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Abstract

We address the problem of estimation of the parameters of the recently proposed symmetric.
alpha-stable model for impulsive interference. We propose new estimators based on asymp-
totic extreme value theory, order statistics, and fractional lower—order moments, which can
be computed fast and are, therefore, suitable for the design of real-time signal processing
algorithms. The performance of the new estimators is theoretically evaluated, verified via

Monte-Carlo simulation, and compared to the performance of mazimum likelihood estima-

tors.
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1. Introduction

The signal processing and the communications literature has traditionally been dominated
by Gaussianity assumptions for the data generation processes and the corresponding algo-
rithms have been derived on the basis of the properties of Gaussian statistical signal models.
The reason for this tradition is threefold: (i) The well known Central Limit Theorem [1]
suggests that a Gaussian model is approximately valid provided that the data generation
process includes contributions from a large number of sources, (ii) The Gaussian model has
been extensively studied by probabilists and mathematicians and the design of algorithms
on the basis of a Gaussianity assumption is a well understood procedure, and (iii) The
resulting algorithms are usually of a simple, linear nature which can be implemented in
real time without the need for advanced computer software or hardware. However, these
advantages of Gaussian signal processing come at the expense of reduced performance of the
resulting algorithms. In almost all cases of non-Gaussian environments, a serious degrada-
tion in the performance of Gaussian signal processing algorithms is observed. In the past,
such degradation might be acceptable due to lack of sufficiently fast computer software and
hardware to run more complicated, non-Gaussian signal processing algorithms in real time.
With today’s availability of inexpensive computer software and hardware, however, a loss
in algorithmic performance, in exchange for simplicity and execution gains, is no longer
tolerable. This fact has boosted the consideration of non-Gaussian models for statistical

signal processing applications and the subsequent development of more complicated, yet

more efficient, nonlinear algorithms [2].

One physical process which largely deviates from Gaussianity is the process that gener-
ates “impulsive” signal and/or noise bursts. These bursts occur in the form of short duration
interferences, attaining large amplitudes with probability significantly higher than the prob-

ability predicted by Gaussian distributions. Many natural, as well as man—made, sources of



impulsive intereferences exist, including lightning in the atmosphere, switching transients in
power lines and car ignitions, and accidental hits in telephone lines [3, 4, 5, 6, 7]. In under-
water signals, impulsive noise is quite common and may arise from ice cracking in the arctic
region, the presence of submarines and other underwater objects, and reflections from the
seabed [6, 8, 9, 10, 11]. Impulsive interference can be particularly annoying in the operation
of communication receivers and in the performance of signal detectors. When subjected to
impulsive interference, traditional communication devices, that have been built on Gaus-
sianity assumptions, suffer degradation in their performance to unacceptably low levels.
However, significant gains in performance can be obtained if the design of the communi-
cation devices is based on more appropriate statistical-physical models for the impulsive
interference [12, 13, 14, 13].

Classical statistical-physical models for impulsive interference have been proposed by
Middleton [16, 17, 18, 19, 20, 21, 22] and are based on the filtered—impulse mechanism. The
model includes three different classes of interference, namely A, B, and C. Interference in
class A is “coherent” in narrowband receivers, causing a negligible amount of transients.
[nterference in class B, however, is “impulsive,” consisting of a large number of overlapping
transients. Finally, interference in class C'is the sum of the other two interferences. The
Middleton model has been shown to describe real impulsive interferences with high fidelity:
however, it is mathematically involved for signal processing applications. Very recently,
an alternative to the Middleton model was proposed, which was based on the theory of
symmetric, a—stable (SaS) distributions.

[n particular, it was shown in [7] that, under very general assumptions, the first order
distribution of impulsive interference does, indeed, follow a SaS law. The stable model was
then tested with a variety of real data and was found in all cases examined to match the
data with excellent fidelity [7]. The performance of optimum and suboptimum receivers

in the presence of Sa$S impulsive interference was examined in [14], both theoretically and



via Monte-Carlo simulation, and a method was presented for the real time implementation
of the optimum nonlinearities. From this study, it was found that the corresponding opti-
mum receivers perform in the presence of SaS impulsive interference quite well, while the
performance of Gaussian and other suboptimum receivers is unacceptably low. It was also
shown that a receiver designed on a Cauchy assumption for the first order distribution of the
impulsive interference performed only slightly below the corresponding optimum receiver,
provided that a reasonable estimate of the noise dispersion was available. These results
clearly indicate a need for algorithms for real-time estimation of the parameters of a SaS
model from measured observations.

