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Abstract

We examine an approach for texture segmentation by using the fractal dimensions
along the 1-D cross sections of 2-D texture data as image features, where an effective
Haar transform fractal estimation algorithm is utilized. The major advantage of the
Haar fractal estimator is its computational efficiency along with robustness. The method
is fast due to the pyramid structure of the Haar transform and nearly optimal in the
maximum likelihood sense for fBm data. We compare the low complexity of this new
algorithm with the complexity of existing fractal feature extraction techniques, and test
our new method on fBm data, real Brodatz textures, and natural scenes.

1 Introduction

Over the past years, an unified definition of texture has been elusive. One can think of
textures as images which contain some random or deterministic patterns. Two textures are
distinct if they can be separated visually. Examples of textures include grass, cloth, mam-
mographic images, and clouds. While for most cases, the eye can easily distinguish between
two textures, the classification and segmentation of textures by a computer has proven to be
a challenging problem. The technology of texture classification and segmentation is useful
for the automation of quality control in industrial monitoring, searching for earth resources
in remote sensing, medical diagnosis usiﬁg computer tomography, and target detection in
SAR images.

Early research work such as SGLDM [16] and correlation (8], [12] was based on the
second-order statistics of textures. In the 80’s, researchers developed the Gaussian Markov
Random Field (GMRF) [9] and Gibbs distribution [15] texture models, where the gray levels
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between nearest neighboring pixels are characterized by a certain stochastic relationship.
Laws [26]) proposed a simple scheme which used local lincar transformations and energy
computation to extract texture features. The simple scheme often gives reasonably good
performance, and has been studied and improved by many researchers (18], [38].

Many textures like cloth can be modeled as quasi-periodic. As a result, many researchers
have concentrated on multichannel or multiresolution analysis to capture features represent-
ing the dominant harmonics [2], [39]. These methods often outperform traditional methods
based on the second-order statistics or the GMRF model. The main problem of traditional
texture analysis algorithms is that they did not properly capture the features at different
scales. Recent work has concentrated around spatial/frequency or spatial/scale analysis.
For instance, algorithms using the Gabor transform have been reported (3], [37). More
recently, Chang and Kuo [5] utilized a wavelet packet scheme to adaptively search out the
dominate frequency bands. While the subband techniques are good to classify a wide variety
of textures, most of the algorithms fail to distinguish between many natural textures.

Many natural textures have power spectrums which follow a 1/ f law. As a result, these
textures only have a dominant DC band. Flandrin [13] has shown a connection between
the fractal dimension and the rate of decay of a texture’s power spectrum. Pentland [33]
and Kumar et al. [25] have demonstrated the connection between fractal dimension and
surface roughness. As a result, many researchers have utilized the fractal dimension as a
feature to distinguish natural textures. For example, texture classification algorithms were
developed for medical applications (7], [28]. Texture segmentation algorithms based on
fractal dimension estimates are presented in [6], [17], [21}, [23], [33], [35]). Moreover, a fractal
dimension estimator was used for speech segmentation [10]. While many algorithms measure
the fractal dimension of surfaces or curves by the box counting method [6}, {23], many others
use a model based approach with the fractional Brownian motion (fBm) model [17], [35].

The fBm has proven to be a very good model for the analysis and synthesis of natural
phenomena, [29), [30]. For instance, fractal models have been successfully applied to texture
analysis and synthesis [22], [33] and landscape modeling [32). In this research, we propose a
fast Haar fractal estimator to capture features for texture segmentation based on the fBm
model. The major advantage of the Haar fractal estimator is its computational efficiency
along with robustness. The pyramid structure of the Haar transform provides a fast imple-
mentation of the fractal dimension estimator. We will demonstrate the robustness of the

algorithm in Section 3.



‘I'his paper is organized as follows. In Section 2 , we give a review of the properties
of fractals, fBm, and the Haar transform applied to fBm. The new Haar fractal feature
extraction algorithm is detailed in Section 3. The texture segmentation results are shown

in Section 4, and some concluding remarks are given in Section 5.

