USC-SIPI REPORT #265

A Mutliscale Error-Diffusion Technique for
Digital Halftoning

by
Ioannis Katsavounidis and C.-C. Jay Kuo

August 1994

Signal and Image Processing Institute
UNIVERSITY OF SOUTHERN CALIFORNIA
Department of Electrical Engineering-Systems
3740 McClintock Avenue, Room 404
Los Angeles, CA 90089-2564 U.S.A.



A Multiscale Error-Diffusion Technique for Digital Halftoning*

lIoannis Katsavounidist  and C.-C. Jay Kuo t

August 10th, 1994; EDICS: IP 3.2

Abstract

A new digital halftoning technique based on multiscale error diffusion is examined in this
research. We use an image quadtree to represent the input gray level image and the output
halftoned image. An iterative algorithm is developed that searches the darker region of a given
image via “maximum intensity guidance” for assigning dots and diffuses the quantization error
noncausally at each iteration. To measure the quality of halftoned images, we adopt a new
criterion based on hierarchical intensity distribution. The proposed method provides very good
results both visually and in terms of the hierarchical intensity quality measure.

1 Introduction

Halftoning is one of the oldest applications of image processing since it is essential for the printing process.
With the evolution of computers and their gradual introduction to typesetting, printing and publishing,
the field of halftoning that was previously limited to the so-called halftoning screen [9] evolved into its
successor, digital halftoning. Digital halftoning plays a key role in almost every discipline that involves
printing and displaying today. All newspapers, magazines, books are printed with digital halftoning. It
is used in image display devices capable of reproducing two-level outputs such as scientific workstations,
laser printers, digital typesetters. It is also important for facsimile transmission and compression.

There exist many methods to perform digital halftoning. They can be grouped in two major categories,
i.e. ordered dithering [6], [9] and error diffusion (2], [3], [7], [8]. Dithering means the addition of some
kind of noise prior to the quantization of a signal which in our case is an image. The amount of noise
to be added is simply determined by the order of the pixel, i.e. its spatial coordinates. The ordered (or
classical) dithering techniques are attractive in the sense that they are very simple to implement, especially
in parallel architectures and that they are computationally inexpensive. This is because they involve a
two stage process that can be performed independently for every pixel. Their performance is however
poor when compared to the error-diffusion technique. Error diffusion revolutionized the digital halftoning
area and has given the spark for a great number of new methods. Error diffusion is based on the simple
principle that once a pixel has been quantized, thus introducing some error, this error should affect the
quantization of the neighboring pixels. The way the error is affecting the quantization of its neighboring

pixels is referred to as diffusion, meaning that the error is split in a few components and then added to the
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gray level values of the neighbors. By diffusing the error, the system performs as a self-correcting, negative
feedback system.

We propose a new digital halftoning technique based on multiscale error diffusion in this research. In
comparison with classical error diffusion methods, our method has the following three major differences.
First, all existing error-diffusion methods are applied to every pixel in a sequential pre-determined order.
Our approach scans the image pixels in a way determined by their local intensity. Roughly speaking, we
treat first the darker regions of a given image that require more dots. We achieve this deterministic yet
image-dependent scanning via “maximum intensity guidance”. Second, existing methods distribute the
error by using a causal filter. Our method uses a generalized non-causal filter. Third, error-diffusion acts
as a local deterring mechanism. Upon quantization of an image pixel, the diffusion of the quantization
error prohibits the accumulation of the error locally. Our method achieves a more global distribution of
the quantization error. In other words, it acts as a local and global deterring mechanism by prohibiting
the accumulation of the quantization error over a range of resolutions. To achieve the last point, we utilize

a multiresolutional treatment of the image data to be quantized.

2 Review of Existing Digital Halftoning Techniques

Digital halftoning can be phrased as a problem of 1-bit quantization of a 2-D signal as follows. Let W (%, )
be an array of size K x L whose values are within [0, 1], corresponding to a certain gray level. We want
to find an array X(<,j) of the same size which takes binary values only (0 and 1) such that the error
introduced, given by

E=W - X,

minimizes a certain criterion. What we normally require is that E is as close to a zero matrix as possible.
Therefore, the problem of defining a distance between matrices rises.