The problem of estimation of the parameters of a SaS model has been addressed in the
literature, mainly within the framework of Modern Statistics, and a number of approaches
have been proposed to it. However, major difficulties are encountered when the classical
estimation methods of Statistics are applied to this particular problem, mainly due to the
lack of closed—form expressions for the general SaS pdf. Mandelbrot [23] and, in more detail,
Fama [24] proposed a graphical procedure for estimating the characteristic exponent a of
the stable distribution. Mandelbrot [25] also proposed approximating the stable distribution
with a mixture of a uniform and a Pareto distribution and then applying the method of
maximum likelihood in the estimation of the characteristic exponent a. DuMouchel [26]
obtained approximate expressions for the maximum likelihood estimates of the characteristic
exponent a and the dispersion 7 of the SaS pdf under the assumption of zero location
parameter (6 = 0) and gave a table of the asymptotic standard deviations and correlations
of the maximum likelihood estimates. In [27], DuMouchel considered the estimation of
all the parameters of a SaS pdf, including the loca.;;ion parameter &, and proved that the
corresponding likelihood function has no maximum for arbitrary observations if the true
characteristic exponent is allowed to range in the entire interval 0 < a < 2. However.

restriction of the characteristic exponent a to the range 0 < € < a < 2, where € can be



arbitrarily small, provides (restricted) maximum likelihood estimates which are consistent
and asymptotically normal, provided that the true characteristic exponent lies within the
specified range of values. The actual estimation algorithm, even when the characteristic
exponent can be restricted, is not readily available due to the lack of closed—form expressioné
for the SaS pdf. Zolotarev [28, 29] proposed a numerical method which begins with an
integral form for the SaS pdf and iterative minimization. This approach was investigated
via Monte-Carlo simulation by Brorsen and Yang [29] with fairly good results. However, this
approach is extremely computation-int.ensive and no initialization or convergence analysis
is available. As alternatives to the maximum likelihood method, the method of sample
quantiles has been proposed by Fama and Roll [30] and later generalized by McCulloch
[31]. Press [32], Paulson, Holcomb, and Leitch [33], and Koutrouvelis [34, 35] proposed
estimation methods based on the empirical characteristic function of the data. It has been
shown that, in terms of consistency, bias, and efficiency, Koutrouvelis’s regression method
s better than the other two. However, neither the sample quantile- nor the empirical
characteristic function-based methods are suitable for real-time signal processing.

We propose alternative estimators for the parameters of SaS distributions. The pro-
posed estimators are based on the asymptotic distributions of the extremes (maxima and
minima) of collections of random variables, on order statistics, as well as on certain relations
between fractional lower-order moments and the parameters of the distribution. These es-
timators are shown to maintain acceptable performance, while at the same time they are
simple enough to be computable in real time. These two properties of the proposed esti-
mators render them very useful for the design of algorithms for statistical signal processing
applications.

More specifically, the paper is organized as follows: In Section 2, we briefly review the
asymptotic theory of extreme order statistics with particular emphasis on the aspects of

the theory that will be used in subsequent sections. This brief review has been considered



necessary given the fact of lack of familiarity of the signal processing and the communication
communities. A more detailed presentation of the theory from the signal processing point
of view can be found in the relevant books (e.g., [36, 37]). In Section 3, we state the
problem of estimation of the parameters of an independent, identically distributed (i.i.d.)
sequence of stable random variables, which is the main concern of this paper, and propose
estimators which can be computed very fast and are, therefore, suitable for real-time signal
processing. We analyze the performance of these estimators both theoretically and via
Monte-Carlo simulation, but postpone the proof of some of our results until Appendix A.
We summarize the paper in Section 4, where we also draw consclusions and suggest possible
avenues for future research. Finally, in Appendix B at the end of the paper, we present an
analysis of the performance of maximum likelihood estimates of the parameters of a stable

pdf and compare them to the performance of the estimates proposed in Section 3.

2. Asymptotic Extreme Value Theory

Extreme Value Theory (EVT) is the field of statistical analysis studying the distributions
of extreme order statistics (maxima and minima) of collections of random variables. As
such, it is very important in many engineering disciplines in which the laws of interest
are governed by extremes. In the fields of communication theory and signal processing in
particular, EVT has found application in the estimation via extrapolation of very small
probabilities involved in the assessment of the performance of communication devices and
signal processing algorithms [37]. In this paper, we present an application -of EVT in
the estimation of the characterstic exponent of the’SaS model for impulsive interference.
Because the field of EVT has remained relatively unpopularized in the communications and
signal processing communities, we devoted this section of the paper to a brief review of

the basic results of asymptotic EVT, summarized in Theorems 2.1, 2.2, and 2.3. A more



complete presentation of the field and further applications can be found in the statistical

literature [36, 37).

Feasible asymptotic distributions of extreme order statistics

Let X, Xa,...,Xn be a collection of independent realizations of a random variable with
pdf (parent pdf) f(-) and cumulative distribution function (cdf) F(-). Let Xjr and Xn
denote the maximum and the minimum in the sequence. We will refer to Xyr and X, as
the eztreme order statistics of the collection. The pdfs of Xps and X, respectively, are

given by [37]

fun(z) = NFN7Y(z)f(z) (1)
fmn(z) = N[1-F@)]" " f(z), (2)

while their joint pdf farm.n(:) is [37]:
Frtmn(@ar2m) = N(N = 1) f(zn) f(@m) [Fzar) — Flam)]N 2 (3)