2 Fractals, Fractional Brownian Motion and Haar Trans-
form

2.1 Fractal Curves and Surfaces

To model the textured details of nature, Mandelbrot popularized fractal geometry [29].
He demonstrated how self-similar patterns can mimic patterns found in nature. A strict
mathematical treatment of fractals can be found in [11]. Fractals are defined as objects,
or sets, whose Hausdorff dimension (or fractal dimension) is greater than its topological
dimension. In this paper, an image is treated as surface with a topological dimension of
two. The surface is defined over a square lattice that represent pixels, and the gray level of
the pixels represent the location of the surface on the z axis. Then, any cross section of the
surface represents a curve whose topological dimension is one. The fractal dimension of the
surface (or curve) can loosely be interpreted as the amount of three (or two) dimensional
space that the object occupies. As a result, the fractal dimension provides quantitative
information about the roughness of the surface (or curve). For example, Fig. I displays
curves of varying fractal dimension defined over the interval [0,1]. The curves all have a
minimum value of zero and a maximum value of one. It is easy to see that the curves of
higher fractal dimension appear rougher and cover more space in the one square unit of
area.

As shown in [29], the fractal dimension can be determined by trying to cover the object
of interest with balls of diameter e. If the diameter is small enough, the number of balls of

size ¢ to cover the object is related to the fractal dimension d by
N(e) x €79, (2.1)

Obviously, as ¢ goes to zero, a larger fractal dimension d means that a larger the number

of balls or space is necessary to cover the object.
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(c) D=1.1.

Figure 1: Fractal curves of various fractal dimensions.



2.2 Fractional Brownian Motion

Fractional Brownian motion (fBm) is the most common stochastic model for random fractal
textures. Many properties of fBm have been examined, say, (1], [13], [14], [19], [30], [32],
[34], [36], and [40]. We will review some basic results of 2D-fBm in this section. Two

dimensional fBm By (£) is a zero-mean Gaussian random process such that,
By (0) =0, (2'2)

and
var(By (+ 8) - Bu(®)] = 28137, (2.3)

where 0 < H < 1, and ||-||2 is the standard Euclidean norm. Condition (2.3) is known as the
self-similarity condition, and it means that the variance of any increments is independent
of orientation and dependent only on the length of the increment. The parameter H is
known as the Hurst parameter, and the bounds on H assure that the fBm process is mean
squared continuous and that the correlation function possesses the properties of an inner
product [30]. The self-similarity condition leads to the fact that the realizations of 2D-fBm

are fractals surfaces whose fractal dimension is related to H via [32]
D=3-H.

Thus, the Hurst parameter determines the visual roughness of the fBm realization. More-
over, an estimate of H also provides an estimate of the fractal dimension. Based on (2.2)

and (2.3), the correlation function of By (t) can be derived as

2
- g -
roa(,8) = T (SIPH + JEPH - 15 - 82%),

Thus, fBm is a nonstationary process, and if H = 1/2, the fBm process has the correlation
structure of normal Brownian motion.
A nice property of 2D fBm is that each one dimensional slice forms a 1D fBm curve.

Specifically, given a normalized directional vector 7 and an offset 6, the 1D slice of fBm,
B(t) = Bu(t7+9),

satisfies the self-similarity condition. While Bg)(t) is still a nonstationary process, its

increments,
Xu(m, Az) = BP (Az(m + 1)) - B (Azm), meZ,
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form a stationary process. The fBm increments defines a sequence known as discrele frac-

tional Gaussian noise (dfGn). The correlation function for dfGn of incremental length Az
is )
a

rx,(k, Az) = 3-|A:z:|2" (k + 12H + |k — 121 = 20kH). (2.4)

Due to stochastic self-similarity, the shape of the correlation function or power spectrum of
dfGn is the same for all values of the incremental length. Moreover, dfGn can be divided
into three classes. Namely, when H < 1/2, the increments are negatively correlated, when
H > 1/2, the increments are positively correlated, and when A = 1/2, the increments are
uncorrelated (or white).

