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Abstract

New results on the mean and mean square convergence of the LMS algorithm are presented. First, a
new approach is proposed for the derivation of the necessary and sufficient conditions for mean square
convergence. Second, we derive an explicit expression on the bound of the step size x4 and show an
interesting relationship between the mean and mean square convergence.

[. INTRODUCTION

The LMS (Least-Mean-Square) algorithm has been extensively used in many adaptive signal processing
applications due to its striking simplicity. One key issue on the application of LMS is its convergence
property. Let us use u(n), y(n) and d(n) to denote the filter input, output and desired output, respectively,
and assume that u(n) is a zero-mean sequence. Let w(n) = (wo(n), wy(n), -+ war—1(n))T be the tap-
weight vector of size M and u(n) = (u(n), u(n — 1), --- u(n — M + 1)) be the tap-input vector. With

proper initialization (usually, w(1) = 0), the LMS algorithm can written as [2]:

y(n) = w(n)u(n),
e(n) = d(n) - y(n),
w(n+1) = w(n)+ pu(n)e’(n),

forn =1, 2,3, .-+, and where p is called the step size parameter. The LMS algorithm is said to be
convergent in the mean, if the mean E[w(n)] of the tap-weight vector converges to the optimum Wiener
filter solution. It is convergent in the mean square, if the mean-squared error J(n) = E[|e(n)|?] converges
to a finite steady-state value J(o0).

The mean and mean square convergence properties of LMS are basically determined by the step size
parameter g and the eigenvalue distribution of the correlation matrix of the tap-input vector, i.e. R =

Eu(n)uff(n)]. Conditions have been derived to guarantee the mean and mean square convergence of LMS
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(2], [3]. Necessary and sufficient conditions for the mean square convergence are:

0< H< f\max, (1)
M
HA;
ZQ—;M; sk (2)

i=1
where A;, 1 <7 < M, are the eigenvalues of R and Ap,y is the largest one among them. Condition (1)
alone is necessary and sufficient for the mean convergence.

New results on the mean and mean square convergence of LMS will be presented in this work. First,
we propose a new approach to derive (1) and (2) for the mean square convergence in Section II. In contrast
with the classical approach adopted by Ungerboeck [3], our derivation appears to be more direct and
transparent, since it does not rely on the Perron-Frobenius Theorem [4]. Second, condition (2) is implicit
so that it does not lend itself for easy understanding and practical design. We study a new condition
which gives an explicit expression on the bound of step size z in Section III. This new result provides an

interesting link between the mean and mean square convergence.

II. CoNDITIONS FOR MEAN SQUARE CONVERGENCE

We can express J(n) by [2]
J(n) = Jmin + Jex(n),

where Jpin is the minimum mean-squared error produced by the Wiener filter and
Jex(n) = ATx(n), AT = (A, Agy =+, Aa), (3)
and x(n) is the state vector satisfying the following recursion
x(n+ 1) = Bx(n) + g2 Jmin . (4)
The B in (4) is a diagonal-plus-dyad matrix, i.e.
B =D+ p?A\T, (5)

where
D = diag[dy,dy, - --dp], and  d; = (1 — pXi)2

The convergence of J(n) is equivalent to the convergence of iteration (4). This is true if and only if that the
magnitude of all eigenvalues of B is less than unity. In the following, we use v and y to denote an arbitrary
eigenvalue-eigenvector pair for B. Since B is symmetric and positive definite, v is real and positive. Thus,
only v < 1 is required for (4) to converge.

First, by imposing v < 1, we have

1>y>di=(1-p)N)? 1<i<M, (6)



where the last inequality is due to the matrix ordering property applied to (5) (see [1]). By expanding the

quadratic term, the above inequality can be further simplified to

S d
which is condition (1). Next, by using the definition of B, we have
Dy + 1 (ATy)A = 7y. (8)
which can be rearranged to
y =’ (ATy)(7I- D)7, (9)
Premultiplying (9) by AT and using the definitions of X and D gives
M
=1. 10

With (10), the constraint v < 1 is equivalent to

1_#2 “Z 1-—;51\ Z2 ;b\ (11)

which is condition (2).
Following the above discussion, an expression for the ratio of Jex(c0) and Jiin, called the misadjustment