From the above formulae, it is clear that the distributions (marginal or joint) of the
maximum and the minimum of the random variable collection depend strongly on exact
knowledge of the parent pdf f(-) and that this dependence becomes more significant at
large sample sizes N. It is, thus, highly desirable to group the distributions of the extreme
order statistics to a small number of asymptotic models which will be valid only at the limit
of large sample sizes N, but will be very robust to errors in the estimation of. the parent

pdf. Indeed, such models have been found and can be summarized in the following theorem

(36, 37]

Theorem 2.1 (Feasible asymptotic distributions for extreme order statistics) If sequencies

{ax}, {bx}, {cn}. and {dn}, ezist, such that by, dy >0, for all N, and, as N — oc,
by farn(an +0nz) — fa(z) (4)
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dem:N [CN + de) - fm(z)y {5)
then fpr(-) necessarily belongs to one of the following three families

2B exp(-z~%) ifz >0
Frechel: fimplz) = pempl-ar) TEZ (6) -
0 otherwise

, 0 ifz >0
Weibull:  fwa(z) = (7)
(—z)P~'Bexp[-(—z)?] otherwise

Gumbel: fg(z) =e “exp(—e™*) —oo0<z <00 (8)

Similarly, fm(-) necessarily belongs to one of the families

(—z)~P-18exp[-(-z)F] ifz<0

Frechet: frpa(z) = (9)
0 otherwise
ifz <0
Weibull:  fwg(z) = (10)
zP~1Bexp(—z”) otherwise
Gumbel: fg(z) = e"exp(—€*) —o0o <z <oo. (11)

Moreover, the two extreme order statistics are asymptotically independent, i.e., as N — <.

bndn farm:n(an +byea, en + dnzm) = far(Tm) fn (Tm)- (12)

The family of asymptotic distributions to which are attracted the extreme order statistics
of a collection of random variables can be determined from the tail behavior of the parent pdf
[36, 37]. In particular, necessary and sufficient conditions for a parent pdf to be attracted

to the Frechet distribution for maxima and minima are given by the following theorems

(36, 37]:

Theorem 2.2 (Domain of attraction for asymptotic distributions of maxima) A necessary

and sufficient condition for the continuous parent pdf f(z) (cdf F(z)) to belong to the domain
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of attraction for mazima of the Frechet distribution with parameter g is the following
F(z) <1, forallz (13)

and

1 - F(tz)

£I_l}n;o —rQ z 7P, for some B > 0 and for all x. (14)

Theorem 2.3 (Domain of attraction for asymptotic distributions of minima) A necessary

and sufficient condition for the continuous parent pdf f(z) (cdf F(z)) to belong to the domain

of attraction for minima of the Frechet distribution with parameter (3 is the following

F(z) >0, forallz (15)

and
i 2AF)

il i) SO,
A= FO z7 %, for some B > 0 and for all z. (16)

3. Parameter Estimators for Stable Processes

3.1 The symmetric, a—stable probability density function

A symmetric, a—stable (SaS) pdf f4(7,d;-) is best defined via the inverse Fourier transform
integral [38, 39]
1 el y ay ,—iwT
fal 2) = 5= [ exp(i = ylul?)e™ du W

and is completely characterized by the three parameters a (characteristic ezponent, 0 <
o < 2), v (dispersion, v > 0), and § (location parameter, —00 < d < 00).

The characteristic exponent a relates directly to the heaviness of the tails of the SaS
pdf. The smaller its value, the heavier the tails. The value a = 2 corresponds to a Gaussian
pdf, while the value o = 1 corresponds to a Cauchy pdf. For these two pdfs, closed-form

expressions exist [14], but for other values of the characteristic exponent, no closed-form
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expressions are known. All the Sa$S pdfs can be computed, however, at arbitrary argument
with the real time method developed in [14]. The dispersion v is a measure of the spread
of the SaS pdf, in many ways similar to the variance of a Gaussian pdf and equal to half
the variance of the pdf in the Gaussian case (o = 2). Finally, the location parameter ¢ is
the point of symmetry of the SaS pdf.

The non-Gaussian (a # 2) SaS distributions maintain many similarities to the Gaussian
distribution, but at the same time differ from it in some significant ways. For example, a
non-Gaussian SaS pdf maintains the usual bell shape and, more importantly, non-Gaussian
SaS random variables satisfy the stability property [38]. However, non—Gaussian SaS pdfs
have much sharper peaks and much heavier tails than the Gaussian pdf. As a result, only
their moments of order p < « are finite, in contrast with the Gaussian pdf which has finite
moments of arbitrary order. These and other similarities and differences between Gaussian
and non-Gaussian SaS pdfs and their implications on the design of signal processing algo-
rithms are presented in detail in the tutorial paper [39] to which the interested reader is

referred.