Although fBm is nonstationary and thus has no formal power spectrum, Flandrin [13]

showed that the “average” power spectrum of 1D fBm follows a 1/f law, i.e.

S(f) ﬁ (2.5)

The spectral behavior of fBm provides good motivation to apply fBm as a model for 1/f

processes.

2.3 The Haar Transform and FBM

The Haar transform is the most basic member of the class of orthogonal wavelet transforms,
and it is the easiest to implement in hardware. In previous work [19], we have shown some
very useful properties of the wavelet coefficients when the Haar transform is applied to
discrete fGn (dfGn). We summarize some main results in this section.

The Haar transform provides a multi-scale representation of a signal where coefficients
defining the signal details at different scale are computed. Given an approximation of the
signal at the finest available scale ao(t) which is usually the discrete signal samples, the
approximation and detail coefficients of the signal at the next coarser level is computed for
m > 0 by

am41(t) = am(2t) + am(2t + 1), (2.6)
dm+l(t) =am (2t) - am(2t + 1). (2.7)
Equations (2.6) and (2.7) are computed recursively to obtain detail wavelet coefficients for
different scales. It is known that the the Haar transform can effectively whiten the stationary

dfGn process [19]. It is important to point out, however, that the Haar transform cannot

whiten 1D fBm for 0 < H < 1. Thus, the simplicity of the Haar transform cannot be
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exploited by a fractal wavelet estimator applied directly to the fBm data [41]. Based on our
previous results [19], we can show some nice properties of the Haar transform applied to
dfGn. When ag(t) is set equal to the dfGn process, the approximation coefficients of scale
m are equivalent to the increments of the fBm curve for an incremental length of Az = 2™,
By (2.4), the correlation function of am(t) is the sane as that of ao(¢) scaled by a factor of
22Hm_ Then, it can be shown that the variance of the detail wavelet coefficients dn(t) are

related to scale by
o2 = var[dn ()] = 22H"-Vo?(4 - 22H). (2.8)

The simple exponential variance progression of the detail wavelet coefficients via the discrete
wavelet transform applied to dfGn using the Haar basis does not generalize to higher order
(e.g. more regular) filters. Besides, the Haar transform provides for a natural separation of

data segments as discussed in Section 3. Thus, we concentrate on the Haar transform.

3 Fractal Feature Estimation via Haar Transform

For 2-D fractal surfaces, the fractal dimension can be measured by considering the surface to
be isotropic where measurements are averaged over all possible directions. Another choice
is to consider 1-D cross sections of the surface as fractal curves and measure the fractal
dimension of the curves. The non-isotropic measurement technique provides more infor-
mation than the isotropic counterpart when a real texture appears rougher on a preferred
direction. Moreover, the fractal estimation of image strips can be computed in parallel to
reduce the computation time. Thus, we consider fractal dimension estimators using the

directional measurement approach in this work.

3.1 Previous Fractal Dimension Estimators

Many methods to calculate the fractal dimension of a fractal curve have been given in the
literature. Three of the most popular algorithms are the box counting, the variance scaling,
and the power spectral methods [33]. All three methods require that linear or nonlinear
regression is used on the logarithm of some measurements versus the logarithm of the scale
where the calculated slope is the estimate for H.

The basic idea behind the box counting method is to count the number of boxes on a
grid of size € necessary to cover a function on a compact interval as shown in Fig. 2. Since

the number of boxes to cover the curve should follow the law given by (2.1), the slope of the
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Figure 2: Box counting at different scales.

curve of log(N (€)) versus log(e) is the fractal dimension. Usually, one uses linear regression
to calculate the slope. In reality, the box counting dimension is greater than or equal to
the true fractal dimension.

