V2 (OB ), (DHY Jo,- 41, -, (DH) Ik ) ,
5



for1<j<J—Jo—1and J' = J - Jy. Now, by letting
N={m,mg,--- . mny:m <my<---<mp},

we obtain the following linear system

(3.6) x = Wp,

where

x = (z[my], 2[m3], - - -2[my])T, and W= (wz‘,w:’,;a, . -,w:,",N)T .

Let Z;, [n] e ¢ n =< f,é4,k >, n € Z. As mentioned before, the discrete sequence Z, [n] is (J, K)
scale-time limited. Furthermore, because of f(t) € V; x and J; > J, similar to (3.5) for z[n] we have

(3’7) E-’x [ﬂ] = wn(Jl )p) ne zo
where
wa(h) = ((H*)=%),, (H* ) =5=16%), -, (H*) 7 GY),),

and p, ((H*))n and ((H*)?G*), are the same as before. It is clear that w,(J;) = w, when J; = J.
Let

i-’x = (5-’1 [—2.,‘]) i-’l [—2." + l]’ Y i-’x [2.,’])7’1

and

(3.8) W) = (WFpu (1), WEaoy 1y (1), -+ W (1)
Then,

(3.9) %5, = W(J1)p.

Let

(3.10) M) 2 A2(d1) 22 A (1) 2 -+ 2 Agnry (V1) 20

be the all eigenvalues of the matrix W(J;)(W(J1))T, where o 2 (2K + 1)(J = Jo + 1).
To prove the convergence we need the following two lemmas.

3.3. Two lemmas. Recall Z,,[n] = ¢j, 2, Which is (J, K) scale-time limited. Let us apply the
DGPG algorithm to ;,[n] with n € N, to reconstruct Z 4, [n] for n € Z, i.e.

(3.11) 8[n) = Pw, 35, [n),

and for{=0,1,2, -,

(3‘12) E.(";fl)[n] = PNJ] EJI ["] + (I = PNJI )D;nl,.’l PJ'K'DJOlei.(I‘I)[n]'

Then, for the error between the reconstruction :E_(,'l)[n] and the signal Z4, [n] we have the following

lemma.
LEMMA 1. If A, (Vh) > 0, then

(5.13 S [0t - 2 ll]” < AP S5 A0 - M),
n i=1

where X\;(Jy) is defined in (3.10).



Proof. Let q; be the eigenvector of W(J;)(W(/1))T corresponding to X;(J1), i.e.

(3.14) W) (W) a4 = M(h)ai, i=1,2,---,250% 41
where
(3.15) A(J1) 2 A2(J1) 2 - 2 Ao (N1) > Argg1 (1) = -+ = Ao (N) = 0.

8o that q; forms an orthonormal basis of C2**'+!, where C denotes the set of complex numbers. Let

(1, Y3, ¥ro) 2 (W) (a1, 92, Qro)-

Since q;, 1 < i < rp, are linearly independent and the matrix (W(J1))7T has rank ro, we can choose y;
with 1 € 1 < rg to be an orthonormal basis in C". Therefore, there are rp constants a; such that

ro
(3.16) P= Za,-y.-,
i=1
and
ro K K
(3.17) YlalP=lpllP= Y, Y lbalP+ Y leanl = 7112
i=1 JoSji<I k==K k==K

It is clear from (3.14) that only q;[n] with n € A, are known. For 1 < i < ro, we extend q;[n] from
n € Nj, to all integers via

(3.18) &) = ——wa ()W) q;, neZ.

i (J )
By (3.7), (3.16) and (3.18), we have

(3.19) Zy[n] = wa(hi)p = Wn(-fl)zam Zaswn(Jt)(W(Jx))Tm Zav\ (N)diln).

i=1 i=1 i=1

We now prove that A\;(J;) < 1for 1 <i < rp. Since

&)

2 IQf[n]I (A (.] ))2 2 Iwn(Jl)(W(Jl))qulz

n==00

= (,\ (J ))2 "D.lo J3 (“r(Jl))qu"2 (’\ (J ))

(MT))Q 1D so,5 Prs, @ill? = WHPN;, all?

