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Abstract

This report presents a new subspace-based method for bearing estimation in the presence of
impulsive noise which can be modeled as a complex symmetric alpha-stable (SaS) process. We
define the covariation matrix of the array sensor outputs and show that eigendecomposition-
based methods, such as the MUSIC algorithm, can be applied to the sample covariation
matrix to extract the bearing information from the measurements. Consistent estimators for
the covariation matrix are presented, and their asymptotic performance is studied through
both theory and simulations. The improved performance of the proposed source localization
method in the presence of a wide range of impulsive noise environments is demonstrated via

Monte Carlo experiments.
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I. INTRODUCTION

Statistical array processing based on the linear theory of random processes with finite second-
order moments has been the focus of considerable academic research. Critical problems such
as high-resolution direction finding, null- and beam-steering, and detection of the number of
sources illuminating an array of sensors have been studied under the assumption of a Gaussian or
second-order model. Many different classes of methods, compromising optimality for the sake of
computational efficiency, have been proposed under the aforementioned statistical framework [1].

Looking toward real world applications, we are interested in developing array processing
methods for a larger class of random processes which include the Gaussian processes as special
elements. The availability of such methods would make it possible to operate in environments
which differ from Gaussian environments in significant ways.

The class of stable distributions has some important characteristics which make it very attrac-
tive for modeling impulsive noise environments. Stable processes satisfy the stability property
which states that linear combinations of jointly stable variables are indeed stable. They arise
as limiting processes of sums of independent, identically-distributed random variables via the
generalized central limit theorem. They are described by their characteristic exponent o, taking
values 0 < o < 2. Gaussian processes are stable processes with a = 2. Stable distributions have
heavier tails than the normal distribution, possess finite pth order moments only for p < a, and
are appropriate for modeling noise with outliers. The main reason for the difficulty in developing
signal processing methods based on stable processes is due to the fact that the linear space of a
stable process is not a Hilbert space, as in the case of Gaussian processes, but either a Banach
(1 < a < 2) or a metric space (0 < a < 1) both of which are more unyielding in their structure.

Recently, it has been shown that the improved performance gained by designing signal pro-
cessing algorithms in an alpha-stable framework justifies the mathematical and computational
complexity involved. In [2] we dealt with optimal approaches (optimal in the Maximum Likeli-
hood (ML) sense) to the direction of arrival (DOA) problem in the presence of impulsive noise.
The analysis was based on the assumption that the additive noise could be modeled as a complex
symmetric a-stable (SaS) process. The optimal ML techniques employed in [2] are often re-
garded as exceedingly complex due to the high computational load of the multivariate nonlinear

optimization problem involved with these techniques. Hence, sub-optimal methods need to be



developed for the solution of the DOA problem in the presence of impulsive noise, when reduced
computational cost is a crucial design requirement.

In this report, we present subspace techniques for the source localization problem, techniques
which are based on the geometrical properties of the data model. Considerable research has
been done in this area under the framework of Gaussian distributed signals and/or noise. The
better known of the so-called eigendecomposition-based methods are the MUSIC [3], Minimum
Norm [4]-[5], and the ESPRIT method [6]. These methods estimate the bearings of the source
signals by performing an eigendecomposition on the spatial covariance matrix of the array sensor
outputs. Studies concerning the statistical efficiency of the most popular eigendecomposition-
based method, namely the MUSIC algorithm, have been done in [7]-[8]. The relationship between
the MUSIC and ML methods has also been studied in [7]. Since Sa.S processes do not possess
finite pth order moments for p > «, traditional subspace techniques employing second- and
higher-order moments [9] cannot be applied in impulsive noise environments modeled under the
stable law. Instead, properties of fractional lower-order moments (FLOM’s) and covariations
should be used.

This report extends the subspace-based techniques for bearing estimation to processes with
finite moments of order p (p < 2) and to complex isotropic SaS processes. The report is organized
as follows: In section II, we formulate the bearing estimation problem and we give a brief review
of second-order subspace-based techniques. Also, we present some necessary introduction on
a-stable processes. In section III, we discuss the development of subspace techniques in the
presence of a-stable distributed signals and noise. Our analysis is based on the formulation of
the covariation matrix of the array sensor outputs. Finally, simulation experiments are presented

in section IV, and conclusions are drawn in section V.