The power spectral method uses the 1/f law for the power spectrum (i.e. (2.5)) to
relate the coefficients of the fast Fourier transform (FFT) to the frequency. Specifically,
the slope of the log of the power spectrum versus the log of the frequency is calculated via
linear regression. Then, the Hurst parameter or fractal dimension is obtained based upon
the slope.

The variance method uses the self-similarity condition (2.3) where the variance of the
increments for various lags are plotted as a function of the lag. Again, the slope of the log of
the variance versus the log of the lag determines the Hurst parameter or fractal dimension.
While the variance method is motivated by the self-similarity condition of the fBm, it
does provide a good fractal dimension estimate for general fractal functions. Besides, the
variance method can be related to the box counting method. For instance, the variance
method measures the expected change in a function value over a distance of ¢. To cover the
function in this interval of size ¢ will require about \/VAR[B(s + ¢) — B(s)}/¢ boxes. Then

the total number of boxes to cover the function should be about

N(e) = K\/VAR[B(s + €) — B(s)}/".

By using the sell-similarity condition (2.3) and (2.1), it is easy to understand the relation



between fractal dimension and H for a fractal curve, ie. D=2- M.

3.2 Haar Fractal Dimension Estimation

In this section, we describe the Haar fractal estimator and its detailed implementation.

3.2.1 Haar Fractal Dimension Estimator

Given the Haar transform of a dfGn sample and using the assumption that the detail Haar

coefficients are uncorrelated, one can compute the log-likelihood function as

M
L(6* H)=—= Z N(m) —+ In(27wm)] (3.1)

2=
where N(m) is the number of wavelet coefficients available at scale m (usually N(m) =
2M-m) 52 is the sample variance of the wavelet coefficients, g7, is given by (2.8), and M is
the number of scales. We maximize the likelihood function to obtain the estimate of H. As
shown in the Appendix, the estimate of H is found by first solving the following polynomial
for 8,

M

S CuN(m)&ZpM-" =, (3.2)

A
where
m 1

Zrl‘rlzI:l mN(m) - ZX:I Ar(m) .

Then, the Hurst parameter which maximizes the likelihood function is related to 8 by

Cn=

-

H = - log,(06). (3.3)

N =

The Haar fractal method can be directly compared to the variance method. By exam-
ining (2.6) for the case that the finest scale approximation coefficients correspond to the
increments of length one, one can see that the variance method in effect performs the re-
gression analysis on the approximation coefficients. In other words, the Haar method adds
the wavelet filtering step (2.7) to “whiten” the coefficients so that a maximum likelihood es-
timate of H is easy to perform. Even without the maximum likelihood formulation, a linear
regression analysis after the wavelet filtering step should provide more accurate estimates

because the coefficients are virtually independent.



3.2.2 Efficient Implementation

To compute the local fractal measurement in the y direction, we take a 9 x 17 block (or a
block consisting of 9 columns and 17 rows). For each 1x 17 slice of the block, we compute the
16 increments, pass the 16 increment through the four level Haar transform, and compute
the sample variance of the detail Haar coefficients at each scale. Then, the third order
polynomial (3.2) is solved, and H is calculated. The nine different estimates of H are
averaged to provide a local y-directed Hurst parameter H,, for the middle pixel in the 9 x 17
block of concern. We then slide the block over the entire image to compute local fractal
measurements for every pixel. Similarly, we use a 17 x 9 block to compute the z-directed
Hurst parameter H;. More generally, one can consider rotations of the 9 x 17 block to
calculate the directed Hurst parameters at other angles. Although we are concentrated on
the z- and y-directed Hurst parameters in the experiments in Section 4, situations may
arise where diagonal directions may provide additional interesting texture features in the
real world problems.

To compute the local fractal features effectively, one can divide an N x N image into
strips of width one pixel and length N pixels. The orientation of the strips depends on the
directional Hurst parameter that one wants to calculate. For each strip, the increments are
computed, and log,(W) levels of the Haar transform are applied to the increments via (2.6)
and (2.7). We use W = 16 and, therefore, 4-level Haar transform in our experiments. The
energy of the detail Haar coefficients is computed for each scale in each block, and Equation
(3.2) is used to calculate the local Hurst parameter for each block.