(WD) all?

<

mllﬁellz.

where the property that both Dy, s, and D;! Jo.J, Dreserve the total energy is used, we conclude that
Ai(f)) <1l for1 <i<ro.
Next, we use mductlon to prove

(3.20) &4,[n] - P nl = (1 - PNJ;)Z“:’\:UI)(I"\t(Jl))‘(.lt["]

i=1

When ! = 0, (3.20) is trivial by (3.11) and (3.19). Assume that (3.20) holds for the Ith iteration. Then,

£1,[n] - 23V [n]



= (I = Pxn,,)D3};, Ps.kDio0,(Z2,[n) — §)[n])

2 (I = Pn,, D3}y PrxDapa (I - Px,,)za.a.(Jl)(l—A.(Jx))'".[nl)

i=1

= (I-Pw,,) f: a;2i(N1)(1 = X)) (@iln] - D3} 5, Pr,kDo,s, Py, Giln])

i=1

(= Payy) 3 adi(dr)(1 = M) sl - wa () (W (1)) asfn])

i=t

2 (1= Pay) S adi(a)(1 = M)l

i=1

[

where step 1 is from the induction assumption, step 2 is from the definitions of w,(J1) and W(J;)
and step 3 is from (3.18). This proves (3.20) is true for all{ =0,1,2,--- From (3.18), for 1 <i < ry,

Nall? = (@) T W) (D10,0) D s (W (1)) @i

(A (J )
Since (Dyo,4)7 = (Dyo,s) " and (3.14),

~ 2 _ 1
"q'" A;(Jl) -

Therefore,
1/2 ro
(E el - z;’[nll’) < Yl (1= M)l
" :..1"0 12 £ 40 1/2
< (ZI«:I”) (Z:A.-(Jn)(l—a.-ul))ﬂ')
) i=1 . i=1 \2
< 1Al (Z Ai(A)(1 - '\-'(Jl))") ,
i=1
where step 4 is (3.17). This proves Lemma 1. o

As mentioned in §3, the initial values in the algorithms (3.2)-(3.4) and (3.11)-(3.12) are close when
Ji is large. Thus we can expect that the reconstructions zf,") and 5:.(,? are also close. We now estimate
l12$? = £ in detail in the following lemma.
_ LemMA 2. If the scaling function §(t) satisfy that d(w) € LY(R) is continuous at w = 0 with
$(0) = 1, then

1) - 291 < (1 + 1)(A5,)13,
where

(3.21) AV = "PJVJ, (za[n) - 24, ["])"2 = Z |z, [n] - i'-h["]lz —+0, asJy—o0.
uGNJ;

Proof: By the definitions of z, [n] and %, [n],

2%

(3.22) PN, (s [n] = 20, IDIP = D 127 2f( 577) = cnal’.

n=-2"

8



We can rewrite the expression of the right-hand-side of (3.22) and obtain (see [24] for detailed deriva-
tion)

5

323 |, 0,2 = 2 1ye-iberz’ g|
(323) 1w, (enln) - 240D = Z oy | febiz - e :
Let

- 2
(3.24) ‘”(J‘)éue[_z'ﬂ?ifz:m] ¢(;T)-1| .

By the assumption of $(w) being continuous at w = 0, we have that

(3.25) Jlim_w(J1) 0.
Let
(3.26) a() & min {272, (w(n))~},

for certain constant a with 0 < a < 1/2. Then, limy, 400 a(J1) = co. Since é(w) € LM(R), ¥(w) =
#(%)G(%) and |G(w)| < 1, we have ¥(w) € L}(R). Therefore, f(t) € V,,x implies that f(t) € L'(R).
That is, if we let

o]

3.7 b= [ (1= P,
—00

then,

(3.28) 85, 20, when J) = o0.