II. BACKGROUND

A. Problem Formulation

Consider an array of r sensors with arbitrary locations and arbitrary directional characteristics,
that receive signals generated by ¢ narrow-band sources with known center frequency w and

locations 6,0, ...,6,. Since the signals are narrow-band, the propagation delay across the array



is much smaller than the reciprocal of the signal bandwidth, and it follows that, by using a

complex envelop representation, the array output can be expressed as

q

x(t) =) a(6k)sk(t) + n(t), (1)
k=1
where

o x(t) = [z1(t),...,2.(t)]7 is the vector of the signals received by the array sensors

e s5i(t) is the signal emitted by the kth source as received at the reference sensor 1 of the

array
e a(f) =[1, e=wm2(0k)  e=2mr(0:)]T is the steering vector of the array toward direction 6

e 7;(0;) is the propagation delay between the first and the ith sensor for a waveform coming

from direction 6}
e n(t) = [n1(t),...,n.(t)]7 is the noise vector
(1) can be expressed in a compact form as
x(t) = A(6)s(t) + (), (2)
where A(0) is the r x ¢ matrix of the array steering vectors
A(6) = [a(61),-..,a(8,)], ®3)
and s(t) is the ¢ x 1 vector of the signals
s(t) = [s1(t), - »5,(1)]"- (4)

Assuming that M snapshots are taken at time instants ¢y, ..., ¢y, the data can be expressed

as

X =A(0)S +N, (5)

where X and N are the r x M matrices
X = [x(t), -y x(tar)], (6)
N = [n(t1),...,n(ta)), (7)
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and S is the ¢ x M matrix

S =[s(t1),.--,s(tm)]- (8)
Our objective is to estimate the directions of arrival 8y,...,6, of the sources from the M
snapshots of the array x(t1),...,x(ta).

B. Subspace-Based DOA Methods — The MUSIC Algorithm

In this section, assume that the ¢ (¢ < r) signal waveforms are non-coherent, complex Gaussian
random processes with covariance matrix 2. Also, the noise vector n(t) is a complex Gaussian
random process, independent of the signals, with covariance matrix o*I.

The covariance matrix of the observation vector x(t) is given by
R = E{x(t)x"(t)} = A(6)SAT () + ¢71, (9)

where I/{-} is the expectation operator. The ¢ x ¢ matrix X has full rank since we assumed non-
coherence of the ¢ incoming plane waves. If the the steering vectors are linearly independent, it
follows that matrix A (@) has full rank ¢.

MUSIC belongs to the class of spatial spectral estimation techniques which are based on the
eigendecomposition of the covariance matrix R. The rationale behind this approach is that one
wants to emphasize the choices for the steering vector a(#), which correspond to signal directions.
The method exploits the property that the directions of arrival determine the eigenstructure of
the matrix.

Let py > p2 > --- > p, denote the eigenvalues of matrix R, and A\; > Ay > --- > A, denote
the eigenvalues of matrix A (@)X A (0), respectively. Since matrix A (8) is of full column rank ¢,
the (r — ¢) smallest eigenvalues of the matrix A(6)ZA¥ () are equal to zero, and the eigenvalue

decomposition of the spatial covariance matrix R can be written as
9 r
R = Z[z\, + 0'2]V,'V1-H + Z O’QV,'V;-H, (10)
i=1 i=g+1
where {v;}i_, are the orthogonal eigenvectors of the matrix R. It can be easily proven that
the subspace spanned by the eigenvectors {vg41,Vg42,...,V,} is the orthogonal complement

of the subspace spanned by the steering vectors {a(6,),a(f),...,a(f,)}. Since the eigenvec-

tors of the covariance matrix R are orthogonal to each other, then the subspace spanned by



the eigenvectors {vy,vy,...,v,} is exactly the same as the subspace spanned by the vectors
{a(6y),a(6s),...,a(6,)}. It follows that if the field contains ¢ distinct non-coherent propagating
signals in a spatially white noise environment, then the eigenvalue decomposition of the spatial
covariance matrix R results in the formation of two disjoint subspaces that are the orthogonal
complement of each other. The first one, called the signal plus noise subspace, is spanned by
the eigenvectors corresponding to the ¢ largest eigenvalues of R. The second, called the noise
subspace is spanned by the eigenvectors corresponding to the r — g smallest eigenvalues of R.
Given the eigenvectors of R we may determine the signal directions of arrival by searching for
the steering vectors a(f) which are orthogonal to the noise subspace.

In practice, R is unknown, but can be consistently estimated from the available data as
M

1

R=—Y x(t)x(t). 11

37 L x(0x(0 (1)

Because of the uncertainty in the eigenvector estimates {V,41,Vg42,...,V,} introduced by the

way the matrix R is estimated, one can only search for the steering vectors that are most closely
orthogonal to the noise subspace. The MUSIC algorithm estimates the signal directions as the

peaks of the MUSIC spatial spectrum estimator given by

1
Pyusic(0) = S RO

(12)