The pyramid structure of the Haar transform provides a fast method to slide the analysis
window block. To illustrate this idea, we show the pyramid structure of the Haar transform
for W = 8 in Fig. 3 as an example. First, the local Hurst parameters for the pixels marked
with zero are calculated. In the next step, the local Hurst features for the pixels marked
with one are computed. This can be easily achieved by switching the neighbor of the second
coarsest approximation coefficients used to calculate the coarsest wavelet coefficients. The
new calculation scheme is indicated by the broken lines in Fig. 3. Once the coarsest
coefficients are modified, (3.2) is reevaluated. In general, a new step will slide the analysis
window by 2™ pixels when the approximation coefficients neighbor grouping at scale m is
switched, and the wavelet coefficients and energy values are recalculated by (2.6) and (2.7).
Fig. 3 shows the pixel ordering for the feature calculation. It turns out that the local

fractal features for cach pixel in a W length segment is computed by considering shifting
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Figure 3: Segmentation of the Haar transform for W = 8.

the analysis window by the bit reversed value of the step number.

After the wavelet features are computed for all N strips, V strips are averaged by a
sliding window. When V = 9 and W = 16, it is the method described above and used in
the experiment. Note that to calculate the Hurst and incremental power features for all
pixels in the image, one must consider extensions around the image borders. In our work,

we consider the image to extend symmetrically about all the edges.

3.2.3 Computational Complexity

When the method presented above is used to calculate the local fractal features, only a
limited number of coefficients need to be altered for each step before the nonlinear regression
analysis. Table 1 shows the number of times the energy of the coefficients for each scale
needs to be calculated and the complexity to compute the energy values at each scale for
W = 16. In general, our wavelet extraction method takes about 4W log, (W) flops for each
of the N/W segments in a strip. Given N strips, the total cost to compute one directional
local fractal dimension measurement for each pixel is about 4log,(W)N?2 flops. The cost
per pixel is only O(log,(W)).

The computations necessary to set up the regression analysis are higher by using other
fractal methods. For instance, the box counting method must be computed in O(W) flops

per pixel. The power spectral method has a complexity of O(W log,(1¥)) per pixel because
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Calculation | Calculation | Calculation Flops Number of Times lotal
Scale of (2.6) of (2.7) of Energy | to Calculate Energy Values Flop
(m) in Flops in Flops in Flops | Energy Value | are Calculated Count
1 8 8 15 (~ 16) | 31 (= 32) 2 62 (= 64)
2 4 4 7(=8) 15 (= 16) 4 60 (= 64)
3 2 2 3(=4) 7 (~ 8) 8 56 (~ 64)
4 1 1 1(=2) 3 (=4) 16 48 (= 64)

Table 1: Number of flops to implement the Haar fractal dimension extraction method on a
segment of size W = 16.

one must compute an FFT of length W for each pixel. A straightforward implementation
of the variance method would result in a complexity of O(W?). However, the variance
scaling can be implemented in about 3W flops per pixel. For our experiments where we use
segments of length W = 16, the approximate flop count to set up the regression analysis is
about 48 flops for variance scaling and only about 16 flops for the Haar transform. Note
that computation of the V length smoothing filter is negligible in our analysis.

An important point is that the directionally based fractal estimators can be computed
in parallel. Specifically, fractal estimates on each strip can be computed separately from
other strips. Moreover, the averaging step to compute the final Hurst estimate at each pixel

can also be computed in parallel.

