USC-SIPI REPORT #284

Design For a Shared Memory Computer With
a Combining Optical Interconnection Network
Using External Routing

by

Clare Waterson

May 1995

Signal and Image Processing Institute
UNIVERSITY OF SOUTHERN CALIFORNIA
Department of Electrical Engineering-Systems
3740 McClintock Avenue, Room 404
Los Angeles, CA 90089-2564 U.S.A.

Acknowledgements

Dr. B. Keith Jenkins

Air Force Office of Scientific Research
and National Science Foundation

The Aerospace Corporation
Bob Bolender

Michael Elkins

Adam Goldstein

Adam Goldstein, Ching-Chu Huang,
Kuang-Yu Li, Sabino Piazzolla

Kuang-Yu Li
Bill Woody
Brian Primeau
Ed Meinel
Russell Kurtz
Ken Chan

Jill Waterson

Mucha, Tigger & Hobbes,
Tsunami & Typhoon, Amber & Mello

John & John (They Might Be Giants)
Johnette Napolitano (Concrete Blonde)

Brian Dewan
Douglas Adams
Bach and KROQ

Douglas Hofstadter

(Advisor) for technical advice and guidance
throughout the long process of research and
writing that led to this dissertation

for support of my Ph.D. research
for support of education and research

for extensive assistance, support, time, and
encouragement; and for nice computer equip-
ment

for encouragement, motivation, patience,
time, and computer assistance

(my “Progress Advisor”) for interaction is a
good thing (hey, but extremes are bad), and
for timely (and favorable) paper reviews

for mutual support

for timely suggestions

for technical advice and suggestions
for gentle humor

for support and patience

for empathizing

for encouragement

for keeping me sane?

for inspiration (u!)

for I will never say the word “procrastinate”
again...

for Who did you think I would be? Hah! Well
you got me instead!

for Feel the brain... slippery and smooth
for You've got to build bypasses

for the perfect music by which to write lucu-
lent lucubrations full of sesquipedalian termi-
nology.

Hofstadter’s Law: It always takes longer than
you expect, even when you take Hofstadter’s
Law into account.

1

Abstract

The design of a fine-grained MIMD computer architecture, the Shared Memory
Optical/Electronic Computer (SMOEC), is presented. The SMOEC architecture
consists of electronic processing elements and memory modules interconnected with
a novel combining passive optical interconnection network which is controlled by
a separate electronic routing processor. The hybrid system design emphasizes the
strengths of the two technologies, using optics for communication and electronics
for processing. Sample system implementation recipes exemplify the flexibility,
realizability, and scalability of the SMOEC system architecture. The system-level
focus on interrelated development of three main design facets—architecture, hard-
ware, and control algorithms—has been crucial in designing a well-balanced high
performance system.

The design of the optical interconnection network, the Free-space Intercon-
nection with Externally-controlled Routing (FIER), is presented in detail. The
network is implemented using exclusively passive optical elements, and it employs
a shuffle-exchange topology. Each shuffle-exchange stage is optically cascadable.
The FIER switch nodes are capable of broadcast and combine operations in ad-
ditional to bypass and exchange. The FIER is designed to be circuit-switched by
an external electronic routing processor. Although the FIER is designed to be
used as a subsystem within the SMOEC, it may be used as a subsystem in other
communication or computing architectures.

A review of Extended Generalized Shuffle (EGS) network theory is provided to
give a solid theoretical background for the interconnection topology employed in
the FIER and to prepare for presentation of a new routing algorithm.

A new algorithm, the Flexible Localized Algorithm for EGS-network Manage-
ment (FLAEM), is presented. This algorithm was developed for circuit-switched
combining regular simplified EGS networks (such as the FIER optical network);
it parallelizes the routing process in a different way than the previously available
method. The effectiveness of the FLAEM is illustrated by simulation results, which
show that the algorithm time complexity is logarithmic in system size (N). The
FLAEM extends the repertoire of routing techniques available for this class of EGS
networks.

il

Contents

Acknowledgements il
Abstract il
List of Figures viii
List of Tables X
List of Acronyms X1
List of Notation xiil
1 INTRODUCTION 1
Il Beackgroundcs5 85§88 §5 585 SN I GFHES CIBEN 3
1.2 MOobIVABION « o sop e wm v 6 @ 86 &% % &8 &% & @ % @ 6§ @@ e 6
13 Desigh' Philosipliy « s oo oo v wmommvo se wswuwn swe oo ac 10
2 SYSTEM ARCHITECTURE 12
2.1 SMOEC Architecture Overview 12
2.2 Processing Elements (PEs) '« : « v o v o s s 555w s s a5 o5 s 16
2.3 Mempry Modulés (MMS) « = 2 s sv v v s sy w o @ e we s s e 18
2.4 Optical Interconnection Network (FIER) 18
2.5 Electronic Routing Control Unit (MATSH) 22
2.6 Control Signal Distribution & Interface (CSDI) 24

3 INTERCONNECTION NETWORK TOPOLOGY AND
ROUTING (REVIEW) 25
3.1 Shuffle-Exchange Topology 27
3.1.1 ThePerfect Shuffle v 27
8.1.2 0O-Shiffles 5 o s waesmas is® e e ok s wes @ s 28
3121 bShuflle anibPobjects « v o wv »ov v v mows 0 31
3.1.2.2 @-Shuffle on c" objects 31
3123 O-Bhuffleon2®objectds o s w s wanmwsaws ¢us 34

v

3:1.8 Bypass/ExchangeSwiich . « v o5 v v vsmasmas &v s 34

3.2 Shuffle-Exchange Networks0 v v v vvnnn 37
321 QO Networks 37
322 DeltalNetworks i ¢ v v s s s s ciw s s és m s mas 050 39
3.2.3 Nonblocking Shuffle-Exchange Networks 40

3.3 Extended Generalized Shuffle Network Topology 41
3.3.1 EGS Definition o 42
3.3.2 Regular Simplified EGS (RS-EGS) Definition 43
333 RS-EGSTheory :: wsscomeciioon sseaman %% sa 47
3.3.4 RS-EGS Design Parameter Analysis 47

3.4 Restricted-F RS-EGS Network Routing 52

3.5 Summary and Contributions 59

OPTICAL INTERCONNECTION NETWORK HARDWARE 61

4.1 Passive Hardware Implications 62
4.2 Optical Shuffle-Exchange Hardware Design 63
421 FIERIaput/Oubput . « o5 vosms v comew cnmumna 64
4.2.2 The LA<CP Format Converter 64
428 PixelSpacing Adjuster . . . vsi i iigsnsi @ ag 67
424 TheOP Unshuflé : v sswiwssmwis samsn v wimwan 68
4,25 The CP Exchange . « « « s s woasvw s o w i s ou w0 ow et s 76
4.2.6 Broadcasting and Combining using TSLMs 76
4.3 Optical EGS Hardware Design 86
4.3.1 EGS “Fan-out” (demultiplexer) 87
439 BEGS Fahuflle: vowesmimusmen asmew pawe s 90
428 BGSFafi-il o 5 oo 6 o 5 oo oomm om0 & @ o % % fon W RS 90
4.4 Optical ImplementationIssues v v v v v v v v e v v v 94
4.5 COmPAriSon .« « o v o s o moe o s oo mm oo s s a8 o 8 s 0 §s 80 98
46 Bummary o csn 5 S50 LS IS GEFEFE T RS W e T 100
NETWORK ROUTING ALGORITHM 101
5.1 Interrelation of the MATSH Control Unit and Routing Algorithm
LYGHIEEL. 4 s ¢ o v o mozs weomows o o o ww w m e a E mm 102
5.2 The FLAEM Routing Algorithm 105
521 MotiRalion: » 5 ss o on v5 mus ¥i e & @ow s &5 0w 106
522 BRpositBiic s camun axwnn euman 5w o wa wmu e 109
5.2.2.1 Initial Forward Routing Pass (P1) 110
5.2.2.2 Reverse Marking/Erasing Pass (P2) 113
5.2.2.3 TForward Finalizing/Rerouting Pass (P3) 113
5.2.2.4 The Enhanced-FLAEM Procedure 114
5.2.3 Illustrative Example 117
5231 'Try#1: Porward Pass (P1) « s 5 25w a5 w5 @ v % 119

5.3

5.4

5.2.3.2 Try #1: Reverse Pass (P2)
5.2.3.3 Try #2: Forward Pass (P3)
5.2.34 Try #2: Reverse Pass (P2)
5.2.3.5 Final Forward Pass (P3)
5.2.3.6 Enhanced-FLAEM procedure illustrations
The FLAEM Simulation
5.3.1 Sim-FLAEM Program Development
5.3.1.1 The First Routing Program
5.3.1.2 The Second Routing Program
5.3.1.3 The Third Routing Program
5.3.1.4 The Fourth Routing Program: Basic-FLAEM . . .
5.3.1.5 The Fifth Routing Program: Enhanced-FLAEM . .
532 Simulatioh Resilts v o5 cawiswsmenw e w ou
5.3.2.1 Analysis of Simulation Data
5.3.2.2 Conclusions From Simulation Data
SUIMBEY » o v mw e mse 68 Goe hemblos st d@Es £3

COMMUNICATION ALGORITHMS

6.1
6.2

6.3

6.4

The Read Algorithi : . s ¢s s s s wesm s wesm s wva v

The Wreite Algorithifi = - s sv mv s v wrsmymes @y wsn o
6.2.1 Four Write Technique Candidates

6.2.1.1 WI: Permutations Only
6.2.1.2 W2: Arbitrate Write Requests
6.2.1.3 W3: Combine Write Requests in FIER
6.2.1.4 W4: Combine Write Requests in MATSH
6.2.1.5 Write Algorithm Technique Conclusions
6.2.2 The Serialization Principle
6:23 'Write Request Combinitig « o vvam v wesmawman o
The Fetch-and-Add Algorithm
6.3.1 F&A Applications
6.3.2 F&A Illustrations oo ot
6.3.3 How F&A works inthe SMOEC
Special Purpose Algorithms
6.4.1 ‘The Data.Bort Algorithm: . .. o v v s woman on
6.4.2 The Matrix Transpose Facility

ARCHITECTURE PERFORMANCE

7.1

Tiplementabiong : cwo vv s m 85 v o % v e o 8 @ 8 a6 e w0
7.1.1 Architecture Implementation Considerations
7.1.2 Proposed SMOEC Implementations

7.1.2.1 Interconnection Network Communication Cycle

Composition .« v o w v v wowsm s v duw s wen

7,122

7.1.2.3
7.1.2.4
7.1.2.5

7.1.2.6
Tl

Development of Specific System Implementation
REGipes » vowin s mos A 9us S8@an v5
Three System Types: Ig, Iy,and Ip
Three System Sizes: n=10, n=15, and n=20 . . .
Nine System Recipes: Three Types With Three
BB s i PN TN G I TGN Y
Loss Calculations for Implementation Examples . .
Completed Specific System Implementations with
Varied Sizes

7.1.3 Conclusions From Implementation Examples

7.2 Applications .

..............................

7.2.1 Simplified SMOEC Architectures For Specific Applications .
7.3 Comparison with Other Shared Memory Computers

8 CONCLUSIONS
8.1 Contributions

APPENDICES:

..............................

A WOLLASTON PRISM ANALYSIS

B The Sim-FLAEM PROGRAM
B.l1 Sim-FLAEM C Program Notes
B.2 Sim-FLAEM Program Correctness
B.3 Sim-FLAEM Trace Data Sample Qutput
B.4 Sim-FLAEM C Program Listing

BIBLIOGRAPHY

201

205
205
208
209
211

221

vil

List of Figures

1.1 The Shared Memory Model Computer. PE, Processing Element. . . 5
1.2 Hot Spot Formation (from [Kumar 86]). PE, Processing Element;
41 25 Ty Fs 2 U SO S 9
1.3 System Design Tripod: System viability is supported by three es-
seplial degignfaceta; s ia ss v is vi@is S s Buwan ua G 11
2.1 SMOEC: Block Diagram. Labels on arrows indicate number of com-
munication lines. L Lo 13
2.2 SMOEQ: Architecture: : < s cs s sswan s vss@svas #30 17
3.1 APerfestSHullle: «o w00 vomsw womanmn s e mam ey o o 29
3.2 An8shuffleon32mnodes. 30
3.3 Three consecutive perfect shuffles on 32 nodes. 35
3.4 Bypass/Exchange Switch Settings. 36
3.5 An Omega Network. Illustrated for N =8 nodes. 38
3.6 Multistage Interconnection Network (MIN) general definition (in-
cluding EGS network definition). 43
3.7 Regular simplified class of EGS networks (RS-EGS networks) 44
3.8 RS-EGS network example: N=8=2% F=4=2% S¢=3, W=
A T T R e I T Y 46
3.9 Path vector illustration; N=8, F'=4, Sg=4, P=8 56
4.1 Overview: Linear Array <+ Channel Pairs Format Converter. 65
4.2 Raytrace: LA & CP Format Converter. 66
4.3 Raytrace: Pixel Spacing Adjuster (PSA) — Design #1. 69
4.4 Raytrace: Pixel Spacing Adjuster (PSA) — Design #2. 70
4.5 Overview: The Channel Pair Unshuffle. 71
4.6 Raytrace: CP Unshuffle w/o Wollaston Prisms (w/o PSA). 73
4.7 Raytrace: CP Unshuffle with Wollaston Prisms (w/o PSA).. 74
4.8 Raytrace: CP Unshuffle (Complete). 75
4.9 Overview: The Channel Pair Exchange. 77
4.10 Overview: Shuffle-Exchange Stage Operation: Combine. 80
4.11 Overview: Shuffle-Exchange Stage Operation: Broadcast. 82

4.12

4.13
4.14
4.15
4.16
4.17
4.18

2.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

5.10

5.11
6.1
6.2
6.3
6.4

7.1

T2
Al

Raytrace: An Unshuffle-Exchange Stage with Broadcast and Com-

bine Capability. 84
Two Implementations for TSLM2. 85
An LA-format 1 x2 switch, used in “fan-out” implementation. . . . 88
An LA—CP-format 1x2 switch, used in “fan-out” implementation. 89
A full 1 x8 “fanout” (demultiplexer)stage 91
An 8-shuffle on 32 nodes followed by an 8 x1 fan-in switch 92
Three perfect shuffles on 32 nodes interspersed with pairwise com-

DIt SWIHEeE o vov s v s s mw s e o6 m im o0 W B W B BB G K S 93
FLAEM Flow Chart 111
The Basic-FLAEM procedure: Try #1: Forward Pass (P1) 120
The Basic-FLAEM procedure: Try #1: Reverse Pass (P2) 122
The Basic-FLAEM procedure: Try #2: Forward Pass (P3) 124
The Basic-FLAEM procedure: Try #2: Reverse Pass (P2) 127
The Basic-FLAEM procedure: Final Forward Pass (P3) 128
The Enhanced-FLAEM procedure: Combine-and-Split (52) 130
The Enhanced-FLAEM procedure: Simple Split (S1) 131
Percentage of routed unrestricted connection patterns that took
specified numbers of tries. 0oL 139
Percentage of routed connection patterns that took specified num-

bers of tries: COMPATISON: « v « v s 5 v 4w § 5 § 6 @ a & & & & o & & % 141
Average number of tries per pattern, both cases shown. 143
The Subaddress Field. First 8 bits illustrated. 153
Illustration of Fetch-and-Add (F&A). 157
F&A Index Assignment Example. 159
The Matrix Transpose Facility. SIPO, Serial-In Parallel Out. 163
Read/write phase components: (a) FIER communication; (b) MATSH
PEOCEEBIIIGS » 4 o6 4 3 @ v 90 G v £ 8 B &m0 8 e & ¥ I % B 168
An optical repeater unit within the FIER optical network 182
The Wollagton PRBifl: o » o v o wov w0 mome s o mm e v w6 o oe % w0 w5 0 202

X

List of Tables

21
3.1

3.2
3.3
3.4
3.5
3.6

3.7

4.1
5.1

7.1
7.2
7.3

B.1
B.2

Desired Features for the SMOEC. 14
Richards’ formulae: nonblocking conditions for N x N RS-EGS net-

works (o [Richirds93]): v snsswvnenmwus samwuwan 47
Special cases of Richards’ formulae 48
RS-EGS network parameters for n=2 through n=6 49
RS-EGS network parameters for n=7 through n=9 50
RS-EGS network parameters for n=10and n=11 51
RS-EGS parameters for two minimal device cost cases: D, general

cage; IV, restiicked-F'€ase.. o » v v v vow v v 0 v wm womow moe e o w s 53
Switch and link indices extracted from the path vector; N =8, F'=4,

Se=d P=B..cvs s 658 55 60EEs 63 m i $8®m 85 57
POLNL SRR o v o o 5 5w im v 15 5 % im0 o0 o0 50 im0 8w 8 s 86
FLAEBM simulationresults: s s e v v s s m e s g am s i n @ v e 5w 136

SMOEC system implementation parameters for three system types 184
SMOEC system implementation parameters for three system sizes . 185
SMOEC system implementation parameters for three system types

aiid Thiee syslefisizas + v v a e v s mu o 0o w omoe 5w e w5 w 186
Summaries of FLAEM simulation C program routines. 206
State variable correspondences. 207

List of Acronyms

Parallel Computer Architecture Acronyms

MIMD

SMOEC

FIER

MATSH

FLAEM

CSDI

PE

MM

MIN

EGS

RS-EGS

E-SE

O-SE

Multiple Instruction streams over Multiple Data streams: Parallel com-
puter model employing independent processing elements.

Shared Memory Optical/Electronic Computer: The parallel MIMD
shared-memory computer system architecture presented herein.

Free-space Interconnection with Externally-controlled Routing: The pas-
sive optical interconnection network within the SMOEC.

Multifunctional Arbitrator of Traffic for Shuffle-exchange Hardware: The
single-stage recirculating electronic shuffle-exchange hardware used to
control the FIER in a circuit-switched manner.

Flexible Localized Algorithm for EGS-network Management: The parallel
algorithm used on the MATSH to compute the bypass/exchange switch
settings for the FIER.

Control Signal Distribution & Interface: The buffers and interface from
the MATSH control unit to the FIER optical network.

Processing Element: One of N individual processors.
Memory Module: One of N modular blocks of the shared memory.

Multistage Interconnection Network: it A network with multiple stages
of switching elements interconnected by an arbitrary interconnection pat-
tern .

Extended Generalized Shuffle: 4 MIN with an interconnection topology
invented by G. Richards [Richards 91a] .

Regular Simplified EGS: A particular set of additional restrictions on the
general EGS definition, which are employed in the FIER.

Electronic Shuffle-Exchange: The single electronic shuffle-exchange stage
within the MATSH.

Optical Shuffle-Exchange: One of the Ss passive optical shuffle-ezchange
stages within the FIER.

X1

LA
CP
SLM
TSLM

PSA

HWP

QWP
PWP

FLC

FIER Optical Network Acronyms

Linear Array: An array of reqularly spaced uniformly polarized individual
optical channels.

Channel Pairs: An array of superimposed pairs of orthogonally polarized
optical channels.

Spatial Light Modulator: A two-dimensional array of optical switching
devices (pizels).

Tri-state SLM: An SLM with tri-state optical swiching elements, designed
for use in the FIER.

Pixel Spacing Adjuster: Optical setup designed for the FIER to adjust
pizel spacings to enable cascadability of optical shuffle-exchange (O-SE)
stages.

Half-Wave Plate: Optical device capable of (e.g.) rotaling a linear polar-
ization by 90° when oriented al 45° to the incoming linear polarization
azxis.

Quarter-Wave Plate: Optical device capable of (e.qg.) turning linear po-
larizalion into circular polarizaiton, and vice-versa.

Pixellated Wave Plate: Fized wave plate divided into pizels of HWP and
null effects.

Ferroelectric Liquid Crystal: Material from which polarization-switching
SLMs (and TSLMs) may be constructed.

xii

List of Notation

General RS-EGS Network Parameters

N The number of inlets in a MIN. N is also the number of outlets
when the MIN under consideration is an RS-EGS network.

n =log, N The number of bits in an inlet address.

F The amount of “fan-out” and “fan-in” in an RS-EGS network.
F =27 for a restricted-F network.

f =log, F The number of stages of 1x2 switches to implement a 1x F
“fan-out” section (or 2x1 switches for a F'x1 “fan-in” switch in
an RS-EGS network; each stage is composed of a perfect shuffle
and an array of 2x2 switches.

W =N.F The “width” (number of links) of the main section of an RS-EGS
network.

Ss¢ = Ollog N] The number of stages in the “main section” of an RS-EGS net-
work (the main section consists of all the perfect shuffles and
2 x 2 switches, and excludes the “fan-out” and “fan-in” stages

and the final F-shuffle).

St =S8s+2 The total number of stages in an RS-IEGS network, when the
“fan-out” and “fan-in” sections are counted as one stage each.

Sp =Ss+2f The total number of stages in a restricted-F RS-EGS network,
when the “fan-out” and “fan-in” sections are each composed of
f stages of 1X2 or 2x1 switches, respectively.

xiil

Routing and Write Arbitration Parameters

Number of bits of data in an MM

Number of bits per submodule (word) within an MM

=D/B Number of submodules (words) in an MM

= Number of bits in a subaddress field

Number of wires (or fibers) per MATSH (E-SE) node

=L/C Number of submodules transmitted per MATSH wire

Number of status bits for MATSH routing processing

=n+ f+Ss Number of bits in a Path Vector

=F+U Number of bits per read operation

FIER Optical Network Switching Parameters

TO-SW

T'FIER

mm

FIER

Time to simultaneously load and switch the optical
switching components (FL.C TSLMs, described in
Section 4.2.6)

= Time to simultaneously switch all the optical
bypass/exchange switches

= Optical reconfiguration time
Data rate through the FIER (bps)

= D/rpgr Total optical communication time: time to access
(read from or write to) an entire MM

X1v

FIER Optical Network Power and Loss Parameters

Det
E}(\‘[IN)
Det
P

PLD)

INPUT

i

£TOL

R

— J(Det
— b[&gm} * TFIER

Minimum energy required for bit discrimination
at a detector in the FIER

Minimum power required for bit discrimination
at a detector in the FIER, for a given bit rate

Power from the laser diodes input into the FIER

Total optical loss factor throughout the entire
FIER optical network

Tolerable optical loss factor in the FIER, without
optical repeaters

Number of repeaters required to be included in
the FIER to keep the loss above a tolerable level

MATSH Routing Processor Switching Parameters

T'w Wire (or fiber) data rate between E-SE stage cycles in the MATSH
_,.}
;F;flﬁ,m Time to transmit routing bits between I5-SE stage cycles within the

MATSH (in the PE-MM “forward” direction)

___}.

f\.‘:{r;_lr“’ Time to transmit routing and write arbitration bits between E-SE stage

cycles within the MATSH (forward)

"'}(READ) (2 A : . H n . . a

i e I'ime to process routing bits for one E-SE stage cycle within the MATSH
(forward)

—

TL‘:ELTE’ Time to process routing and write arbitration bits for one E-SE stage
cycle within the MATSH (forward)

(_

T;r;?;:,m Time to transmit routing bits between [-SE stage cycles within the
MATSH (in the MM—PE “reverse” direction)

+_ 5 . - - - 3 - -

TS Time to transmit routing and write arbitration bits between E-SE stage
cycles within the MATSH (reverse)

H(READ) . : : . o an o —

T e Time to process routing bits for one E-SE stage cycle within the MATSH
(reverse)

— "

T WS Time to process routing and write arbitration bits for one E-SE stage
cycle within the MATSH (reverse)

T8 Specially defined processing time: See Section 7.1.2.5 (forward or reverse)

_>

Wiin Number of forward read passes (routing bits only) in a routing cycle

_}

Wwrire Number of forward write passes (write arbitration bits) in a routing cycle
‘_} - - -

AL i Number of reverse read passes (routing bits only) in a routing cycle

= 3
Wwrire Number of reverse write passes (write arbitration bits) in a routing cycle

Xvi

MATSH Routing Processor Switching Parameters (cont.)

TXMIT

i
T PROC

TM ATSH

Time devoted to data transmission in the MATSH

=3 (!1F‘AD) = _)(wm'rzl
= SF(lIJm:-M) Tmm 1I’wm'1|:: T)\.MIT

{_
S(reap) (WRI'I E)
=+ q’nsap T\(“]T ol ‘I,WRITI- XMIT }

Time devoted to data processing in the MATSH

—3
— (REA\D] (WRITE)
= SF(‘IIREAD Tpnr_;(_ + lI]WRITE PROC

p-(l{ba\D) T [WRITE}

+ ‘I’READ PROC + ‘I[WRITE PROC)

Total electronic control bit computation time in the MATSH

= T‘{MIT + TPROC

=Srl Wanis (TEHD 4 Fosso
+ L_I;u.rm'ra (F g{r}i:}m i+ Tg(\:ir:';‘w)
b Wpmep (TEED 4 Frmm
+ Wy (TR 4 Fovmme |

xvii

Chapter 1

INTRODUCTION

In past years, optical computing research has often focussed on the design of indi-
vidual computer hardware subsystems implemented with optical devices. However,
integration of these subsystems into a complete computer system has often proven
to be impractical since the hardware was often designed without consideration for
system design requirements. For example, several optical interconnection networks
were designed that looked attractive, yet lacked practical control mechanisms. In
more recent years there has been a growing realization among designers of optical
hardware that system concerns are essential to the usefulness of any proposed opti-
cal subsystem, so optical engineers are beginning to pay more attention to hitherto
neglected (or postponed) aspects of computer system design such as interconnec-
tion network control techniques.

Over the course of the past decade, there has been a dawning realization among
optical computing researchers that a hybrid combination of electronic computing

and optical communication holds the most promise for powerful practical systems

[Jenkins 92, Lohmann 95, Schenfeld 95]; i.e., the trend is away from “optical com-
puting” and toward “optics in computing.” Thus the research presented herein
reflects a system-level orientation to design decisions, incorporating electronic pro-
cessing and optical communication subsystems that were conceived from the be-
ginning to work together.

The hybrid shared memory computer system described in the following pages
was designed to incorporate a passive optical interconnection network as an essen-
tial central component. The system was designed to emphasize the strengths and
balance the weaknesses inherent in a passive optical design. Explicit routing algo-
rithms and communication techniques were developed in concert with the system
architecture and interconnectin network design so that these important system as-
pects would not limit performance. The intent was provide a detailed design for
a general-purpose MIMD computer system architecture that exhibits flexibility,
realizability, and scalability.

Parts of this work have been previously published as follows. Chapter 1 (Intro-
duction), Chapter 2 (System Architecture), and Chapter 6 (Communication Al-
gorithms) are primarily drawn from [Waterson 91] and [Waterson 94a]. Chapter 4
(Optical Interconnection Network Hardware) is taken from [Waterson 94b], except
for Section 4.3 (Optical EGS Hardware Design) which is entirely new. An overview
of Chapter 5 (Network Routing Algorithm) was published as [Waterson 95]. Chap-
ter 3 (Interconnection Network Topology and Routing [Review]) and Chapter 7
(Architecture Performance) are newly presented here, and Chapter 8 (Conclusions)

draws from all these sources.