C. Mathematical Preliminaries: Complex SaS Random Variables

A complex random variable (r.v.) X = X + X3 is symmetric a-stable (SaS) if X1 and X, are
jointly SaS and then its characteristic function is written as
pw) = E{expRwX7)]} = E{exp[j(w1 X1 + w2 X5)]}
= exp [— -/52 |wyzy 4+ wame|dl'x, x, (%1, 22)|, (13)
where w = wy + jw, R[] is the real part operator, and I'y, x, is a symmetric measure on the unit
sphere Sy, called the spectral measure of the random variable X. The characteristic exponent o
is restricted to the values 0 < e < 2 and it determines the shape of the distribution. The smaller
the characteristic exponent «, the heavier the tails of the density.
A complex random variable X = X + 3Xj is isotropic if and only if (X, X;) has a uniform

spectral measure. In this case, the characteristic function of X can be written as
p(w) = E{exp(jRwX"])} = exp(—v|w|?), (14)
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where v (y > 0) is the dispersion of the distribution. The dispersion plays a role analogous to
the role that the variance plays for second-order processes. Namely, it determines the spread of
the probability density function around the origin. A method for generating complex isotropic
SaS random variables is presented in Appendix A.
Several complex r.v.’s are jointly Sa.S if their real and imaginary parts are jointly Sa.5. When
X =X +3X; and Y =Y + 3Y; are jointly SaS with 1 < a < 2, the covariation of X and Y is
defined by
[X,Y]a= L (214 222) (Y1 + 2y2) <"~ dUx, x, v, 12 (21, T2, 41, 12), (15)

4

where we use throughout the convention
s 1 4 e (16)

It can be shown that for every 1 < p < a, the covariation can be expressed as a function of

moments [10]

E{XY<r-1>}

X,Y], = T, (17)
WY = =Fv)
where 7y is the dispersion of the r.v. Y given by
pla _ E{[Hp} 1
Ty = —C(p, a) for 0 < p < a, ( 8)
with -
-2P+1[‘(E__.)[‘(_R)
C(p,a) = : 2, (19)
)= T
where I'(+) is the gamma function defined by
I(z) = / 7= e~tds, (20)
0
Obviously, from (17) it holds that
[X, X]a = 7x- (21)
Also, the covariation coefficient of X and Y is defined by
(X, Y]
TR o e —— 22
/\1\ B [Y, Y]Q y ( )
and by using (17) it can be expressed as
I XYy<p-1>
Axy = -IE-{—E)-/——-——} for1 <p<a. (23)

E{Y [P}



The covariation of complex jointly Sa.S r.v.’s is not generally symmetric and has the following

properties [11]:
P1 If Xy, X, and Y are jointly Sa.S, then
[aX1 +b0X2,Y]e = a[X1,Y]a + 5[ X5, Y]a (24)
for any complex constants a and b.

P2 If Yy and Y5 are independent and Xy, X7 and Y are jointly Sa.S, then
[aX1,bY] + cYs)a = ab<*"1>[ X1, Vi]a + ac<e 1> [X,, Yala (25)

for any complex constants a, b and c.

P3 If X and Y are independent Sa.S, then [X,Y], = 0.

III. SuBSPACE TECHNIQUES IN THE a-STABLE FRAMEWORK

A. The Array Covariation Matrix

In this section, we assume that the ¢ signal waveforms are non-coherent, complex isotropic Sa.S
(1 < o < 2) random processes with covariation matrix I's = diag(7s,---,7s,)- Also, the noise
vector n(t) is a complex isotropic Sa.S random process with the same characteristic exponent «
as the signals. The noise is assumed to be independent of the signals with covariation matrix
'y =v,.L

(2) can be written as

x(t) = w(t) + n(t), (26)

where w(t) = A(0)s(t). By the stability property, it follows that w(t) is also a complex isotropic

SaS random vector with components
wilt) = Ai(0)s(t) = ai(01)s1(t) + -+ () 5,(t) i=1,...,7. (27)

Also, it holds that w(t) is independent of n(t).



Now, we define the covariation matriz of the observation vector process x(t) as the matrix

whose elements are the covariations [2;(t),z;(t)]o of the components of x(t). We have that

[zi(t),2;(O)]a = [wi(t) +ni(t), wj(t) + n;()]a
[wi(t), w; ()] + [wit), nj(O)]a + [ (8), wi(O)]a + [ri (), n; ()]a.  (28)

By the independence assumption of w(t) and n(¢) and by property P3 we have that
[wi(t), nj(t]]a =0, (29)

and
[ni(2), wi(t)]a =0. (30)

Also, by using (27) and properties P1 and P2 it follows that

M-

[wi(t), wi(O]a = [D @i(Br)sk(t), wit)]a

1

a; (0x) [5k(t), w;(t)]a

-
I

1l Il
M= Il 7

a; (0x) [sk(t), > a; (01)s1(t)]a
1=1

=
Il

1

I
M-

a; (Sk)afa_1>(9k)73k1 (31)

o
1l
—

where 75, = [k, Sk]a. Finally, due to the noise assumption made earlier, it holds that
[ri(t), nj ()] = Ynbi;, (32)

where §; ; is the Kronecker delta function. Combining (28)-(32) we obtain the following expression

for the covariations of the sensor measurements:

-

[:Bf(t)txj(t)]a = Z ai(gk)afa_1>(f}k}7sk + 7!161'._1' 8. =Ly B (33)
k=1

Also, the dispersion and covariation coefficients of the array sensor measurements are given

respectively by
q

Yo;8) = D185 (0R)%Ysx +9a G=1,.004m, (34)
k=1

and
Sy @i(Bk)as " (k) Ys, + Tni
Sok=1 125 (08) 12y, + Tn

Ar‘-(f},l-](t} = f,j = 1., AP g% (35)

9



In matrix form, (33) gives the following expression for the covariation matrix of the observation

vector:
[x(t), x(t)]a = A(O)TsA* 1> (0) + 0], (36)
where the (7, 7)th element of matrix A<*~1>(0) results from the (4, i)th element of A(8) according

to the operation

[A<=1>(0)];; = [A(8) Samele |[A(9)]j,€ |8 [A(Q)Ez (37)

:r.!%

Clearly, when « = 2, i.e., for Gaussian distributed signals and noise, the expression for the
covariation matrix is reduced to the form shown in (9).

When the amplitude response of the sensors equals unity, i.e., for steering vectors of the form

a(fy) = [1,e#m20) . e~ (@)]T it follows that
[A<e~1>(0)];,; = |73 (8) |a=2gm; (0:) — [AO)]};, (38)
and thus the covariation matrix can be written as
[x(t),x()]a = A(B)TsAT(6) + 7,1. (39)

Also, from (34) and (35) the dispersion and covariation coefficients of the array sensor measure-

ments can be written as ’
Yzi(t) = Z Vs + Tn .;" =1,...,7m, (40)
k=1
and
B e Pkt 4i(0x) a5 (0x) Vs, + 1nbi
zi(t),z;(t) Zi:l Yor. + Tn

Hence, in this case, we can apply the subspace techniques described in section IL.B, to the

3,028 Lyvag s (41)

covariation or the covariation coefficient matrices of the observation vector to extract the bearing
information. Since several estimators have been proposed for the covariation coefficient of two
SaS random variables, in the following we will use the covariation coefficient matrix of the array
sensor measurements to estimate the bearings of the sources.

We will refer to the new algorithm resulting from the eigendecomposition of the array co-
variation coefficient matrix as the Robust Covariation-Based MUSIC or ROC-MUSIC. In
practice, we have to estimate the covariation matrix from a finite number of array sensor mea-
surements. The following section describes one such estimator, based on fractional lower order

moments of the stable process, and studies its asymptotic statistical properties.

10



B. Covariation Estimators

A proposed estimator for the covariation coefficient Ay y defined in (22), is called the fractional
lower order (FLOM) estimator and is given by [12]

<p—1>
= XiY©P
?:1 |Y'1|IJ
for some 1 < p < o and independent observations (Xy,Y1),...,(X,,Y,). Unfortunately, this

.S\le — (42)

estimator, although it is unbiased, it has very large variance. To circumvent this difficulty we

introduce the modified covariation coefficient function

EB{XY<r-1>}

Axy(p) = et 43
A o

for 1/2 < p < a if X and Y are real SaS random variables, and 0 < p < a if X and Y are
complex isotropic SaS random variables. This modified covariation coefficient function is well
defined (finite) for the aforementioned values of the parameter p as follows from the following

proposition:

Proposition 1 Let X and Y be jointly SaS random variables. It holds that E{|X||Y|P~'} <
and E{|X|}|Y|?7 2} <0 if1/2<p< a/2 (0<p<a/2)for X and Y real (isotropic complez.)

Proof See Appendix B.
Clearly, when 1 < p < « the function Ay y(p) equals the covariation coefficient Ay y as
defined in (22)-(23). The fractional lower order estimator (MFLOM) for the modified covariation

coefficient function Ax y(p) is given by

?=1 J\"'Yi‘(P— 1>

:\X'y(p) = '-'_l [Y-li’ (4.’1]

for independent observations (X7, Y1),..., (X5, Yn). The theoretical performance of this estima-

tor is given by the following theorem:

Theorem 1 The estimator 5\1\',11 (p) given by (44) is consistent and asymplotically normal with

mean equal to the true modified covariation coefficient function Ay y(p), and variance
) = 5| [BUXPIYP) - By ] -
n n (E{|Y|P})?