3.2 Proposed parameter estimators for the SaS pdf

Let X1, X3,...,Xn be observed independent realizations of a SaS random variable X of
unknown characteristic exponent «, location parameter 4, and dispersion y. We attempt
to estimate the exact parameters of the SaS distribution of X from the observed realiza-
tions. The estimation procedure we propose has a hierarchical rather thar a simultaneous
structure. First an algorithm is proposed for the estimation of the characteristic exponent
«, which does not involve knowledge or simultaneous estimation of the location parameter
& or the dispersion 7y of the pdf. Then, an algorithm is proposed for the estimation of the
location parameter § of the pdf, which again does not require knowledge or simultaneous

estimation of the characteristic exponent or the dispersion of the pdf. Finally, we propose



an algorithm that utilizes either knowledge of the characteristic exponent and the location
parameter or estimates thereof to obtain an estimate of the dispersion v of the pdf. This
hierarchical structure significantly reduces the computational complexity of the estimators
and can, in fact, be implemented in real time for signal processing applications. The asymé— :
totic properties of the estimates returned from the algorithm are summarized in the form
of three theorems. The finite sample performance of the estimates is also assessed via a

Monte-Carlo simulation evaluation.

a. Estimator of the characteristic ezponent. For the estimation of the characteristic expo-
nent « of the pdf, we propose the following algorithm. Consider a segmentation of the data

into L nonoverlapping segments, each of length K = N/L:
{“YleZs--WXN}z {X(l),X(2),.,X(L)}, (ZJ

where X () = {X(-yyn/L+1 X(i-1)N/L+2s - - - Xinyp}, | = 1,2, ..., L. This segmentation is
done arbitrarily for the time being and the reason for considering it will become apparent
momentarily. Optimization of the segmentation is a topic of present and future research.

Let X; and X be the maximum and the minimum of the data segment X (). We then

define
7 = logX; (3)
g = —log(-Xy) (4)

and the corresponding standard deviations

. 1. )

5§ = \1——_—12(5;‘(—3:)2, f:EZf} (')‘I
=1 =1
1 L 1 L

8 = \fj'l‘;@:—?_]z; I:EEQ (6]



With these definitions in mind, the estimate for the characteristic exponent « of the SaS
pdf takes the form
. S |
&= —=(=+-)- 7
e, (7
The justification for this choice of an estimator for the characteristic exponent of the SaS .

pdf becomes apparent in Appendix A. First, however, we present estimators for the location

parameter and the dispersion of the SaS pdf.

b. Estimator of the location parameter. For the estimation of the location parameter ¢ of

a SaS pdf, we propose the use of the sample median of the observations, i.e.
6 = median {X,X2,...,Xn}, (8)

where the sample median is defined as follows: If the sample consists of an odd number N
of observations, the median is defined as the center order statistic. If the sample consists of
an even number N of observations, the median is defined as the average of the two center
statistics. The sample median forms the maximum likelihood estimate of the location
parameter of a Laplace (double exponential) distribution and, therefore, enjoys all the
properties of maximum likelihood estimators in that case. Its performance as an estimator
for the location parameter & of a SaS pdf can be expected to be very robust. In fact, we

will show momentarily that this estimator performs very closely to the maximum likelihood

estimator for the case of a SaS pdf.

c. Estimator of the dispersion. For the estimation of the dispersion 7 of a SaS pdf, we

propose the following estimator which is based on the theory of fractional lower order

moments of the pdf: .
y = (A Tk IXe =0y ©)
‘ C(p, &) '
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where C(p, &) has been defined as

1 T(1-p/a)
cos(5p) T(1-p)

Cp, &) = (10)

and the choice of the order p (0 < p < %) of the fractional moment is arbitrary.

As we can see, the dispersion estimator requires knowledge of the characteristic expo-
nent and the location parameter of the SaS pdf. Thus, the dispersion estimate must be
computed after estimates for the characteristic exponent and the location parameter have

been obtained.

3.3 Theoretical performance of the proposed estimators

Theorem 3.1 (Estimator of the characteristic exponent) The estimator & of the charac-

teristic exponent a of a SaS distribution is consistent and asymptotically normal with mean

equal to the true ezponent a and variance ;“;97(;14‘G - %f%s’sr;‘ )ab, as N = o0 and L — o0
such that N/L — oo. In the ezpression for the asymptotic variance of the estimator, psG
is on the order of a%; therefore, the asymptotic variance of the estimator is on the order of

a?.

Proof The proof of the theorem is lengthy and, thus, is given in Appendix A to the paper.

Theorem 3.2 (Estimator of the location parameter) The estimator § of the location pa-
rameter § of a SaS distribution is consistent and asymptotically normal with mean equal to

" : zavt/
the true parameter § and variance (ﬁh—n})zi—{h as N — co.

Proof From [40, p. 369], it follows that the sample median of the observations is asymp-
totically normal with mean equal to the true median (location parameter d) and variance
(m)gl\, But, fo(v,6;z) = +~Yeaf [1,0; (z — 8)7~'/?], as can be seen from the defin-

ing Eq.(3-1). Moreover, f4(1,0;6) = (1) [41]. Combining the last two relations, we
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get
(___.i__)i_l_ = (E(i”:)? 1
2a(1.0:8) N 2r(1/a)’ N’

as the asymptotic variance of the estimator 8. Q.E.D.

Theorem 3.3 (Estimator of the dispersion) The estimator % of the dispersion of a SaS
distribution is consistent and asymptotically normal with mean equal to the true dispersion
a0

P g
~ and variance ~ (map — m2){% - [-C—U’-n"—‘;l—)—}z, as N — oo and L — oo with K = N/L =
co. With m, and map, we have denoted the pdf moments of fractional orders p and 2p,

respectively.