S

1.1 Background

Parallel processors have been receiving a great deal of research interest largely
because many desired computational applications continue to greatly exceed the
capabilities of current uniprocessor computers [Beetem 85, Butler 93, Hwang 93].
Parallel processors may provide increased performance at the cost of increased
hardware complexity. The ultimate goal of parallel computer design is to use N
processing elements to reduce the execution time by a factor of N relative to that of
a comparable uniprocessor. In general the speedup actually achieved by a parallel
processor can be significantly less than N due primarily to data dependencies
and communication contention [Stone 73]. Furthermore, the theoretical speedup
obtained in an abstract parallel computation model may be significantly higher
than in a parallel computer architecture (a realization of the model) [Jenkins 86].

Several abstract models of parallel computation have been developed and stud-
ied by the computer science and parallel processing communities [Fortune 78,
Schwartz 80]. The shared memory models are among the most computationally
powerful of these models. They benefit from substantial theoretical foundations,
and many algorithms have been mapped onto these models in order to character-
ize theoretically optimum parallel performance [Schwartz 80, Borodin 85]. Thus,
parallel machine architectures based on shared memory models should share these
benefits. However, achieving fine-grained parallelism (very large numbers of rela-
tively simple processing elements) based on a shared memory model is a difficult
goal primarily due to the complexity of the interconnection network hardware and

its associated control.

The shared memory model of computation [Fortune 78, Schwartz 80, Vishkin 83,
Borodin 85, Jenkins 86] consists of a set of processing elements (PEs) that can all
communicate (read and/or write) simultaneously with a shared memory in a sin-
gle time step (Figure 1.1). Each PE is a uniprocessor capable of carrying out an
independent program, so that the set of PEs can operate in a MIMD (Multiple
Instruction stream over Multiple Data stream) manner. The shared memory com-
prises a set of memory cells. In this ideal model any PE can communicate with
any memory cell in one time step. Therefore, all PEs can simultaneously access
different cells of the shared memory. In addition, in the strongest version of the
shared memory model (CRCW = Concurrent Read, Concurrent Write) multiple
PEs can simultaneously access (read from and/or write to) the same individual
memory cell [Hwang 93].

Several compromises of the shared memory model ideal must be made in order
to allow a physical realization. For example, the interconnection network is a par-
ticularly critical element, and usually the limiting factor, of parallel architectures
based on a shared memory computation model. Therefore, focussing design effort
on the optimization of this element is essential.

Parallel access to memory is a key feature of a physical realization of a shared
memory machine. By reducing addressing bottlenecks compared to a conven-
tional von Neumann architecture a substantial improvement in performance can
be achieved. This parallel memory access is commonly approximated by dividing
the shared memory into memory modules (MMs), and providing an interconnec-
tion network between the PEs and MMs. This interconneciton network is used to

perform read and write (and other) operations, requiring an amount of time which

""""" . |-® SHARED
1© MEMORY

W = Write
i R/W = Inseparable Read and Write (such as fetch-and-add) ;

Figure 1.1: The Shared Memory Model Computer. PE, Processing
Element.

is dependent on N, the number of PEs and MMs. Typically (as in the architecture
proposed here) the number of PEs and the number of MMs are set to be equal to
balance PE and MM communication requirements.

Highly parallel electronic processing architectures are primarily limited by the
characteristics of their electronic interconnection network [Guha 90]. Unfortu-
nately, complex global interconnection topologies can be extremely difficult to im-
plement electronically due to complexity limitations of two-dimensional VLSI lay-
outs or three-dimensional wire layouts (or even proposed three-dimensional VLSI
layouts) [Giles 86, Feldman 88]. Therefore it is worth considering the use of op-
tics in implementing the interconnection network in the proposed shared memory

machine.

1.2 Motivation

The imaging, superposition, and three-dimensional nature of optics allow complex
interconnection topologies to be implemented optically with reduced complexity
from electronic implementations [Giles 86, Barakat 87]. Optical imaging allows
massive parallelism when interconnecting from pixel to corresponding pixel, with-
out requiring fabrication of a separate physical path for each connection. Opti-
cal superposition allows light beams to pass essentially unaffected through each
other, allowing reduced hardware complexity by eliminating the necessity to re-
serve separate physical space for each data path in a network [Jenkins 88]. The
three-dimensional nature of optics allows further reduced complexity over the pla-

nar constraints of VLSI [Giles 86]. Optical hardware also has the advantage of

being capable of operation at extremely high bandwidths [Guha 90, Feldman 88,
Hartman 86].

Although optical superposition is used in optical interconnection networks to
reduce complexity, it is precisely this difficulty of getting optical beams to interact
that makes optical switching a less mature technology than electronic switching.
Thus the trend in recent years has been away from designing all-optical computer
systems and instead towards designing hybrid computer systems with electronic
processing and optical interconnecitons [Jenkins 92, Lohmann 95, Schenfeld 95].
Therefore, in the design of the parallel computer architecture presented herein,
all nonlinear processing operations (computations) will be performed electroni-
cally. Similarly, although optical memory is somewhat further developed, electronic
memories will also be used. A novel optical interconnection network is designed to
satisfy the communications requirements for this computer system.

Since the interconnection network is critical to the overall machine performance,
its design and control is central to the design of a shared memory computer. How-
ever, specifying an efficient high performance complex interconnection network as
an integral part of a parallel computer architecture does not provide sufficient basis
for believing the architecture to be an improvement over other computers with less
capable interconnection networks. A valid comparison cannot be made between
architectures or networks without careful consideration of the associated control
algorithms. Whereas an apparently “more powerful” network might be capable
of great flexibility in its routing (with perhaps even redundant paths available for
fault tolerance), such a network can prove to be undesirable due to the associated

cumbersome and slow control algorithms. In fact, it is quite possible for a control

algorithm to have worse time complexity behavior than the total time delay of
data transfer through the network.

One important aspect of interconnection network control is the method of re-
solving routing conflicts. Buffered networks (typically used in electronic networks)
provide one very common type of conflict resolution. In a buffered network con-
flicts in a switching node are resolved by routing one message and buffering (saving
in a local memory stack) the other message, which is sent later. However, a ma-
jor drawback of buffering is the possibility of network performance degradation
due to “hot spot” formation [Pfister 85b, Kumar 86, Lee 86, Thomas 86, Yew 86].
Hot spots in a buffered network are formed when a large number of simultaneous
references are made to the same “hot” memory location. Requests may stack up
and overflow the buffer sizes, with backups propagating backward through the in-
terconnection network in a tree pattern, until the backup affects the flow through
most or all of the network (see Figure 1.2.)

Non-buffered networks eliminate the possibility of hot spot formation, but re-
quire the problem of routing conflict resolution to be dealt with in some other
manner. A non-buffered network is employed in the interconnection network pre-
sented here, and allows passive optical switching to be used for its implementation.
The resulting network can achieve greater throughput and can incorporate a novel
conflict resolution technique implemented in a centralized controller (discussed in

Chapter 5).

| o Path or device blocked by "hot spot" effect \

| Clear path

: O Queue

I [Hold Buffer

| [B Saturated Queues & Buffers
|

|

|

-y
” < | Bypass/Exchange Swiich

\

Figure 1.2: Hot Spot Formation (from [Kumar 86]). PE, Processing
Element; MM, Memory Module.

1.3 Design Philosophy

Tradeoffs between control algorithm complexity and interconnection network char-
acteristics must be an integral part of the design process. Control algorithm design
must be undertaken simultaneously with interconnection network design to obtain
true performance improvement. Similarly, hardware implementation must also be
considered (at least at a high level) simultaneously with computer design so that
the design may be physically realized. Control algorithm design also affects the
hardware decisions, and vice versa, since control signals must be able to reach
the actual control sites. Therefore this paper presents the design of the Shared
Memory Optical/Electronic Computer (SMOEC) as a design consisting of three
essential facets: architecture, control algorithm, and hardware. These three facets
are like the three legs of a tripod; if one leg is weak, the whole tripod is weak (see
Figure 1.3).

For example, the triple focus of the design philosophy allowed the choice of a
passive optical interconnection network to impact the control algorithm and sys-
tem architecture design. In this way, the SMOEC was designed with an optical
interconnetion network as an integral element of the design. This method is in
contrast to taking the idea of an optical network and inserting it in a preexisting
electronic parallel computer design that was intended to be used with a fundamen-
tally different electronic interconnection network.

The triple focus of this research on architecture, hardware, and control is part
of a trend towards systems design among those designing hybrid optical/electronic
systems which incorporate novel optical subsystems. Some recent work in the

“optics in computing” field explicitly advocates attention to system-level design

10

\

Figure 1.3: System Design Tripod: System viability is supported by
three essential design facets.

concerns for hybrid systems [e.g. Pinkston 92, Schenfeld 95]. Part of the research
presented herein, published previously in [Waterson 91], was an early proponent
of a system-level design focus. This dissertation, along with other previously pub-
lished parts of this work [Waterson 94a, Waterson 94b, Waterson 95], contribute
further support and advocacy of a system-level design emphasis for hybrid opti-

cal/electronic systems.

1

Chapter 2

SYSTEM ARCHITECTURE

Optimizing the balance of compromises required for physical implementation of
a shared memory model machine is the driving force behind the Shared Memory
Optical/Electronic Computer (SMOEC) architecture. The SMOEC is designed to
satisfy a number of desired features, as summarized in Table 2.1. These desired
features were chosen knowing that a passive optical interconnection network would
be employed in the SMOEC. Thus the characteristics of the optical interconnection
network can be maximally exploited by the overall SMOEC architecture, and at
the same time the overall architecture accomodates the weaknesses of the optical

interconnection network with minimal effect on computational performance.

2.1 SMOEC Architecture Overview

The functional architecture of the SMOEC is shown in Figure 2.1. It consists

of a bank of N processing elements (PEs) connected to a bidirectional optical

Free-space Interconnection with
Externally-controlled Routing

ARRAY OF DATA PASSIVE OPTICAL DATA ARRAY OF
PROCESSING | / , INTERCONNECTION e — MEMORY
ELEMENTS NETWORK MODULES
(PEs) |\ % (FIER) /| (MMs)
N Elements S Stages N Modules

ADDRESSES

ELECTRONIC CONTROL SIGNAL
ROUTING CTRL] DISTRIBUTION
COMPUTER \ & INTERFACE
N Nodes S Buffers
Multifunctional
Arbitrator of Traffic
for Shuffle-exchange
Hardware

Figure 2.1: SMOEC: Block Diagram. Labels on arrows indicate number

of communication lines.

13

> Shared memory computation model as architectural basis
> MIMD (Multiple Instruction, Multiple Data stream) operation

> Physically parallel (not buffered), simultaneous memory reads
and writes

> Memory access completion within O[1] passes through the net-
work (A network pass may take Ollog N] time)

> High throughput between any PE (or set of PEs) and MM

> Parallel fetch-and-add (see Appendix 6.3) capability (to re-
stricted MM cells)

> Prevention of hot spot formation

> Fine-grained parallelism (N ~ 10% — 10°)

Table 2.1; Desired Features for the SMOEC.

interconnection network called the Free-space Interconnection with Externally-
controlled Routing (FIER), which is connected at its other end to a bank of N
Memory Modules (MMs). The FIER optical network consists of a sequence of S
shuffle-exchange stages, where S = Ollog N]. The bank of PEs is also connected
to the inlet links of a single recirculating electronic shuffle-exchange stage. This is
the Multifunctional Arbitrator of Traffic for Shuffle/exchange Hardware (MATSH)
which processes address bits from the PEs to compute the control settings for the
FIER switches. The Control Signal Distribution & Interface (CSDI) buffers the
control bits until it is time to switch the FIER optical network to accomodate new
routing paths. The optical switches are then all set at the same time, opening
the FIER for bidirectional communication between connected PEs and MMs. In

order to achieve high bandwidth data transfer, the FIER is designed to be optically

14

passive, and to use near-term optical technology. The choice of passive optical
hardware has substantial architectural and control implications.

To illustrate a typical mode of operation and to introduce how the SMOEC
subsystems interact, a simplified overview of the handling of simultaneous read
requests 1s provided. Communications in the SMOEC are handled in separate
phases, each consisting of a single type of request (such as read or write) to fa-
cilitate conflict resolution. Because of these globally coordinated communication
phases, the SMOEC is not a pure MIMD (Mulitple Instruction, Multiple Data-
stream) computer in the most strict sense, but is considered a “primarily MIMD?”
computer. During the read phase, each PE that requires information from a MM
forms a read request consisting of the MM index (address) it desires to read from.
These addresses are fed in parallel to the MATSH control unit. Using the routing
algorithm (explained in Chapter 5) , the MATSH sequentially computes the appro-
priate switch settings for the FIER optical network and passes them to the CSDI
buffering unit. When all settings are computed, all bits are sent simultaneously
from the CSDI to the appropriate FIER switches. Once the FIER switches are set,
two way communication channels are established between the PEs and the desired
MMs (though only one way communication is used for reading). The MMs then
each simultaneously transmit their entire contents serially as a stream of intensity
modulated light. The optical signals pass through the FIER network, with fan-out
as necessary, to the requesting PEs. Fan-out is required to satisfy multiple P
requests of the same MM.

The specific types of hardware selected to implement the SMOEC were chosen

with the intention of feasible implementation in the near term. As previously

15

discussed, the hardware is divided into five subsystems: electronic Processing
Elements (PEs), electronic Memory Modules (MMs), an optical interconnection
network (FIER), an electronic routing control unit (MATSH), and an electronic
Control Signal Distribution & Interface (CSDI). Units listed as electronic actually
include an electronic/optical interface, and thus must be considered as having a
partially hybrid composition. The architecture of this system is shown in Fig-
ure 2.2. An overview of the functionality of each of the units is presented in the
following sections. Later chapters will examine the theory and design of the major

subsystems in greater detail.

2.2 Processing Elements (PEs)

The PEs are intended to be simple electronic processors, such as a basic micropro-
cessor. The complexity of individual PEs is a design parameter for the SMOEC;
the architecture permits flexibility in this aspect. Located with each PE is a local
memory at least equivalent to the size of a MM.

Each processor must have two types of Input/Output (I/O): electrical and
optical. The optical I/O to the PEs is implemented by fiber optic techniques, one
transmitter and receiver per PE. Since no addressing or multiplexing of resources
(I/O signals) is needed, a common interface bottleneck is avoided. Optical 1/0
(laser sources and detectors) is used to send data to and receive data from the FIER
optical network. The electrical I/O is used to send addresses (and sometimes small
amounts of data; see Appendix 6.3) to the MATSH control unit to compute the

switch settings for the FIER.

16

- w owm owm - e o o Em wm - e M Mmoo m==----

=
P I {: - 1 FI I (: (Free-space Interconnection withy ¥ .
S 2 1 Externally-controlled Routing) 4 ! S z I

Optical/Electr

MATSH

Free space optical beam
(Separate channels illustrated)

Optical Shuffle Exchange stage
(Bulk optical devices)

7 Electronic Shuffle Exchange stageT <€--=3 Interface (fiber bundles)
i1 (Electronic components) - Electric wire

UNIT | Electronic Device N# Electric wires (N)

TNOTE: Although not shown here, the MATSH wires are bidirectional, and
the MATSH has an additional bidirectional N-wire connection to the MMs.

-
TsssEEsEsEEEEEEEEE SsSSSSsSSSESSEEESSsSESEEsEEEEESEE SEEEEENENEENEEEEENEENENEENEE snsesmann®

WSENEENENEEENENREE RNy,

Figure 2.2: SMOEC: Architecture.

(Electr. Array ofy :OPTICAL INTERCONNECTION NETWORK ! : (Electr. Array of 1 |
Processing & = S A - ' 4y Memory ¥
Elements) : Datav |O=-SE : 1 Modules) :l

PE'](.--'----.}DBI .. w](--:-ll*MMO :l
o M"!"'*MMI i
W Ve : mﬁ(..:...).MMz Wl
1
PE3 a= @1 >MM5 q
pEg(q(":"""MMﬁ :|
PES =i > MMy |
- - - - - A ---------I
1
CSDI:
(Control Signal :
Distribution
........ Eeace). 1

(Shared Memory |

onic |

Computer)
(Multifunctional Arbitrator of Traffic for Shuffle-exchange Hardware) SMOEC

. *
SEsEEsEEEEEEEEEEEEEEEES

I

2.3 Memory Modules (MMs)

The size of the electronic MMs is somewhat dictated by the architecture. Since the
read and write processes operate on the entire MM contents, the MM size must not
be too large. However, they must be of sufficient size for useful computation to be
practical. MM size has a strong impact on the selection of values for other design
parameters (as discussed in Section 7.1.1). The Memory Modules will work best if
each is conceived of as a large recirculating shift register, capable of reading and
writing data quickly in sequence throughout its entire capacity. A small amount
of random-access memory is also included in each MM, to provide locations for
fetch-and-add operations (see Appendix 6.3). In the same manner as for PEs, the
MMs also have both optical and electronic I/O to the FIER optical network.
Although electronic MMs are envisioned in the near term, optical technologies
may provide improved performance in the longer term. Examples include opti-
cal disk memory with multiple write heads and parallel optical readout [Lee 88,
Psaltis 90], as well as volume holographic media [Lee 88, Li 92, Li 95]. However,
in the current design, optical intensity is sent into the FIER optical network after

being serially modulated by the electronically-stored information in the MMs.

2.4 Optical Interconnection Network (FIER)

The optical interconnection network, called the Free-space Interconnection with
Externally-controlled Routing (FIER), is a novel design based on passive optical
switching using polarization-based routing. The FIER optical network features

a broadcast/combine capability and employs an external circuit-switched control

18

system. The topology and theoretical underpinnings of the FIER are elaborated
in Chapter 3, and the optical design of the FIER and the combination of optical
hardware used to implement it are explained in detail in Chapter 4. The self-
contained nature of the FIER means that it may also be used as a component in
systems other than the SMOEC.

A fundamental choice in the design of an optical interconnection network is ac-
tive vs. passive switching. In an active switch, the switch state must be physically
set upon the arrival of each data bit. Therefore a switch delay is incurred before the
corresponding output data bit is generated. In a passive switch, the switch state is
set beforehand by a separate control signal, then data arriving at the switch pass
through to the preselected outlet link without any switching delays. Passive switch
connections effectively act as if a direct wire from inlet link to outlet link had been
installed inside the switch. Passive optical switching was selected for the FIER to
permit high speed data throughput in the network. Passive switching also enables
circuit-switched (see Section 2.5) control of the network, which permits additional
functionality to be incorporated in the control algorithms. However, decreased
optical power after each stage in the FIER is a tradeoff that must be considered
when implementing a passive network. This limits the number of optical stages
that may be cascaded without regeneration of the optical power.

A shuffle-exchange interconnection network topology [Stone 71, Parker 80] was
chosen for the FIER since it provides hardware simplicity (ease of optical im-
plementation) while still exhibiting sufficient topological generality. The shuffle-
exchange stages are incorporated in an Extended Generalized Shuffle (EGS) net-

work [Richards 91a] which was chosen because of its ability to provide nonblocking

19

access between the sets of PEs and MMs. The bypass/exchange switches designed
for use in the FIER are capable of the usual “bypass” and “exchange” settings,
as well as the extended “combine” and “broadcast” settings. The extended switch
settings are not often used by other shuffle-exchange network designs. In the
FIER, these extended settings are used to allow data to be routed together when
appropriate. Because of this enhanced switch capability, write request combining
and broadcast of MM contents to multiple requesting PEs may be performed by
the FIER.

The FIER is implemented using classical free-space optics with cascaded shuffle-
exchange stages consisting of polarizing prisms, fixed waveplates, bulk lenses,
lenslet arrays, and optically addressed polarization-switching ferroelectric liquid
crystal Spatial Light Modulators (SLMs). The write beams to the SLMs carry the
control bits to set the SLM pixels (individual optical switches) to individually mod-
ify the polarization of individual incoming optical data channels. These SLM write
beams are shown as electonic in Figure 2.2, however, they could instead be optical
write beams. The read beams (data channels) carrying intensity-modulated data
receive a polarization change (or no change) which allows the data channels to be
sent in different directions (routed) using polarizing prisms. The CSDI buffering
unit sends its control bits either electronically or optically in parallel to the SLMs
in the FIER, so that the network is reconfigured by switching all pixels in all the
SLMs simultaneously. The optical switch states in the FIER may be maintained
by utilizing bistability of some SLM devices, or by using the memory in the CSDI

buffering unit to refresh the SLM states.

20

The interfaces between the optical and electronic signals are designed to be
fully parallel (no addressing schemes) to avoid bottlenecks at these conversion
points. Optical fibers are used to transfer signals from the FIER to the PEs and
MMs, and vice versa. Bundles of optical fibers are used to format the signals into
pixel arrays for entry and exit to the FIER. These bundles allow the fibers to be
unbundled at their opposite end (connecting to the PEs or MMs) to allow I/O to
individually controlled, physically separate devices. In this manner, the PEs (and
MMs) may be located on separate electronic component boards, with one or more
PEs (or MMs) per board, and with each PE (or MM) having its own laser diode
and detector. Thus the data rate through the passive FIER is primarily limited by
the speeds of the lasers and detectors. However, noise sources due to the various
optical components may be additional limiting factors on the data throughput rate.
The actual data rate through the FIER may be treated as a design parameter.

Several elements in the list of desired parallel computer features (Table 2.1)
motivate the choice of the optically-implemented FIER over an electronic inter-
connection network for the SMOEC. The passive nature of the FIER permits
high speed PE<>MM throughput. The ability of the FIER to combine and broad-
cast messages permits physically parallel simultaneous memory reads and writes
at these high data rates, which contributes strongly to its utility as the central
subsystem (when teamed with the MATSH, described below) of a shared mem-
ory architecture. Fine-grained parallelism is facilitated through the use of bulk
optics and optical devices with simple replicated structures such as lenslets, and
through the reduced complexity (as compared with electronics) due to the three-

dimensional nature and superposition principle of optics (optical beams may pass

21

ok

through each other unaffected). Electronic interconnection networks designed for
shared memory machines were not designed with physically parallel data through-
put as a goal, nor is their complexity well suited for application to fine-grained
parallelism. The SMOEC was designed to incorporate the FIER as an essential
element from the very beginning of its design, so that a novel type of shared mem-
ory machine with different strengths and improvements based on the advantages

of optics would be the result.

2.5 Electronic Routing Control Unit (M ATSH)

Passive switching elements require control bit computation to be carried out phys-
ically separate from data passing through the switches. Non-buffered networks
may not store any data within a switching node. Therefore, the FIER is circuit
switched. Circuit switching consists of setting a dedicated communication channel
between a source and destination pair for the duration of a communication cycle.
All switches in a circuit-switched network are set simultaneously. In contrast, in
packet switching there is no dedicated channel; switches are individually set (using
only local information within the switch) upon the arrival of a data block at each
intermediate switching node.

The Multifunctional Arbitrator of Traffic for Shuffle-exchange Hardware
(MATSH) was designed to implement circuit switching control for the FIER op-
tical network. It was also designed to perform additional data combining and

arbitration functions that the passive optical data paths cannot.

Within the MATSH is an electronic implementation of a single shuffle pattern
and an array of bypass/exchange switches, forming a single Electronic Shuffle-
Exchange stage (E-SE). This single stage, with the addition of bidirectional feed-
back connections that connect its outlet and inlet links, can mimic the operation
of the FIER optical network. Electronic I/O to this single stage is provided to the
PEs, the CSDI buffering unit (and the MMs). (The MATSH<MM 1/0 is used
solely for implementing fetch-and-add, as described in Appendix 6.3.) This setup
allows the MATSH to mimic the operation of the FIER optical network, albeit at
a lower bandwidth, as described in Chapter 5.

The bypass/exchange boxes in the MATSH are required to be capable of per-
forming write request combining and arbitration (as discussed in Section 6.2) in
addition to computing control bits for the FIER. Write request combining and
arbitration require that each electronic node be capable of performing a “process-
and-exchange” function, in which the action performed during the “process” part
involves additional computation steps that are dependent on which communica-
tion phase is being carried out. Each bypass/exchange switch node in the MATSH
therefore incorporates additional logic hardware and some local memory to allow
it to perform such operations as data comparisons, data additions, bit cycling,
AND, OR, and storage of a limited amount of data. The data storage is provided

by a register stack of depth O[log N].

2.6 Control Signal Distribution & Interface
(CSDI)

The Control Signal Distribution & Interface (CSDI) is responsible for sending the
optical switch settings to the appropriate locations in the FIER optical network at
the appointed time. Electronic buffers store the control information until all control
signals are present, then it is transmitted simultaneously to the FIER so that the
optical devices may all switch at once. Simultaneous setting of all optical switches
reduces the amount of delay introduced by the optical array (SLM) switching times

(which are relatively slower than electronic switching times).

Chapter 3

INTERCONNECTION
NETWORK TOPOLOGY AND
ROUTING (REVIEW)

The interconnection network employed in the SMOEC is required to be capable
of performing arbitrary connection patterns between the inlets and outlets of the
network. The connection patterns required by the SMOEC involve many-to-one
connections in the PE—MM direction, which perform conversely as one-to-many
connections in the MM—PE direction. This chapter elucidates the topology un-
derlying the FIER optical network, and provides its theoretical underpinnings.
Although this chapter is primarily a review of relevant work by other research
groups, a few new points and results are introduced.

Note on notation: Many interconnection parameters are frequently used both
directly and as logarithms. To facilitate the presentation and use of these pa-
rameters, this report employs the convention that lowercase parameters are the

25

logarithm (usually base 2) of the corresponding uppercase parameters. Occasion-
ally uppercase script letters will be used to differentiate related parameters that
do not follow this convention.

When discussing interconnection networks it is important to consider their
capability to satisfy multiple connection requests. This capability is discussed
in terms of the blocking of network connections. This terminology varies some-
what in its usage, so the particular terminology employed herein (adapted from

[Hinton 93a]) is summarized below, in order of increasing capability.

Partial Access Networks have limited function; larger networks are often built

from smaller, partially connected network pieces.

Full Access Networks provide the connectivity such that any inlet can be con-
nected to any outlet. These networks can be blocking. In these networks

there is at least one path from any inlet to any outlet.

Rearrangeably Nonblocking Networks are those in which any idle inlet may
be connected to any idle outlet provided that we may rearrange existing

connections. They are capable of any permutation of inlets to outlets.

Wide-Sense Nonblocking Networks have some paths available through the
network that may block other connections, but if certain rules are adhered
to, the network may operate as if it were strictly nonblocking. For example,
crossbar networks may be wide-sense nonblocking (instead of strictly non-
blocking) due to the existence of “pathological” paths, which are paths that
snake through multiple switching nodes and consequently may block other

connections.