M, can also be easily obtained. Based on (3) and (5), we have

M= JJ_(D"_) = pIAT(I-B)~!A (12)
Note that
(I-B)™' = (D - p22\T)~,
where
]‘j =I-D= diag(élad'Zr g '&Aff)!
and where

di=1- (1-pXi)® =2p)i = 422} > 0. (13)

The last inequality is due to (6). By using the matrix inversion formula derived in Appendix, we have

2
I-B)"!=D-1_8D"!1a\TD"!, 4= o —r
( ) B 15 =2\

As shown in (12), we are interested in
)‘12AT(I A B)_IA = ,{L?ATﬁ_l.\ _ ,U.zﬁ(ATf)_IA)g
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The common term in the numerator and denominator in (14) is

2)\2
2\TRy=-1y _
WATD A_ZQM rovhe ZQ (15)

i=1
The desired result for the misadjustment can be obtained by substituting (15) into (14), i.e

ML A/ (2 = ph)

M= :
1- M, uhi/(2 - phi)

II1. ExpriciT CONDITION ON STEP SIZE SELECTION

We can rewrite the left-hand-side of (2) as

M “l\ :\1 l #
—=-M+ , p== 16
22—;;,\; gl—pf,\; =3 )
We know from (13) that
1-4'X>0, 1<i<M. (17)

By using (17) and the Hélders inequality

1 1 1
(ﬂ] +G'2 + S I.’LM')(— i + _) 2 P'/Iz} @y,dg,---,apf > Or
a) az ayy
we have
Z P 7 . M = Ty (18)
i=1 A Sz l—ph M-—p'Yl N 1—pe

where Aave = Y M \;/M. By combining results in (2), (16) and (18), it is straightforward to show that

2
— ! i e pp—
= & (M + 1) Aaye’ e

which is the desired explicit condition on step size p. Therefore, conditions (19) and (1) can be integrated

into one as

; 2 2
0< p < min (f\max, (M = 1)/\zwc) (20)

It is shown in [2] that it is sufficient with (1) for the mean converge while both (1) and (2) have to be

satisfied for the mean square convergence. However, based on (20), we see that if

2 p 2
)\max - (A/I+ 1]’\3\"&,

(21)

the convergence in the mean in fact implies the convergence in the mean square. Furthermore, Equation

(21) can be rearranged as
ﬂ’{ S Amax - ’\a\'e' (22)

Aave

which has some interesting consequences.
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To provide insights into (22), let us consider two cases. For the first case, we fix the right-hand-side of
(22). For an adaptive filter with a shorter impulse response (or smaller M), the constraint g < 2/Anqax is
sufficient for both mean and mean square convergences. Note that the step size u is independent of the
filter length M in this case. On the other hand, if the filter length is long enough, we have to impose the
constraint gt < 2/[(M 4 1)Aaye]. The longer the filter length is, the smaller the step size to guarantee the
mean square convergence.

For the second case, the value of M is fixed. When the eigenvalues of R are clustered (e.g. low SNR),
the right-hand-side of (22) tends to be small and it is likely that M > (Apax — Aave)/Aave- Convergence
in the mean does not guarantee convergence in the mean square since data are too noisy. On the other
hand, when the eigenvalues of R are dispersed (e.g. high SNR), Equation (22) can be more easily satisfied.
Then, convergence in the mean does guarantee convergence in the mean square, and we only have to require

it < 2/Amax in selecting the step size p.

IV. CoNCLUSION

We provided a simple approach to derive the necessary and sufficient conditions for the step size selection
of the mean square convergence of LMS. Then, we converted one explicit condition to an explicit one, and

explained its physical meaning.

APPENDIX

In this appendix, we derive an inversion formula for a diagonal-plus-dyad matrix. Let V be a square matrix
of size M x M and a denote a vector of length M. If

V =1+ aaa”,

where I is the unity matrix, it is easy to show that
4%

V! =1-Baa, where 3= T

The above result can be generalized to the following case. If
V =D + aaall ,

where D a nonsingular diagonal matrix, then we have
o

-1 _ -1 -1 Hny-1 —
Vv =D —ﬁD aa”" D 3 where ﬁ—m
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