Proof The result of Theorem 3.3 for the asymptotic performance of the dispersion estimator
makes use of Theorems 3.1 and 3.2 and holds in the limit of N and K = N/L sufficiently
large to allow the assumption & = a and 5 ~ 6. As we verify in the Monte-Carlo simulations

of the following section, these assumptions are realistic. We, then, have
] & 2
£(x 21X = 8y =y,
k=1
while, asymptotically [42, p- 367)
1 N = 1 7.
var {ﬁ ; |Xx — 6P} = I—v-(mg,, - my).

[n the above, m, and my, denote the moments of a SaS pdf of fractional orders p and 2p.
respectively. According to the discussion in section 3, these moments exist, provided that

2p < « as has been assumed.

We now have that

N
ﬁ[%? LZ_I X — 517 = mp) = N0, (m2p = m3))
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since the random variable 4 Y | X —6| is the sum of a large number of random variables
of finite variance [1]. Thus, [42, p. 319]

m

o |

- LN IXe—4P s m a & (zoay
\/;T[( — ZLC_EI;E, E:) ol )P — (m)!’] — N[0, (mgp — ??13}){5'—0(;:) 4

or i
(C(P-ﬁf}) 4 }2]

my

h' :’%’“Z{k\r:l |.Xk — SJP ;
it Coa)

The relation of the asymptotic variance of the proposed estimator ¥ to the true char-

o |

= 1] = M0, (my = m2) (5

acteristic exponent « and the true dispersion 7 becomes clearer if the relationship between

the dispersion of a SaS pdf and its fractional, lower-order moments are considered [39]

m
7= (G0a)

mzp a

=(C(‘2p,a))$'

=

)

where the function C(-,-) has been defined in Eq.(3-10).

3.4 Monte—Carlo evaluation of the performance of the proposed estima-

tors

The previous section analyzed the asymptotic performance of the estimators for the pa-
rameters (a, 7, 6) of a SaS distribution in the limit N — oo and L — oo such that
K = N/L — co. The finite data performance of the algorithm can only be evaluated via
Monte-Carlo simulation. In this section, we report the results from an extensive Monte-
Carlo simulation of the estimators of the previous section. For our simulations, we made use
of an efficient method for generation of SaS deviates of arbitrary characteristic exponent a
and dispersion v [43, 14].

We ran 1,000 Monte-Carlo runs of the estimators that we propose in this paper. In
particular, we examined the cases of N = 5,000 and 20,000, L = 20, 50, and 200, a =

0.1, 0.5, 1.0, and 1.5. and v = 1.0 and 10.0 in all possible combinations. For the location
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parameter, we assumed § = 1. For the estimation of the dispersion <, we used a fractional

moment of order p = §, where & was the estimated characteristic exponent. The arithmetic

mean and the standard deviation (in brackets) over the 1,000 Monte-Carlo runs of the

estimators &, &, and ¥ are collectively presented in Tables 1, 2, and 3, respectively.

After careful study of the Monte-Carlo results, we reach the following conclusions:

1.

[S%]

3.

The estimator & of the characteristic exponent a becomes less accurate in terms of
both bias and error variance as the true exponent « increases and gets closer to the
Gaussian value o = 2, but remains independent either of the true location parameter
§ or the true dispersion . As the true exponent gets closer to the Gaussian value
a = 2, a small bias is introduced in the estimate &, which is explained by the fact that
the convergence of the true extreme distributions to the asymptotic ones is slower for
larger o [36, 37]. This difficulty can be compensated for by use of longer data sets
for the estimation procedure. However, it is clear that a careful choice of the segment
length N/L needs to be made on the basis of the facts that (i) the bias in the estimate
& is decreased if longer segments (higher N/L, smaller L) are used and (ii) the error
variance in the estimate & is decreased if more segments (higher L) are used. For
fixed total data length NV, these two requirements are competing and a compromise

between them needs to be made.

The estimator ¢ of the location parameter § is very efficient. In fact, it is shown in
Appendix B, both theoretically and via Monte-Carlo simulation, that the proposed
estimator is almost as efficient as the maximum likelihood estimator for the case of
known characteristic exponent a. However, its‘performance depends on both the true

characteristic exponent o and the true disperion 7 and, in particular, its error variance

can become significant for small « and high 7.

The estimator % of the true dispersion 7 contains a relatively high error variance,

15



which is inherited into it from the fact that it is a moment-based estimator. [ts error
variance is higher at higher true dispersions y. At high values of the true characteristic
exponent a, a small bias may be observed which is due to the corresponding bias in

the estimation of the characteristic exponent.