26

Strictly Nonblocking Networks are those in whicn any idle inlet may be con-
nected to any idle outlet, regardless of how many other connections are
already established and regardless of the specific paths used by the other

connections.

Redundant Strictly Nonblocking Networks have more than enough elements
to be strictly nonblocking; these networks are designed to maintain an ac-

ceptable level of connectivity even when elements within the network fail.

3.1 Shuffle-Exchange Topology

As previously mentioned, a shuffle-exchange interconnection network topology
[Stone 71, Parker 80] was chosen for the FIER optical network since it provides
hardware simplicity (ease of optical implementation) while still exhibiting suf-
ficient topological generality. A basic shuffle-exchange network is a multistage
cascadable network, where each stage consists of a “perfect shuffle” followed by
an array of bypass/exchange switches. More general shuffle-exchange networks
may be composed of a xb switching nodes interconnected by a generalized version
of the perfect shuffle, called a @-shuffle. The resulting “shuffle-exchange” stage
is a building block for several types of networks. The parts of shuffle-exchange

networks are detailed below.

3.1.1 The Perfect Shuffle

The perfect shuffle is named after the common riffle shuffle used when playing cards

in which a deck of cards is divided in half and combined by interleaving cards from

27

each deck half. A “perfect” shuffle is therefore one in which the deck is first divided
precisely in half, and then single cards are exactly interleaved. Examination of this
process on a linear array of nodes with binary indices (see Figure 3.1) reveals that
information is sent to the node whose index is the left cyclic shift of the source
node. That is, given N =2" inlet nodes, if the index of an inlet node 7 is represented

as a sequence of n binary digits (bits) b;, as:
i = (bp_y by—g -+ by by), 0<i<N-1 (3.1)

where
n—1
i=3Y b;2, withb; € {0,1}, (3.2)
e

then the perfect shuffle performs the operation SHy(z), where:

SHn(1) = (ba-2 -+ b1 bo bu-1) (3:3)

= LEFT-CYCLICAL-SHIFT(i) (3.4)

3.1.2 (-Shuffles

A Q-shuffle of N = QR playing cards can be defined as follows (from [Patel 81]).
Divide the deck of QR cards into @ piles of R cards each; top R cards in the first
pile, next R cards in the second pile, and so on. Now pick the cards, one at a time
from the top of each pile; the first card from top of pile one, second card from
the top of pile two, and so on in a circular fashion until all cards are picked up.
This new order is defined as the Q-shuffle of the Q R cards. Observe that a perfect
shuffle is a 2-shuffle in this notation. An 8-shuffle is illustrated in Figure 3.2.

The Q-shuffle of N =Q R objects performs the operation (-SHx /() on an object

with index i. This can be expressed mathematically in two ways [Patel 81], either

28

INLETS

0000 () e o ()
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5§ , 5
0110 6 e e 6
0111 7 “‘. 7
1000 8 “ 8
1001 9 " 9
1010 10 ‘ 10
1011 11 ‘ 11
1100 12 12
1101 13 13
1110 14 14
1111 15 o o 15
Binary

Index

Figure 3.1: A Perfect Shuffle.

OUTLETS

0000
0001
0010
DAL
0100
0101
0110
£ i s 1
1000
1001
1040
1011
1100
1101
1.1.1:0
0 0

Binary
Index

29

INLETS OUTLETS
(0 00000 @ ® 00000
1 oooo01 00001
2 00010 00010
3 00011 00011
4 00100 00100
g 00101 \ 00101
00110 ‘ ‘ 00110
7 00111 ‘ ‘ 0011
g 01000 &‘ "’ 01003
01001 \ 01001
10 01010 Ny \ — 01010
11 01011
fh o SR XS XK g A
13 o1101 S W‘) 01101
14 o1110 ‘& 4’““ 01110
15 o1111 é 4(\"" 01111
16 10000 Ny A W, 10000
17 10001 ’(v $‘ 10001
ig 10010 A “ AA" 10010
10011 ' o7 10011
20 10100 (L VA 10100
21 10101 / — 10101
%% 10110 e— / ‘ ‘ 10110
10111 ‘ 10111
24 11000 » ‘ 11000
25 11001 Wi " 11001
%‘? 11010 ,' 11010
11011 11011
28 11100 11100
29 11101 11101
30 11110 11110
31 11111 e ® 11111
Binary Binary
Index Index

Figure 3.2: An 8-shuffle on 32 nodes.

ORI UNEAWN=D

30

as

] d(QR -1 0< R -
Qg =] 19t @R-1) 0Si<QR-1 (3.5)
i i=QR—1

or as
Cﬁ%ﬂﬂ=@@+tﬂ)mwQR. 0<i<QR-1 (3.6)
where |u| is the floor function (the greatest integer < w), and u mod v is the

modulo operation (the remainder when u is divided by v). .

3.1.2.1 b-Shuffle on b* objects

For the case of N =b*, the b-shuffle has a simple form [Patel 81]. If the index of

an inlet node 1 is represented as a sequence of k base-b digits d;, as:

i=(dpoy dy—g - dido)y, 0<i<b—1 (3.7)
where
k=1)
i=Y_ d;¥, withd;€{0,...,b—1}, (3.8)
i=0

then the b-shuffle performs the operation b-SH,x(7), where:

b‘é?'{bk(i) = (dk..‘z - d]_ (!'(] dk——l)b (39)

LEFT-CYCLICAL-SHIFT,(z). (3.10)

Thus the b-shuffle of an index is a left cyclical shift of the index digits represented

in base b.

3.1.2.2 (@-Shuffle on ¢" objects

If N=c" a special result for the decomposition of the @-shuffle may be obtained.

(To the author’s knowledge neither this general result nor the special case for c=2

31

have been previously published, so the derivation is presented here). In this case
(it is necessarily true that) @ =¢? and R=¢". (However it is not necessarily true
that there exists a k such that N =QF, so the result from Section 3.1.2.1 does not
directly apply.)

Iirst, represent the index ¢ as a sequence of base-c digits a;, as:

i = (an=1 Gn-2 *** @ Qg)c, 0<:1< "1 (3-11)
where
n—1
i=>) a;jc¢ witha; €{0,...,c—1}. (3.12)
Jj=0

Observe that for the simpler case of a c-shuffle on the N = ¢" objects, the result
from Section 3.1.2.1 does apply, so using Equation 3.10 yields that the c-shuffle

performs the operation ¢SHen (1), where:

cSHar(i) = (an-2 -+ a1ag @not)e (3.13)

= LEFT-CYCLICAL-SHIFT.(i). (3.14)

Thus the c-shuffle operation on an index i is a left cyclical shift of the index digits
represented in base c.
Now, returning to the general case of a @-shuffle on N =c"=Q R objects, plug

Q=c?, R=c", and n=g+r into the @-shuffle definition, equation 3.6, which yields:

Q-SHen (1) = (.:, c? + lcz_”J) mod c" 0<i<N-1 (3.15)
A (U+V)mod " (3.16)

32

Now observe that, for 7 represented as a sequence of n base-c digits as in equa-

tions 3.11 and 3.12,

U = id

= ¢ LEFT-SHIFTED-BY ¢ digit-positions

= (@poy @p-2 ~+- @1a9 00 --- 00),
g zeros
and
1
- 1
c'l"
= ¢ RIGHT-SHIFTED-BY r digit-positions
= (aﬂ—l Up-z " ar)a
q di’g_its
S0
UV = (an-y Gn2 -+ a1 o Qp—1 An-2 **° a,.l],

e

q digits

which yields

(U + V) mod ¢ = RIGHTMOST-n-DIGITS of (U + V)

= (-1 *** Q1 Q0 An—1 Gnz " @),
n—g digits q digits

and thus

Q-SHen (1) LEFT-CYCLICAL-SHIFT /(2)

]

= C'(S’}{({:ﬂ (3’) .

(3.17)
(3.18)

(3.19)

(3.20)
(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
(3.27)

(3.28)

Thus the Q-shuffle operation on N =c" nodes (with @ =¢? identified) is equivalent

to ¢ successive applications of the c-shuffle operation.

33

3.1.2.3 (@-Shuffle on 2" objects

The case of a Q-shuffle on 2" objects is a special case of the general result derived
in the previous section. However, it is worth particular attention, because the
FIER optical network is designed to have N = 2" nodes. In this case, the digits
a; in the equations become binary digits (bits), and the general result given in

Equation 3.28 simplifies to the following:

Q-8Hy(i) = LEFT-CYCLICAL-SHIFTY() (3.29)
= SHL(3). (3.30)
(3.31)

Thus the @-shuffle operation on N = 2" nodes when @) = 27 is equivalent to ¢
successive applications of the perfect shuffle operation.

As an example of this c=2 case, the 8-shuffle shown in Figure 3.2 is now seen
to be equivalent to 3 applications of the perfect shuffle (since 8 =2?%), as illustrated

in Figure 3.3. That is, for
i = (bg by by by b)), 0<:1<31 (3.32)
where b; are binary digits (bits), have

8 SHaz(i) = (by bo by bs by). (3.33)

3.1.3 Bypass/Exchange Switch

The basic definition of a bypass/exchange (see Figure 3.4) switch is one with two
settings that allow two inputs to pass straight through (“bypass™), or swap posi-

tions (“exchange”). Extensions to the bypass/exchange switch shown in Figure 3.4

34

INLETS OUTLETS

0 ooocoo0 00000 00000 00000 0
1 oooo1 00001 00001 00001 1
2 00010 00010 00010 00010 2
3 ooo011 00011 00011 00011 3
4 00100 00100 I 00100 00100 4
5 oo101 I 00101 00101 l 00101 5
6 00110 " 00110 ” 00110 ” 00110 6
7 00111 ' 00111 ' 00111 ' oo111 7
8 01000 " 01000 " 01000 " 01000 8

' ' ' 01001 9

9 01001 ' 01001 " 01001 ,"

1 oe10 N ie N e NS

%% 01100 .'.:':'0. 01100 ':0000 01100 ".:.:"' 81100
01120 QY piits &) 01110 QY L

%g 01111 .0:0’0:’:’:’: 01111 ’0’ 0’0’...: 0111{; .0::.’:.:0: 01111

) 3 XXX
16 10000 “Q” 10000 OXX) 10000 @XX) .. 10000
17 1t ARGt RO ot IR 1
19 10011 ‘Q"‘ 10011 ”\“ 10011 ‘Q\" 10011
20 10100 \““ 10100 ““‘ 10100 \“‘ 10100

10101 1 10101 10101
2 o 7R s KR 1 A R e
23 10111 “‘ 10111 “ 10111 “ 10111
24 11000 ‘ 11000 ‘ 11000 ‘ 11000
25 11001 11001 11001 11001
D D D

NﬁNNNNH—.——n—n-u—n—u—n-t
MbWN=OSOROINNEWN=D

26 11010 ‘ 11010 ‘ 11010 ‘ 11010 26
27 11011 11011 11011 11011 27
28 11100 11100 11100 11100 28
29 11101 11101 11101 11101 29
30 11110 11110 11110 11110 30
31 11111 e ® 11111 11111 &e———o 11111 31
Binary Binary
Index Index

Figure 3.3: Three consecutive perfect shuffles on 32 nodes.

BASIC EXTENDED
SWITCH SWITCH
SETTINGS SETTINGS

LOWER UPPER
BYPASS COMBINE COMBINE

; o
~*~ "f
--*-

LOWER UPPER
EXCHANGE BROADCAST BROADCAST

L
~
ﬁ.f’ .‘&‘
‘f ‘b.‘ ~

Figure 3.4: Bypass/Exchange Switch Settings.

36

include upper and lower broadcast and upper and lower combine. These extended
states are each implemented unidirectionally in the FIER optical network, allowing
combine states solely in the “forward” direction (the processor-to-memory direction
when used in the SMOEC) and broadcast states solely in the “reverse” direction.
Note that a bypass/exchange switch with inlet link indices 2i and 2i+1 routes each
of its two inputs to an outlet link with either the identical index, or an index that
is identical except that the last bit is inverted. For i represented by binary digits

(bits) as in equations 3.1 and 3.2, the exchange operation on ¢ can be expressed as

EX(i) = (buer bu_z -+ by bo). (3.34)

3.2 Shuffle-Exchange Networks

The shuffle-exchange topology is popular in the literature because it is flexible and
well characterized. Many types of networks may be designed utilizing this topology.
Those networks relevant to an understanding of the FIER optical network are

presented in the following sections.

3.2.1 () Networks

The simplest form of a shuffle-exchange network is the omega (£2) network
[Parker 80], as illustrated in Figure 3.5. An Q network with N =2" inlet nodes
and N outlet nodes is defined as a sequence of n=log, N shuffle-exchange stages
(without the extended bypass/exchange states). The binary index of each node
contains n=log, N bits, so log, N perfect shuffles will return all information from

N nodes to their original location. If, however, the exchange of adjacent nodes is

37

Bypass/
Shuffle-
Perfect Exchange Exchange—>|

Shuffle Switches Stage
0 000 000 0
1 001 001 1
2 010 010 2
3 o5 Bk 011 3
4 100 100 4
5 101 101 S
6 110 110 6
7 111 111 7
INPUT OUTPUT

Figure 3.5: An Omega Network. Illustrated for N = 8 nodes.

permitted between shuffles, then it is possible to route information from any source
node to any destination node. This is understood by noting that the repeated shuf-
fles consecutively bring each bit of the node address to the Least Significant Bit
(LSB), and the exchange function complements the LSB of the node address. This
technique provides a very simple and local routing algorithm.

The simple algorithm for an Q network works fine if only one source node
is to be routed. However, if several nodes need to be routed simultaneously, it
is likely that conflicts in switch settings will result. From the simple algorithm
described above, it is apparent that there is only one route available between
a given source-destination pair. A second source-destination pair may require a
different setting for a bypass/exchange switch that was used in routing the first
pair. Thus, although any individual inlet may be connected to any outlet using
log, N shuffle-exchange stages (i.e. it is a full access network), conflicts may arise

in the bypass/exchange switch settings, making some permutations of inlets to

38

outlets unimplementable. The typical solution to such routing conflicts is to buffer
requests at the node within the) network when a conflict arises. However, as
previously mentioned, data buffering is not allowed in the SMOEC. Therefore, a
network more capable than an Q network is used in the FIER optical network.

If the 2x2 nodes in an § network are capable of the extended bypass/exchange
switch settings listed in Figure 3.4 (with the unidirectional settings of forward
combine and reverse broadcast as previously described), then the full-access ca-
pability of the © network can be used to provide extended access to single nodes.
Using forward combine switch settings, any set of inlet nodes may simultaneously
communicate with any single outlet node (this assumes that the set of requests
from the inlet nodes are combinable, and ignores the possibility of other conflict-
ing communication requests). Conversely, the reverse broadcast behavior of these
same switch settings allows the single outlet node to simultaneously communicate
with the set of inlet nodes. This ability to incorporate a broadcast and combine
capability is characteristic of all the shuffle-exchange networks described later in

this chapter as well.

3.2.2 Delta Networks

The Q network is a subset of a class of networks called delta networks [Patel 81].
Delta networks are full access networks with a very general class of link patterns
between stages. Although delta networks provide increased topological flexibility
over that of © networks, they have essentially the same blocking characterists. A

delta network is defined to be an a* xb* switching network with & stages, in which

39

each stage consists of a x b switches (crossbar modules).” The interconnection
pattern used in the delta network consists of either a a-shuffles between consecutive
stages or any (topologically equivalent) set of patterns which will result in a full-
access network. The special case of N-inlet/N-outlet delta networks (N = b)
comprising k stages interconnected with b-shuffles is summarized here.

Routing in a k-stage N-inlet/N-outlet delta network (where N = b%) can be
expressed mathematically as follows (from [Patel 81]). If the destination D is

expressed in base-b notation as:

D = (dj—y dg—y -+ dido)y, 0<i<bi—1 (3.35)
where
k—1 _
D= Z{fjbj, with dj € {U,...,b—l}, (336)
Jj=0

then the base-b digit d; controls the crossbar modules of stage (n—i), thus providing
a local routing algorithm for delta networks. A setting of d; for a given crossbar
module means that the the crossbar outlet with index d; is chosen for the path

being routed.

3.2.3 Nonblocking Shuffle-Exchange Networks

One way to increase the number of realizable connection patterns for shuffle-
exchange networks beyond those achievable by Q or delta networks is to increase
the number of shuffle-exchange stages beyond the minimum for full access. In

an) network, for each additional shuffle-exchange stage that is added beyond

*Notational note: the “x” symbol is used to describe individual switches or whole switching
networks; a U x V switch (or switching network) has U inlets and V outlets. This notation looks
the same, but is entirely distinct from that used to describe an A by B array as an “AxB array.”

40

S =log, N, the number of paths between a given inlet and outlet is doubled. Re-
searchers have shown that 2log, N — 1 shuffle-exchange stages are sufficient to
implement all possible permutations without conflicts (i.e. to implement a “re-
arrangeably nonblocking” network) [Abdennadher 92], but the required control
algorithm is much more complex [Parker 80, Wu 81] than that for the Q or delta
networks, and is costly to implement.

Another way to increase the number of realizable connection patterns for shuffle-
exchange networks is to increase the width of the network. If each inlet passes
first through a stage of 1xF switches, into a shuffle-exchange network of width
W =N-F, then finally through a stage of F'x1 switches, this can increase the num-
ber of paths available by a factor of F'. The Extended Generalized Shuffle (EGS)
networks presented in the next section employ both of these methods to increase
the number of realizable connection patterns, thus enabling operation with low

probability of blocking, or even nonblocking operation.

3.3 Extended Generalized Shuffle Network
Topology

Extended Generalized Shuffle (EGS) networks were invented by Gaylord Richards
of AT&T [Richards 91b, Richards 91a]. EGS networks provide extended capabil-
ity and flexibility beyond that of conventional shuffle-exchange networks (such
as or delta networks) by removing restrictions on the specific interconnection
patterns used, and they provide a theoretical framework for making tradeoffs of
network length and width. Such tradeoffs can be tailored to fit the requirements
of a particular implementation, so EGS networks provide a practical framework

41

for design flexibility. EGS networks are also particularly suited to optical im-
plementation, due to the many optically implementable shuffle-equivalent topolo-
gies [Cloonan 94]. EGS networks may be thought of as a generalization of delta
networks, having an unrestricted number of stages and variable switching stage

compositions (number and size of switches).

3.3.1 EGS Definition

A (fully general) Multistage Interconnection Network (MIN) is shown in Figure 3.6

and is defined by the following five conditions (from [Richards 91a]):

1. A MIN has some arbitrary number S stages of nodes.
2. There are r; nodes in stage i, each having n; inlet links and m; outlet links.

3. Nodes in different stages may have different values of n; and m;.

4. For 1<i<S5—1, the outlets from nodes in stage i are connected (via links)

to the inlets of nodes in stage 1+41.
5. r;m; = ripnigq for 1< <S5—1.

An Extended Generalized Shuffle (EGS) network [Richards 91a] is a MIN with
a particular specified link interconnection pattern. Thus, an EGS network is also
illustrated by Figure 3.6. The basic EGS interconnection pattern is defined as
follows. Stages i —1 and ¢ are interconnected by an n;-shuffle, which effectively
assigns outlet links from stage ¢ —1 consecutively to switches in stage i. However,
an EGS network is defined more broadly to include networks which are topologi-
cally equivalent to the basic pattern just given. Thus, EGS networks may be made

42

’
~

-7 oo

nn m.r,
r A
INLETS § OUTLETS

P S P T A A
S T T T T N T T R 8
[S S SN PSR4

s

P e e e e S R PR e RN S S R e e e e e e ~

: Arbitrary interconnection pattern 2 npemy switch :
s i = T . . .

|\ +;j (for EGS: n;—shuffle or functional equivalent) n; or m lines /|

Figure 3.6: Multistage Interconnection Network (MIN) general defini-
tion (including EGS network definition).

with [Hinton 93b] the crossover interconnect [Jahns 88] , the banyan interconnect
[Wu 80], the n-cube interconnect [Wu 80], the modified data manipulator inter-
connect [Feng 74], or the flip interconnect [Wu 80]. Therefore all of these networks

are subsets of the EGS class of networks.

3.3.2 Regular Simplified EGS (RS-EGS) Definition

In the work presented here, a Regular Simplified class of EGS networks (RS-EGS
networks) is considered, as shown in Fig. 3.7. Four simplications of the general

EGS definition are employed for RS-EGS networks:

1. There are an equal number (V) of inlets and outlets, which is restricted to

be a power of two (N =2"),

o

The first stage consists of 1x/ switches, and the final stage consists of Fx1

switches,

43

S stages

2 eee

N___2fl
outlets

N=2" <

inlets

] 2x2 switch

o

\
i
|
[
I-to-F demux |
[
F-to-1 mux :

|

7

Figure 3.7: Regular simplified class of EGS networks (RS-EGS net-
works)

44

3. Each of the Sg stages between the first and last (the “main section”) is

identical (i.e. the network is homosyndetic), consisting of 2x2 switches.

4. All Ss main section stages are interconnected with 2-shuffles, and the final

interconnection from the last main section stage to the F'x1 switches is an

F-shuffle.

Therefore, in a RS-EGS network the data progress as follows. First, the data
from N =2" network inlets pass through the stage of 1xF" switches which act as
demultiplexers (called the “fan-out” stage), emergingon W = NF data lines. Next,
the data pass through the main section of Sg shuffle-exchange stages. Finally, the
data pass through an F-shuffle, followed by the stage of F'x1 switches which act as
a set of F'x] multiplexers (called the “fan-in” stage). Ultimately the data emerge
from the “fan-in” stage at the N network outlets.

An example RS-EGS network is shown in Figure 3.8. This example illustrates
a special case of RS-EGS networks (used in the SMOEC architecture) in which
F'is a power of two (the “restricted-F" case: F'=27). In this case, the “fan-in”
and “fan-out” stages may each be implemented by f stages of 1x2 switches or
2x1 switches as shown. Also, when F' =2/ the final F-shuffle before the “fan-
in” stage may be implemented by f consecutive ordinary 2-shuffles (as proved in
Section 3.1.2.3), however this is not illustrated in Figure 3.8. This may prove
advantageous for implementations (such as the FIER optical network) where 2-

shuffles are particularly easy to implement.

45

INLETS OUTLETS

0%, '4—4-4\

p2))
QK = Z ‘0’0 '0 -
% RN KK o B AWK o B oy
QUK Do g WX X Do O K Yo e
"00’ 0’0 ".'4.*::’\ .:’:.:”’.0..".;:: ‘:::.0”’.’0’ .kt.h X

) &< - &
SESXX X S BT IR X B gXSE X X ol o
R 2 S B AR)
R
RN

2-shuffle 2-shuffle 2-shuffle 4-shuffle

I
I
|
|
|
I
\

Figure 3.8: RS-EGS network example: N =8 = B, P=4=2% 55=3,

W=NF=32.

46

Ss Even Ss Odd
Ss <n F > 275s(1.5x2F—1) | F > 255 (275 —1)
n<Ssg<2n—-1|F > 2"‘53(1.5><2§:f“) F > 2»—6‘5(255;—1)
+ Ss—n—1 + Sg—n—1

Table 3.1: Richards’ formulae: nonblocking conditions for NxN RS-
EGS networks (from [Richards 93]).

3.3.3 RS-EGS Theory

Relations between the RS-EEGS parameters n, Sg, and I for nonblocking network
operation are provided in Table 3.1 (from [Richards 93]). The table lists relations
for four cases of Ss, when Sg < 2n—1. Another parameter of interest in such
networks is the number of paths P available between an arbitrary inlet-outlet
node pair. For RS-EGS networks, P is independent of which particular inlet and

outlet are chosen. P is given by:

25s F
- N

P = F25n (3.37)

Several special cases deduced from Richards’ formulae in Table 3.1 and equa-

tion 3.37 are listed in Table 3.2.

3.3.4 RS-EGS Design Parameter Analysis

As the number of stages Ss is increased from 1 to 2n—3, the minimal required F
is decreased. However, raising S above 2n—3 does not result in a further decrease
in the minimal required F'. To illustrate this, and to further study the behavior of
these parameters, the first four columns of Tables 3.3, 3.4, and 3.5 provide specific

47

Sg=1 FZ%AN P<
Sg =2 P < 2
3N —1 n odd
Ss=n |F c P=F
V2N —1 n even
Sg=2n-3 P§n2”"3=éNloggN
S¢=2n—2 F>n P§n2”‘2=%N10g2N
Ss=2n-1 P§n2"‘1=%N10g2N

Table 3.2: Special cases of Richards’ formulae

values of P and the minimal required F for 2 < N <11 and 1< Sg < 2n—1.
Column five of these tables lists the “device cost” parameter D (scaled by N for
ease of comparison). The device cost is based on the number of switching elements
required to implement a particular network. For the purposes of computing D, 2x2
swiches are assigned a cost of 1, and 1x/" and F'x1 switches are assigned a cost of
F—1 (since they can be implemented with /'—1 1x2 or 2x1 switches, respectively).

The device cost is thus:

D = N[F(5/2+2) - 2]. (3.38)

In the first five columns of Tables 3.3, 3.4, and 3.5, the special cases Ss=n
and Sg=2n — 3 are noted, and the cases with minum device cost for each N are
highlighted. The last three columns in these tables, F’, P’, and D'/N, present the
“restricted-F” case. For this special case, the tables show that the new minimal
device cost D' may occur at different values F” and S§. These new values may

be directly calculated for a given n by rounding F' = n up to the next highest

48

Network Size Ss|F| P|D/N|F'|P|D/N
N=4 (n=2)| aw-s=1{ 2| 1| 3.0 2| 1 3.0
am2| 2| 2 40 2| 2 4.0

3l 2| 4 50 2| 4 5.0

N=8 (n=3) 1 4] 1| 80| 4| 1 8.0
2l 4| 2| 100 4| 2 10.0

n=-3=n= 3 3 3 8.5 4 4 12.0

41 3] 6| 100 4| 8 14.0

50 3| 12| 15| 4| 16 16.0

N=16 (n=4) 1 8] 1| 180 8| 1| 180
2 8| 2| 220 8| 2 22.0

3l 6| 3| 190 8| 4 26.0

n=4] 5 5| 180 8| 8 30.0

m-3=5| 4| 8| 16.0| 4| 8| 16.0

6| 4| 16| 1801 4| 16 18.0

71 4| 32| 200/ 4| 32 20.0

N=32 (n=5) 16| 1| 3801 16] 1 38.0
2116 2| 4601 16| 2 46.0

3112 3| 400/ 16| 4 54.0

4010 5| 3801 16| 8 62.0

w=51 7| 7| 295 8| 8| 34.0

61 6| 12| 2801 8| 16 38.0

m-3=T| 5| 20| 25.5| 8| 32 42.0

8l 5| 40| 280 8| 64 46.0

91 5| 80| 305 8128 50.0

N=64 (n=06) 132 1| 7801 32| 1 78.0
2132 2| 940/ 32| 2 94.0

30024 3| 8201 32| 4| 1100

4120 5| 780/ 32| 8| 126.0

5014 7| 6101 16| 8 70.0

n=6 11| 11| 530/ 16| 16 78.0

71 8| 16| 4201 8| 16| 42.0

8l 7| 28| 4001| 8| 32 46.0

m-3=91 6| 48 37.0 8| 64 50.0

10 6| 96| 400 8128 54.0

1] 6/192] 430/ 81256 58.0

N, network size (number of PEs and number of MMs); n = log, N; Ss, number of
shuffle-exchange stages in the “main section” of the RS-EGS network; F, inlet fan-out
and outlet fan-in factor; P, number of paths available between a given inlet and outlet;
D, device count (number of switches) required for network. Primed quantities are for
a Restricted-F RS-EGS network, in which F' is required to be a power of two.