This criterion leads to the so-called fixed level quantization scheme that compares the pixel value with
the middle gray value (in this case, 0.5). If it is higher, we quantize it to 1, if it is less we quantize it
to 0. It is straightforward to see that fixed level quantization guarantees that every element of the error
matrix will be bounded (in absolute value) by 0.5. This algorithm results in the minimum error for each
element so that it gives the minimum mean square error solution. Although the simplest of all, the fixed
level quantization produces the worst result, as can be seen in Fig. 1(a). This very poor result is due to
the fact that areas of a constant gray level are quantized as either all-white or all-black. This results in an
accumulation of quantization error.

The dithering technique was invented to overcome the disadvantage of the fixed level quantization
approach. Dithering means the addition of some kind of noise prior to the quantization of an image. This
technique was introduced as a way of breaking the monotonicity of the error in areas of constant gray
level. Depending on the type of noise added, we get different types of dithering such as the clustered and
dispersed order dithering methods. For a more detailed analysis of various types of dithering, we refer to
[9]. In most dithering algorithms, a regular pattern is used to represent the error that is introduced at

different pixel locations. Thus, the major disadvantage of dithering is that it gives rise to regular error



patterns. The dispersed ordered dithering is claimed to produce a better result. We were able to verify
that, but also observed some defects, as seen in Fig. 1(b). Dithering with a regular pattern is equivalent
to the addition of pseudo-random (periedic) noise, followed by fixed level quantization.

The idea behind error diffusion is very simple yet attractive. After quantizing a pixel to be either 0
or 1, it is almost certain that some error is introduced - unless that pixel has gray level of exactly 0 or 1.
This error should affect the quantization of the neighboring pixels. More precisely, if the error is positive,
meaning that the pixel was quantized to 0, that should “increase” the gray level value of its neighbors so
that they are more probable to be quantized to 1 than they would be if the error was negative. This can
be interpreted as a way of keeping the local average intensity of the printed image as close to that of the
original image as possible. Now, an interesting question rises: which neighboring pixels should be affected
by the error introduced from quantization at a given location? The answer given by Floyd and Steinberg

(2] results in the following filter:
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Jarvis et al [3], Stucki [8) and Stevenson and Arce [7] suggested similar filters with a larger region of
support. A common characteristic of all these filters is that they are all causal, i.e. their region of support
is a wedge with an angle of less than 180 degrees to ensure that these filters can be applied in a sequential
manner.

Even though causal filtering provides an attractive feature, it also turns out to be the reason for one
disadvantage of error diffusion, i.e. directional hysteresis. Error tends to be carried to the right boundary
of the image with the filter given by (1) An easy fixture for that is to use the serpentine scanning, which is
done by considering two versions of the Floyd-Steinberg filter, the original one (1) used when the direction

of scanning is from the left to the right of the input image, and its mirrored reflection
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used when the direction is from the right to the left. The above filters are applied alternatively. Upon
reaching the right boundary of the image by using the filter (1), you go to the next line, start from the right
boundary and move to the left boundary by using the mirrored version of the filter as given by (2). This
algorithm, known as the error diffusion with serpentine scanning, produces a very good result as shown in
Fig. 1(c). There are variations based on the same error diffusion idea such as dot diffusion [4], dithering

with blue noise [10] and diffusion with neural networks [1], [5].

3 Multiscale Error-Diffusion Algorithm

Our method is based on the same principal as error diffusion. The error introduced from the quantization of
a given pixel is diffused to its neighbors to guarantee that the local average intensity of the printed halftoned
image will resemble the local average intensity of the original gray level image. The major difference is

that the order of scanning is determined through a “maximum intensity guidance algorithm”. We can
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briefly say that the algorithm begins with the lowest resolution image (the top of the image pyramid) and
proceeds by always selecting the quadrant with the highest average intensity. This procedure ends when a
pixel of the original image has been reached. Thus, the order of scanning is deterministic with respect to
one specific image, but it is random in the sense that it is image-dependent. The next important point is

that we use a non-causal error diffusion filter.