3.2.4 Robustness of Haar Fractal Dimension Estimator

We tested the robustness of the proposed wavelet method on true fBm images of size
256 x 256. The synthetic fBm images were generated by using a new spectral synthesis
technique that creates realization which represent the true statistics of fBm [20]. The
means and standard deviations of the z and y oriented fractal features over all 65, 536 pixels
are listed in Table 2 with various values of H. These statistics are comparable to results
obtained by using isotropic fractal feature methods [35]. The fact that the Hurst parameter
is always underestimated may be due to the nonlinear regression analysis performed by
(3.2). Most importantly, the measurements of H appear consistent. Table 2 also shows
that as H approaches one, the wavelet estimator error increases. This phenomena is most
likely due to the fact that as H increases, the correlation of pixels increase. In fact, other

experiments that we have performed may suggest that the field of local Hurst parameter
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Fractal | True H, 1,
Dimension | H mean std. mean std
2.9 0.1 | .053544 | .111746 | .047463 | .110777
2.8 0.2 | .146877 | .118725 | .149234 | .123621
2.7 0.3 | .248023 | .128212 | .245142 | .132294
2.6 0.4 | .353126 | .143719 | .357044 | .145934
2.5 0.5 | .453680 | .153522 | .441098 | .152108
2.4 0.6 | .540792 | .165553 | .549654 | .164069
2.3 0.7 | .649483 | .170730 | .642618 | .170432
2.2 0.8 | .740592 | .179003 | .728553 | .175834
2.1 0.9 | .804649 | .181956 | .810099 | .190086

Table 2: Results of the Haar fractal dimension estimator applied to real fBm realizations.

estimates does not form an ergodic process when H > 1/2. The same problem was reported
by Hoefer et al. [17].

3.3 Fractal Power Estimation

Medioni and Yasumoto have pointed out that the fractal dimension alone will not classify
or segment all real textures [31). Thus, we also consider the estimate of the fractal power
parameter i.e. 2 in (2.3), as a feature for texture segmentation. In fact, the fractal power
parameter is similar to a morphometric parameter that is used in geology to determine the
roughness of landscapes [24]. While the power parameter is sensitive to the contrast of
the texture, one can assume the lighting condition are fairly homogeneous over the entire
texture so that the power parameter is a valid feature in the segmentation problem. To
estimate the fractal power parameter, we compute the z- and y-directed increments of an
image and calculate the average energy of each of the two increments over a2 9 X 9 block.
Note that efficient computation of the averaging window can be accomplished by exploiting
its separable property. Then, we use the logarithm of the two average energies as two
local features for the middle pixel. The logarithm is used so that the resulting features
vary linearly instead of exponentially with respect to H when two fBm textures have equal
dynamic range for their grey level values. Finally, we slide the 9 x 9 block over the entire

image.
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(a) fBm (b) Random Brodatz (c) Periodic Brodatz

Figure 4: Texture segment labels for the three test images.

4 Experimental Results
4.1 Segmentation of Texture Mosaics

The fractal features can be combined with any other texture features to perform texture
classification of segmentation. To validate, the new fractal features, we used only the z-
and y-directed Hurst and incremental power estimates for a total of four features. The
segmentation results that we present may be improved by adding other features such as
subband features obtained from Laws masks.

To perform the segmentation, we first smoothed the four computed features via a 9 x 9
EPNSQ filter [18]. Based upon the smoothed features, we search for different clusters. In
our experiments, we assume that the number N of texture types in an image is known a
priori, and we apply algorithms which search for NV clusters in the feature space. To search
for N clusters, we employ a splitting algorithm [27] to perform an initial search for cluster
centers. Then, we apply a k-means algorithm to accurately find the centroids of the clusters.
Each pixel is classified to the closest cluster centroid in the feature space. The segmented
image contains N gray level where each gray level represents the texture class of the pixel.
Since one can assume that the actual segments are more than just a few pixels in size,
postsmoothing is performed to remove the small spots that may appear in the segmented
image. In our work, we used a mode filter such that a pixel’s gray level is changed to the
gray level that appear most frequently in a 9 x 9 surrounding window. The mode filter has
many similar properties to the median filter such as the ability to preserve boundaries.

The segmentation method was applied to three images of size 256 x 256, and the ground

truth of the segmented textures is displayed in Fig. 4.
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Test Image 1: Texture mosaic with 5 fBm images.