Table 3.3: RS-EGS network parameters for n=2 through n=6

49

Network Size Ss|| F| P|D/N|F| P |D/N
N=128 (n=T) 1| 64 1| 158.0 | 64 1| 1580
21 64| 2| 190.0 | 64 2| 190.0

31 48| 3| 166.0 | 64 4| 2220

4] 40| 5| 1580 64 8| 254.0

50 28| 7| 1240 32| 8| 142.0

6| 22| 11| 1080 32| 16| 158.0

n=T | 15| 15| 805 16| 16| 86.0

8| 12 24| 700 16| 32| 94.0

9l 9| 36| 565 16| 64| 102.0

10 8| 64| 540| 8| 64| 54.0
am-3=11 | 7| 112| 50.5| 8| 128 | 58.0
12 7| 224 540 8| 256 62.0

13| 7| 448 | 575 8| 512 66.0
N=256 (n=2_8) 1| 128 1| 318.0 || 128 1| 318.0
20128 2| 3820128 2| 3820

31 96| 3| 334.0(128 4| 446.0

41 80| 5| 318.0(128| 8| 5100

50 56| 7| 2500 64 8| 286.0

61 44| 11| 2180 64| 16| 318.0

71 30| 15| 163.0 32| 16| 174.0

n=8 | 23| 23| 1360 32| 32| 190.0

ol 16| 32| 1020 16| 32| 102.0

10 13| 52| 890 16| 64| 110.0

1 10| 8| 730 16| 128 | 118.0

12 9| 144 700 16| 256 | 126.0
2n-3=13 | 8| 256 | 66.0| 8| 256| 66.0
14| 8| 512| 700 8| 512(70.0

15 8[1024| 740 8[1024| 740
N=512 (n=9) 1 |[256 1| 638.0 || 256 1] 6380
21(256 | 2| 766.0 256 | 2| 766.0
31192 3| 670.0 256 | 4| 894.0
410160 5| 638.0 (256 | 8| 1022.0
5ll112| 7| 5020 128 8| 574.0

61 88| 11| 438.0 128| 16| 638.0

7 60| 15| 3280 64| 16| 350.0

8| 46| 23| 2740 64| 32| 3820

n=9| 31| 31| 1995 32| 32| 206.0

10 24| 48| 166.0 | 32| 64| 2220

11| 17| 68| 1255 32| 128 | 238.0

12 || 14| 112| 1100 | 16| 128 | 126.0

13 11| 176 | 915 16| 256 | 134.0

14| 10| 320 880 16| 512 142.0
am-3=15 | 9| 576 | 83.5| 161024 | 150.0
16| 9[1152| 880 162048 | 158.0

17 9[2304| 925 164096 | 166.0

Table 3.4: RS-EGS network parameters for n=7 through n=9

Network

Size Sq | F P|D/N| F P |D'/N
N=1024 1 512 1| 1278.0 | 512 1] 1278.0
(n=10) 2| 512 2| 1534.0 | 512 2| 1534.0
3(384 3| 1342.0 || 512 4| 1790.0
4 320 5| 1278.0 || 512 8| 2046.0
5(224 7| 1006.0 || 256 8| 1150.0
6 176 11| 878.0 || 256 16 | 1278.0
7 120 15| 658.0 || 128 16 | 702.0
8 92 23 | 550.0 || 128 32| 766.0
9 62 31| 401.0 | 64 32| 414.0
n=10 47 47| 327.0 || 64 64 | 446.0
11 32 64 | 238.0 | 32 64 | 238.0
12 25| 100 | 198.0 | 32| 128 | 254.0
13 18| 144 | 1510 32| 256| 270.0
14 15| 240 1330 16| 256 | 142.0
15 12 384 1120 16| 512| 150.0
16 11| 704| 108.0| 16| 1024 | 158.0
an—3=17 10 | 1280 | 103.0 || 16 | 2048 | 166.0
18 10| 2560 | 108.0 | 16| 4096 | 174.0
19 10| 5120 | 113.0 16| 8192 | 182.0
N =2048 1][1024 1 | 2558.0 || 1024 1] 2558.0
(n=11) 2 || 1024 2 | 3070.0 || 1024 2 [3070.0
3 768 3 | 2686.0 || 1024 4| 35820
41 640 5| 2558.0 || 1024 8| 4094.0
51 448 7| 2014.0 || 512 8| 2302.0
6] 352 11 | 1758.0 || 512 16 | 2558.0
71 240 15 | 1318.0 || 256 16 | 1406.0
8 184 23 | 1102.0 || 256 32| 1534.0
9 124 31| 804.0 || 128 32| 830.0
10 94 A7 | 656.0 || 128 64 | 894.0
e ¥ 63 63 | 470.5 || 64 64 | 478.0
12 48 96 | 3820 64| 128 510.0
13 33| 132 2785 | 64| 256 | 542.0
14 26| 208 | 2320 32| 256| 286.0
15 19| 304| 1785 32| 512| 3020
16 16| 512| 1580 16| 512 | 158.0
17 13| 832 1345\ 16| 1024 | 166.0
18 12 | 1536 | 130.0 16 | 2048 | 174.0
am-3=19 11 | 2816 | 124.5 16 | 4096 | 182.0
20 11| 5632 | 130.0 | 16| 8192 | 190.0
21 1111264 | 1355 | 1616384 | 198.0
Table 3.5: RS-EGS network parameters for n=10 and n=11

power of 2 (F'), then working backwards from the equations in Table 3.1 to find
the new S§ < Sg. This restricted-F case is of particular interest (as previously
mentioned in Section 3.3.2) since it may be implemented with full trees of 1x2 and
2x1 switches. In Tables 3.3, 3.4, and 3.5, the minimal device cost for the parameter
sets (Ss, F', P', D'/N) are also highlighted.

Examination of the minimum device cost (highlighted) for the unprimed quan-
tities (the unrestricted-F case) in Tables 3.3, 3.4, and 3.5 reveals that for this case
the minimum device cost always occurs at Ss=2n—3 except for the (anomalous)
case of n=3. However, for the primed quantities (the =2/ case), the minimum
device cost occurs at Sg < 2n—3 (again, except for the cases of n=2 and n =3),
with equality occuring only when n is itself a power of two. Table 3.6 provides a
summary of these highlighted minimum device cost cases, including an additional
column comparing the minimum device costs.

Table 3.6 reveals that for all these minimum device cost cases (except for the
anomalous case of n=3), D' > D, although often by rather small amounts. Thus
the simplicity of implementation of the F'=2/ case does not in general impose a
great cost penalty over the unrestricted minimal /' cases. Table 3.6 is broken up

into sections of equal F’ values to better reveal parameter trends.

3.4 Restricted-F' RS-EGS Network Routing

Routing through restricted-# RS-EGS networks has a particularly simple easy-
to-use form. Given a restricted-F' RS-EGS network with N inlets and outlets, I
“fan-in/out”, and Ss main section stages, make the following definitions. For any
inlet-outlet pair, number the P available paths with indices 0 <P < P—1. Then

52

n N|S S F o B N S_':J-r y g o D"/N Dyp
2 4 1| 2 1 3.0 1 2 1 3.0 || 1.00
3 8 31 3 3 8.5 1 4 1 8.0 || 0.94
4 16 51 4 8| 16.0 5 4 81 16.0 || 1.00
5 32 T 5 20| 25.5 5 8 81 34.0 || 1.33
6 64 9(6 48 | 37.0 7 8 16 | 42.0 || 1.14
7 128 | 11| 7 112 [50.5 || 10 8 64 | 54.0 || 1.07
8 256 || 13| 8 256 | 66.0 [13 8 256 | 66.0 || 1.00
9 512 | 15| 9 576 | 83.5 || 12| 16 128 | 126.0 || 1.51

10 1024 || 17 | 10 1280 | 103.0 || 14 | 16 256 | 142.0 || 1.38

11 2048 || 19| 11 2816 | 124.5 || 16 | 16 512 | 158.0 || 1.27

12 4096 || 21 | 12 6144 | 148.0 || 19 | 16 2048 | 182.0 || 1.23

13 8192 || 23 | 13 13312 | 173.5 || 21| 16 4096 | 198.0 || 1.14

14 16384 || 25 | 14 28672 | 201.0 || 23| 16 8192 | 214.0 || 1.06

15 32768 || 27 | 15 61440 | 230.5 || 26 | 16 32768 | 238.0 || 1.03

16 65536 || 29 | 16 131072 | 262.0 || 29 | 16 | 131072 | 262.0 || 1.00

17 131072 || 31| 17 278528 | 295.5 || 26 | 32 16384 | 478.0 || 1.62

18 262144 33| 18 589824 | 331.0 29 | 32 65536 | 526.0 || 1.59

19 524288 || 35| 19| 1245184 | 368.5 || 31 | 32 | 131072 | 558.0 || 1.51

20 1048576 37 20 | 2621440 | 408.0 33| 32| 262144 | 590.0 || 1.45
21 | 2097152 || 39| 21 | 5505024 | 449.5 || 35| 32 | 524288 [622.0 || 1.38
22 | 4194304 || 41 | 22 | 11534336 | 493.0 || 37 | 32 | 1048576 | 654.0 | 1.33
23 | 8388608 || 43 | 23 | 24117248 | 538.5 || 39 | 32 | 2097152 | 686.0 | 1.27
24 | 16777216 || 45 | 24 | 50331648 | 586.0 || 41 | 32 | 4194304 | 718.0 || 1.23

Table 3.6: RS-EGS parameters for two minimal device cost cases: D,
general case; D', restricted-/' case.

53

[Richards 93, Hinton 93a, Hinton 93b] for a given inlet X', outlet Y, and path
number P, the path (X, P,)) will pass through the stage i switch s;(X,P,)),

where:

XF2%5 + PN+ Y
9Ss+1-i

5(X,P,Y) = l 1€i<.5s. (3.39)

Jmod NF[2

This expression can be broken down and interpreted on the bit level as follows.

A given inlet X', outlet), and path number P may be represented as binary digits

(bits) as:
X = (ToaTua -+ T22130), 0<X<N-1 (3.40)
= (Y-t Yn2 """ Y2 Y1 Yo), P=YE N-1 (3.41)
= (PpaPp2 - P2P1pP0), O0<PL<P-I (3.42)

Now, examine the numerator of Equation 3.39, which will be referred to here as
the path vector V:

V=XF2° 4+ PN+). (3.43)
When viewed as a sequence of bits, the path vector has a separable form. Using
n=log, N and f=log, I and p2 log, P = f+Ss—n, the path vector (of f+Ss+n

bits) takes the form:

V= (f?n—l 1t Xy T Ppt v PLPo Ynt o Y1 yo)- (3.44)

i Bits FESg—n bits n bits

The index F is introduced in this work to further clarify the meaning of the bits
in the path vector, and to facilitate the use of the path vector for routing. Number
the F available paths through each “fan-out” switch with indices 0 < F < F'—1,
where the binary digits (bits) for F are given by

F = (fa fr2 -+ J2 f1 Jo)- 0<FsF-1 (3.45)
54

This expression may be inserted into the path number portion of the path vector,

which yields:

V= (f?n—l Mk 2 g f_f—x fl fUJ g?p-f—1 R | Pol yn—l e y@- (3-48)

-

n bits [bits Sg—n bits n bits

The expression in Equation 3.39 can now be identified as a sliding window on

the path vector, as follows:

V
(AP, — —_——— 3.4
St} l235+1"’JmoclNFf2 A:4%)
— RIGHTMOST-(n+f—1)-BITS of (3.48)
{V RIGHT-SHIFTED-BY Ss+1—i bit-positions}

= the boxed portion of V below: (arbitrary offset shown)

(a:n_l ey | j}“l -+ fi fo Pp=f=1| "= P1 Po Yn-1 " W yo)- (3-49)

[)
=

~ — ” Ss+1—1 bit-positions
n+f—1 bits

Thus, every switch in the restricted-F RS-EGS network has an index composed of
n+ f—1 bits, and the stage ¢ switch passed through by path vector V has index
found by extracting n+f—1 bits located Ss+1—i bit-positions from the LSB (Least
Significant Bit) of the path vector. More information can be gleaned from the path
vector, such as the switch setting, and the link index that exits from the switch;
these will be introduced and explanined along with the example below.

To illustrate the extraction of routing information from the path vector, con-
sider the example illustrated in Figure 3.9 and Table 3.7. The case of N =38, F'=4,
Ss=4, and P=8 is shown. In Figure 3.9 the P =8 paths from inlet node 1 (001)
to outlet node 5 (101) are marked. In addition, the path =5 (101) is highlighted
for particular attention. Table 3.7 lists the information that may be extracted

from the path vector for path 5, Y=(001101101). Obviously, from construction,

55

Aﬁ OTTOTITO Ov 2YIvg papySYyYSTE mmmmmmnm r

(% '€ % °d o Y °x 'x °X) 1103997 Yred N

apgynys-p agJnys-z apnys-g apnys-g aInys-g

“ (xnur) goums 1-01-7 <
Aﬁ 01 od H.w\ w\. I 0 Ov SSYIDJ PONADJN| s “ (eBueyoxayssedAq) yonms 7-01-7 B |
| (xnuwop) youms z-o1-1 B>

llllll -

hY
1
|

|
]

T
b<5)

-
03

: 23
ATECTIEENS AN

2 P) o
) R3] 47 SN 0307 %" PR QOB XX K
110 w' &H’.@Oﬂ“ﬁ%’“’ﬂﬁﬂ.ﬁh&*ﬂ. v*“."“tn&uﬂ..r.w .!"""N&&v_vsrﬂ v*‘"”“&“oﬂouo
7 KR oL SRR 0, >R Qotide, SO éfﬂn ._."'0’000 CRK
m %y, AV M’(\ . ’~§Q§§“- /tnhuv." 0000. R 00"
010 - AV A /.a_..u.. P
z E 204 /L

15
..VQ

/
£

8

4, Sg=4, P

7F=

N=8

Figure 3.9: Path vector illustration;

Path Vector V: (22 21 2y fi fo po ¥2 v1 %)

Figure 3.9 example: (0 0 1 1 0 1 1 0 1)

Inlet — Stage 0 I 0 0 1 l 1 0

Stage 1 lo 1 1 0] 1
Stage 2 1 1 0 1 1
Stage 3 1 0 1 1 |0
Stage 4 0 | 1 0|1
Outlet — Stage 5 [1 o 1
Eegend: Switch # State
Link #

| I’nlet # “Fan-out” St. I Outlet #ﬂ

~

Link #

Table 3.7: Switch and link indices extracted from the path vector; N =8,

57

the inlet node is the first n =3 bits of V and the outlet node is the last n =3 bits of
V. Additionally, the switch indices of n+ f—1=4 bits for the main section stages
are shown, where the index for the switch used in stage 7 is shifted left in the path
vector by Sg+1—1 = 5—1 bit-positions. The switch indices are not directly labelled
in Figure 3.9 (to eliminate diagram clutter), but can be ascertained by numbering
each switch in a stage from zero at the top of the diagram. The switch indices
are listed in Table 3.7 for stages 1 through 4 as the boxed quantities. The bit
immediately following the stage 7 switch index indicates the setting of the switch
(the switch state); a 0 bit indicates that the path exits the upper switch outlet,
while a 1 bit indicates that the path exits the lower switch outlet. The table lists
these switch states for stages 1 through 4 as the unboxed quantities following the
switch indices. A simple arithmetic operation on the switch index and switch state
(twice the switch index plus the switch state) yields the link index upon which the
path exits the switch. The link indices are listed in the Figure after the “fan-out”
stage, although each set of links is numbered independently from zero at the top
of the diagram in each stage immediately following the switch nodes. The link
indices take one more bit than the switch indices, which is n+ f =5 bits for this
example. Table 3.7 shows the link indices for stages 1 through 4, as 5-bit numberes
composed of the boxed switch index bits concatenated with the following unboxed
switch state bit. Additionally, the F bits may be identified following the inlet node
bits, which indicates which route the path takes through the “fan-out” stage. The
inlet node index concatenated with the following F bits compose the link index by
which the path exits the “fan-out” stage (stage 0) and enters the “main section”

of the network.

58

From this example, the effect of the F part of the P path number is seen.
The F bits (fjm -+ fi fo) represent the state of the “fan-out” switches, and
any remaining bits (pp-s—1 -+ p1 po) from the path number P represent routing
flexibility within the main section of the RS-EGS network stages. The number
of bits in (pp—y -+ p1 po), (p—f), indicates the number of stages in the main
section which have paths to the destination outlet node via both the upper and

lower switch exit links.

3.5 Summary and Contributions

This chapter has presented a review of the theory behind shuffle-exchange inter-
connection network topologies and routing. EGS networks were selected for special
attention because they have a rich topology capable of strict nonblocking opera-
tion, and because they may be tailored to fit a given application through tradeoffs
of network length and width (Ss and). A restricted-F' RS-EGS network is chosen
as the basis of the FIER optical network since it provides strictly nonblocking op-
eration, and paths may be computed by a simple local routing method. RS-EGS
networks are specified instead of general EGS networks so that simple repeated
hardware may be used in building the network (i.e. it is homosyndetic), and the
restricted-F version is specified for simplicity of both routing and hardware (the
“fan-in” and “fan-out” switch trees).

Although this chapter is primarily review of the work of other researchers,
contributions are made in the areas of terminology, concept refinement, and new
theoretical results. The term “path vector” is applied to a particularly useful
routing bit sequence. The meaning of this path vector is refined by the explicit

59

identification of the bits controlling the “fan-out” switches. A particularly useful
subset of EGS networks that Richards has identified [Richards 91a, Richards 93] is
given the term RS-EGS networks to simplify references to this subset. In addition,
restricted-F' RS-EEGS networks are also defined, and a new analysis of their design
characteristics is presented here. New theoretical results presented here include
the decomposition of ¢’-shuffles on ¢* nodes, and the practical result that a Q-
shuffle on 2" nodes may be implemented as ¢ = log, () consecutive perfect shuffle

operations.

60

Chapter 4

OPTICAL
INTERCONNECTION
NETWORK HARDWARE

This chapter presents the design of an optical interconnection network, the I'ree-
space Interconnection with Externally-controlled Routing (FIER). The passive
bidirectional optical hardware implementation of the FIER is illustrated with block
diagrams and raytraces. The individual interconnection stages (shuffle-exchanges)
are designed to be optically cascadable. A novel method of performing broadcast
and combine operations within the FIER is discussed in detail.

The FIER is a self-contained subsystem. Therefore it may also be used as
a component in systems other than the SMOEC. The FIER may be used as a

switching element in distributed computing systems. Multimedia communication

61

systems may also employ the FIIER as a switching element to utilize its poten-
tially very high data throughput rate. However, the FIER is restricted to applica-
tions where a circuit-switched network is appropriate, and in which combining or

permutation-restricted operation is applied.

4.1 Passive Hardware Implications

Current state-of-the-art optical array switching is slower than electronic switching .
The effect of relatively slower optical switching speeds is minimized by allowing all
FIER switches to change state simultaneously, and then sending large amounts of
data very rapidly through the network. Active optical switching (setting the switch
after the data arrive, and thereby detecting and regenerating the data signals)
would make each network transit acquire a delay proportional to the product of
S (the number of stages in the FIER) and the active optical device switching
time. Therefore passive optical switching is used in the FIER, enabling high speed
reversible data transfer.

Passive optical switching requires that switching decisions must be carried out
physically separate from the data passing through the switches. Therefore, a sepa-
rate routing processing subsystem (MATSH) was designed to control the network
when used in the SMOEC. In applications other than the SMOEC, different con-
trol bit computation and distribution techniques may be developed to fit differing
requirements.

Since the passive optical data paths are externally controlled, the interconnec-

tion network is circuit switched. Circuit switching sets a dedicated communication

62

channel between a source and destination pair for the duration of the communi-
cation. In contrast, in packet switching there is no dedicated channel. Each data
block in the communication is separately stored and forwarded at each interme-
diate switching node. Different data blocks in the same communication may take

different source-destination paths, which never happens with circuit switching.

4.2 Optical Shufle-Exchange Hardware Design

Optical switching and permuting in the FIER is polarization-based, while infor-
mation content is carried by serially-modulated optical intensity. The optical data
format within the FIER is termed Channel Pairs (CP). A CP consists of the data
from two orthogonally polarized adjacent channels which are superimposed in lo-
cation and direction. Thus a CP is an optical beam carrying two information
streams, one horizontally polarized and the other vertically polarized. This format
provides ease of channel manipulation. The external input and output format for
the FIER consists of the channels lined up separately with identical polarizations
in a format termed Linear Array (LA).

The FIER consists of several subsystems. These subsystems are designed to
be optically cascadable, with optical switching arrays integrated into the optical
shuffle design (instead of being separately located). In the following presentation
of the optical subsystems, the terms “pixels” and “optical channels” will be used

interchangeably to emphasize the interconnection function of these systems.

63

4.2.1 FIER Input/Output

The interfaces between the optical and electronic signals are designed to be fully
parallel (no addressing schemes) to avoid bottlenecks at these conversion points.
Optical fibers can route signals to and from external discrete electronic or optical
devices, and format the signals into pixel arrays for entry and exit to the FIER. In
addition, if optically addressed SLMs are used in the FIER, optical fiber bundles
can also be used to provide the control bits to the SLMs in parallel optical pixel

arrays.

4.2.2 The LA&CP Format Converter

The Linear Array to Channel Pair (LA« CP) format converter employs a polariz-
ing prism to merge adjacent pairs of channels in the Linear Array input to form
orthogonally polarized Channel Pairs. An overview of the converter design is shown
in Figure 4.1. (Note: in all figures labelled “Overview,” optical image inversions
are omitted for simplicity). A detailed raytrace is shown in Figure 4.2. The Lin-
ear Array of vertically polarized light channels (channels 0-7 shown) is first given
spatially alternating polarizations by using a fixed Pixellated Wave Plate (PWP)
containing pixels of half-wave retardation alternating with pixels of no retarda-
tion. The propagation angles of the pixels are then modified in the Fourier plane
of a bulk lens by a Wollaston prism, giving the alternately polarized pixels slightly
different angular offsets. (Note: Wollaston prisms will provide constant angular
offsets for angles that meet the small angle approximation, as shown in A). These

offsets are chosen (along with the lens focal length) so that adjacent channels will

64

W Optical signal, horizontally polarized
m Optical signal, vertically polarized

Wollaston prism

Pixellated Wave Plate (PWP):

n - Clear pixel
| - Half wave plate (HWP) pixel

Figure 4.1: Overview: Linear Array <+ Channel Pairs Format Converter.

65

IMG1 FT IMG2

LA i . CP
I;;near " ' v Channel
rray : - Pairs

-
we®

od

i IMGi = Image plane #i :
: FT=Fourier Transform plane
L = Lens :
f=Focal length of Lens
W = Wollaston prism
PWP = Pixellated Wave Plate
= Clear pixel in PWP
= HWP pixel in PWP

. *
--

Figure 4.2: Raytrace: LA « CP Format Converter.

66

be adjusted to the same propagation angles. A second lens retransforms the ad-
justed array, converting angular offsets to linear offsets. Thus, adjacent pixels are
superposed to form Channel Pairs, propagating colinearly with orthogonal polar-
izations. Since the angles are modified in the Fourier plane, only the positions of
the output pixels are changed from the original positions; the pixel propagation
and divergence angles are preserved. It is important to note that each Channel
Pair output of the converter has the same pixel width and angular spread as an
input Linear Array pixel, but unlike the Linear Array input, the output pixels have
twice the center-to-center spacing.

Figure 4.1 also illustrates the convention for channel indices for the LA and CP
formats. The LA format uses {-polarized light, indexed sequentially. The indices
for a channel pair in CP format are: the even index 7 is {-polarized and the odd
index ¢+1 is (-)-polarized.

The passive nature of the optical design ensures that this converter will work
oppositely in the reverse direction, splitting appropriately spaced Channel Pairs
into separate channels, and then rectifying the polarizations to form the Linear
Array. It is essential that the array of Channel Pairs input to the “CP+LA” con-
verter have adjacent pairs separated by one pixel width in order for the converter

to maintain separation of the channels.

4.2.3 Pixel Spacing Adjuster

The output from the LA++CP converter has extra interpixel spacing that must
be eliminated for it to mesh with other components in the FIER. Similarly, for

cascadability of the shuffle-exchange stages (discussed in the next sections), a

67

Pixel Spacing Adjuster (PSA) will be included in the design of the CP exchange.
Figure 4.3 shows a raytrace diagram of the PSA optical system. The system
employs two bulk lenses (one with twice the focal length of the other: f3 =2f;)
to provide overall demagnification of the pixel array to half its original size. The
two lenslet arrays [Ostermayer 83] (one with twice the focal length of the other:
2fs = fs) then magnify the individual pixels to fill out the reduced size array.
This choice of optical system preserves incoming pixel size, shape, angles, and
polarization. Of course, this setup will work in the reverse direction as well, adding
space between the pixels. It is useful to note that for flexibility of implementation,

an alternate ordering of optical elements is equally valid, as shown in Figure 4.4.

4.2.4 The CP Unshuflle

The development of the optical shuffle system will be presented in this section in the
reverse, as an “unshuffle” or “inverse shuffle.” Therefore the “forward” direction
(mentioned in Section 3.1) is actually right-to-left (and “reverse” is left-to-right)
in Figures 4.5, 4.6, 4.7, 4.8, and 4.12. The optical shuffle system is presented in
this manner to better illustrate the development of its components. The unshuffle-
exchange has merely to be reversed for incorporation into the FIER as a shuffle
stage.

The perfect shuffle of the optical data in the channel pairs array is performed
by a concatenation of systems (albeit modified) that have been already discussed.
An overview of the CP unshuffle is shown in Figure 4.5. The unshuffle consists
of a modified CP+~ LA format converter, followed by a LA«++CP format converter,

followed by a PSA system. Note that the format of the output of the unshuffle

68

IMG4 FT4 IMGS

N i E
i

IMGi = Image plane #i
i FTi= Fourier Transform plane #i
L;=Lens #i
LL; = Lenslet array #i :
fi = Focal length of Lens/Lenslet #i

NOTE: f3=2f3; 2fs=fs

*
--

Figure 4.3: Raytrace: Pixel Spacing Adjuster (PSA) — Design #1.