3.1 Image Quadtree Representation

Our approach is to apply the error-diffusion not only to the pixel of the original grid level, but also at
coarser grid levels. To do so, we consider a collection of image arrays Wy, with 0 < & < r and where
r = logy[min(K, L)]. Thus, r + 1 is the total number of different levels of the image array W to be viewed,
and W, denotes the array of the largest size of dimension K x L, W,_, denotes that of size K/2 x L/2,
and so on. The collection of these image arrays of different resolutions for the same image is called an
image pyramid or image quadtree. The pixels associated with the finest level of the image, i.e. W,(,j5),
t=0,..., k-1, =0,...,L — 1 are the actual pixels of the W array. The elements of the coarser

resolution arrays are defined by

11
Wilio jo) = 3.3 Wi (2io+14,2j0+3), k=0,...,r—1, igjo=0,...,25-1.
1=0 j=0

These arrays correspond to different visualizations of the same array at different resolutions from different
viewing distances. If K = L = 2", the coarsest resolution Wp is simply a 1 X 1 array that consists of one

element, whose value is the average intensity of the whole input image.
Similarly, we can represent the output dot distribution X of the same size K x L with a number of
arrays of different resolutions. The main difference is that this array can only takes binary values, i.e. 0

or 1, at the finest resolution. For coarser resolutions, we have

11
Xilioyjo) = Y. Y Xk1(2io+i,2jo+35), k=0,...,r—1, igjo=0,...,28~ 1
i=0 j=0
where X denotes the output dot distribution at the kth level, & = 0 corresponds to the coarsest level and
k = r corresponds to the finest level which is identical to the array X we want to print or display. Without
loss of generality, we consider the case of square images, i.e. K = L = N, for the rest of this paper.
It is intuitive to require that the two sets of arrays are as close as possible on all levels. That is, we

require that
Ep = Wi — Xy

minimizes a certain criterion for 0 < & < r so that the printed image resembles the original at every

resolution. One such criterion is the hierarchical intensity distribution criterion introduced on Section 4.

3.2 Algorithm

To achieve this goal, we consider an iterative multiscale error diffusion algorithm. Each iteration of the

algorithm consists of the following two steps.



Step 1: “Maximum intensity guidance” in an image pyramid

Start from the coarsest level Wy which consists of one element Wy(0,0). Consider the four subimages
Wi(i1,71) with 4, = 0,1 and j; = 0,1 at level 1, each of which covers an array of size of N/2 x N/2 of
the original array, and choose the one with the highest value, i.e. the quadrant with the highest local
intensity. It is obvious that the determination of the maximum intensity value requires 3 comparisons
among the 4 intensity levels. Then, consider its four subimages at level 2, i.e. Wa(i2,42). Continue this
procedure until we reach the finest resolution W, (¢, j.). Since there are exactly r + 1 levels of the image
tree, the computational complexity of the whole step is 3log,(/N) (in binary comparisons). At the end
of this procedure, we have chosen and kept in some kind of stack one element from every level, namely,
Wi (ir, ji) with 0 < k < r.
Step 2: Multiscale error diffusion in an image quad-tree

In this step, we apply the quantization followed by multiscale error diffusion in the constructed image
quad-tree. Given the pixel chosen from Step 1, we quantize this pixel by setting X,.(¢,, 4-) = 1, i.e. assigning

a dot at the corresponding location of the output raster. By doing so, the quantization error is
Er(irajr) = Wr(injr) - Xr(irajr)'
Then, we diffuse the error to its neighbors by using the following weighting coefficients:
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The filter given above is only applicable at the pixels in the interior region of an image. For the side and
corner (i.e. boundary) pixels we apply the following filters together with their reflections to fit all possible

side and corner orientations:

1 0 00 1 0 00
Heorner = g 0 -5 2 and Hgige = § 2 -8 2. (4)
0 21 1 21

After the quantization and error distribution for a given pixel, we have to update the image quad-tree
W; so that the values at all resolutions are in accordance with the new error-diffused values at the finest
resolution. Note that each pixel affects the value of just one element at every resolution level, since a given
pixel belongs to exactly one 2 X 2 region of the original image and one 4 X 4 region, and so on. Thus,
we need to update exactly log,(N) + 1 elements of the image tree for every pixel whose value is affected
via error diffusion. There are at most 9 pixels whose gray level is changed for every pixel quantized, thus
the complexity of this update is bounded by 9[log;(N) + 1] for every quantized pixel. The number of
quantized pixels is roughly proportional to the average intensity of the input image W and in any case is
bounded by the total number N? of image pixels.

In the above 2-step procedure, we focus on the subimages that have the largest intensity, and thus the
greatest need for dots on the output image X. This procedure is applied iteratively until the intensity of
the root of the image tree is less than 0.5, which implies the global error is bounded in absolute value by

0.5. It is easy to see that the complexity of our algorithm is bounded by O(N?log N). For comparison,
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most existing methods are O(N?). The storage required by our method is bounded by O(N?), since the

number of elements of a full quad-tree with K = L = 2" terminal nodes is

a A
Wi=Yd=—"—-~-x4.

3.3 Discussion

It is worthwhile to make some discussion, in order to provide more insights into the above algorithm.

The image quad-tree plays a fundamental role in our algorithm. During the “maximum intensity
guidance” step, we perform a top-to-bottom descent along the tree. During the error diffusion step, we
perform the bottom-to-up ascent in updating the values at the nodes of the tree. The 2-step procedure is
performed sequentially on the image quad-tree that is kept updated. What makes our approach distinct
from existing ones is that we seek the subregions of W; that have the largest intensity and thus the greatest
need for dots on X; via maximum intensity guidance at each iteration, while existing methods trace all
pixel locations in a predetermined fashion. We do not concentrate on one part of the image, quantize it
and then move to another part of the image. Instead, depending on the input image, we may have to
jump around from one pixel location to another pixel location which is quite far away. The criterion is
always to bring the average local intensities of the output image (as this is measured through a series of
resolutions) as close to those of the original image as possible. Note that, in some sense, our approach is
closer to the way painters do their art work. By using the maximum intensity guidance, we throw ink (i.e.
assigning ones) to the regions that have the most need of it, just like a painter starts painting using, say,
his blue-colored brash from the region that has the darkest shade of blue of all. All existing algorithms
process all pixels of the input image in order to determine whether they will be assigned a 0 or 1. Our
method processes only the pixels that will eventually be assigned 1; the rest of the pixels have (by default)
a zero value, just like a painter works only on the part of the canvas that has a different color than that
of the background. It is thus easily understood that our algorithm has the smallest processing time for an
all-white image, since no dots need to be assigned at all.

The choice of these filters in (3) and (4) can be justified as follows. First, the distance between the
center of a 3 x 3 filter mask to its 4 nearest neighbors can be taken to be 1 (in normalized units) while
the distance from the center to the other 4 diagonal neighbors would be /2. By considering an isotropical
diffusion process which is proportional to d~2 at distance d, we conclude that the filter coefficient of the
diagonal positions should be half of that of the four nearest neighbor positions. Second, the sum of all
the filter coefficients should be zero to ensure that the quantization error is fully taken into consideration.
That is, it is completely diffused and compensated for the consequent application of the algorithm. Third,

the filter coefficient for the center pixel is normalized to be —1.