By the orthonormality of the wavelet basis, we have

Z |$(w + 2km)|2 =1, VYweR,
k

so that
(3.29) $w)l <1, VYweR.
By using (3.24), (3.27) and (3.29), we can simplify the right-hand-side of (3.23) as,

|/ f- w)(¢( )-l)e"kwlz’xd r

(/_1(:,) i) (é5% )_l)ld"’) +8( - Pa(m)lf(w)ldw)z

4l j |¢( )= 1| do + 88,

8vr||f||2a(J1)w(J1) +883,
87| FI1? (w(J1))" == + 863,

Therefore, by (3.23),

IA

<
<

4 + 2-.1 4 + 2—J;+l

(330) Ay, =||Pxy, (z5,[n) - Eg,[n])]* <

Ilfllz(W(J NI+ &

9



Thus, by (3.25) and (3.28), we have proved (3.21). From (3.2)-(3.3) and (3.11)-(3.12), the difference
z'(,? [n]— E.(,? [n] is resulted from the difference Px,, (zJ, [n] = £4,[n]). Furthermore, it is straightforward
by induction to prove

1/2
12§} - 29| = (Z 2P [n) - 5‘}.’['1]!’) < (L +1)(Aan )2
n

Thus, Lemma 2 is proved. m]

3.4. Convergence of fj, i(t). For each real ¢, let o(t) denote the vector

O(t) é (¢J°,-K(t), M ¢J°K(t), 'd)]o.-K(t), A} ¢J°K(t). 'l’J—l.—K(t)) "ty 'I’J—l,K(t))'
Then, for f(t) € Vs k,

(3.31) f(t) = o(t)p,

where the components of the vector p are the wavelet transform coefficients of f(t). We have the
following the convergence result.

THEOREM 1. Let f(t) € Vi for certain integer K > 0. Let the scaling function ¢(t) and the
wavelet function (1) be continuous, and $(t) satisfy that $(w) € L'(R) is continuous at w = 0 with
&(0) = 1. If there exit ty,t3,---,ty, € [—1,1] so that the matriz O = (o(t;),0(t2),-,0(tr,))T is
non-singular, then

(3.32) Jim lim (Ifs = £l =0,

where o is defined as in (3.31) and f;, (1) is defined by (3.4) end ro = (2K + 1)(J — Jo + 1).
Proof. By the constructions (2.7) and (2.8) of ¢(t) and ¥(t) from H (), we know that, when n2~/1 ~ ¢
and J; is large enough, o(t) & 27t/2w,(J;). With the continuities of ¢(t) and ¥(t), when J, is large
enough there is a submatrix Wy (J;) with size g x rg of W(J;) so that the entries of 27/ AW, (1) are
close to the ones of O and 27/2[W,(J})lmn = [O)mn when J; — 0o, where rq = (2K +1)(J = Jo +1).
Let Ay > A2 > --- 2 A, be the o eigenvalues of the matrix OOT. Then, from the conditions in
Theorem 1, we have that A,, > 0. Let A{(J1) > Ap(h) 2 -+ > z\:.o(Jl) be the ro eigenvalues of
W1 (J1)(W1(/1))7. Then, we have the following two consequences.

(8) 2712, (J1) = Ax when J; = oo and 1 S k < rg,

(b) k(1) 2 Au(h) for 1 Sk <o,
where (a) is because of 271/2[Wy(Jy))mn — [O)mn when J; — co and (b) is due to the fact that
W, (J1) is a submatrix of W(J;) (see [21] ). Therefore, there is a J2 > 0 so that when J; > J;

(3.33) 12 001 2 2a() 2 - 2 Mrolh) > A2~ >0,

where the first inequality “1 >” is from the proof of Lemma 1. In what follows, we always assume that
Ji1 > Ja. With this assumption and the conditions in Theorem 1, the conditions in Lemmas 1-2 are
satisfied. By (3.1), (3.4), (3.21), Lemmas 1 and 2, we have