69

IMG3 FT3 IMG4 FT4 IMGS5

P ' "

n : T~ :

e — L S

BE N ~_ !

(] 1 ""-..._ \\. .\"-

I : = - i
1 \-& .\.'

L] : "-\' :"'I\

I : S

Il T
: :

I 1 1 :

LL, LL, Lg

f3f3 f4 f4 f5 fS

IMGi = Image plane #i
: FTi= Fourier Transform plane #i
L;=Lens #
LL; = Lenslet array #i :
f Focal length of Lens/Lenslet #i

NOTE: 2f3=fs; f5=2fs

.
--

Figure 4.4: Raytrace: Pixel Spacing Adjuster (PSA) — Design #2.

|

SO @D

|<-CP¢ LA Converter LA CP——|<— Pixel Spacing Adjustor (PSA) —>|

(modified) Converter
ESS$S‘S§‘9 Optical signal, horizontally polarized $0e——0%
E@Z@) Optical signal, vertically polarized ©1 20
E)| Wollaston prism $2 43
11 (@3 6(®:
A Lens or Lenslet (element of Lenslet array): s :
J Pairs perform magnification or minification by 2 : : {4 13
Pixellated Wave Plates (PWPs): 1 OS5y 0O
- Clear pixel (i 36 58 ¢
- Half wave plate (HWP) pixel OTe—7@ i
i' NOTE: Optical image inversions omitted i1 “Unshuffle” :

Figure 4.5: Overview: The Channel Pair Unshuffle.

71

is identical to its input, allowing cascadability (since the CP Exchange does not
alter the data format, as discussed in the next section). The modification of the
CP+ LA format converter for use in the CP unshuffle requires that the Wollaston
prism in the converter be extra thick (as compared to the prism in the original
design); it must be thick enough to provide an offset equal to the width of the
input CP array. It is also possible to combine the fixed retardation plates (the two
PWPs) into one plate in the implementation.

A development of the raytrace of the CP unshuffle will now be presented. The
unshuffle (or inverse shuffle) is the operation of dealing cards alternately into two
piles then stacking the piles to form a new deck. Figure 4.6 shows the raytrace of
the first two parts of the CP unshuffle (no PSA), without any Wollaston prisms.
It is simply two sequential 4f imaging systems. The figure has f; # f; for flexi-
bility of implementation. In Figure 4.7, the Wollaston prisms have been added,
and additional ray paths are traced to show the different paths the horizontally
and vertically polarized light rays take throughout the system. The first Wollas-
ton prism, W,, provides an upward angular offset for all ()-polarized rays and a
downward angular offset for all {-polarized rays. The offsets are large enough for
the two polarizations to entirely separate from each other, and come to a focus at
the Pixellated Wave Plate (PWP). The PWP is the combined retardation plate as
previously discussed. Now the unshuffle is basically complete, but it must be put
back into Channel Pairs format. Thus a LA<>CP format converter follows after
the PWP to recombine the channels. Now the basic shuffle is complete except to
fix the pixel spacing (by means of a PSA) for cascadability. The complete CP

Unshuffle is shown in Figure 4.8.

72

1# suaq Jo ypSuaj (pao, = _,.s 14 auvyd wiiofsuv.a] 4214noy = 114
: 1% sua =" 1% auvyd a8vuf = 1IN

*
-
-

Figure 4.6: Raytrace: CP Unshuffle w/o Wollaston Prisms (w/o PSA).

73

. amwld 2avp papaxid = JAMd ¥ Sua71 Jo yi3ua) ooy = m.\. 1% auvpd waofsupd [491umoq = 1 :
1 wistid u0ISVIOM = _kw 14 SUI = _..H 1% auvyd 23vut] = 1AL

& T I T ke L7y ke I

: '
‘ |
P O T '
. |
hmH m) ;
5 -
€T i o 19
AT AT T P LA o - — ¢
@nﬁH mw‘-h-.q ; -wﬂmmﬁ :um._b-y: wtiTa " - hhlo..c % v .. F-ﬂ_n-v.__...ﬂ maN
[| . MA "n (] -rQ I-.-..' -@-“-tﬁ — ”“.. - l.l._ _.\-‘..M-.--:-ﬂﬂn ,H c
‘o= = - = @m "@ne
o< — = n . :
[1 - :
@ 9 - 1 : 1 1
1 1 i : '
1 1 1 -]
| 1 - - '

EONI (AN | CONI LLA TONI

74

Figure 4.7: Raytrace: CP Unshuffle with Wollaston Prisms (w/o PSA).

m S=Sfz Yfz=Y :ALON o1m]d 24\ pojioxid = M
P 1 papsuay/suay fo ypSuap ooy ="' f 1% wisrad uopsvjjop = ‘A
1% Koaaw gapsuay =y 1g ouvpd waofsundy 42140, = 1
: wsuay ="y 1% aupyd a8vuy = YN
R
i Bl i
1] 1
]] 1
1 1]
1 1 1
1 1,
4)) =
A
| —— -
55 R £ I
@.H_ 1 1
1 1 I
1 1 1
I i1 Y
AN |
SOINI YOI

Figure 4.8: Raytrace: CP Unshuffle (Complete).

4.2.5 The CP Exchange

The CP exchange reveals the motivation for the Channel Pair format. Figure 4.9
shows the resulting simplicity of the exchange of a pair of channels. If a Channel
Pair passes through a Half-Wave Plate (HWP) the polarization of each channel is
rotated 90°, resulting in the effective exchange of the channels. Therefore what is
needed for each channel is a switchable single-pixel HWP.

An example of a device that provides an array of switchable HWP pixels is
the Ferroelectric Liquid Crystal (FLC) Spatial Light Modulator (SLM) [Patel 87,
Johnson 87, Johnson 88, McAdams 90]. This SLM provides an array of switchable
pixels, each of which is capable of operating as a switchable HWP. The typical FLC
SLM operates in transmission so the optical layout is not complicated by the neces-
sity to extract reflected information. FLC SLMs may be designed to employ either
electronic or optical addressing. Either may be used in this implementation, but
switching speeds and addressing bottlenecks must be carefully considered before

making a choice of the SLM addressing type.

4.2.6 Broadcasting and Combining using TSLMs

In many applications (e.g. a shared memory model computer such as the SMOEC),
the shuffle-exchange network must be capable of combining messages and broad-
casting results. This requires either buffering and combining, or extended by-

pass/exchange switches with enhanced control. The FIER described herein em-
ploys the second of these options, since the one of the design goals (for the SMOEC)

was to satisfy all communication requests in O[1] network passes.

76

W(}pﬁm! signal, horizontally polarized
momicai signal, vertically polarized :

Spatial Light Modulator (SLM):
- Clear pixel
- Half wave plate (HWP) pixel

*
--

\k\:

Figure 4.9: Overview: The Channel Pair Exchange.

i

The optical bypass/exchange switches in the shuffle-exchange network must
thus be capable of carrying out some of the “extended” switching operations de-
scribed in Figure 3.4, specifically upper and lower combining in the forward (shuf-
fle) direction, and upper and lower broadcasting in the reverse (unshuffle) direction.
These operations may be viewed as complementary functions since the reverse of
a combine operation is the corresponding broadcast operation. The passive opti-
cal implementation of these operations exploits the bidirectionality of the optical
system, so that the same optical switch setting is used to implement a forward
combine and a reverse broadcast.

The optical unshuffle may be modified by the addition of two Tri-state SLMs
(TSLMs) to route light from (or to) more than one optical channel. This creates
an unshuffle-exchange stage (the reverse of a shuffle-exchange stage). The TSLM
is designed to have three states of operation: NULL, Mix, and SWITCH. The
NULL state is simply a clear pixel. The SWITCH state is simply the HWP pixel as
described in Section 4.2.5. The MIX state is a third state which must be capable
of sending light from one input channel to both of the output channels.

Either of two different optical devices are capable of implementing the MIX
state: a SLM with Quarter-Wave Plate (QWP) pixels or a SLM with HWP pixels
oriented at 22.5° to either the horizontal or vertical axis. To construct a SLM with
QWP pixels, a ferroelectric liquid crystal device may be designed similarly to the
HWP SLM described previously. The ferroelectric HWP SLM is made by choosing
the device thickness d such that An d=A/2 (where An is the material birefringence
and) is the vacuum wavelength of the light being used) [Handschy 87]. This causes

the liquid crystal material to be capable of acting as a HWP or passing the light

78

basically unaffected. A ferroelectric QWP SLM may be designed in an analogous
manner, by selecting the device thickness d such that And=2X\/4.

Researchers have recently designed and fabricated SLMs with sandwiched layers
of FLC material which acts as multi-state modulator [Freeman 92]. Using this
technique, the desired TSLM can be made from either a sandwich of two QWP
FLC layers (described below), or a sandwich of one QWP layer and one HWP
layer, or a sandwich of two layers of HWP oriented at 22.5° and 45°.

An overview of the operation of this modified shuffle-exchange stage is shown
in Figure 4.10, illustrating the “forward” combine operation. A combine opera-
tion is performed in the following manner. The first TSLM (set to MiX) performs
the function of “mixing” the light in a channel pair. Given that optical signals a
and b are present in the input channels U and V| then the situation after passing
through TSLM1 is that each channel U and V contains the combined signal a+b
(each at 50% power). The figure illustrates the MIX state that results from the
double HWP TSLM implementation option. (Note that no optical power will ac-
tually be combined to form a+b when the FIER is used in the SMOEC, for reasons
discussed later in this section). The second TSLM is used to provide two separate
tri-state pixels (L and R), and is sandwiched between a pair of polarizers. The
pair of polarizers are oriented in parallel so that if a TSLM2 pixel is switched to
the SWITCH state, the channel is blocked. The Polarizer/TSLM2/Polarizer sand-
wich is preceded by a Pixellated Wave Plate (PWP) which orients the incoming
alternately-polarized optical channels to the U-axis to match the polarizers. By
switching one pixel of the TSLM2 pixel pair to SWITCH and the other to NULL

the combined signal a-+b is routed to the desired channel of the channel pair. Note

79

OPTICAL PROPAGATION DIRECTION

Polarizer (U-axis)
TSLM2

AT SIS EENEE NN NAEEEEREN, NN NN NSNS N NN NN NN NN UNENEE SN ENEEEEEE,

{ COMBINE] TSLM States* PWP Pixels*
m P NuLL (] Clear

N 7 B :] MIX (ror. 459)
b__V7V_ , it [l SwrrcH ot 907 .
e S 1 W— OB AL CLRE e

Figure 4.10: Overview: Shuffle-Exchange Stage Operation: Combine.

30

that since the implementation of the combine operation is embedded within the
shuffle operation, channels I/ and V' will not be recombined into a Channel Pair,
but will be routed to different locations for the next stage.

The combine operation, when performed in reverse, results in a broadcast op-
eration. Figure 4.11 provides an overview of a modified shuffle-exchange stage
performing a broadcast operation. The broadcast is illustrated in the figure in the
reverse (unshuffle) direction to emphasize the fact that it operates using the same
optical hardware as the combine operation, but with the optical signals propagat-
ing in the reverse direction. The signal a in the input channel U is passed through
TSLM2-R by setting it to NULL. It is then diverted onto the channel pair optical
axis by the Wollaston prism. The TSLM1 is set to MiX to route 50% of the light
to each output channel U and V. The horizontal and vertical components of the
optical signal are thus 50% of the input a.

In a symmetric fashion, the design of the architecture forces the 50% loss per
stage to occur in both directions of the optical network. The 50% loss due to the
broadcast is obviously necessary in a passive network. Since the signal a+b is sent to
two channels, the output level is 50% of the input power. Since both broadcast and
combine operations require 50% loss, it is required that all operations experience
50% loss so that the output signal levels from a pass through the FIER will be
predictable. Therefore the “bypass” and “exchange” switch settings must have
50% loss added in. This is accomplished by setting the TSLM2 (both L and R
pixels) to the MIX state for both cases.

Since in the envisioned application (the SMOEC) the external control of the

FIER performs a “pre-arbitration” function on the messages to be combined, there

81

VOITDAALA VIOTTAD AA0RY AADTTI0

a
U
a v a - U
il e e b= - 4
‘I"-t
".--.V
WOLL

PWP Polarizer (U-axis)

Polarizer (U-axis)——TSLM2
BROADCAST {'ISLM States* PWP Pixels* :
| qEmm (i ENuw F Clear
aJU—ula . MIX (rot. 45°) :
g o V7V_ 0 . SWITCH (rot. 90°) :
% i S ~Shawn o pitel edges

Figure 4.11: Overview: Shuffle-Exchange Stage Operation: Broadcast.

82

is no need for actual optical signals to be superimposed. The result of combining
signals @ and b to form a+b is thus effectively a ORb (i.e., @ and b are never both
simultaneously “17). Thus, in the “forward” direction where combining is taking
place, no actual optical intensities are combined.

If the FIER is being built solely for certain applications where only permuta-
tions of input data lines are required (no broadcasts or combines), then the FIER
may be simplified (called the basic-FIER). In this case, the original shuffle design
depicted in Figure 4.8 with no TSLMs and only one HWP SLM placed between
stages (in place of TSLM1) is sufficient. No additional loss is necessary.

I'igure 4.12 shows where the two TSLMs are added to the optical unshuf-
fle to enable the combine and broadcast operations. The bypass/exchange
switch is embedded in unshuffle operation. The devices TSLM1 and Polar-
izer/ TSLM2/Polarizer are used to implement the switch. The TSLM2 is sand-
wiched between two polarizers, next to the PWP. Each of these two polarizers
consists of two halves, with the upper half set to pass the ()-polarized channels
in the upper half of the input at plane IMG2, and the lower half set to pass the
t-polarized channels in the lower half of the input at plane IMG2.

The Pol/TSLM2/Pol sandwich and PWP used in Figure 4.12 is shown in ex-
panded form in Figure 4.13a. The TSLM2 has been described as having twice
as many pixels as as TSLMI1, operating in pairs L;R which are always set to
either NULL;SWITCH, SWITCH;NULL, or MIX;MIX. However, the second state
(R) in each of these pairs is obtainable from the first (L) using a HWP pixel.
Thus, instead of providing a TSLM2 with twice as many pixels as TSLM1 (Fig-

ure 4.13a), a fixed PWP’ with alternating HWP and clear pixels may be used to

83

. (ZIWIS.I puno.an paysmpuns a.v s4a204v]0d omJ) 13211010d = [0 .
Y= V=¥ mroN 1% WIS 203s-14L = YA'ISL
: aIv]d 24D\ pav]1axid = dMd
Pt gopsuay/suay fo wSua) ooy = f 1 wisuad uojsvpjom = 'p

1% Ko japsury =17 1g ouvpd waofsuniy 4214noq = 114

1 suog ="' 1% ouppd a3vu] = DN :

ousrsrvr vy &
sy 1Tt "

SOII v1d vOINI €14

[0d/CIN'ISL/I0d

&= 15VOavoud ANISINOD ESINIE)

Exchange Stage with Broadcast

Raytrace: An Unshuffle-

and Combine Capability.

Figure 4.12:

34

PP TSLM2' Pol

PWP Pol TSLM2 Pol PWP Pol Pwi*' TSLM2' Pol
“Original” Modified Final Simplified
TSLM2 Sandwich TSLM2 Sandwich TSLM2 Sandwich

N TSLM Pixels N/2 TSLM Pixels N/2 TSLM Pixels

(a) (b) ()

i TSLM States PWPPixels PP Orientations

NULL Clear Vertical
f b MIX (ror. 45° _ :
] . (not sk(:ﬁu aboze) HOI'lZ Ol'lt al §

: Bl SwitcH (ror. 90°)

g TSLM = Tri-state SLM PWP = Pixellated Wave Plate PP = Pixellated Polarizer E

NOTE: TSLM Sandwiches shown spaced apart for clarity.

.

Figure 4.13: Two Implementations for TSLM2.

Operation || TSLM1 [TSLM2-L] TSLM2-R]
Bypass NULL Mix Mix
Forward/Reverse straight through 50% loss 50% loss
Exchange SWITCH Mix Mix
Forward/Reverse swap signals 50% loss 50% loss
Forward Upper Broadcast Mix NULL |SWITCH
Reverse Upper Combine split/combine signals | pass signal | block signal
Forward Lower Broadcast MIx SWITCH | NULL
Reverse Lower Combine split/combine signals | block signal | pass signal

Table 4.1: TSLM settings.

provide the necessary pixel pair from a single TSLM2' pixel (Figure 4.13b). In
this case, both TSLM1 and TSLM2' have an identical number of pixels (N/2), and
the added PWP’ has twice as many pixels (N). This modified sandwich can be
modified into a final simplified form (Figure 4.13c) by combining the effect of the
PWP /Polarizer/PWP’ combination into a Pixellated Polarizer (PP). The PP has
alternating pixels of vertical and horizontal polarizing material. No wave plates
are needed. The settings of the TSLM devices to perform the bypass/exchange
operations are summarized in Table 4.1. Although the TSLM2-R and TSLM2-L
(R & L pixels of a switch pair) settings are listed separately in the table, they are

actually implemented in a single pixel, as described above.

4.3 Optical EGS Hardware Design

The previous sections have described the optical implementation of a basic conven-

tional shuffle-exchange network. This section describes the additional specialized

86

optical subsystems necessary to implement an optical RS-EGS network (see Sec-
tion 3.3.2). In addition to a “main section” of simple shuffle-exchange stages as
previously described, an optical RS-EGS network requires special “fan-out” and
“fan-in” hardware, and an implementation of F-shuffles.

For the case of the FIER, since the (forward) combine and (reverse) broadcast
operations are unidirectional, the “fan-out” stage (following the inlet nodes) is not
a true fan-out but a 1xF' demultiplexer. However, the “fan-in” stage (preceding the
outlet nodes) is a true fan-in stage, which is permanently set to combine incoming

signals (and broadcast signals in the reverse direction).

4.3.1 EGS “Fan-out” (demultiplexer)

The 1x F' “fan-out” stage in an RS-EGS network is implemented in the FIER as
a sequence of f=Ilog, N stages of 1x2 switches. This “fan-out” stage is also used
in the FIER to perform the initial LA—CP conversion of input signals into the
network. Thus the FIER “fan-out” is composed of f—1 stages of LA-format 1 x2
switches followed by one stage of LA—CP 1x2 switches.

An overview illustration of the two states of a single LA-format 1 x2 switch is
provided by Figure 4.14. The LA-format 1x2 switch is composed of a CP—LA
converter (the reverse of the LA—CP converter of I'igure 4.1) preceded by a HWP
SLM pixel (switch). This switch takes a LA-format optical signal, and performs
either of two operations, Divert-UP or Divert-DOWN, sending the signal into one

of two outlet LA-format channels.

87

Divert
UP

Divert
DOWN

gm Optical signal, horizontally polarized
m Optical signal, vertically polarized :

| Wollaston prism

" Pixellated Wave Plates (PWPs):
- Clear pixel
- Half wave plate (HWP) pixel

Spatial Light Modulator (SLM):
_ Binary (2-state) SLM (not TSLM) :
z - Clear pixel :
(/| - Half wave plate (HWP) pixel

NOTE: Optical image inversions omitted

. -
--

Figure 4.14: An LA-format 1x2 switch, used in “fan-out” implementa-

tion.

88

Divert
UP

SR
Divert W

DOWN R

W Optical signal, horizontally polarized
m Optical signal, vertically polarized :

Spatial Light Modulator (SLM):
Binary (2-state) SLM (not TSLM)
/] - Clear pixel =
7] - Half wave plate (HWP) pixel

Figure 4.15: An LA—CP-format 1x2 switch, used in “fan-out” imple-
mentation.

89

Figure 4.15 provides an overview illustration of the two states of a single
LA—CP 1x2 switch. This switch is merely a single HWP SLM pixel, which per-
forms the necessary signal diversion in place (since Divert-UP or Divert-DOWN
refer to the channel index number, not to physical location). Thus the switch takes
a LA-format optical signal and sends it into one of two outlet CP-format channels.

A full 1x F' “fanout” (demultiplexer) stage consists of f—1 stages of the LA-
format 1x2 switches of Figure 4.14 (with varied widths to achieve the appropriate
offsets for each stage), followed by a single stage of the LA—CP-format 1 x 2
switches of Figure 4.15. Figure 4.16 illustrates a full 1 x8 “fan-out” stage. The
select lines shown in the figure are used to directly select which output channel is

desired.

4.3.2 EGS F-shuffle

The implementaion of the F-shuffle in the FIER employs the result proved earlier
in Section 3.1.2.3 that an F-shuffle operation on N = 2" nodes when F = 2/
is equivalent to f successive applications of the perfect shuffle. Thus the FIER
contains only the relatively easy to implement perfect shuffles (S5 stages in the
main section and f stages for the final F-shuffle) instead of a complicated additional

apparatus designed specifically for the [-shuffle.

4.3.3 EGS Fan-in

The final fan-in stage of F x 1 switches required for the FIER has a simple im-
plementation when the F-shuffle is implemented as a sequence of f perfect shuffle

stages. Compare the connectivities shown in Figure 4.17 and Figure 4.18. These

90

Sty

Select:

LA

- I
MMM

NOTE: All possible paths 1 Di
shown; unselected channel Divert UP

numbers are shaded. Divert DOWN

.. m Optical signal, horizontally polarized
' m Optical signal, vertically polarized

a=a-asiy

% Unselected optical channel

Wollaston prism

Pixellated Wave Plates (PWPs):
- Clear pixel
- Half wave plate (HWP) pixel

Spatial Light Modulator (SLM):
: Binary (2-state) SLM (not TSLM)

A - Clear pixel
-ﬁ: - Half wave plate (HWP) pixel

LA - Linear Array channel format
CP - Channel Pairchannel format

NOTE: Optical image inversions omitted :

Figure 4.16: A full 1 x8 “fanout” (demultiplexer) stage

91

INLETS

(0 00000 @

1 oooo01

2 00010

3 00011

4 00100

5 oo1o01

6 oo0110

7 00111

8 01000

9 01001
10 o1010
11 o1011
12 o1100
13 o1101
14 01110
15 o1111
16 10000
17 10001
18 10010
19 10011
20 10100
21 10101
22 10110
23 10111
24 11000
25 11001
26 11010
27 11011
28 11100
29 11101
30 11110
31 11111 @

8-Shuffle

OUTLETS

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
[11000
11001
11010
11011
11100
11101
11110

o—o 00 ()

e—o 10 2

o—eo 11 3

NN N N

A b3 o B

8x 1 switches

Figure 4.17: An 8-shuffle on 32 nodes followed by an 8x1 fan-in switch

INLETS

0 oo000@e———o[00000=—H® o

1 oooo1

2 00010

3 ooo011

4 00100

5 oo101 ’ |

6 00110 Il '

7 00111 " :
01000

5 "

01001
10 01010 """ [0T0 L0
11 o1011 "'
12 01100 ,0’
13 o1101 #‘..
14 o1110 f’
15 0111160 0’0’0.
{_6! 10000 ";.Q’Q’.’O’
10001
18 10010 ’0"’ ‘
19 10011 O‘Q
20 10100
21 10101

2y A

24 11000

25 11001 “ | |
oo Vehenn?]

28 11100

29 11101

30 11110

31 11111 11111 |e]
Perfect Shuffle Perfect Shuffle

l000007' Fixed switch setting: &
| Upper Combine &

s

OUTLETS

0/
ol
L
@ &
8 []
@ L
&
-
e o[11100—
o ol111017
o 11110~
® - a|1111-1
Perfect Shuffle
Unused links
and switch

e—e00000 0

e—e10000 16

e—e11000 24

Figure 4.18: Three perfect shuffles on 32 nodes interspersed with pair-

wise combine switches

93

figures illustrate that parwise upper combine operations between f perfect shuffle
stages effectively performs the same operation as an F-shuffle followed by a F'x1
switch stage. This is proven by noting that a /-shuffle operation followed by a F'x1
fan-in operation on an n-bit index 7 selects the rightmost n— f bits from 2. This is
effectively equivalent to the f consecutive applications of the set of operations of
perfect shuffle and pairwise upper combine, which results in an address composed
of the rightmost n— f bits from 2 followed by f zeros. Thus the combination of
the F-shuffle and F x1 fan-in required for the FIER is implemented by f shuffle
exchange stages which are identical to those in the “main section” of the FIER,
except that these stages are set permanently to combine. No TSLMs are needed
for these stages, since this is a fixed setting; all that is needed is a fixed QWP
plate instead of the TSLM1 in Figure 4.12 and a fixed PWP plate instead of the

TSLM2.

4.4 Optical Implementation Issues

Optical losses throughout the FIER depend strongly on Sr, the number of shuffle-
exchange stages in the network. Define s to be the number of multiples of log, N
shuffle-exchange stages, such that Sr=slog, N. If broadcast and combine opera-
tions are allowed, the architecturally required optical loss A in each stage is 50%,
as described in the previous section. However, there will of course be additional
loss in each stage due to surface reflections and optical absorption in the optical
components. Let the additional loss factor per stage be L (so that the total loss

per stage is AL). Define further £=1/L. Note that since 0 < L <1, then £ >1,

94

thus logof > 0. Then the total optical loss factor throughout the entire network

becomes:

L = [AL]S (4.1)
slogy N

- [ﬁ] 5 (applying definitions) (4.2)
2""32 N log,[3¢] (by identity: a*=b*'08:2)

— Ns'°52{§l?] (collapsing: N=2"827)
BR slog,(2¢6)

= _”N‘_
r . 718(14log; £)

= [e (4.3)

< [(4.4)

Consider the example of an Omega network, but enhanced with switches requiring
A=50%. Since s=1 for an Omega network by definition, assuming no additional
optical component loss (L =1) yields total loss £L=1/N. If, however, this enhanced
Omega network also has L =50%, then =2, and the total loss factor becomes
L =1/N?2. For the case of the more general FIER, neglecting optical component
loss (L=1) yields L= [}{{_]g But, if L is 50%, then the total loss factor becomes
L= [?\’%r Therefore, minimization of the optical loss due to practical causes such
as surface reflections and absorption is essential.

Considering the loss due to A alone, it is clear from equation 4.4 that there will
be a minimum of a factor of 1/N loss for every multiple of log, N shuffle-exchange

stages in the FIER. Therefore the addition of optical repeater hardware may need

to be considered if the total loss factor £ is unacceptably high.

95

Optical crosstalk in the network is due to two primary factors: SLM-induced
crosstalk and channel spillover. Crosstalk induced by the SLMs will affect the
signals present in channel pairs due to the nonideality of the HWP pixels. The
Wollaston prisms will contribute negligible crosstalk to the channel pairs as dis-
cussed in [Johnson 88]. This reference also states that up to 31 HWP SLM passes
may be cascaded with distinguishable output levels. Crosstalk in a potential QWP
SLM has not yet been studied.