The above observations are absolutely compatible with the qualitative theoretical pre-
dictions from the asymptotic analysis of the previous section. At this point, it should be
mentioned that the difficulties in estimating the parameters of SaS interference that may
be present in certain cases are not limitations of the proposed estimators, but are rather
inherent in the estimation problem at hand. For example, it is known that estimation of a
true characteristic exponent a > 1.5 is expected to be highly unreliable, as the correspond-
ing Cramér—Rao bounds are high [44]. The Monte-Carlo simulation study in Appendix B
verifies the efficiency of the proposed estimators when compared to the maximum likelihood

estimators and the corresponding theoretical Cramér-Rao bounds.
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Table 1: Performance of Estimator &

a
0.1 0.5 1.0 155
7 T 5
N | L 1 10 1 10 1 10 1 10
0.1074 | 0.1075 | 0.5340 | 0.5452 | 1.0755 | 1.0858 | 1.6492 | 1.6568
20 |
(0.0171) | (0.0175) | (0.0818) | (0.0888) | (0.1771) | (0.1707) | (0-2804) | (0-2787)
01031 | 0.1030 | 05167 | 05116 | 10351 | 1.0386 | 1.6107 | 1.6140
5,000 | 50 |
(0.0107) | (0.0109) | (0.0538) | (0.0532) | (0.1072) | (0.1066) | (0.1725) | (0.1760)
00997 | 00005 | 04943 | 0.4970 | 0.9962 | 1.0106 | 16275 | 1.6805
200
(0.0051) | (0.0051) | (0.0253) | (0.0256) | (0.0561) | (0.0538) | (0.0997) | (0-1052)
0.1072 | 0.1082 | 0.5367 | 0.5397 | 1.0787 | 1.0779 | 1.6103 | 1.6400
20
(0.0166) | (0.0167) | (0.0863) | (0.0838) | (0.1683) | (0.1753) | (0-2583) | (0.2650)
0.1033 | 0.1028 | 0.5147 | 0.5151 | 1.0289 | 1.0349 | 1.5677 | 1.5600
20,000 | 50 |
(0.0109) | (0.0103) | (0.0524) | (0.0537) | (0.1095) | (0.1078) | (0.1633) | (0.164L)
0.1003 | 0.1004 | 0.5008 | 0.5037 | 1.0088 | 1.0108 | 13740 | L3811
200 )
(0.0052) | (0.0053) | (0.0267) | (0.0265) | (0.0550) | (0.0556) | (0.0854) | (0.0852
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Table 2: Performance of Estimator &

(0
0.1 0.5 1.0 1.5
v 7 i
N 1 10 1 10 1 10 1 10
1.0000 58.6915 0.9994 | 0.9979 | 0.9998 | 1.0106 | 0.9990 | 1.0025
5,000
(6.94 x10~7) | (8.4604 x10*3) | (0.0110) | (1.1096) | (0.0213) | (0.2129) | (0.0237) (0.11331'é
1.0000 15.8975 1.0001 | 0.9924 | 1.0000 | 1.0002 | 0.9999 | 0.9984¢ |
20,000
(1.18 x10=7) | (L.11 x10*3) | (0.0055) | (0.5620) | (0.0111) | (0.1135) | (0.0117) (0.0559) |
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Table 3: Performance of Estimator ¥

o
0.1 0.5 1.0 1.5
v 7
N | L 1 10 1 10 1 10 1 10

1.1153 | 159351 | 1.1027 | 16.8175 | 1.1191 | 16.2872 | 1.1545 | 18.1620
20

(0.2275) | (12.9101) | (0.2147) | (13.8951) | (0.2518) | (12.8706) | (0.2865) | (16.2923) |~

1.0421 | 11.8845 | 1.0468 | 11.5582 | 1.0480 | 12.2093 | 1.0966 | 14.0672

5,000 | 50

(0.1209) | (4.8725) | (0.1201) | (4.4013) | (0.1200) | (5.5068) | (0-1429) | (6.3089) |

0.9975 | 99770 | 0.9885 | 9.9264 | 09969 | 105135 | 1.1030 | 15.4333 |
200

(0.0493) | (1.6772) | (0.0472) | (1.6452) | (0.0540) | (1.8323) | (0.0819) | (3.3972)

1.1134 | 15.9542 | 1.1173 | 16.0716 | 1.1220 | 16.4911 | 1.1179 | 17.0753
20

(0.2334) | (11.3094) | (0.2417) | (13.7210) | (0.2307) | (18.0993) | (0.2432) | (14.1963)

L0485 | 117752 | 1.0421 | 11.8994 | 1.0431 | 12.0774 | 1.0614 | 12.3398 |

20,000 | 50

(0.1286) | (4.6033) | (0.1220) | (4.7826) | (0.1261) | (4.6853) | (0.1313) | (5.0753]

1.0058 | 10.3116 | 1.0033 | 10.4156 | 1.0116 | 10.5573 | 1.0577 | 12.2613
200 -

(0.0549) | (1.8329) | (0.0557) | (1.8470) | (0.0574) | (1.9775) | (0.0627) | (2.4282)
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4. Summary, Conclusions, and Possible Future Research

In this paper, we have examined the problem of estimation of the parameters of Sa§S inter-
ference from a set of i.i.d. observations of its realizations. We have developed estimators
which can be computed in small real time and yet maintain high efficiency. We analyzed the
performance of the estimators both theoretically and via Monte-Carlo simulation and we
found them to be appropriate for the design of algorithms for statistical signal processing
applications.