2R { [EAXY<r->|y P} — B{XY<P=1>}E{|Y|}] %} +

|E{X}’<p"'>}|)2] , (45)

2py _ P1)2
[E{|X| } = (E{IY]"}) ]( (E{[Y]"})?

11



where R[z] denotes the real part of z and p varies in the range 0 < p < a/2 for the complex

isotropic case. In notational form,

Valxy(p) = Axy(p)) = N(0,03(p)), (46)

where = denotes convergence in distribution, and N (u, 0?) is the normal distribution with mean

w and variance o?.

Proof See Appendix C.

For the case of real jointly Sa.S random variables the asymptotic variance of the estimator is
finite for values of p in the range 1/2 < p < /2. The simulation experiments in the following
section give some significant insight on the performances of the MFLOM estimator and the

proposed ROC-MUSIC algorithm.

IV. SIMULATIONS

We performed three simulation experiments to assess the performance of the MFLOM estimator
and to compare the MUSIC and ROC-MUSIC algorithms. The first experiment illustrates the
behavior of the MFLOM estimator of the covariation coefficient as a function of p and compares
MFLOM with the least-squares and screened ratio estimators. The second and third experiments
study the performance of the MUSIC and ROC-MUSIC algorithms in the presence of simulated
SaS noise and real radar clutter, respectively. The improved performance of the ROC-MUSIC

method in terms of both bias as well as mean square error is apparent in the simulation results.

A. Experiment #1

The purpose of this experiment is to study the influence of the parameter p to the performance
of the MFLOM estimator of the covariation coefficient. Two real SaS (1 < @ < 2) random

variables, X and Y, are defined as
X = an Uy + a2Uy,

Y = a1 Uy + azUs,

12



where Uy, and U, are independent, Sa.S random variables. The model coefficients fass $g=

1,2} are given by
[a]=] ; (47)

It follows from (35) that the true covariation coefficient A of X" with Y is

2 a<a=1>
_ di=1 ayjQq;

A=
Z?:l |(I2j. IQ‘

We generated n = 5,000 independent samples of Uy, Us; and Uz and we calculated the MFLOM

(48)

estimator by means of the expression

. .6 Rl
Avrrom(p) = ==L
i=1 D/ilp

for different values of p in the range [0,2]. We run K = 1,000 Monte Carlo experiments and
compared the performance of the MFLOM estimator to that of the least-squares and the screened
ratio estimators. The two later estimators are defined as follows:

Least-squares estimator:

5o o T XiY
i=1 |Yil?
Screened ratio estimator [13]:
-1
Sgp = izt Xi¥i Xy,
Z?:l XY.‘

where

1 ifeaa<|Y]|<e
Xy = _
0 otherwise

In [13] it is shown that the least-squares estimator ;\Ls is not consistent for 1 < o < 2 while the
screened ratio estimator Agp is strongly consistent.

Figure 1 shows the standard deviation of the MFLOM estimator of the modified covariation
coefficient as a function of the parameter p and for different values of the characteristic exponent
«. As we can see, for the case of non-Gaussian stable signals (1 < a < 2), the values of p in the
range (1/2,a/2) result into the smallest standard deviations. For Gaussian signals the optimal
value of p is 2 and the resulting MFLOM estimator is simply the least-squares estimator, as

expected.

13



In Figures 2-3 we plot the MFLOM estimates for a = 1.5 and several values of p. We also

plot the running sample variance estimate Sﬁ defined as follows:

k
1 o (i = (k) 2
Sk = e S O rrom(®) = Avrrom(®)? k=1,...,K, (49)
i=1
where
= (k) 5 d
AvrLom(p) = Z MFLOM (p)- (50)

If the population of the MFLOM estimates {AMFLOM (p)}X, has finite variance, S? will con-
verge to a finite value (converging variance test.) As we can see, only for the value of p in the
range (1/2,a/2), i.e., for p = 0.7, is the MFLOM estimator normally distributed with finite
variance, which supports the theoretical analysis of section III.B. Figure 4 shows the screened
ratio estimates and the corresponding running sample variance.

Table 1 shows comparative results of the three estimators. We include the mean of the
estimators, the standard deviation in parentheses, and the value of p for which the smallest
standard deviation is achieved by the MFLOM estimator. For the screened ratio estimator, we
chose ¢; = 0.1 and ¢3 = co. Clearly, for a # 2, the least-squares estimator has large standard
deviation compared to the other two estimators. For the Gaussian case (a = 2), the least-squares
estimator is optimum. The screened ratio estimator exhibits small bias and standard deviation.
On the other hand, the MFLOM estimator gives the smallest bias and standard deviation of
all three estimators for a choice of the parameter p in the range (1/2,a/2). For such values
of p the MFLOM estimator of the modified covariation coefficient function converges to the
true covariation coefficient calculated by (48). Hence, we can conjecture that (22) holds for

1/2 < p < @ in the case of real SaS random variables.