Channel spillover is a result of misalignment and focussing errors and scattering
in the optical system. Of primary concern is error propagation throughout the
system. If errors are multiplied as they pass from stage to stage, the system
will not be able to function. Small errors in ray angles, pixel spacing, and pixel
size/shape must be prevented from propagating through the system. If this is
done properly these quantities are effectively restored to the same values at each
pass through a shuffle-exchange stage, thus ensuring cascadability. T'wo masks will
eliminate the propagation of such small errors. A mask containing pixel-sized holes
at or between the lenslet arrays shown in Figure 4.12 will eliminate propagation of
small ray angle errors. A mask containing pixel-sized holes at either image plane
that has double-spaced pixels (those between Ly & Lj and between Ly & LLj3) will
eliminate pixel spacing, size, and shape errors.

The FIER is homosyndetic; that is, it is based on repeated identical stages. In
this way, it can be more flexible to optical implementations than non-homosyndetic
but functionally equivalent multistage networks. The optical implementation of
a homosyndetic network may incorporate multiple stages within a single set of

interconnection optics (including switching arrays) by partitioning the arrays into

96

separate regions for each stage, and including mirrors in the optical setup to relay
the output of one stage (array region) to the input of the next. For example, a
single 256 x256 (256 pixels) FIER stage can be redesigned to be partitioned into
32 strips 2568 containing N =2048 pixels. Then choosing S = 2log, N stages
gives 22 stages. Since 22<32, a full network can be constructed using only a single
set of interconnection optics. This leaves 10 unused 256 x8 pixel strips which can
be used for other purposes, such as potentially adding fault tolerance capabilities.
Such a switch would be commonly referred to as a 2048x2048 switch, referring
to the ability to connect 2048 inlets arbitrarily to 2048 outlets (note that this
nomenclature is unrelated to the pixel array dimensions used elsewhere in this
paragraph). In this way, the homosyndetic property of the FIER may be exploited
for flexibility of implementation, allowing choice for the appropriate partition of S
individual FIER shuffle-exchange stages between 1 to S physically separate sets

of interconnection optics.

The previous paragraph mentions two-dimensional shuffle-exchange stages; how
ever, the optical shuffle-exchange stages presented herein are only one-dimensional.
The one-dimensional shuffle-exchange stages may be converted to two-dimensional
shuffles by using techniques described in [Cheng 92]. The authors describe a 2-D
separable shuffle which is composed of a 1-D shuffle along one dimension followed
by a 1-D shuffle along the other dimension. The authors describe how to make a
full access network using the 2-D separable shuffle and sets of horizontal and ver-
tical 1-D pairwise bypass/exchange switches. The explicit analysis and mapping
to apply the results for the network detailed in [Cheng 92] to the conversion of

restricted-F RS-EGS networks to 2-D operation and the consequent modification

97

of the optical hardware used in the FIER optical network to a 2-D geometry are
left for future work.

The FIER is designed to be ultimately scalable to large array sizes. The use of
lenslet arrays means that diffraction of unfocussed beams will not limit scalability
to large arrays. Limitations of large-scale implementations will be SLM resolution,
optical aberrations, and alignment sensitivities. SLM speed will not be a progres-
sively worse concern as larger systems are considered if optically addressed SLMs
are used. Optically addressed SLMs are free from pixel-addressing bottlenecks

which would scale poorly with system size.

4.5 Comparison

The FIER optical shuffle-exchange network design presented herein is only
one of many possible implementations. Several optical shuffle implementa-
tions [Lohmann 86a, Lohmann 86b, Lin 87, Sawchuk 87, Stirk 88, Brenner 88,
Sawchuk 88, Jutamulia 89, Sheng 89] have been proposed. However, for use in
a passive optical shuffle-exchange network several requirements must be met. The
network must reduce light waste (such as light lost at a mask) as much as possible
and practical. The network must be scalable to reasonably large values of N. The
most important requirement is that it be cascadable—that is, any slight change
in format in spacing, angular spread, pixel size and shape, and optical wavelength
from input to output of a stage must be corrected at each stage. The optical shuf-
fles referenced above were not designed with a passive multi-stage implementation
in mind, so they do not satisfy these requirements: all but [Sawchuk 87] use masks
which lose at least 75% of the light (50% in the 1-D shuffles), and none reproduce

98

both pixel spacing and pixel angular spread. The basic-FIER stages (the FIER
with one HWP SLM instead of two TSLMs) are cascadable and have no architec-
turally required losses. The normal FIER stages are cascadable, but in order to
incorporate the broadcast and combine capabilities a 50% loss per stage has been
incorporated into the design.

Another consideration in optical shuffle design is compatibility with a practical
exchange switch technique. Most of the optical shuffle implementations mentioned
above (all but [Lohmann 86b, Sheng 89], which both suffer the 75% architecturally
required loss) are intended to be used with electronic exchange switches. The
shuffle described in this paper is designed to work with a passive optical switching
technique. Switchable half-wave plates (HWPs) are employed in the FIER because
the Channel Pair configuration is designed for this type of exchange switch. The
extended switch settings are also easily implemented using TSLMs as discussed
previously.

One optical interconnection network that is similar to the FIER is the optical
Benes network [Noguchi 91]. A Benes network is composed of butterfly connections
of varying sizes, and has similar capabilities to a shuffle-exchange network. The
optical Benes network is a passive implementation with cascadable interconnection
stages. The Benes network is not homosyndetic (i.e. it does not employ identical
stages), so there is no corresponding added flexibility for optical implementations.
The optical Benes network does not implement broadcast or combine operations,
unlike the FIER. Both networks are circuit-switched by external electronic means.
The polarization multiplexing of channels in the optical Benes network is the same

as the Channel Pair technique used in the FIER. The pixels in the optical Benes

99

network are collimated light beams, so this leads to a simpler optical setup. How-
ever, the scalability of the system is limited because both the number and length
of optical channels is limited (pixels cannot be too small or propagate too long
due to diffraction). The FIER uses focussed pixels, so it is capable of employing
greater numbers of smaller pixels over longer distances. Thus the FIER is more

suited to the goal of implementing a fine-grained system such as the SMOEC.

4.6 Summary

The described optical interconnection network, the Free-space Interconnection with
Externally-controlled Routing (FIER), can provide parallel high bandwidth data
throughput using passive switching with an external circuit-switching control tech-
nique. Reconfiguration times are limited to the time for one TSLM to switch, since
all can switch in parallel. A shuffle-exchange topology was selected because it is
flexible and well characterized. The optical shuffle-exchange stage was designed to
be optically cascadable to permit all-optical bidirectional data flow between source
and destination nodes. Novel aspects of the FIER include the ability to combine
and broadcast signals in predefined directions, and a design that was based on
practical control algorithms. The FIER was designed for use in the Shared Mem-
ory Optical/Electronic Computer (SMOEC) system, but since it is self-contained
it may also be used as a circuit-switched subsystem in other parallel or distributed

computing systems.

100

Chapter 5

NETWORK ROUTING
ALGORITHM

As previously stated, the design philosophy for the SMOEC was a triple focus on
architecture, hardware, and control algorithms. The interplay between concerns
in these three areas was essential to the design of a feasible system, lest the opti-
mization of one or two of these areas impose impractical requirements on the third
area. Since control algorithms are an essential element of parallel computer design,
with wide impact on the resulting computer system, sufficient detail about these
algorithms must be provided for the system description to be complete. In novel
architectures, such as the proposed hybrid optical/electronic system, the control
algorithms need especial attention to tailor them to unusual features of the design.
Thus this chapter and the following chapter are devoted to a detailed exposition
of the control algorithms developed for the SMOEC.

The control algorithms used in the interconnection network in the SMOEC

can be broken down into two aspects: routing and communication. The routing

101

algorithm specifies how data from one node (or multiple nodes) are sent through
the network to arrive at a destination node (or vice versa). The communication
algorithms (discussed in the next chapter) are built on the routing algorithm to
provide necessary facilities, such as multiple reads and multiple writes. This chap-
ter focusses on the routing algorithm itself, covering the design impact of the
MATSH control unit on the routing algorithm (and vice versa), the theory behind

the routing algorithm, and the routing algorithm simulation and results.

5.1 Interrelation of the MATSH Control Unit
and Routing Algorithm Design

The structure and connections between the FIER and the MATSH are illustrated
in Figure 2.2. The FIER consists of a sequence of S Optical Shuffle-Exchange
stages (O-SEs). The MATSH consists of a single Electronic Shuffle-Exchange
stage (E-SE) with bidirectional feedback connections. A forward pass through the
MATSH is defined as Sp forward cycles through the E-SE, and the reverse pass
is defined correspondingly. A memory stack within each switch node in the E-SE
allows it to provide dedicated memory space to correspond to each switch in the
FIER, creating the effect of Sg independent switch stages in the MATSH which
are accessed sequentially forward or backward by pushing or popping information
to and from the stacks. The MATSH is thus defined to consist of a set of SF stages
of wvirtual switches (to simplify the following discussions of algorithms) in which
the mth stage of virtual switches in the MATSH corresponds to the m actual

cycle through the E-SE. (However, for the purpose of simplifying the discussion of

102

the routing algorithm in the next section, the MATSH will be discussed there as if
it consists of St stages, consisting of a stage of virtual 1 x ' switches followed by
the regular main section of Sg stages of virtual 2x2 switches followed by a stage
of virtual F' x 1 switches.)

A pass through the MATSH is thus designed to topologically mimic a single pass
through the FIER in either the forward or reverse direction, with the difference that
the switches within the MATSH are capable of active logical switching decisions
whereas the switches within the FIER are passive switches which require external
control. Complex routing and communication algorithms (e.g. finding unblocked
paths or combining write requests) are implemented on the MATSH by employing
multiple forward and reverse passes, in which the final pass through the MATSH
produces the required switch states for the FIER. Since the MATSH operates by
topologically mimicking the FIER, the resulting control bits computed by the
MATSH are exactly those needed for setting the FIER bypass/exchange switches.
In particular, when the MATSH performs its final pass to complete the routing
algorithm and finalize the connections and switch states, the m® pass through the
E-SE computes the control bits for the m O-SE of the FIER. The full set of
control bits for the entire FIER are thus computed by the MATSH (and stored in
the CSDI buffering unit) in a sequential stage-by-stage manner, but the full set of
control bits is sent from the CSDI to the FIER in parallel, thus circuit-switching
(see Section 2.5) the FIER.

The control bit computation in the E-SE switches is designed to rely solely on
local information within the switches. Since control bit computation is localized,

algorithms inspired by those that are used to route data on a packet-switching

103

shuffle-exchange network are appropriate for the MATSH, which in turn operates
the FIER in a circuit-switched manner. Since the passive FIER prohibits data
buffering within its nodes, the MATSH also mimics this aspect by operating with-
out buffering as well. Therefore only packet switching types of algorithms that do
not use data buffering may be employed in the MATSH.

Another motivation for the use of a packet-switching type of algorithm in the
MATSH is the extra data manipulation required by some of the communication
algorithms. In general, the MATSH works by operating solely on the destination
addresses of the data. However, small amounts of data, and special subaddress
fields are operated on by the MATSH to perform write request combining and
arbitration (which will be explained in Section 6.2 and 6.3). To permit such func-
tionality, a routing algorithm is required that can incorporate the necessary local
pairwise operations. Existing packet switching algorithms may be modified to ac-
comodate these operations, because the locality of pairwise routing decisions in
packet switching algorithms fits easily with additional local pairwise address- or
data-based decisions.

The extended bypass/exchange switch settings are used to alleviate multiple-
access (output port) conflicts in the FIER. If several PEs are trying to communicate
(in any given phase) with the same MM, the routing algorithm assumes (requires)
that these requests are combiniable. The routing algorithm implementation on the
MATSH provides that these combinable requests will meet in a pairwise manner
at separate virtual switches in the MATSH. These switches are then set to the
upper or lower combine states, thus providing a binary tree-shaped path combining

the several PEs’ outputs to a single inlet at the desired MM. Conversely, in the

104

MM—PLE direction, this tree operates to give a broadcast path from the MM to
the several requesting PEs. The combining/broadcasting tree path provided in
this manner is completely passive; it acts like a fan-in wire from the PEs to the
MM (and fan-out in the reverse direction). The communication algorithms in the
SMOEC are designed to make use of these passive combining/broadcasting paths
(see Section 6).

In certain applications, it is known in advance that only a limited set of one-
to-one connection patterns (permutations) will be utilized (see Section 7.2). In
these types of applications, the cycling of addresses through the MATSH (for the
purpose of switch state computation) can be completely eliminated, and previously
stored control bit sets can be read directly into the switches in the FIER. If the
computer is to be used only for this class of applications, a modified SMOEC
may be designed that replaces the MATSH with a control bit set storage bank.
(In this case, the FIER may be simplified as well, as discussed in Section 7.2.)
If the applications do not require extremely frequent changing of the connection
patterns this simplified SMOEC may be particularly practical. For these types
of applications, a SMOEC may be further simplified to operate solely in a SIMD

mode if desired. For more information, see Section 7.2.

5.2 The FLAEM Routing Algorithm

A nonblocking EGS network has a multitude of paths available between each inlet-
outlet pair. Richards’ path hunt algorithm [Richards 91b] completes a single rout-
ing request in constant time. It parallelizes the routing of multiple requests by pi-
plining the requests and by processing a small constant number of these pipelined

105

requests in parallel. Thus Richards’ algorithm takes O[N] time to process N simul-
taneous routing requests. A new parallel algorithm, the Flexible Localized Algo-
rithm for EGS-network Management (FLAEM), is presented here which processes
each of N routing requests in parallel for a combining RS-EGS network. Since
each routing request is processed in approximately O[log N] time, the FLAEM
routing algorithm can control a circuit-switched combining RS-EGS network in
approximately O[log N] time.

The following sections will explain how the FLAEM was designed, expound the
inner workings of the algorithm, and trace through a specific example to illustrate

the routing process.

5.2.1 Motivation

Richards’ path hunt algorithm was designed to operate a network in which connec-
tion requests arrive asynchronously. This algorithm is particularly appropriate for
networks where individual connections are maintained for relatively long times so
that only relatively small numbers of simultaneous connection requests will occur
(such as in telecommunications applications). These small numbers of requests are
handled very fast since each request is processed in O[1] time (i.e. constant time).
Richards’ algorithm was not designed to deal with N simultaneous requests. In
contrast, the SMOEC is designed to simultaneously request N new connections
with every communication cycle. Thus the SMOEC required the design of a new
routing algorithm with reduced complexity from the O[N] time of Richards’ path

hunt algorithm.

106

The FLAEM routing algorithm was designed to operate on an electronic rout-
ing processor that would have O[log N| stages. The goal was to create an algorithm
that would satisfy N simultaneous connection requests to a N-inlet/N-outlet net-
work in a small constant number of passes through the routing processor, which
would result in an algorithm that processs N requests in O[log N] time. Such an
algorithm would then be preferred to Richards’ path hunt algorithm in cases where
greater than O[log N] simultaneous requests need to be processed.

The O[log N] FLAEM was designed by analyzing the way the path hunt pro-
cess works in RS-EGS networks, and the algorithm exploits the multitude of paths
available between each inlet-outlet pair by trying many candidate paths in paral-
lel. Optimization of this technique led to to the particular design of the FLAEM
(presented in the following section). The data from repeated simulation runs show
that the FLAEM does require only a small number (5 for the simulated cases) of
forward and reverse routing passes through the routing processor.

The FLAEM routing algorithm was designed to be implemented in parallel
using the MATSH routing processor. Each node in the MATSH is a multifunctional
switch containing an enhanced bypass/exchange switch, some memory, and some
elementary logic functions. Nodes in the MATSH are capable of true fan-out (in
the forward direction) so that multiple copies of routing requests may be produced
and used to try multiple paths in parallel. Once the full set of switch settings is
calculated by the FLAEM, these settings are sent in parallel to circuit-switch the
FIER optical network.

To facilitate the explanation of the FLAEM, the MATSH will be described as

if it consists of St stages, consisting of a stage of virtual 1 x I switches followed

107

by the regular main section of Sg stages of virtual 2 x 2 switches followed by a
stage of virtual F'x1 switches. (This differs from the convention employed in the
previous section which described the MATSH as consisting of Sp=Sst2f stages,
which mimics the FIER optical network more explicitly and indicates more exactly
how the MATSH operates since it actually uses Sp cycles.) Processing by the
MATSH is therefore restricted to parallel operations across the switches within a
single stage, and progressing (forward or reverse) to other stages sequentially stage
by stage.

Each virtual switch of the MATSH routing processor provides a small amount
of dedicated memory space to store information associated with the requests it
is processing. Information stored for each connection request includes the path
vector (which incorporates the source and destination indices), a priority value,
and various routing state flags.

In the SMOEC, multiple requests that are destined for the same outlet node
are always assumed to be combinable. Thus the FIER optical network is capable of
implementing many-to-one connection patterns in the forward direction. This com-
binability is an essential assumption of the FLAEM method. Thus, the FLAEM is
applicable only to EGS networks that can work with such a strong combinability
assumption. However, a trivial case of this assumption (zero requests destined for
the same outlet node) yields the useful result that the FLAEM is also applica-
ble to EGS networks that are externally restricted to process only permutation

(one-to-one) connection patterns.

108

5.2.2 Exposition

For specificity, several terms used in explaining the FLAEM procedure are de-
fined here. A connection pattern consists of N individual connection requests, one
for each of the N inlet nodes. Multiple connection requests may refer to the same
outlet node. The FLAEM procedure makes I request copies of each individual con-
nection request (with randomly selected path numbers and priorities), and routes
these F' request copies in parallel until each request copy either reaches a switch
conflict, is combined with another request copy, or succeeds at reaching its desti-
nation outlet node. Virtual switches in the MATSH are marked by setting a state
variable within each virtual switch. The state of each virtual switch is initialized
to FREE. Individual request copies then set these state variables as they progress
through the network. The state variable settings are RUN, THRU, FIXED, FREE,
COMBINED, and CONFLICT. Two sets of settings are associated with each virtual
switch, one for each outlet link from the switch. Thus the following discussion will
discuss storing settings within links.

The Basic-FLAEM procedure to satisfy N connection requests is presented in
three parts: P1, an initial forward routing pass to process in parallel /' request
copies of each connection request; P2, a reverse pass to communicate back to the
inlet nodes which requests made it through to the outlet nodes, while erasing
unsuccessful request copies; and P3, a forward pass to reroute ' new request
copies for each connection request that had zero successful request copies, and to
finalize one selected (winning) successful request copy for each connection request
that had a nonzero number of successful request copies, while erasing non-winning

successful request copies. P2 and P3 are repeated as a unit until all requests are

109

satisfied. The flow chart in Figure 5.1 illustrates how these parts fit together.
Each of these three FLAEM procedure parts is now explained in detail, followed
by a description of the Enhanced-FLAEM algorithm, in which a single connection
request may generate more than F' request copies to be processed in parallel during
each forward pass.

For purposes of evaluating the success of the FLAEM routing algorithm (dis-
cussed later), the execution of P1 and P2 count as the first {ry, and any subsequent
executions of P3 followed by P2 count as additional tries. The final P3 forward
routing pass when no unsuccessful connection requests are being rerouted is not
counted as a try; this last forward pass is a finalization of all the switch settings.
Thus, a try is counted every time new request copies are generated and routed

through the network.

5.2.2.1 Initial Forward Routing Pass (P1)

First, the MATSH links are initialized to FREE. Then I copies of each connection
request (marked RUN) are made by the initial stage of 1-to-F" fan-out switches in
the MATSH control unit. Each request copy is assigned a random unique priority
value from 0 (highest priority) to F'—1 (lowest priority). FEach request copy is
also assigned a path vector (see Section 3.4) which is composed of the inlet and
outlet node indices plus a randomly selected EGS path number. This path vector
specifies one of the many paths available from the inlet node to its destination
outlet node. The priorities, path vectors, and state value (e.g. RUN) are stored in
the memories associated with the links (using the indices that immediately follow

the switches in the forward direction) as the request copy is routed.

110

P1
Initial forward routing pass

P2 +

Reverse pass to mark succesful
request copies and to erase
unsuccessful connections

P3 +

Forward pass to finalize winning
request copies and to reroute
unsuccessful connections

Were all connection

NO

requests satisfied?

Figure 5.1: FLAEM Flow Chart

111

Stage by stage, the request copies are propagated forward whenever possible.
The two possible inputs to each link in the MATSH are processed sequentially in
random order, so that a link may be FREE or occupied on this first pass. Let
L,. denote the link in the next stage that was specified by the path vector of a
request copy at link L. in the current stage. The request copy at L. may be either
simply routed forward, combined with another request copy, or aborted due to
conflict with another request copy, as follows. That request copy is routed forward
if the link L, is marked FREE. If L, is occupied by another request copy that is
destined for the same outlet node, the request copy at L. may be combined with
it. In this case, the link L. is marked COMBINED and not individually routed
further. The request copy at L, is given the highest of the two priorities (i.e. the
minimum numerical value of the two priorities). The later return pass of P2 will
further process the COMBINED request copy as approprate. If L, is occupied by
another request copy with an incompatible destination, its priority is compared the
priority of the request copy at L., and the one with the higher priority wins while
the other is aborted (marked CONFLICT). If L. is a stage that is early enough in
the MATSH such that it still has more than one path available to its destination
outlet node (this is termed a flexible stage), an aborted request copy may then
instead try to propagate or combine with the other available link that it can reach
in the next stage (this is called the modpath technique). The modpath technique

entirely prevents conflicts from occuring within the flexible stages in the network.

112

5.2.2.2 Reverse Marking/Erasing Pass (P2)

After the first pass through the MATSH, all request copies that made it to the
final stage are marked THRU. A reverse pass through the MATSH is now per-
formed, propagating THRU-marked request copies in the reverse direction (includ-
ing request copies that were combined with the THRU-marked request copies), and
erasing any aborted CONFLICT request copies (including request copies that were
combined with aborted request copies) and setting the previously occupied link to

FREE.

5.2.2.3 Forward Finalizing/Rerouting Pass (P3)

After this reverse pass, each inlet node has some number (possibly zero) of THRU
request copies. An inlet node is termed successful if it has a nonzero number of
THRU request copies. A single arbitrarily-selected winning THRU request copy
(the lowest priority request copy, i.e. maximum numerical value of the priority
variable, was selected for the FLAEM simulation) for each successful inlet node
is marked FIXED. Inlet nodes with FIXED request copies are termed satisfied. If
all inlet nodes with connection requests are either previously successful or newly
satisfied, this execution of P3 will be the final pass. If some inlet nodes had zero
THRU request copies (and were not previously satisfied), then /" new RUN request
copies are generated for each unsuccessful inlet node connection request. Each
set of F new RUN request copies is assigned new random unique priorities and
individual path vectors as previously described for Part(1). The FIXED request
copies are now propagated forward through the MATSH (changing winning THRU

request copies to FIXED at each stage), while non-winning THRU request copies

113

are erased. At the same time, the new RUN request copies are routed as previously
described for P1, except that no new request copy can displace a FIXED request
copy, although combining with a FIXED request copy copy is permitted. The full
connection pattern of NV individual connection requests is considered satisfied after

each inlet node has a FIXED (satisfied) request copy.

5.2.2.4 The Enhanced-FLAEM Procedure

The previous subsections described the Basic-FLAEM routing procedure. The
computer simulation and results presented later in this chapter use this Basic-
FLAEM procedure. However, an Enhanced-FLAEM routing procedure which in-
corporates the technique of splitting may provide increased performance. Splitting
is the generation of additional (new) copies of request copies that encounter extra
free nodes at specific early stages in the network during all forward routing passes.
Splitting allows more than F request copies of each connection request copy to be
tried in parallel during each forward routing pass.

The path vector for an RS-EGS network has p=log, P bits devoted to the path
number that identifies a specific path between given inlet and outlet nodes. As
seen in Section 3.4, the first f=log, I bits of the path number are devoted to the
fan-out switch setting. Thus the I’ request copies generated from each connection
request occupy all possible states of these f bits in the path vector. However, there
still remain p— f unspecified bits in the path vector after the I request copies are
generated. (Note: p—f > 0 for all cases of practical interest.) These p— f bits
correspond to the switch settings in stages 1 through p— f. The Basic-FLAEM

procedure takes advantage of these unrestricted switch settings to implement the

114

modpath procedure previously described in P1. However, additional advantages
from these unrestricted switches may be pursued.

Stages 1 through p—f are termed flezible stages. The splitting technique is em-
ployed solely in these flexible stages. Because of the modpath technique (described
previously) that is employed in these flexible stages, there can be no conflict be-
tween any pair of request copies that meet in a switch in a flexible stage. Thus
there are only two ways for a spare link to appear in a flexible stage, as the result
of a combine operation, or during a later forward pass through the network when
there are many free nodes. The Enhanced-FLAEM splitting technique is designed
to take advantage of these otherwise unused links.

Within a switch in stage s (where 1 <s < p— f) there are two possible ways
to apply the splitting technique to generate additional request copies within the

network:

S1: Simple split When a single incoming request copy to a switch encounters
no other request copies, that incoming request copy may be split to produce
two outgoing request copies from the switch. In this case, one randomly
chosen outgoing request copy is assigned the original priority T and the
other outgoing request copy is assigned the priority 7'+ F'2°. This ensures
that new request copies generated by this splitting operation will always have

lower priorities than any request copies generated by the fan-out switch.

S2: Combine and split When the two incoming request copies to the switch are
to be combined, the resulting combined request copy is split to produce two
outgoing request copies, with one request copy sent out of each of the two

outlet links from the switch. Given that the two incoming request copies had

115

priorities T} and T, two possibilities for setting the priorities of the outgoing

two request copies are:

a: Randomly assign priority 7 to one outgoing request copy and priority
T, to the other outgoing request copy. This conserves the two priority

values.

b: To allow the comparison described in the following paragraph, randomly
assign one outgoing request copy the original highest (minimum numer-
ical value) priority 7" and assign the other request copy the priority
T+ F2°. This ensures that new request copies generated by this split-
ting operation will always have lower priorities than any request copies

generated by the fan-out switch.

These splitting procedures require additional bookkeeping to be performed in both
the forward and reverse directions when passing through the flexible stages.

The Enhanced-FLAEM technique using splitting techniques S1 and S2b nec-
essarily results in performance that is at least good as and probably noticeably
better than that of the Basic-FLAEM technique. The Enhanced-FLAEM tech-
nique only introduces additional request copies that have lower priorities (higher
numerical values) beyond those provided by the Basic-FLAEM technique. Since
request copies with lower priorities can never win in a conflict against request
copies with higher priorities, no connection established by the Basic-I'LAEM tech-
nique can be jeopardized by the Enhanced-FLAEM technique. Furthermore, the
additional copies provided by splitting technique provide additional chances for
request copies to get through to the desired outlet node, so the Enhanced-FLAEM

technique should result in increased algorithm performance. Splitting technique

116

S2a is not rigorously guaranteed to not affect connections that would have been
generated by the Basic-FLAEM method, but it more closely follows the design
methodology of the Basic-FLAEM method in that it conserves priority numbers.
The Enhanced-FFLAEM method using splitting techniques S1 and S2a would thus

likely be quite successful as well.