1/2
Wfna=fll = (Z |z‘,'3[n]-c;,,,,|’)

1/2 1/2
< (z: lx‘},’[n]-iS‘,’[n]l*) + (Z |ﬁ‘,‘,’[n1—su.[n1|2)
n 5 n 12
(3.34) < (4 1AL+ 151 (Z A(h)( - A.o(m)z‘) .
i=1

10



By (3.21) and the property (3.33) and Lemma 2, (3.32) is proved. This completes the proof of Theorem
1.0

Theorem 1 provides a sufficient condition for the convergence of the discrete-time extrapolations
to the continuous-time one. Moreover, the algorithm (3.2)-(3.4) provides a practical extrapolation
pracedure for signals in V) x by implementing the discretized GPG algorithm to oversampled data
f(n2-7). Numerical examples for this procedure are presented in §4. For the convergence rate of
the reconstruction fy, i(t) via the sampling rate 27t and the iteration steps I, we will derive a more
detailed estimate below.

We first have a lemma to estimate A, in (3.34).

LEMMA 3. If f(t) € Vi k for certain integers J, K > 0, then

T anidl S 11 ER Y O el
(3.35) As s ((,_.2,,,1_.,+ ( S OFN+15C w)l)dw) )

w T

vhere A;, is defined by (3.21) and a is as in (3.26),

(3.36) = f: khel)~2,

k==o00

hy are the impulse response of the lowpass filter H(w), and ro = (2K +1)(J - Jop + 1).
Proof. 1t is clear from (3.24), (3.26), (3.27) and (3.30) that to prove (3.35) we only need to estimate
w(J1) in (3.24). For any w € R,

T HGR -
k=1

< = HEG+IHGI - HEG + HGHGI = Higg)l+---

For orthogonal wavelets, |H(w)| < 1 for any real w. Thus,

éw) - 1|

(3.37) 1) = 1< Y11= H(zpl
k=1
We now estimate |1 - H(w)|.

]
1 - Hw)| € max|H (W)llw] < 0] D [khal.

k=-x

Thus,

1d(w) — 1] < (Z ,,) > kbl = || fj |khy|.

k==~o00 k=eo00

This turns out w(Jy) < c¢=12=71, The facts that H(0) =1, a < 1/2, and

00

E Ikhk' >1,

k==00

imply a(J1) = (c271)*. This concludes the proof. O
Combining (3.34) and (3.35), we have the following detailed error estimate of || £, 1 — fl|-
COROLLARY 1. Under the same conditions with Theorem 1,

i=1

0.5 ro 0.5
Mona=1l < Co (( A, If(w)l+lf(—w)l)dw)’) +Hi (ZA;(JI)(I-A;(JI))”)
11



where

4+2—J1+l
Co= ‘/—’
T

o is arbitrarily fived number with 0 < a < 0.5 and ¢ is defined in (3.96).
We next want to estimate A;(J1). To do so, we define

(3.38) Q(s,1) = o(s)(o(t))", s,t €R,

where o(t) is defined in (3.31). Then, there is a sequence of eigenvalues o; > 0 and eigenvectors ®;(t)
of the operator Q so that (see [15])

(3.39) 612022---20,

and
1

(3.40) (Q¥:)(s) & _/ Q(s, )®;(t)dt = 0:%i(s), s € [-1,1], i=1,2,---.
-1

From the orthonormality of the wavelet basis, it can be proved that o; < 1 similar to the proof of

A1(J1) € 1 in Lemma 1. From the assumption of the continuities of ¢(¢) and () and (2.7)-(2.8),
251w (J1)(Wn (1))T = Q(s, 1) as long as m2~7* ~ s and n2=%» ~ ¢ for s,t € [~1, 1] when J; is large.
Therefore, 271\ (J;) =+ o1 as J; = oo. This implies that

(3.41) A1) 0@27%).

We now have the following theorem for the error ||f1,: - f||.