B. Experiment #2

In this experiment we compare the performances of the proposed ROC-MUSIC algorithm to MU-
SIC. The sample covariation coefficient matrix (SCCM), as estimated by (42), is not symmetric
and hence it has complex eigenvalues in general. The more snapshots are available at the array
sensors, the more nearly symmetric SCCM becomes. We come around this problem by perform-
ing the eigenvalue decomposition to the sum of the sample covariation coefficient matrix and its

conjugate.



The array is linear with five sensors spaced a half-wavelength apart. A single source is
positioned at 20°. The noise is assumed to follow the complex isotropic Sa.S distribution with
dispersion v = 1. The number of snapshots available to the algorithms is M = 50. In every
experiment we perform 100 Monte-Carlo runs and compute the bias and the standard deviation
of the direction-of-arrival estimates. We use two values of the parameter p in the estimation of
the covariation (c.f. (44)): p=0.8 and p = 0.4.

The results are depicted in Figure 5. All the curves are functions of the characteristic exponent
a of the noise. Clearly, for very impulsive environments (o < 1.6) MUSIC exhibits very large bias
and standard deviation. On the other hand, for less impulsive noise (o > 1.8), MUSIC and ROC-
MUSIC have comparable performances. Comparing the ROC-MUSIC curves in Figure 5, we see
that for @ < 1.4 the choice of p = 0.4 gives smaller standard deviation while for & > 1.4 the choice
of p = 0.8 gives better results. This is consistent with the results of the previous experiment and

shows that values of p in the range (1/2,a/2) give estimators with smaller variances.

C. Experiment #3

The proposed algorithm has been tested with real radar sea clutter data provided by the Naval
Surface Warfare Center, Carderock Division, Bethesda, Maryland. Clutter is a group of unwanted
radar returns due to scattering centers such as precipitation, birds, and ocean waves. The received
clutter signal can be represented in terms of its in-phase (I) and quadrature (@Q) components. A
typical sample set of the sea clutter data is shown in Figure 6. The spiky nature of these radar
returns is obvious, and it has been shown, using the algorithms developed in [14], that they can
be modeled as Sa.S processes with a = 1.85 and v = 0.19.

We repeated the second experiment in the presence of radar clutter and the results are shown
in Figure 7. All the curves are functions of the signal power over the noise dispersion in dB, i.e.,
they are functions of a so-called pseudo signal-to-noise ratio PSNR = 10 log(wLM M 1s@®)?).
For the ROC-MUSIC we used p = 0.85 in the expression for the FLOM estimator of the co-
variations. As we can see, the ROC-MUSIC slightly outperforms the MUSIC. The figure also
shows the performances of the Maximum Likelihood method based on the Gaussian noise as-
sumption (MAX. LIK. - Gaussian), and the Maximum Likelihood method based on the Cauchy

noise assumption (MAX. LIK. - Cauchy) introduced in [2]. As demonstrated in [2], the Cauchy

15



beamformer exhibits very small bias and estimation variance even for very low PSNR values.
Figure 7 demonstrates the major trade-off between optimal maximum likelihood-based and sub-
optimal subspace-based techniques. Namely, it demonstrates the trade-ofl between statistical
efficiency and computational complexity: The subspace-based methods involve less computation

than the ML methods but exhibit very large bias and variance for low signal-to-noise ratios.

V. CONCLUDING REMARKS

We have formulated the covariation matrix of the array outputs for the case of complex isotropic
Sa.S signals and noise. We showed that for the special case of array sensors with unit amplitude
response, the covariation matrix has similar form to the covariance matrix of Gaussian distributed
signals. Therefore, subspace-based bearing estimation techniques can be applied to the covari-
ation matrix resulting to improved direction of arrival estimates in the presence of impulsive
noise environments. These techniques assume knowledge of the number of the sources generating
the signals that illuminate the antenna array. In many practical situations, this knowledge may
not be available a priori. Hence, future research includes the development of methods for the
detection of the number of signals in the presence of impulsive noise based on application of
information-theoretic criteria. Finally, we will address the problem of detecting and localizing

multiple wide-band sources in impulsive noise environments.

Appendix A. GENERATION OF COMPLEX ISOTROPIC Sa.S RANDOM

VARIABLES

The generation of complex isotropic SaS deviates of characteristic exponent « is based on the

following proposition [15]:

Proposition 2 A complex SaS («a < 2) random variable X = X,+ )X is isotropic if and only if
there ezist two i.i.d. zero-mean Gaussian variables Gy and G5 and a real stable random variable
A of characteristic exponent /2, dispersion cos®(ra/4) and skewness § = 1, independent of

(G1,G2) such that (X, X3) 4 (A2G,, AV2G,).
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We say that the vector (X, X3) is sub-Gaussian with underlying vector (G, G3). It can be shown
that the real and imaginary parts of X are always dependent, unless GG; and G5 are degenerate.