The first test image is a texture mosaic with 5 synthetic fBm textures of varying I as
shown in Fig. 5 (a). The actual segmentation result is provided in Fig. 5(b). A similar
problem was tested by Hoefer, et al. [17]. Fig. 5(b) shows that no misclassifications occurred
in the interior of the different textures. There are segmentation errors along the texture
borders. It is evident that the border effects are strongest between segments with large
differences between their Hurst parameter. These edge effects occur because the calculation
of the incremental power is an edge detecting operator, and in many cases, the local Hurst
parameter will have different values along texture edges (see Section 4.2).

Test Image 2: Texture mosaic with 4 random Brodatz textures.

The test image contains four random Brodatz textures [4], i.e. pressed cork (D4), herring
bone (D16), pigskin (D92) and wood grain (D68), as shown in Fig. 6(a). The second
experiment was designed to test the ability to classify natural random textures which do
not contain obvious harmonics. The segmentation result is depicted in Fig. 6(b). For this
test case, the directional fractal dimension measurements were very useful to separate the
wood texture as shown in Figs. 7(a) and (b). The border effects are not as pronounced as in
Test Image 1 because the random textures do not provide an accurate fit to the fBm model.
Unfortunately, another result of the lack of a perfect model fit is sporadic classification
errors in the interior of the different textures. The misclassification between pressed cork
and pigskin is understandable since these textures are visually similar. The misclassification
between the wood to the herring bone is a result of some repeating fine grain structure of
the wood. Fig. 7 shows that the y-directed Hurst parameter cannot distinguish between
these two textures and that the x-directed Hurst provides classification errors in the wood
texture along the left border of the wood.

Test Image 3: Texture mosaic with 4 periodic Brodatz textures.

The test image includes four Brodatz textures which represent woven aluminum wire
(D6), straw matting (D55), cotton canvas (D77), and raffia (D84) as shown in Fig. 8(a).
The segmentation result is provided in Fig. 8(b). Even though the fractal features are
designed to distinguish the random textures via roughness, they seemed to do a very good
job in segmenting periodic type of textures as demonstrated by this example. The segment
border effects are the least pronounced for this test case. The only significant errors occur
in the interior of the raffia texture where the texture is classified as cotton canvas. It should

be noted that the weave between these two textures do appear alike except that the strands



Number | Classification
Immage of Accuracy
Textures
1. fBm Collage 5 95.15%
2. Random Brodatz 4 91.32%
3. Periodic Brodatz 4 65.62%

Table 3: Classification accuracy of different test images.

of the raffia are larger.

The segmentation results of the three test cases are very good. They are comparable
to other fractal segmentation results as provided in [6]. The segmentation results of this
section do show that our fractal feature extraction method provides useful features for tex-
ture segmentation. The classification accuracy of the three test cases is shown in Table 3.
The segmentation results can be further improved by considering to measure some local
multifractal or lacunarity parameter as used in [6] and [23] respectively. These parame-
ters help to segment textures based upon “sparseness” while the fractal features measure

“roughness.”

4.2 Natural Scenes

The incremental power feature is very useful for segmenting water and land from aerial
photographs. The fractal feature, itself, will not distinguish land and water, but the feature
does provide higher values for the Hurst estimate at the water/land boundaries. The edge
detection abilities of the fractal feature have been documented in [7], [33]. In our appli-
cation, the edges will allow for further refinement of the segmented photograph when the
incremental power feature of the land dominates a small lake or river.

Fig. 9(a) shows an aerial view of the San Francisco Bay Area in an image of size
512 x 512. The average of the z- and y-directed power features of the San Francisco image
is displayed in Fig. 9(b), and the histogram of Fig. 9(b) is shown in Fig. 9(c). Based on
the histogram, we choose the gray level 130 as a threshold between the water and the land.
The initial segmentation result is given in Fig. 9(d). The figure shows good separation of
the land and water. However, some smaller areas of water such as the the river (Area D)
and bay inlet (Area E) disappear.