5.2.3 Illustrative Example

This section presents an example which uses a small non-minimal RS-EGS network
to illustrate the methods used in the FLAEM routing algorithm. The example RS-
EGS network (showing an unfolded MATSH) has N =4 inlets and outlets, I'=4
fan-out and fan-in, and Ss =3 stages in the main section, resulting in p— f =1
flexible stage. These parameters were chosen to give the smallest example that
would permit most aspects of the FLAEM algorithm to be illustrated.

The FLAEM routing procedure to satisfy a single connection pattern is illus-
trated in Figures 5.2, 5.3, 5.4, 5.5, and 5.6. The connection pattern being processed
is illustrated above the network diagram. The routing paths of all request copies
from a given inlet are given a particular grey tone or pattern to identify them. A
request copy that was produced by combining two other request copies is arbitrarily
given the marking of one of the two inlet nodes that produced the original request
copies. The links are individually labelled with indices immediately following the
switch stages to show where the link addresses are assigned. The switches in each
stage are indexed from 0 at the top to 7 at the bottom of the figure; however, these
switch indices are not explicitly shown in the figures. The priority of each indi-

vidual request copy is listed inside of the circle next to the link node index. This

117

is the location where all information about the request copy is stored, including
the priority, state value, and the path vector. Each link is also marked with the
priority of the request copy in a circle immediately preceding (to the left of) each
switch stage to elucidate the processing from input to outlet at each switch. These
circles are also sometimes used instead to show some of the state values instead
of the priorities. Although the figures show trees of 1 x2 and 2 x 1 switches to
implement the fan-out and fan-in in the MATSH routing processor, they will still
be discussed as 1 x I and F'x1 switches.

The five figures, Figures 5.2, 5.3, 5.4, 5.5, and 5.6, show the specific case of the
Basic-FLAEM routing algorithm working to satisfy the connection pattern: (0—2,
1—3, 2—1, 3—3) in two tries. A case that took two tries was selected for this
example to illustrate most of the facets of the FLAEM routing procedure. (Note:
it is quite difficult to find a connection pattern for the given network that takes two
tries to complete the processing, since the simulation using the computer program
described later in this chapter found that only 17 out of 10,000 (0.17%) randomly
chosen patterns for this network took two tries, while the remaining 9988 patterns
took only one try. Thus this example has a few special coincidences for arbitrarily
chosen routing parameters.) For this example case, the first try consists of the
initial forward pass (P1), followed by a reverse pass (P2), with one connection
request remaining unsatisfied after this first try, so a second try is performed. The
second try consists of a forward pass (P3) followed by a reverse pass (P2). After
this second try, all connection requests are satisfied, so a final pass (P3) is made
to finalize the connection settings, and the routing operation is complete. Each of

these five passes of the Basic-FLAEM procedure and the corresponding figure is

118

now discussed in detail, followed by an illustration (with a corresponding figure)
of how the Enhanced-FLAEM proecedure would work on the same connection

pattern.

5.2.3.1 Try #1: Forward Pass (P1)

Figure 5.2 illustrates the first forward pass (P1) of try #1 to process the connection
pattern (0—2, 1—=3, 2—1, 3—=3).

First, examine the four request copies generated by inlet node 0 (marked light
grey in the figure). Immediately following the fan-out stage, the four request copies
are observed to contain priorities zero through three in the randomly selected order
(2, 0, 1, 3). These four request copies then progress through the network, with all
four successfully reaching the desired outlet node 2.

In a similar manner, the four request copies generated by inlet node 2 (marked
with a spotted pattern in the figure) also progress through the network to success-
fully reach the desired outlet node 1.

The four request copies generated by inlet node 1 (marked dark grey in the
figure) have more involved processing. These four request copies emerge from the
fan-out stage with the priorities in the randomly selected order (2, 0, 1, 3). (Note:
this connection pattern example has the peculiar feature that this same priority
pattern was randomly assigned to sets of request copies produced by three of the
inlet nodes.) At switch 5 of stage 1, two request copies from inlet nodes 1 and 3 are
combined, emerging at link 11. This combined request copy was randomly chosen
to be marked with a path vector indicating its origin at inlet node 1. Thus the

incoming request copy from inlet node 1 proceeds on in the normal manner, and the

119

/

| 1sonbai juaoelpe yim pagorguod 1sanboy @ /_

| 1sonbax juodelpe yim pauiquiod 1sanbay @ |

| 1sonbai [enpratpur jo fyuong @ |
=4

— e e — — —— — — — —

SLnys-p ynys-g oljynys-¢ pJnys-¢

ook B n O 0_;___ﬁ__@______________________@m__m
; = WO = M ________________ﬂ__@__v__m
: __________

fa

"B €

N

I wm.u_._m._"
SLHINI

ssed pIemioq

:SUONIAUUO0D Nﬂ
pajsanbay ,—H# HHL

120

Figure 5.2: The Basic-FLAEM procedure: Try #1: Forward Pass (P1)

incoming request copy from inlet node 3 is marked COMBINED and its processing is
aborted for now. Thus all four request copies from inlet node 1 emerge from stage
1. At stage 2, three of these request copies proceed unaffected, but the request copy
entering switch 3 encounters a conflict. The two request copies entering switch 3
are a request copy from inlet node 0 at priority 0 and a request copy from inlet
node 1 at priority 0. Both incoming request copies need to emerge at link 7, but
they are uncombinable since they are each bound for incompatible outlet node
destinations. Since they have identical priorities, one is randomly chosen to be the
winner, and the other is marked CONFLICT, and aborted. In this case, the request
copy from inlet node 0 is chosen to win, and the request copy from inlet node 1 is
aborted. Thus three of the original four request copies from inlet node 1 emerge
from stage 2. These three request copies encounter no further complications as
they progress through the rest of the network, so three request copies successfully
reach the desired outlet node 3.

The four request copies generated by inlet node 3 (marked with a striped pat-
tern in the figure) turn out to be unsuccessful. One request copy (the one with
priority 0) is combined with a request copy from inlet node 1 (as previously men-
tioned), but that request copy is ultimately unsuccessful. The three other request
copies each make losing encounters with conflicting requests at equal or higher

priorities, so each marked CONFLICT and aborted.

5.2.3.2 Try #1: Reverse Pass (P2)

Figure 5.3 illustrates the reverse pass (P2) of try #1 to continue the processing

the previously mentioned connection pattern. First the successful connections are

121

OUTLETS

=
=
=
=
-
.. w
w gt
\
:)
¥ £ 1=
=g a 13
S g | % |
'8
& 1
. g 21
= 3 2 e
3=~ a \Z
O N
> 2
£
)
> Q
g =
[« =
=
-
N

INLETS

Figure 5.3: The Basic-FLAEM procedure: Try #1: Reverse Pass (P2)

122

marked THRU (labelled as 7" in the figure) immediately after the fan-in stage (at
the right of the figure). As processing proceeds in the reverse direction through the
network, successful request copies (i.e. those that generated a THRU request on
the preceeding forward pass) are marked THRU including request copies that were
combined to produce a THRU request (although there are no cases of ultimately
successful combines in this example). Additionally, aborted CONFLICT requests
are erased.

The result of this reverse pass is that four successful THRU-marked request
copies are found at inlet nodes 0 and 2, three successful THRU-marked request
copies are found at inlet node 1, and no successful request copies are found at inlet
node 3. Since inlet node 3 is entirely unsuccessful, a new try at the connection

pattern must be made.

5.2.3.3 Try #2: Forward Pass (P3)

Figure 5.4 illustrates try #2 to process the previously stated connection pattern
(0—2, 1—3, 2—1, 3—3). This the second forward pass (P3), which will fix in
place the successful connections (0—2, 1—3, 2—1) and reroute the unsucessful
connection (3—3).

Since inlet nodes 0, 1, and 2 contain THRU request copies from the previous
pass, each of these inlet nodes is successful, and an arbitrarily-chosen winning
THRU request copy is chosen for each inlet node and marked FIXED immediately
following the fan-out stage. The remaining unchosen (non-winning) THRU request

copies are erased following the fan-out stage.

123

SLATLNO

Lnys-p

/" Jsonbor 1uooelpe yiim paurquiod 1sonbay

jsonbai [enpiaipur jo £yLroLig

@
agaxiy paysew jsonbayy @ “
®@ |

opynys-g

:SUOI}OUU0D
pajsonbay

pnys-g

_©_E A
R

Z 23mS I 23m1§

SSed pJIeMdoy]

TH# AL

spnys-g
1 ©____________ eI

S0

z0
1o
00

!v ¢

O o= N

SLAINI

Figure 5.4: The Basic-FLAEM procedure: Try #2: Forward Pass (P3)

124

Inlet node 3 was entirely unsuccessful during the previous try, so a new set of
F request copies is generated (marked with a striped pattern in the figure), each
marked RUN, and each with a randomly chosen assignment of the priorities from
0 to 3, which for this case turns out to be (1, 2, 0, 3).

As the forward pass for try #2 progresses, the winning THRU request copies are
marked FIXED non-winning THRU request copies are erased (the links are marked
FREE), and the newly generated RUN-marked request copies are routed through
the network. In this case, two of the RUN-marked request copies (with priorities
2 and 3) are combined with the FIXED connection from inlet node 1 which is
destined for the same outlet node 3. The completion of the forward pass for try
#2 illustrated in Figure 5.4 reveals that two of the newly-generated request copies
from inlet node 3 successfully arrived independently at outlet node 3, and the other
two request copies were each earlier assured of success since they combined with
FIXED connections.

Figure 5.4 illustrates an important aspect of the FLAEM procedure that reveals
why it is so successful. In general, during the first forward pass of the FLAEM
procedure, most connection requests are satisfied, leaving only a small number
of connection requests to be rerouted. During the second forward pass (as just
discussed) the previously satisfied connection requests are set to FIXED within the
network, and thus each only occupy a single path through the network. This frees
up a large number of paths in the network, which results in the greater amount of
free space available to the connection requests being rerouted. This free space in

the network (which is really only hinted at in this small example) is responsible for

125

the very high success rate for the second try (as will be shown by the simulation

results later).

5.2.3.4 Try #2: Reverse Pass (P2)

Figure 5.5 illustrates the reverse pass (P2) of try #2 to continue the processing
the previously mentioned connection pattern. The successful connections at out-
let node 3 are marked THRU (labelled as T in the figure) immediately after the
fan-in stage (at the right of the figure). These successful THRU request copies
are propagated backwards, as before. However, each FIXED request must also be
propagated backward so that although the FIXED request itself will remain unaf-
fected, any RUN requests that combined with a FIXED request must be found and
marked THRU as well. Thus all four request copies that were generated at inlet
node 3 end up with a THRU mark. Since inlet node 3 is entirely successful, no new
try at the connection pattern needs be made. Therefore the next forward pass will

be the final P3 pass.

5.2.3.5 Final Forward Pass (P3)

Figure 5.6 illustrates the final forward pass (P3) to finalize the newly satisfied
connection (3—3) to complete the desired connection pattern (0—2, 1—=3, 2—1,
3—3). The bottom request copy from the fan-out from inlet node 3 was chosen
to win, so it was marked FIXED, and the other three request copies were erased
during this final forward pass. This final connection pattern that would be down-
loaded into the FIER optical network includes: all fan-out settings set to down
(a coincidence), four switches set to bypass, three switches set to exchange, two

switches set to combine, (the final fan-in switches are permanently set to combine).

126

tdegin
.m.m.

p 23018 £ 23m§ Z 23m8§

SLATLAO

:SUOI)IAUUO0D
pajsanbay

| 1sonbox juddelpe Yum paurquiod 1sonboy @) /_
| aaxiy payrew 1sonbay @ |

SSEJ 9SIIANY

TH# AL

e
e

Figure 5.5: The Basic-FLAEM procedure: Try #2: Reverse Pass (P2)

127

OUTLETS

=
s g
g =
v 4
-
;g
o | %:
g ! o
2S = | g
339 = [o
=2 1 = |
= NI =
g E | o !
& 3 |§3|
| & B |
» |35
| 78 g
= % | 8§,
oo | 2 2
w '5; | & 8!
7 v 55
n S e
Qﬂ-(| ® 0O
ﬁ b T
m:-(%)
- =
c:sg 7
|
o= o
© pu

INLETS

Figure 5.6: The Basic-FLAEM procedure: Final Forward Pass (P3)

128

5.2.3.6 Enhanced-FLAEM procedure illustrations

Figure 5.7 illustrates the combine-and-split technique S2b, showing the first for-
ward pass of try #1 for the Enhanced-FLAEM procedure. This figure is the same
as that of Figure 5.2 which showed the first forward pass of try #1 for the Basic-
FLAEM procedure, except that an additional specially-marked request copy is
added for Figure 5.7. Stage 1 of this network is a flezible stage since for this net-
work p— f =1 (since P =8 and F =4). At switch 5 of stage 1, instead of just
sending the combined request copy out at link 11, an additional combined request
copy is generated and sent out at link 10 (marked with thick black stripes in the
figure). Splitting technique S2b is illustrated; the newly assigned priority is 4. If
splitting technique S2a were employed, the newly assigned priority would be 0,
resulting in the same set of priorities entering and leaving the switch. For the case
of this connection pattern, the additional request copy generated by the combine-
and-split operation is ultimately successful, and would result in this connection
pattern being satisfied in one try by the Enhanced-FLAEM algorithm.

Figure 5.8 illustrates the simple-split technique S1, showing the second for-
ward pass (try #2) for the Enhanced-FLAEM procedure, (which is shown as if
connection request 3—3 was still unsatisfied after the first pass). This figure is
the same as that of Figure 5.4 which showed the second forward pass (try #2)
for the Basic-FLAEM procedure, except that additional specially-marked request
copies are added for Figure 5.8. At the flexible switch stage 1, the request copies
being rerouted are split to generate request copies at both outgoing links from
the switches. However, the request copy entering switch 7 is not split, since it is

combined with a FIXED request and thus is considered automatically successful.

129

Apnys-
(E :

14

utgpipds e |l 01 pappe aui] [euonippy (NI
1sanbar juaoelpe yim pajoryuod 1sonbay @
15onbar Juadelpe Yim pauiquiod 1sonbay; @
1sonbar [enpiatpui jo Auionlg @

pjnys-¢

\
_
_
|
/

pynys-g

_@______________________%“m“_m
o
©

i

Surnds qym ‘ssed pIemao,q
+SUOIUUOD

pajsanbay H# %oﬁr.—.L

o

!

P €

Figure 5.7: The Enhanced-FLAEM procedure: Combine-and-Split (S2)

130

pnys-p

' g@.. (s

&_E @ (O
W) I Ny QOEN -
S (9)

I e e e L e S e ~
! Supnds eia [l 03 pappe saut] [euonippy (NN
I ysonbai jueselpe yim pauiquiod jsonbay Q@ |
_ aaxiyy poytew jsonboy @ |
_ _
\ J

~C

XL LA

BT I

Z 23§

»¢ sunnds q)m ‘ssed pIemao

TH AT,

[:SUOIIAUU0D
®0 Pposanbay

Figure 5.8: The Enhanced-FLAEM procedure: Simple Split (S1)

131

Splitting this request copy would only occupy unnecessary space in the network.
The three new request copies generated in the flexible stage 1 emerge at links 8,
10, and 13, with priorities set equal to the original priority plus 4 (4= F'-2°, since
s=1). Although the extra request copies generated by this simple-split operation
do not reduce the number of tries necessary to complete the routing process in this
example, an additonal request copy does make it through to the outlet node 3,

showing that this technique can increase the odds of success in general.

5.3 The FLAEM Simulation

The computer simulation of the Basic-FLAEM procedure (sim-FLAEM) is a C
program which takes as input the EGS network parameters N, I, and Sg, and
generates various types of data about the routing process for evaluation and analy-
sis. One type of output from the sim-FLAEM program is a stage-by-stage trace of
the routing process for a randomly-generated or user-supplied connection pattern.
Such traces were used to verify program correctness and to generate the exam-
ples presented herein. The other type of output from the sim-FLAEM program
is a summary report listing the performance of the algorithm on large numbers of
randomly-generated connection patterns or permutations. This section provides
an overview of the sim-FLAEM C program itself, then presents the simulation

results obtained from this program.

5.3.1 Sim-FLAEM Program Development

The sim-FLAEM program was developed from a series of simpler routing sim-

ulation programs that implemented less sophisticated routing algorithms. Each

132

program in the development series represented an improvement in the routing per-
formance. The FLAEM procedure was developed from this series of programs by

refining the routing process until the algorithm was effective enough to be practical.

5.3.1.1 The First Routing Program

The first routing program was a simple router that would randomly generate a
set of path vectors for a given connection pattern, and proceed forward through
the network until a conflict occurred. Only local routing data were used for this
algorithm. At this point, the processing was aborted and another try at routing was
started, with an entirely new set of randomly-generated path numbers. This first
program was not very successful; it was only able to successfully route connection
patterns for extremely small networks, usually taking large numbers of tries for

each success.

5.3.1.2 The Second Routing Program

A modification was added to the first program to allow it to complete its for-
ward pass, remember which individual connection requests conflicted, and then on
subsequent tries only these formerly conflicted requests received new randomly-
generated path numbers while the successful connection requests were left alone.
A global array of variables, one for each inlet node, was used to communicate
information about conflicts back to the inlet nodes, with special bookkeeping to
communicate information about requests that had combined with other requests
that ultimately ended at a conflict. This second program was a definite improve-
ment over the first, although it could still take a large number of tries to complete

a single connection pattern.
133

5.3.1.3 The Third Routing Program

The third program had the modpath modification that allowed path vectors to be
altered to avoid conflict when the conflict would have occurred in a flexible stage.
This produced a subtle improvement in the routing results, because very small

networks with only a single flexible stage were used to test the program.

5.3.1.4 The Fourth Routing Program: Basic-FLAEM

The fourth program implements the idea of trying [copies of each connection
request in parallel. This program also incorporated modifications that allowed it
to more closely simulate the operation of the MATSH control unit by operating
solely on the local data that would be available in the virtual switches of the
MATSH; no more global communication was permitted. This program was the
first to incorporate an explicit reverse pass to communicate information about
successful and conflicted requests backward to the inlet nodes. The backward pass
was essential to return the information about successful and conflicted request
copies along the complex combining treelike paths that were created within the
network. The simplest way to do the complicated bookkeeping required turned
out to have the advantage that is most closely approximated the intended actual
routing procedure for the MATSH control unit.

This fourth program produced an enormous improvement in performance, due
to the many paths tried in parallel, and the relative emptiness of the network
during the second try at a given pattern. This fourth program thus became the
basis for the Basic-FLAEM algorithm, and is the program that was later called

the sim-FLAEM program.

134

Detailed information about the sim-FLAEM program is provided in Appendix B.
The appendix includes the sim-FLAEM C program listing and sample trace data

output for the small network example illustrated earlier in Section 5.2.3.

5.3.1.5 The Fifth Routing Program: Enhanced-FLAEM

The basis for an envisioned fifth routing program was conceived during the im-
plementation of the fourth routing program. However, the fourth program (the
sim-FLAEM program implementing the Basic-FLAEM routing algorithm) was so
successful that the idea for a fifth program was postponed for potential future im-
plementation. This fifth routing program is the basis for the Enhanced-FLAEM

algorithm described previously.

5.3.2 Simulation Results

The performance of the Basic-FLAEM routing algorithm is demonstrated by us-
ing the sim-FLAEM program to perform the routing of large numbers of randomly-
generated connection patterns. Table 5.1 presents the results from using the sim-
FLAEM program to route connection patterns on various sizes of restricted-#
RS-EGS networks. The first group of five columns lists the RS-EGS parameters
for each network, including the number of flexible stages (p— f) available in each
network configuration. Each set of network parameters used employs the minimal
number of stages for a restricted-I" RS-EGS network for each value of n, as de-
rived from Richards’ formulae which are listed in Table 3.1. The next column lists
the total number of randomly-generated patterns that were routed, listing both

unrestricted connection patterns (“Unres.”) and permutation connection patterns

135

RS-EGS Parameters Total % of Routed Patterns™ | Average
Number of Number of Tries: Tries per
n N F Ss p—f| Patterns™ 1 2 3 4+ | Pattern
4 16 4 5 1 10000 Unres. | 74.03 25.67 0.27 0.03 | 1.2630
9 32 8 5 0 |10000 Unres. | 84.38 15.61 0.01 0 1.1563
6 64 8 7 1 |10000 Unres.| 65.44 34.56 0 0 1.3456
7 128 8 10 3 |[10000 Unres.| 33.93 66.01 O 0 1.6595
8 25 8 13 5 |10000 Unres.| 2.85 96.86 0.29 0 1.9744
9 512 16 12 3 |10000 Unres. | 73.53 26.47 0 0 1.2647
10 1024 16 14 4 1000 Unres. | 34.9 65.1 0 0 1.651
11 2048 16 16 5 1000 Unres. | 3.6 964 0 0 1.964
12 4096 16 19 7 1000 Unres.| 0 100 0 0 2.000
13 8192 16 21 8 1000 Unres.| 0 100 0 0 2.000
4 16 4 5 1 |[10000 Perm. | 72.43 27.48 0.09 0 1.2766
B} 32 8 5 0 [10000 Perm. | 85.56 14.43 0.01 O 1.1443
6 64 8 7 1 [10000 Perm. | 69.65 30.35 0 0 1.3035
7 128 8 10 3 |[10000 Perm. | 39.15 60.85 0 0 1.6085
8 256 8 13 5 |10000 Perm. | 3.75 96.21 0.04 0 1.9621
9 512 16 12 3 |10000 Perm. | 79.43 20.57 0 0 1.2057
10 1024 16 14 4 1000 Perm. | 46.7 53.3 0 0 1.533
11 2048 16 16 5 1000 Perm. 6.6 934 0 0 1.934
12 4096 16 19 7 1000 Perm. 0 100 0 0 2.000

* Unres. = Unrestricted connection patterns (many-to-one allowed);
Perm. = Permutation connection patterns (restricted to one-to-one only).

**% Each of the four columns lists the number of patterns (expressed as
a percentage of the total number of patterns) that took a particular
number of tries (1, 2, 3, or >4).

N, network size (number of PEs and number of MMs); n=log, N; Sg, number of shuffle-
exchange stages in the “main section” of the RS-EGS network; I, inlet fan-out and outlet

fan-in factor; p— f, number of flexible stages.

Table 5.1: FLAEM simulation results.

136

(“Perm.”) . The number of routed patterns is decreased for the larger values of N,
since the simulation time grew too large to simulate 10,000 patterns for these cases.
The same set of RS-EGS parameters was used for both the unrestricted connection
pattern case and the permutation pattern case, however the n=13 (N =8192) case
simulated only for the unrestricted connection pattern case because the simulation
was run using borrowed time on a computer that had sufficient memory to run
this large case and there was only enough time to run one of the two cases. The
next group of four columns lists the number of patterns (expressed as a percentage
of the total number of patterns) that took a particular number of tries (1, 2, 3, or
>4). The final column lists the average number of tries per pattern, calculated by
dividing the sum of the tries required for all patterns by the total number of pat-
terns. For example, for the n =6 unrestricted patterns case the Average number of
tries per pattern is computed from (1 - 6544 + 2 - 3456)/10000 = 1.3456. Table 5.1
is divided into two parts, first listing simulation runs using unrestricted connec-
tion patterns followed by simulation runs using permutation connection patterns.
These two parts are further subdivided into groups containing identical fan-out

values F. These subdivisions serve to highlight the patterns in the data.

5.3.2.1 Analysis of Simulation Data

In RS-EGS networks, the cases of networks with small n are special cases that are
often not representative of the behavior of networks with larger n. The smallest
cases, n=2 and n=3 (N =4 and N =8) have minimal networks that contain only
one main section switching stage, and are therefore not included in the simulation.

The cases for the minimal restricted-F RS-EGS network for n=4 (N =16) listed

137

in Table 5.1 is also a special case. It has one flexible stage (p—f=1), but with only
a fan-out of F'=4, there is not much “space” within the network. Thus this case
is observed to result in the largest number of tries necessary for single patterns
to be completed, with a small number of patterns requiring four or more tries for
completion. The case of n=4 is included here to show that the operation for small
networks may not be indicative of the operation for larger networks

For the cases of restricted-F' RS-EGS networks with n > 5 listed in Table 5.1,
the data show excellent behavior. For the range of parameters listed, the maximum
number of tries required for any connection is nearly 2. Cases that require 3 tries
are very rare, and do not significantly contribute to the resulting average number
of tries per pattern. It is this maximum number of tries that is important to the
FLAEM routing procedure, since it is most practical to allow a fixed number of
passes through the network to accomplish a routing task.

The percentage of routed unrestricted connection patterns that took each num-
ber of tries is graphed in Figure 5.9. Each bar in the graph represents 100% of
the patterns for the listed value of N, subdivided into the percentage that took 1
through 3 tries. Since the number of patterns that took 3 tries to route is so small,
and is 0 for most values of N, only a small thickening may be noted at the top
of the n=8 (N =258) data bar to represent the 0.29% of patterns (29 out of the
10,000 unrestricted connection patterns simulated) for this case that took 3 tries.
It is interesting to note that for the n =12 and n=13 (N =4096 and N =8192)
cases that all of the routed patterns took 2 tries to complete. However, in the small
number of test runs not included in the table or graph, a few (2) patterns out of

approximately 400 additonal patterns simulated for the n =13 (N = 8192) case

138

SWId)JEJ PIINOY JO JUIJ

2048 4096 8192

1024

512

13

12

10

9

8

2 2 2

2

2

Number of Processors

2

Figure 5.9: Percentage of routed unrestricted connection patterns that

took specified numbers of tries.

139

took 3 tries. However no patterns taking 3 tries were observed in any test runs
for the n =12 (N =4096) case. Unfortunately, patterns for n > 14 (N > 16, 384)
were prohibitively large to simulate (primarily in terms of memory requirements),
so the table ends at n=13 (N = 8192). It appears that the maximum number of
tries for n > 13 may be trending slowly towards 3, but these data suggest that it
is likely to remain bounded at 3 for several following higher values of n.

The data for the unrestricted patterns used in the SMOEC system leave open
the question that a large factor in the success of the FLAEM routing algorithm
might the simulation of large numbers of patterns that required combining. That
is, the unrestricted patterns that were randomly generated (by independently ran-
domly selecting an outlet node from 0 to N —1 for each of the N inlet nodes) may
favor significant amounts of combining and the FLAEM routing algorithm may
require this combining for efficient operation. Thus a series of simulations were
performed that routed large numbers of randomly-generated permutation (one-to-
one) patterns. These data are listed in the lower half of Table 5.1. As previously
mentioned, insufficient computer access was available to run the n=13 (N =8192)
case for permutation patterns. Figure 5.10 is a graph of these results that shows
the data from the unrestricted pattern case and the permutation case as a pair for
each value of n for comparison purposes. The graph shows that for all values of n
except n=12 (N =4096) the percentage of patterns that took 1 try for the permu-
tation patterns case increased slightly from the corresponding unrestricted pattern
case. Thus it is not true that the FLAEM routing algorithm requires significant

amounts of combining for efficient operation.