Hence, every complex isotropic SaS random variable with a < 2 can be expressed as
X = AY2(Gy + 1Go), (A.1)

and its generation involves the generation of a real, totally skewed stable random variable. The
problem of generating a real stable deviate is studied in [16]. Here we present the result.
We want to generate a real standard stable random variable S(q, 3, 1) of characteristic expo-

nent a, skewness 3 and unit dispersion ¥ = 1. The following representations can be deduced:

o sina(U = Up) (cos(U = a(U —Up))\ = |
S(a,B,1) = cos U)1/e ( 7 ) y okl (A.2)
and
2| ,m ) FWecosU
S(1;8,1) = = [(E + BU) tan U mﬁ]:](-—% T30 )l ; (A.3)

w

where W is standard exponential with Pr{W > w} = e™", w > 0, and U is uniform on (-3, ).

Also, Up = —Zf[k(a)/a] with k(a) = 1 —|1 = a|. Then, a stable variate of dispersion 7 can be
generated as S(a, 3,7) = v/*S(«, 3,1).

Appendix B. FRACTIONAL LOWER ORDER MOMENTS OF PRODUCTS

OF SaS RANDOM VARIABLES

It is known that if X is a SaS random variable and p > 0, then E{|X |’} < oo if and only if
p < a [11]. Also, if X;,..., X, are n-fold dependent SaS random variables and py,...,p, are

positive numbers, then
E{|Xy|P* -+ |X,|P"} < oo if and only if p;+ 4+ p, < a. (B.1)
Recently, it was proven in [17] that for a real Sa. random variable X it holds
E{|X|"} <00 for —1<p<a. (B.2)
Similarly, for an isotropic complex Sa.S random variable X it holds
E{|X|?} <0 for-2<p<a. (B.3)
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We now consider the problem of determining a range of values of the parameter p for which
E{|X||Y|P~'} < 0o and E{|X|}|Y|?**"?} < .

Proof of Proposition 1 First consider E{|X|’|Y|?~2}. It follows from (B.1) that
E{|X|*|Y|**7%} < oo for p < a/2, when X and Y are jointly SaS random variables. If p is

the measure induced on R* by X and Y, then E{|X|)|Y|**~2} can be written as

E{|X|2IY[2P_2} = fm |x|2|y|2”'2dﬂ(:c,y) =:I;. (B.4)

But I} < co if and only if [18§]

I, := /R? ly|?P~%du(z, y) < oo (B.5)
By using (B.2-B.3) we get that [; < ocoif p>1/2 (p>0) when X and Y are real (complex
isotropic) Sa.S random variables. Hence it follows that E{|X|*|Y|?**=%} < oo if and only if
1/2 < p < a/2 (0 < p < a/2) when X and Y are real (complex isotropic.) Finally, since
E{|X2|Y|*~?} < oo implies E{|X||Y|"~'} < oo, it follows that for the aforementioned values
of p, E{|X||Y|P~!} is also finite. 1

Appendix C. AsSYMPTOTIC PERFORMANCE OF THE MFLOM EsTI-

MATOR

The fractional lower-order (MFLOM) estimator for the modified covariation coefficient function
Ax,y(p) given in (44) can be written as the quotient of two statistics:
5 Tiw _ 5 i X"

Avy = =
Xy (7) Ton OB 41

T 1=1

(C.1)

First, we prove the following Lemma for the case of complex isotropic SaS random variables.

Lemma 1 Given the two-dimensional statistic (11, T5,) described in (C.1) with 0 < p < a/2,
the asymptotic distribution (a.d.) of \/n(T\n — 61,12, — 03) is bivariate normal with mean zero

and covariance matriz

g1 E{XPI PP =] EXy<e=]) E{XY <2~ [Y P}~ B{XY <12} B{|¥{r}
B | XY <e-R|yP} - E{X Y212} E{ Y|P} Ef|Y|*P} - (E{IYIP})?