Future topics in the same area of research, that need to be addressed, include the
detection of multiple signals with unknown parameters embedded in i.i.d. impulsive noise
using array sensors and their generalization to the case of linearly dependent impulsive
noise. Of relevance are also algorithms for parameter estimation from data corrupted by
impulsive interference. Possible applications of this research can be found in the detection of
low-probability-of-intercept (spread spectrum) communication signals and the identification
of incompletely specified communication channels. These and related topics are currently

under investigation, the results of which are expected to be announced very shortly.
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APPENDICES

1. Proof of Theorem 3.1

The proof is presented in three steps. Steps 1 and 2 clarify the rationale behind this choice
for the estimator &, while step 3 wraps up steps 1 and 2 into a concise mathematical

formulation.

Step 1. In this step, we show that the extreme order statistics from a SaS parent pdf
(0 < a < 2) are attracted to the Frechet family of distribution with parameter B = To

show this fact, we apply theorems 2.2 and 2.3. We have [36, 37]

Fa(y,9;z) < 1forall z

aud D(a)sin(Z2)
T e
Sm gD — A Ty~ 0 0<e<?
T te

In writing the above equation, we have made use of the asymptotic tail behavior of non-
Gaussian SaS pdfs [39]. The conditions of theorem 2.2 are satisfied, therefore, the maxima
of collections of non-Gaussian SaS random variables are attracted to the Frechet asymptotic
distribution for maxima.

Similarly, we can use theorem 2.3 to show that the minima of collections of non—-Gaussian
SaS random variables are attracted to the Frechet asymptotic distribution for minima.
Combining these two asymptotic distributions and using the fact that maxima and minima
are asymptotically independent, we show that, for large segment length K = N/L (V is
the total number of observed data and L is the nun:lber of segments), the asymptotic joint
pdf of the maxima and minima of each segment of the data will be of the form
[ far (Ri/br) e fm (/)] 16 K1 >0,X, <0

fum(Xn X)) = .
otherwise,



where fas and f,, are the Frechet distributions for maxima and minima in Eqgs.(2-6) and
(2-9), respectively, with shape parameter § = o and the constants by and dj can be chosen
as by = F7[y,8; (1 - 1/K)] and dg = |F7 [y, 65 (1/K)]| [36, 37].

Step 2. The transformation

T = log X,
L = _[Og(_&)!

converts Frechet distributed random variables to Gumbel distributed ones [37]. Therefore,
for large K, Z; and z; will be asymptotically Gumbel distributed, i.e. their asymptotic joint

pdf will have the form

s Ti—Ac An— A=
exp(~Z722) exp[— exp(—FF29)] exp(—=42E) exp[— exp(- 2]

G (z =
ff'ff,m (If" I—I) = bG bG ]

where bg = 1/a, Ag = log(bk), and Ag = —log(dk).
The variance of the Gumbel distribution of shape parameter bg is [37]

1;'2626 72

6  6a?

Q2

a,

and, therefore, its moment estimates from the sequencies {Z;} and {z,} of transformed

maxima and minima, respectively, can be combined to form the estimate
: 1 1
é=—=(z+-
G+7)

as in Eq.(3-7).

Step 3. We can now formalize steps 1 and 2 and detive the asymptotic performance of the

estimator & as in theorem 3.1.

Let o3, = [, v fr(u) du—[[2, uf - (u) du)® be the exact variance of the transformed

maxima ;. Similarly, let 02, = [% u?f.(u) du = [[Z3, uf,.(u) du]® be the exact variance
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of the transformed minima z;. We have denoted the exact pdfs for the transformed maxima
and minima, respectively, with f(-) and [ (). Then (40, 42],
1 L-3
(32 - o‘if] — N(0, E[}u_m - L—_—-I—O':{,;]) as L — o0

and
L— 34

-—j } as L — oo.

(s — %) = N(0, [}14 m —
In the above, p4 o and g are the exact fourth-order central moments of the transformed
maxima and minima, respectively, and N(§, n*) denotes the Gaussian pdf of mean § and

variance 2. The convergence is in distribution.

According to [40, 42], we will then have

(\/55 \/_O'M y=r N0 'LD“M L—IGM]%J%) L0
and
— N(0, [;1 L—:io'“] T L—
(v/_ \/—m) 4,m — 1 m2406) as 0.

As K = N/L — oo, the distribution of the maxima and minima converges asymptoti-

cally to the Gumbel distribution of step 2. Therefore,

2

-—
i

2 2 —

Ha.My HF4,m —+  U4,G,

where 4 is the fourth—order central moment of the Gumbel distribution (to be given

momentarily). Moreover, the transformed maxima and minima are asymptotically inde-

pendent. We, thus, conclude that .
r 1 1 9 E—3 #°
— [=4+-]- V(0 g
(2\/6-[51__-5:] @) =+ N (0 57— (a6~ T 36500

We, finally, compute the fourth-order central moment 4G of the Gumbel distribution.