4 Quality Measure via Hierarchical Intensity Distribution
We define the error-image tree as a collection of arrays
Ep=W,-Xr, k=0,...,m
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To measure how well a digital halftoning algorithm works, we propose the following quality criterion. Once
we obtain some output image from a halftoning algorithm, we calculate the corresponding image pyramid
as described in Section 3 and calculate the mean squared error at each resolution of the error array

2k ok

MSEi= 357 103 Exlir )%

i=1j=1

Putting together these M S E values from different resolutions, we obtain a vector of dimension r = log,(N)
that presents the difference between the input and output images at different resolutions. To compare two
different halftoning methods, one needs to compare the two corresponding MSE vectors. A method is
clearly better if the corresponding error vector has components that are all smaller than those of another
method. However, if some components are smaller for one while others are higher, then it depends on the
application to determine which method is better. In the digital halftoning application, it seems that the
coarser the resolution level is, the more important the error is. A supporting evidence for this statement
is that the fixed level quantization method achieving the smallest MSE at the finest resolution with a
threshold of 0.5 is known to be the worst method.

The hierarchical intensity distribution quality measure can be naturally obtained by applying the Haar
wavelet transform to the error image. In this case, the energy values of different low-pass filtered error
images give the MSE values defined above. Note also that different resolutions use low-pass filters of
different length. The highest resolution convolves with the 1 x 1 identity filter while the coarsest resolution
is obtained with a filter of size NV x N. In between, consecutive resolutions convolve with filters that have
widths with one octave difference. This logarithmic law, underlining the hierarchical intensity distribution
quality measure, makes it a very good candidate as a substitute for the “subjective quality measure” that

has been used almost exclusively in evaluating halftoning algorithms.

5 Experimental Results

The test image used to produce all the results as presented in Figs. 1 (a)-(d) is the well known “Lena”
image of size 256 x 256. It is clear from the figure that the actual two competitors are the error diffusion
method with serpentine scanning and our multiscale error-diffusion. For that reason, we present the results
obtained from a boat image of size 512 x 512 for a more detailed comparison in Figure 2. Our method
gives a better result in representing the lines such as poles and ropes between poles. We also present
the result from the baboon image of size 512 x 512 in Figure 3. The baboon image has more textured
regions than the other two images. For all three experiments, we used 8-bit gray scale images as the input.
No preprocessing was performed, since we would like to compare the methods without the effect of edge
crispening or contrast stretching. We deliberately printed all the results using a high-quality laser printer,
but tuned to its lowest resolution (75 dpi) so that the individual dots can be clearly printed and the effect
of dot overlapping is not dominant.

By comparing these figures, we can say that the proposed multiscale recursive error diffusion method
produces reasonably good results. It is evident that the proposed method produces more clear and crisp

halftones than traditional error diffusion, while keeping all the desirable characteristics of the later, mainly



excellent gray-level rendition and no periodic patterns. For example, the hair of “Lena” or the letters
on the “boat” are significantly more clear with the new method. Similarly, the textured pattern of the
“baboon” image is better represented by using multiscale error diffusion. Furthermore, the overall contrast
of the result produced by the new method is higher and more pleasing.

We calculate the error energy at various resolutions for all these 3 images and list them in Table 1. As
shown in the table, it is obvious that the method that achieves the smallest M SE at the finest resolution is
the fixed level quantization. This was explained in Section 2. However, as the resolution becomes coarser
and coarser, the accumulation of error over large regions becomes more and more severe - a fact that
was pointed out earlier. By comparing the other three methods, i.e. ordered dithering, traditional error
diffusion and multiscale error diffusion, we can easily verify that our method outperforms the other two on

every resolution level.

6 Conclusions

In this research, we proposed a new digital halftoning algorithm based on iterative multiscale error diffusion.

“in

The algorithm can be easily implemented in hardware, making it a very attractive candidate for an
the device” halftoning method. The method performs significantly better than some of the best existing
methods in terms of hierarchical intensity matching, and the visual quality of the resulting halftoned image
is excellent. Almost all of the existing methods require some pre-processing of the input image (usually
contrast stretching and/or edge crispening) in order to give their best result. Our method requires no such
pre-processing since it preserves the contrast of the original image and it does not tend to oversmooth the

image.
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Table Captions

The MSE at different resolutions of the image pyramid for three test images.

Figure Captions

Comparison of different digital halftoning techniques: (a) fixed threshold quantization; (b) dispersed
order dithering using 8 x 8 mask; (c) Floyd-Steinberg’s error diffusion with serpentine scanning; (d)

multiscale error diffusion.