(C.2)
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where

f, = E{XY<r1>}, 3
and
6, = E{|Y|"}. (C.4)
Proof Clearly,
Etlin} = %iE{Xfo”“’} = B{Xy<r-1>}, (C.5)
and =t n
E{T;n} = %Z E{|Y:]’} = E{|Y|"}. (C6)
Also, =1
I A
= ni? i} E{|X5Y}<p—1>|2} - ;12- 2;E{X;.y'_-:w1>}E{X;Y;<p_,>}
- %E{]X|?|Y|2p—2} o “-T; 1|E{X},-<p—1>}lg’ <)
and

1 T n
B(TnT;) = —ZE(L Y INPIYP)

i=1 j=1

1 T 1 n n

= ;;E{l}’slzp}Jr;Z};E{IKI”}E{MI”}
= i=] y=
i#]

LE(YPY? (C.8)

1
= CE{Y["}+

n—
T

)
where it follows from Proposition 1 that it must be 0 < p < /2 so that E{|X[?|Y]**~?} < o
and E{|Y|*} < cc. By using (C.5)-(C.8) we have that

var(Tin) = E{TiaTy,} = |E{Tia}[’

= ~oh, = [E(XPAYP?) - |BXY )] <o, 0<p< 3, (C9)
and
var(Tan) = E{TTs,} — |E{T2a}I?
= —oh, == BV} - (BIVPYY] <o, 0<p<F. (Ca0)
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Hence by means of the central limit theorem, we conclude that the statistics T}, and T%, are
asymptotically normal:

Va(Tin = 01) 5 N(0,0%, ), (C.11)

and
Va(Tzn — 02) 5 N(0,0%, ). (C.12)
Now, for every complex numbers a and b define the statistic T}, = aT},, + bT5,. Then, it can be

easily shown that the asymptotic distribution of \/n(T, — aZ{XY<P=1>} — bE{|Y|P}) is normal

with variance

jaf? [B{IX Y -2} - | B{X Y <P=1>} 2]
2R {ab* [E{XY<P~1>|Y |} - E{XY<"->}B{|Y]"}|} +
b2 [E{Y 1%} - (E{]YI"))?] < oo. (C.13)

It follows that the two statistics T, and T5, are asymptotically jointly normal. Finally, the
covariance of T}, and T3, can be shown to be

cov(Tin, Tan) = cov™(Tan, Tin) = %[E{XY“’")]YP’} — E{XY<P">1E{|Y|P}] < 00, (C.14)

and the proof of Lemma 1 is complete. 1

Now, let ¢ be the totally differentiable function of the two statistics Ty, and T3, # 0 with

9(Tin, Top) = ! (C.15)

Then, from convergence theory [19, p. 321] and Lemma 1, it follows that the asymptotic distri-

bution of
Vlg(Tin, Ton) — g(61,02)]

is normal with mean zero and variance

1, M dg ( dg )‘
udpt — Sii— =] . C.16
ot - ;_,:21 ! 00; 891' ( )

Combining (C.2-C.4), (C.9-C.10), and (C.14-C.16) we get that
YL BT ey

\/E n 1=
5 L Yl E{|Y|"}

] ﬁ) N(U,O’i(fp)), (C-17)
with o%(p) as shown in (45). 1
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Table 1: Performance of the covariation coefficient estimators

« LS SR MFLOM True A
1.1 | -0.4240 | -0.4263 | -0.4245 (p =0.55) | -0.4252
(1.1065) | (0.0651) | (0.0636)
1.2 [ -0.3371 | -0.3396 | -0.3380 (p = 0.58) | -0.3384
(1.0010) | (0.0603) | (0.0572)
1.3 | -0.2641 | -0.2595 | -0.2596 (p = 0.60) | -0.2601
(0.9008) | (0.0574) | (0.0490)
1.4 | -0.1984 | -0.1873 | -0.1874 (p = 0.65) | -0.1900
(0.8007) | (0.0565) | (0.0432)
1.5 | -0.1386 | -0.1250 | -0.1258 (p =0.68) | -0.1273
(0.6986) | (0.0536) | (0.0385)
1.6 | -0.0840 | -0.0706 | -0.0709 (p =0.70) | -0.0715
(0.5956) | (0.0522) | (0.0345)
1.7 | -0.0342 | -0.0215 | -0.0215 (p =0.75) | -0.0222
(0.4913) | (0.0501) | (0.0303)
1.8 | 0.0113 0.0226 | 0.0225 (p=0.80) | 0.0215
(0.3794) | (0.0472) | (0.0261)
1.9 | 0.0537 0.0601 0.0600 (p=0.90) | 0.0599
(0.2407) | (0.0456) | (0.0223)
2.0 | 0.0932 0.0917 | 0.0932 (p=2.0) 0.0936
(0.0141) | (0.0365) | (0.0141)
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a=1.1

standard deviation

a=1.9

a=2.0

Figure 1: Standard deviation of the MFLOM estimates of the modified covariation coefficient as

a function of the parameter p.
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Figure 2: MFLOM estimates and running variances for a = 1.5 and p = 0.2,0.7.
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Figure 3: MFLOM estimates and running variances for o = 1.5 and p = 1.0, 1.45.
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Figure 4: Screened ratio estimates and running variances for a = 1.5.
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I-component of radar clutter
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Figure 6: In-phase (/) and Quadrature ((Q) components of radar clutter.
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