Let ;¢ and ¢jG, J = 2,3,4,..., be the central moments and the cumulants, respectively.
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of the Gumbel distribution of order j. Then, [45, p. 542]
. 1 . .
cic = (=baY¥UN(1) = (=)t 70(), j=2,3,4,...,

where 9(-) is the digamma function. From known relations between moments and cumulants
[2], we can now compute the fourth order moment 4. Indeed:

4
paG = Y (1)1 gmajc,

=0
where

0.577216

mic = p,6~ Ac+0.577216 b = Ag + il
2
- 2. _* 2

m2G = K26 T HLGT 82 + MG
m3c = ¢36+3macmiG— Qm?,c:
mic = cic+4dmacmic+3mi g —12myemi  +6m g,

where Ag is either Ag or Ag as they were defined earlier. Given the form of the cumulants
¢j Gy =2,3,4,..., it is clear that s4c is on the order of 2, which shows that the variance

of the error in the estimator & is asymptotically on the order of a?.

2. Maximum likelihood estimation of the parameters of the

a—stable impulsive interference model

The key result regarding the restricted maximum likelihood estimates of the parameters a.
~, and & of a SaS distribution from N independent Tealizations can be summarized in the

following theorem (adapted from the corresponding theorem in (27, p. 952])

Theorem B.1 When sampling from a SaS distribution, the mazimum likelthood estimate

(G mts FN mis S:V.mf) for the parameters (a, v, 8), based on the first N observations and
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restricted so that an i > €, where € is arbitrarily small and posilive, is consistent and
asymptotically normal, as long as (o, 7, §), the true value of the parameters, are in the

interior of the parameter space, t.e., € < a < 2.

With the above theorem in mind, we can now proceed to compute the Cramér-Rao
lower bounds for the error in any unbiased estimate of the parameters (e, v, é) of a SaS

distribution. In particular, we find the Fisher information matrix J to be of the form:

[8/8a falrS:u)]? 0/96 falr.8)|[0/01 falrb:m)]  [0/0afalr.8:u)|[0/85 falrS:u)]
& fa(7d5u) fa(7.8iu) fa(7.8:u)
J=N f (8/8 falv,5:u)][3/B fal.8:u)] (8/87 falr.S:)] [(8/87 fa(,8:u)]10/ 88 faly.b:u)]
i falrdiu) fa(65u) falv.éiz)
[8/86 falv.5:u)][8/0a falrdiu)]  [3/98 fal~.8:u)l[3/07 a(v.5:u)] [8/88 fa(v.6:)]2
Ja{71,6:1) Jalrdiu) fa(v.8:u)

The corresponding Cramér-Rao bounds for the parameters (a, 7, §) can now be com-
puted as the first, second, and third diagonal element in the matrix J~!. Taking into
account the fact that fo(v,d0;u) = 7":l?fa[(u - 5]7"«1?], we see clearly that the Cramér-Rao
bounds for the parameters (e, 7, 6) are independent of the true location parameter 4.

Unfortunately, numerical methods need to be employed in the evaluation of the above
Cramér—Rao bounds. It is instructive, however, to consider the case of known o = 1 and
examine the Cramér-Rao bounds in the estimation of the location parameter 0 and the

dispersion 7 of the a SaS pdf. In this case, the corresponding Fisher information matrix

becomes:
& [B/8~vfi(v.5:u)] (8/3~ f1(7.8:u)][8/98 f1(,5:u)]
j= _,\,"[ fr{meiu) 2 Nilviéiu) du
oo | [8/88f1(~8:0)[8/07f1(.:u)] [8/868 f1(~,8:0)1 3
f1(7.65u) fi(v.6;u)

where fi(v,0;u) = 3 _:;15) . The above integrals can be computed either analytically or
numerically and the matrix is easily inverted to give the corresponding Cramér-Rao bounds.
In the following Table 4, we compare the Cramér-Rao bounds, the variance (in brack-

ets) of the maximum likelihood estimators, and the variance (in brackets) of the proposed
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estimators, as the latter two have been computed via 1,000 Monte-Carlo runs. For the
maximum likelihood and the proposed estimators, we also give the mean. As test parame-
ters, we assumed v = 1 and 10, § = I, and total number of observations N = 100 and the
fractional moment in the dispersion estimator was of order p = 1/4. From Table 4, it be-
comes clear that certain difficulties that were encountered in Section 3 in the Monte-Carlo
simulations are not due to a low efficiency in the proposed estimators, but are inherent in
the nature of this parameter estimation problem. In fact, the proposed estimators have

an efficiency quite close to either the efficiency of maximum likelihood estimators or the

corresponding Cramér-Rao bounds.

Table 4:
l Performance of Estimator § | Performance of Estimator ¥
| v=1 v =10 y=1 v=10
C-R bound (0.0200) (2.0001) (0.0209) (2.0085)
ML 0.9968 (0.0205) | 0.9276 (2.0881) | 1.0054 (0.0207) | 9.9691 (2.0925)
Proposed || 0.9969 (0.0251) | 0.9539 (2.2374) | 0.9996 (0.0334) | 9.9400 (3.3871)
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