While the incremental power feature provide good segmentation, the result can be im-

16



(b)

Figure 5: (a) FBm test image and (b) segmentation result.
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(b)

Figure 7: Smoothed (a) z- and (b) y- directed Hurst features.
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proved by integrating fractal dimension estimates. The z-directed Hurst feature of the San
Francisco image is given in Fig. 9(e). The figure does provide larger value for H around
the water/land interfaces. In fact, edges appear in the figure that represent the river and
water inlet which were misclassified as land. To integrate the fractal feature to obtain a
final segmentation result for the photograph, we first used a threshold to consider only the
largest 2.5% values of the z- and y-directed values of H to represent edges. Then, we applied
one step of mode filtering to remove any spurious edges. Finally, the edges are combined
with the initial segmentation result. Specifically, if an edge is detected at a pixel and the
majority of surrounding pixels in a 9x9 window are also edges, then the classification of the
pixel from the original segmentation step is reversed. The final segmentation result is shown
in Fig. 9(f). The figures does show that more of the river and water inlet are classified
as water. The indentation that appears around Area A is due to lake that is very close to
the bay, and Lake Merced (Area C) is detected. The San Bruno Mountains (Area B) pro-
vided some problems to the segmentation algorithm. Other experiments suggest that other
mountain ranges causes difficulties for the algorithm. Other false lakes appeared around the
Oakland Airport (Area F) for unknown reasons. All in all, the incremental power and frac-
tal dimension features provide very good separation of water and land in the San Francisco
image.

A

5 Conclusions and Extensions

We presented a new fractal feature extraction method by using the Haar transform. The
new algorithm is fast and provides good segmentation results with only four features as
demonstrated in the experiments. More segmentation problems can be performed to eval-
uate our new method. It would also be useful to find a way, if possible, to extend the
Haar transform to higher regular filters without losing the efficient algorithmic architecture
presented in Section 3. Additionally, Stewart et al. [35] reported that tree and grass clut-
ters represent dfGn instead of fBm and, therefore, we should investigate the cases where
the dfGn model (i.e. do not calculate the initial increments) provides better segmentation
results for real textures. Other experiments which combine the fractal features with other
texture features may prove to be useful. Finally, the effect of noise on the Haar fractal

feature extraction method should be studied.
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(f)

Figure 9: (a) San Francisco image, (b) average incremental power (normalized), (c) his-
togram of average incremental power, (d) initial segmentation result, (e) z-directed Hurst
estimate, (f) final segmentation result.



Appendix: Estimation of H

Under the assumption that (3.1) is the likelihood function for the curve of interest, the
maximum likelihood estimates &?\, 1, and I?ML are the values of o2 and If which maximizes

(3.1). To make the notation easier, the following terms are defined:

ﬁ = 22", (A.l)
o? = (22721 - 1)0? (A.2)

so that the variance progression given by (2.8) can be rewritten as
o2 =a'tpm.

To minimize the likelihood function (3.1), the derivatives of the likelihood function with

respect to # and a'? is set to zero to provide the following two relations,

2 YM_ N(m)oZp™
=T Nm) (A3)
and
1 M A M
= 3 mN(@m)eipmt - B! 3" mN(m)=0. (A.4)
* U' m=1 m=1

Substitution of (A.3) in (A.4) yields

M M i oM M X
(3" Nm)(Y mN(m)enp™") - (Y mN@m) (Y N(m)erp™) =0.
m=1 m=1 m=1l m=1

T . Bﬂ-l+l
Then, multiplication by (E:L; M) (E.“L, N )
nell and Oppenheim have shown that when at least one value of &2, is non zero and M > 0,

then there exist a unique positive real solution to (3.2) [41]. Finally, the maximum likelihood

provides Equation (3.2). Note that Wor-

estimate of H is determined by the inverse of (A.1), i.e. (3.3).
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