THEOREM 2. Let f(t) € Vjk for certain integers J,K > 0. Let the scaling function ¢(t) and the
wavelet function (t) be continuous, and $(t) satisfy that $(w) € L'(R) is continuous at w = 0 with
$(0) = 1 and ¢ > 0 where c is as in Lemma 1. If there exit ty,t3,--, 1, € [1,1] so that the matriz
O = (o(t1),0(t2), - -,0(tr,))T is non-singular and moreover

(3.42) ) < 0w

Jor certain constants ¢ > 0 and 8 > 0, then

15,0 = fll < O(2=I181(1+28)y,

Proof. When the signal f satisfies (3.42), it can be proved that
00
[ (f@) + f-w)do < O(z=5e%).
(c271)e
Based on (3.34), (3.35) and (3.41), we have
Wfni = £l S O@(271 (=02  g=hred) 4 g=hi/2),

By taking a = 1/(1 + 28), Theorem 2 is proved. O

Since the sampling rate is A~! = 271, Theorem 2 tells us that the error ||f1, 1 — f|| < O(hP/(1+20))
where h = A and the number of iteration steps ! is appropriately fixed. When g = oo, ||fs,1 ~ fll £
O(h®%). In another words, when the order of the smoothness of the signal f goes to infinity, the error
[1£,4 — fl| has the order h%S5.

12



4. Numerical experimment. We use a numerical example to illustrate theoretical results derived
in §3. The wavelet basis used is the Daubechies D4, whose mother wavelet () and scaling function
#(t) are continuous. Besides, $(0) = 1 and $(w) is continuous at w = 0. Consider a test signal
F(t) = ¢(t) + ¥(t) known in the interval [-T,T] = [-1,1]. Since f(t) € Vs with J =1,K =0 and
Jo = 0, we have ro = 2. It is clear that o(t) in (3.31) is o(t) = (¢4(t), ¥(t)) for a fixed ¢. and the matrix
O in Theorem 1 for ¢, # t2 € [-1,1] is

NEORO)
0= ( ot its) )

Let ¢; = —0.5 and t5 = 0.5. Then,

o= 0 —0.246337
T\ 0.919341  1.26143 )

The determinant |O| = 0.2265 # 0. Since all conditions in Theorem 1 are satisfied, it holds for the
space V.

The discrete-time sequence is obtained via sampling the continuous-time signal, i.e. z4[n] =
f(n2-7). We perform the algorithm (3.2) - (3.3) with five sampling rates, i.e. 2=/t in [-1,1] with
J1=1,2,...,5. The number of iterations is chosen to be I = 6. The reconstructed continuous-time
signals f;, 1(t) via (3.4) with J; = 1,2,..-,5 and ! = 6 are shown in Figs. 1-5, where the solid lines
indicate the original signal f(t) while the dashed lines show the reconstructed signals fj, ;(t). We
calculate the mean square error between f(t) and fs, (t) for =5 <t <5,

160 ny_ ny2
(4.1) e"'(Jl) - n=-160 |f(g§)1 fJ;,l(sz)l ,

and plot them in Fig. 6.
To illustrate the convergence rate with respect to various sampling rates (i.e. Jy; = 1,2,---,5), we
list the ratios

w2 Maa =S _ Wona =1l

9=-hf2 = ho-S

with | = 6 in Table 1. We see that the error between the original and reconstructed signals decays
faster with respect to a larger sampling rate.

TABLE 1
r(J1,l) forl=6

A ||t | 2 | 8 | 4 | 5
r(J1,1) || 2.5448 | 1.9688 | 1.4555 | 1.0750 | 0.8592

5. Conclusion. In this research, we investigated a numerical implementation of continuous-time
signal extrapolation with a wavelet model. The procedure involves the application of the discretized
GPG algorithm to a set of data sampled from the given segment of the continuous-time signal. We
proved that under certain conditions the discrete-time extrapolated signal converges to its continuous-
time counterpart as the sampling rate in the given interval goes to infinity. Numerical examples were
given to illustrate the convergence behavior.
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