Comparison of digital halftoned boat images by using (a) Floyd-Steinberg’s error diffusion with
serpentine scanning and (b) multiscale error diffusion.

Comparison of digital halftoned baboon images by using (a) Floyd-Steinberg’s error diffusion with

serpentine scanning and (b) multiscale error diffusion.



Image | Resolution | Fixed Level | Ordered Dithering | Floyd-Steinberg Multiscale
1x1 2.923 x 107 9.547 x 10° 2.765 x 10° 1.031 x 10~2
2x2 1.100 x 107 1.538 x 103 9.892 x 104 1.476 x 10!
4x4 5.401 x 10° 1.171 x 108 3.046 x 10* 1.355 x 102
8x8 2.383 x 108 1.860 x 103 1.124 x 104 2.408 x 102
Lena 16 x 16 8.754 x 10° 1.721 x 103 4.004 x 103 4.862 x 102
32 x 32 2.778 x 10° 1.469 x 103 1.978 x 103 7.691 x 102
64 x 64 8.286 x 104 1.629 x 10° 2.309 x 10° 1.321 x 103
128 x 128 | 2.386 x 104 3.136 x 10° 3.465 x 10° 2.672 x 103
256 x 256 | 7.229 x 10° 1.263 x 104 1.298 x 10 1.192 x 10*
1x1 5.294 x 10° 2.568 x 10% 7.895 x 104 7.725 x 1073
2% 2 1.791 x 108 4.593 x 108 1.165 x 10° 1.865 x 10?
4 x4 6.166 x 107 1.579 x 103 5.536 x 104 5.089 x 10!
8x8 1.695 x 107 1.051 x 108 2.021 x 10* 1.035 x 102
Boat 16 x 16 4.777 x 108 1.129 x 103 6.934 x 10° 1.782 x 102
32 x 32 1.329 x 108 1.135 x 103 2.462 x 10° 3.854 x 102
64 x 64 3.777 x 10° 1.110 x 103 1.574 x 103 6.854 x 10?
128 x 128 | 1.074 x 10° 1.496 x 10° 2.192 x 103 1.254 x 108
256 x 256 | 3.064 x 104 3.269 x 103 3.380 x 103 2.980 x 10°
512x 512 | 9.109 x 103 1.408 x 104 1.426 x 10* 1.346 x 10*
1x1 9.975 x 104 8.782 x 10° 1.134 x 107 6.104 x 10~
2x2 7.264 x 108 5.394 x 103 1.382 x 107 6.328 x 10!
4x4 9.334 x 108 2.207 x 10° 2.337 x 104 5.046 x 10!
8x8 5.887 x 10° 2.283 x 103 1.212 x 104 6.534 x 10!
Baboon 16 x 16 2.305 x 108 2.547 x 103 5.177 x 10% 1.521 x 102
32 x 32 6.947 x 10° 2.259 x 103 1.994 x 103 3.104 x 102
64 x 64 2.017 x 10° 2.127 x 103 1.439 x 10° 6.430 x 102
128 x 128 | 6.107 x 104 2.462 x 10° 2.148 x 10° 1.312 x 103
256 x 256 | 2.051 x 104 3.514 x 108 3.610 x 10° 2.492 x 103
512 x 512 8.047 x 10° 1.399 x 10* 1.389 x 104 1.212 x 104

Table 1: The MSE at different resolutions of the image pyramid for three test images.
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Figure 1: Comparison of different digital halftoning techniques: (a) fixed threshold quantization; (b)
dispersed order dithering using 8 x 8 mask; (c) Floyd-Steinberg’s error diffusion with serpentine scanning;
(d) multiscale error diffusion.
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Figure 2: Comparison of digital halftoned boat images by using (a) Floyd-Steinberg’s error diffusion with
serpentine scanning and (b) multiscale error diffusion.
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Figure 3: Comparison of digital halftoned baboon images by using (a) Floyd-Steinberg’s error diffusion
with serpentine scanning and (b) multiscale error diffusion.
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