140

16

F=

.%.ff.f Vf.f.-..ff.r.fj-!.rm . : }/.../._Jr'_
% EIN l 5 MY #
2 OlO,ssssrsh
% l l I N AN

g/ ///%ﬁ,ﬂ,%,,,//%//////é

MMNW

_

11
N N _

W

_

SULIjjed pPajnoy Jo juadaad

1024 2048 096

2IC!

512

o

25

128

l2

o~

2‘)

58
Number of Processors

2'1

141

Figure 5.10: Percentage of routed connection patterns that took speci-

fied numbers of tries: comparison.

From examination of Table 5.1, it is clear that for a given value of F', the
average number of tries per pattern increases as n increases. The average number
of tries per pattern drops when [F' is increased. The average number of tries per
pattern is graphed in Figure 5.11, which explicitly reveals this trend in the data.
Both sets of data are graphed; the values for both the unrestricted pattern case and
the permutation pattern case are plotted. The data for both cases show the same
trends, and are quite close in values, however, as in the case of directly comparing
numbers of tries, the average number of tries per pattern for the permutation
pattern case are always slightly below the values for the unrestricted pattern case.
The data with F' =8 and F = eql6 are grouped separately to show the trends
within the data at constant /. The data for F' =8 trend upwards towards 2.0,
until the minimal required F' is changed. The data for I = 16 trend upwards,
and appear to asymptotically reach the 2.0 level. Data from Table 3.6 reveal that
F =16 remains constant for 9<n <16 (i.e. N € {128,256,512,...,65536}). Thus
F remains constant for several values of n after the largest n =13 shown in the
graph. Therefore there will be no discontinuity similar to that shown between
F =8 and F =16 in the graph until n =17 (N = 131,072). It appears that the
average number of tries per pattern is either trending upward extremely slowly or
not at all for the largest values of n plotted at the right hand side of the graph in

Figure 5.11.

5.3.2.2 Conclusions From Simulation Data

The main result from the FLAEM simulation is that the maximum number of tries

necessary for a complete routing appears empirically to be a small near-constant

142

| —@— Unrestricted Patterns
| = ~B-~ Permutation Patterns |

Average Number of Tries per Pattern

1.0 - - . i
32 64 128 256 512 1024 2048 4096 8192
2
25 26 2? 28 29 210 2Il 21.. 213
Number of Processors

Figure 5.11: Average number of tries per pattern, both cases shown.

143

value (since results for n220 (N210°) are unlikely to be of practical interest). For
the data simulated 5 <n < 13, the maximum number of tries is (very nearly) 2.
Results do not substantially differ for routing permutation connection patterns and
unrestricted connection patterns.

The Basic-FLAEM technique works as well as it does because it satisfies most
of its N routing requests on the first try, leaving only a tiny number of requests
for rerouting. The second try is even more successful (very few failures of the
second try are noted in the data) since there are so many free paths in the network
available to the small number of copies of the rerouted (initially unsuccessful)
requests. During a second try all successful requests occupy but one path through
the network instead of the I new paths attempted by unsuccessful request copies
being rerouted. Since each try takes (slightly more than) 2 passes through the
MATSH control unit (plus an extra final pass), and a MATSH pass takes O[log N]
time, the apparent small constant bound to the routing tries indicates the FLAEM

technique completes a full pattern routing in approximately O[log N] time.

5.4 Summary

Essential routing and control aspects of interconnection network design are of-
ten not explored in sufficient detail to ensure that these aspects will not unduly
limit system performance. Control issues for the FIER optical network are pre-
sented here so that they can be addressed during the design process rather than
postponing them and leaving the system liable to future control difficulties. The
FLAEM routing algorithm was designed to control a regular simplified combining
(or permutation-restricted) EGS network in a circuit-switched manner in Oflog V]

144

time. The sim-FLAEM computer program provides an accurate simulation of the
Basic-FLAEM algorithm, and results from the simulation indicate that the algo-
rithm can indeed route connection patterns in approximately O[log N] time. The
FLAEM routing algorithm is a useful new method for RS-EGS networks, which are
particularly suited for passive optical implementation. The FLAEM routing algo-
rithm is also potentially applicable to other appropriately tailored circuit-switched

multistage interconnection networks.

Chapter 6

COMMUNICATION
ALGORITHMS

The PE+MM communication algorithms are built upon the routing algorithm. In
the process of computing the routing bits, the additional functionality (extended
bypass/exchange switch states, local stack memory) of the MATSH is used to
facilitate multiple reads and to arbitrate and combine multiple writes.
Communication within the SMOEC is divided into separate “phases” to ensure
that multiple communication requests may be handled simultaneously. Each phase
consists of communication requests of the same type. Phases used in the SMOEC
include: read phase, write phase, fetch-and-add phase, and data sort phase. Such
separate phases greatly simplify the complexity of the request combining process

within each phase.

146

6.1 The Read Algorithm

A read phase consists solely of read requests from each P to its requested MM,
and the subsequent transfer of data from each requested MM to its requesting
PE(s). Multiple PEs may request information from the same MM without conflict.
Each requesting PE forms a read request consisting of the MM index (address)
it desires to read from. No (sub)address within the requested MM is required,
since the entire MM contents will be transferred during the read phase. These
MM addresses are fed directly into the MATSH, with each address going to the
corresponding node in the MATSH (the MATSH node with the same index as the
requesting PE). Using the routing algorithm, the addresses are repeatedly cycled
through the single-stage Electronic Shuffle-Exchange (E-SE), enabling sequential
computation of the appropriate switch settings for each Optical Shuffle-Exchange
(O-SE) in the FIER. Since there are Sr O-SEs, Sg cycles of the E-SE will provide
all the required control bits. These bits are buffered in the CSDI (Control Signal
Distribution and Interface), where they are held until all bits are ready to be sent
simultaneously to their destinations in the FIER switches.

Read requests from multiple PEs to the same MM are combined (routed to-
gether) within the MATSH using the upper and lower combine switch settings. The
MATSH sends these switch settings to the FIER, where they will act as broadcast
switch settings in the MM—PE direction. Each requested MM then generates an
optical signal which is serially modulated by its entire memory content, and sub-
sequently routed back through the FIER to the desired requesting PE(s). Data
distribution (fan-out) to multiple requesting PEs is implemented using the broad-

cast switch settings in the FIER.

6.2 The Write Algorithm

The write technique designed for the SMOEC must be capable of simultaneous
writes from multiple PEs to a single MM. This section provides an examination of
four write technique candidates, a discussion of the serialization principle (which
is essential to the technique used in the SMOEC), and a detailed presentation of

the combining technique designed for the SMOEC.

6.2.1 Four Write Technique Candidates

The case of multiple PEs attempting to write simultaneously to a given MM is a
difficult problem to solve. There are several techniques available, none of which is
the most desirable in all cases. Four candidate techniques are presented here, and

their suitability for use in the SMOEC is addressed.

6.2.1.1 W1: Permutations Only

Allow only groups of write requests that are known a priori to be permutations.
This technique is extremely restrictive, but could work for algorithms that have

deterministic, regular data flow.

6.2.1.2 W2: Arbitrate Write Requests

If a switch in the interconnection network receives conflicting requests, one request
will be postponed. A sample method is: Address requests and priority levels are
sent from each PE to the MATSH. Switches resolve conflicts by eliminating the
lower priority request, and not routing it any further. After Sp stages, the MATSH
sends a 1 to the MMs whose addresses weren’t eliminated. The optical switches are

148

then updated, and the MMs that received a 1 send a 1 back through the network to
notify the successful requesting PEs. Now the write data is sent through the optical
network. Thus some write requests may be forced to wait and try again during the
next write phase, since buffering within the FIER has been forbidden by design
(passive optical switching). Multiple requests to the same MM are thus handled
in a serial fashion, in separate write phases. The buffering of write requests before
entry to the network allows an analog of “hot spots” (as discussed in Section 1.2)
to form, creating bottlenecks that can ultimately completely clog the FIER. This

is not a practical technique for the SMOEC, so it is not used.

6.2.1.3 W3: Combine Write Requests in FIER

Using the serialization principle (described below), write requests may be combined
in a useful and consistant manner. The technique involves pairwise combining
and/or arbitrating of write requests in the MATSH, followed by the proper setting
of the FIER. Write request combining is the primary method used in the SMOEC,
and will be discussed in detail later in this section. Note: this ability to combine
write requests was a major factor in the choice of a passive optical implementation

for the interconnection network in the SMOEC.

6.2.1.4 W4: Combine Write Requests in MATSH

As a special case, for very short write requests the MATSH can be used as a
packet-switched network. For message types that may always be combined us-
ing the serialization principle (desribed below) combining in the MATSH may be
preferable. “Short” requests are those that containing small amounts of data that

can be passed through the MATSH without unacceptably slowing down the total
149

electronic control bit computation time (Tyarsu). Examples of combinable mes-
sages are those such as setting, incrementing or adding an amount to a stored
value, or ORing data values. This method is also preferable in the SMOEC for

very short read/write requests (used for fetch-and-add type requests, which will

be described in 6.3).

6.2.1.5 Write Algorithm Technique Conclusions

In summary, Techniques W1 and W2 are not used in the SMOEC (although Tech-
nique W1 may be used for a special restricted version of the SMOEC discussed
in Chapter 7.2.1). Techniques W3 and W4, which employ write request combin-
ing and are more computationally powerful, are the techniques of choice for the

SMOEC.

6.2.2 The Serialization Principle

The serialization principle [Gottlieb 83a, Gottlieb 83b] is a basic idea that allows
data to be routed very efficiently. Simply put, it is the requirement that if two
requests are being sent to a memory location simultaneously, the result must be
the same as if the two requests had ocurred in some unspecified order. The result
of two reads to the same memory location is straightforward. The result of two
“simultaneous” writes (that do not involve any reads) is as if one is just ignored.
One of the two write requests need never be sent. More complicated simultaneous
memory requests invovling inseparable read/write combinations such as fetch-and-

add (which fetches a datum from a memory location, then adds a value to the

datum and stores the new value in the same location, see 6.3) can be handled
using this principle as well.

Although the serialization principle appears to discard information in the case
of simultaneous writes, the operation makes sense when placed in the context of
the ideal shared memory model. In the ideal model, asynchronous communica-
tions with the shared memory occur in unit time. So two nearly simultaneous
write requests to the same location behave as if the first write request was simply
discarded, if there were no intervening read requests. This behavior is what is
expected of the ideal model; the serialization principle takes this behavior to its
logical conclusion. It remains the job of the software to ensure that simultane-
ous write requests make sense. However, applying the serialization principle to
the case of simultaneous fetch-and-add requests provides a very useful method of
synchronizing disparate processes (applications of fetch-and-add are described in

6.3).

6.2.3 Write Request Combining

Write request combining is an extremely useful technique for satisfying an entire
array of simultaneous write requests. Fach write request sent to the MATSH
consists of a MM address and a subaddress field. No actual data is sent to the
MATSH — it will be sent through the FIER after the MATSH has combined the
requests. Each MM is functionally divided into d “submodules” (where d < D).
The subaddress field contains d bits which serve to mark specified submodules
within a MM. The bit (or bits) in the subaddress field that correspond to the

desired write locations within the MM are set to 1, while the remaining bits in the

151

field are set to zero. Note that the d can be a variable quantity set by softwar(_a',
and may even be changed during the course of an algorithm.

Figure 6.1 illustrates the subaddress field idea for the example of a MM that has
been divided into 8 submodules. For the purposes of this example, assume that two
write requests, A and B, meet in a switch node, and that both requests are destined
for the same MM. Each request has its own 8 bit subaddress field, denoted A and
B respectively. The idea is to combine the two requests using the serialization
principle such that both write requests are satisfied. Clearly the resulting write
request, A’ must contain the address of the same MM as the incoming requests,
but it must also contain a subaddress field A’ that properly reflects all requested
submodules. The two incoming subaddress fields A and B are saved in local
registers (actually implemented as a stack of depth O[S]) in the same manner
as described in 6.3 for later use in the final part of the write request combining
procedure. The subaddress field A’ that is sent out from the node is calculated by
A" = AOR B. In this manner every subaddress within the MM that was requested
by any PE will ultimately receive a 1 in the subaddress field of the combined write

request that emerges from the forward trip (Sg cycles) through the MATSH.

152

Memory Module (MM)
D bits = (L submodules)*(B bits/submodule)

Subaddress 0 Submodule
1
2
3
4
5
6
7
L-2
L-1
Write Request Subaddress: 0 1 2 3 4 5 6 7
Combining A=10110011
A A B=11111000
B =
m A=11111011 A=AorB
Write Request
De-Combining C=11101011 C=AawP
(6% C C=10100011 C=CanpA
D) _
D=01001000 D=CasoBannC

i D’= C ANpD BAND A

Figure 6.1: The Subaddress Field. First 8 bits illustrated.

15

After S cycles of subaddress field combining in the MATSH, the final combined
write request contains a subaddress field consisting of the combined subaddress
fields of all the appropriate requesting PEs (those PEs not eliminated using the
serialization principle). This final combined subaddress field now identifies which
locations within the MM are to receive data. This combined request then makes
a return trip through the MATSH to perform write request “de-combining”. The
de-combining is necessary to inform each of the requesting PEs which data it is to
send.

The de-combining of requests is accomplished as shown in the second part of
Figure 6.1. Assume that the returning write request subaddress field C is to be de-
combined into two write request subaddress fields C' and D'. Assume for discussion
purposes that this de-combining operation is ocurring at the same node that was
previously discussed (in which A and B were combined to produce A’). The goal is
to divide the “1” bits in C' between C”" and D’ such that C' AND D’ = 0. This will
ensure that none of the requesting PEs transmit data simultaneously. Another
restriction on C’ and D' is that C"OR D' = C, so that all necessary data will
be transmitted. One way to obtain this result is by defining ¢’ = C'AND A,
and D' = C AND BAND C". Note that the equation for D’ simplifies to D' =
C' AND B AND A, so that it may be executed in parallel with the computaion of
C’. Since Figure 6.1 illustrates the process of write request combining in a node
at an arbitrary stage within the network (actually the MATSH cycle number),
the expression for C' is given as C = A’AND P. The field P (“permission”)
is not a special field; it is included here merely to summarize the impact of de-

combining from previous layers. P reflects the fact that the returning request from

154

the previous layer may have already been de-combined one or more times, so it
may have already had its number of “1” bits reduced. Note that if the node under
consideration were in the last stage of the network next to the MMs, then P = 1.

After working backwards through Sp cycles of the MATSH, the subaddress
fields of the de-combined write requests arrive at the requesting PEs. These are
used by the PEs to determine which data is to be sent (“pre-arbitration”). The
appropriate data is then sent time-sequentially through the FIER. The PEs send
data synchronously, so that a given time slot corresponds to a particular submodule
in each MM. Each PE sends data during the time allocated for a given submodule
only when it has a 1 in its returned write request subaddress field. In this way,
only one requesting PE (for each MM) may be transmitting data at any given
instant of time, and optical intensity combining is avoided. The upper and lower
combine switch settings are used within the FIER to provide pathways that merge
the pre-arbitrated write data streams as they flow to the destination MM.

For large MMs (2100 Kbyte) the required subaddress field length would be
much more than could be managed in the MATSH. In this case, the subaddress
field method needs to be replaced with subaddress ranges instead. A subaddress
range consists of lists of subaddress pairs indicating ranges of data to be written.
Instead of simple ANDs and ORs used to implement subaddress field combining,
subaddress range combining requires the MATSH switching nodes to have more

complex logic that can perform unions and splits of address ranges.

6.3 The Fetch-and-Add Algorithm

Fetch-and-add (F&A) is an inseparable combination of a read and write opera-
tion. This operation is cited in the literature [Gottlieb 83a, Gottlieb 83b] as “an
important coordination primitive.” The idea is to retrieve a value from a memory
location X, add a predetermined integer increment value v to it (often v = 1), and
store the new value back into the same memory location. A common notation for

this is F&A(X,v).

6.3.1 F&A Applications

F&A(X,v) is used in parallel algorithms (for example) to allow separate processing
elements to have an indication of when a procedure is complete by requiring each
processor to execute F&A(Y -1) when it completes its processing duties. If Y has
been properly initialized, then when the value stored in Y reaches 0, all proces-
sors have finished. Another application is to use the F&A(Z,1) to assign unique
integers to each PE as they become available (which is useful for assigning differ-
ent loop iterations to specific PEs, for example). In this case, each PE executes
F&A(Z,1) when it is available; the retrieved value tells it which loop iteration to
perform. Because each PE receives a unique value, no two PEs execute the same

loop iteration, and all loop iterations are assigned efficiently.

6.3.2 F&A Illustrations

Figure 6.2 shows the basic procedure involved in combining two F&A requests:

F&A(X,0) from PE; and F&A(X,r) from PE,. This figure illustrates two PEs

156

RETURN
REQUEST VALUE
PROCESSING PROCESSING
X:[z] X:lx+4l4r
F&A(X, (+47) X =1

T:

/N /\

F&A (X, F&A(X, r) = X =z+tL
Figure 6.2: Illustration of Fetch-and-Add (F&A).

(bottom) connected to one MM (top) via a switch node (middle). For simplicity a
network with only one switching stage is shown. It is very important to keep the
serialization principle in mind in order to understand what must be done. Given
that the original content of the memory location X is z, clearly the ultimate result
of the two operations is that the memory location X must then contain the sum
z+C+r. Furthermore, the two PEs each receive the values x and z+/¢. However,
this is not the only possible outcome of combining these two requests. The output
could equally as well have been z+r and & (not shown in the Figure). The exact
procedure is illustrated in two phases, “Request Processing”, and “Return Value

Processing”.

157

The Request Processing phase begins with the two requests, F&A(X () and
F&A(X,r) entering the network. The requests meet at a switch node. In the
examples shown here, the convention is that the request arriving from the left node
is considered to have arrived first for the purposes of the serialization principle.
Therefore the left increment value, £, is saved in the temporary storage location
T within the node. A new F&A request is then formed that combines the two
requests: F&A(X,0+r). This request is sent to the memory location X.

The Return Value Processing phase occurs next. First the value stored in that
location, X = z is returned, then the increment value {+1r is added. Thus X
ends up containing the sum x+{+r. Next the returned value X = z arrives at
the switch node. It must be “de-combined” to produce the appropriate distinct
return values to the next level. This is accomplished by using the value stored
in 7" within the node. The returned value X = z is sent to the left node, and
X = x4/ is sent to the right node, completing the F&A process. Two outcomes
of this process should be noted: (1) the value saved from the request from the left
node ends up being sent to the right node, and (2) the end result is the same as if
the left request had been processed first. Note also that different conventions are
possible for implementation of the F&A procedure, producing different but equally
acceptable results.

A multilayer example of the F&A combining process is shown in Figure 6.3.
This example illustrates how multiple combining and distributing can be used to
assign a unique integer to each PE. Given that the value of V' is initially 0, the
process results in V = 4, and each PE receives a unique integer v in the range

(0 <v<4).

158

REQUEST Vv:[o]
PROCESSING ‘
F&A(V, 4)
/ ” \
F&A(V 2) F&A(V

\ /\

F&A(V,1) F&A(V,1) F&A(V,1) F&A(V,1)

RETURN v:[4]
VALUE
PROCESSING
V=0
/ T: \
V=0 Vi=2
T: F i

AN N

V=3

Figure 6.3: F&A Index Assignment Example.

159

6.3.3 How F&A works in the SMOEC

The F&A requests in the SMOEC are satisfied during a “F&A phase” during which
only F&A requests will be processed. Due to reasons described below, there must
be only a small number (variable in software) of F& A-able memory locations within
the MMs, located in the same area of each MM. The local storage stack within
each MATSH switch node is used to store the data values needed during the F&A
operation. During the Request Processing phase, the { values are pushed onto
the stack within the switch. Then during the Return Value Processing phase the
appropriate ¢ values are popped off the stack, and added to the memory returned
value that is sent down the right branch.

It is important to note that a F&A phase uses only the MATSH for data
communication; the FIER is not used at all. Therefore, since the MATSH is not
designed for large data throughput (because of architecture and hardware design
choices), it is important that only a small number (as small as is feasible given
the application) of F&A-able locations be active at any one time. The maximum
number of F&A-able locations active at any given time is also limited by the
amount of local memory provided in the MATSH switch nodes. Since the F&A
capability is intended for algorithm coordination purposes, and not as a main data
communication mechanism, such a limitation is not likely to be overly restrictive.

A potentially useful extension of the F&A capability of the SMOEC is the abil-
ity to implement F&® algorithms. F&® is described in [Gottlieb 83a, Gottlieb 83b]
as an extension of the F&A idea wherein the add is replaced by any commutative,
associative, binary function ®. Useful examples of ¢ include OR, AND, and

MULTIPLY . The ability of the SMOEC to implement any F&® is limited only by

160

the requirements that the MATSH switches contain the necessary logic to compute
u®v and that each different type of function ®; be carried out in its own separate
F&®; phase. Given an appropriately powerful MATSH, the number of ®; functions

available simultaneously is selectable by software as needed.

6.4 Special Purpose Algorithms

The SMOEC as described so far is a general-purpose machine in the Turing sense.
However, some operations that do not parallelize efficiently on the SMOEC (as
described so far) may occur very frequently in certain application areas. There-
fore it is worthwhile to make available additional special-purpose algorithms to
allow more efficient computation for some applications. Two such algorithms are

presented in this section: data sorting and matrix transposition.

6.4.1 The Data Sort Algorithm

Sorting is easily accomplished on this architecture by sending the key data (data
to be sorted) instead of MM addresses, and having the electronic “process-and-
exchange” nodes base the switch decision on the value of the key data. A sorting
phase would consist of sorting data blocks based on key data in specified PEs or
MMs. The switches in the MATSH must contain the appropriate type of data

comparison facility if a data sort phase is to be implement.

161

6.4.2 The Matrix Transpose Facility

The matrix transposition operation is frequently used in certain applicatons, such
as in some scientific computing. A facility to expedite the transposing of a k x k
matrix that is stored in multiple MMs (1 row per MM), can be easily added to
the SMOEC. The addition of a serial-in, parallel-out (SIPO) shift register N
units wide located across the bank of MMs will speed up this process (assuming
that the number and size of MMs make switchable readout of rows and columns
impractical.)

To perform the matrix transposition using the SIPO shift register requires the
folowing steps, as illustrated (k = 4 shown) in Figure 6.4. First (Fig. 6.4a), the
FIER is set to straight through (PE;+—MM;). Next (Fig. 6.4b), all matrix data
are sent in parallel from the MMs to the PEs. Third (Fig. 6.4c), the FIER is set to
route data from all PEs to the first MM, allowing the data to be fed into the serial
input end of the SIPO shift register. The PEs then take turns (Fig. 6.4d) sending
each row of the matrix data in reverse order into the SIPO shift register. When the
arrival of a row in the STPO register is complete, it is immediately clocked in parallel
from the SIPO register into the MMs. Ultimately (Fig. 6.4e), the MMs contain
the transpose of the original matrix data in place. This & x k matrix transpose
algorithm requires two FIER reconfiguration times, plus O[k?*] high-speed data
transfer time. If no such hardware facility (the SIPO shift register) is provided, a

matrix transpose takes k& FIER reconfiguration times, which is significantly longer.

SIPO
Array of PEs OINRgéiilsftter Array of MMs

PE, — A1 Az A1z AgMM,
PE, — |Ag1 Agg Az Ay MM,
(a) PE, — |As1 Az Aaz Azq[MM,
PEa — |Aq Asz Ass AguMM;
PEo[An A1z Ajz Ay — MM,
(b) PE,|A2; Agy Aoz Agy — (MM,
PE;|A3; A3p Agz Aay _— MM,

PE3 /L;] :"1142 A.13 A.-M

— IMM3
Au| — MM,

PEy|A;1 A1 A1z Ay

NN N]

PE; A2 Az Agz Azy Ap| — IMM:
(C) PE;|As; Asp Ass Aas Ag| — MM,
PE, Au| — MM
PEy(A11 Az Az Ay Azl — [Aa INIMU
(d) PE, A3 Aga Agz Agy Az| — |Ax IMMl
PE, Azs| — Az EMMz
PE, Asa| — |Asa MM,
PE, — A1 A2y Ay AMINIMU
PE, — A1z Az Asy ApMM,
(e) PE, — |A13 A2z Agz A-::EINIM-z
PE, — |A4 Agq Agy AgyMM ;5

Figure 6.4: The Matrix Transpose Facility. SIPO, Serial-In Parallel
Out.

163

Chapter 7

ARCHITECTURE
PERFORMANCE

The SMOEC architecture is designed to provide a practical, flexible, scalable design
for a shared memory computer system. This chapter elucidates these important
system attributes by delving into implementation issues and providing specific
examples of system recipes. Fitness of the SMOEC design for varied applications

is discussed, and comparisons to similar systems are addressed.

7.1 Implementations

This section focusses on discussion of issues relevant to implementation of the
SMOEC architecture, and the development of nine example SMOEC implementa-
tion recipes. These implementation recipes provide system attributes for various
levels of technology (from current to future capabilities) and for widely differing

system sizes, which illustrates the flexibility and scalability of the SMOEC system

164

design. Each SMOEC implementation recipe supplies a set of compatible values

for all parameters given in the List of Notation preface section (page xiii).

7.1.1 Architecture Implementation Considerations

A primary assumption made in designing the SMOEC architecture is that for
current and (likely) near-term future hardware, electronic logic device speeds sig-
nificantly exceed optical array switching speeds. A passive optical network such as
the one under consideration can allow high data rates since the data pass through
the optical network without any delays due to optical array (SLM) switching times.
Pumping large sized blocks of data through a single configuration of the optical
network compensates for the slower reconfiguration time. Define three parameters:
To.sw 18 the time required to simultaneously switch the optical switches (SLMs) in
the FIER optical network, Tysr is the total optical communication time required
to access (read from or write to) an entire MM, and Ty ,rsu is the total control bit
computation and write arbitration time in the MATSH electronic routing proces-
sor. Ultimately the desire is to balance these quantities, T, Trer, and Tyarsn,
through the choice of system parameters so that hardware resources are not wasted
and bandwidth matching concerns are satisfied.

One set of relations that provides such a balance is
MATSH cycle time < FIER cycle time (7.1)
with
Foren 58 T (7.2)

The first relation, Equation 7.1, specifies that during the time taken to reconfigure

the FIER optical network and to send data through the FIER, the next control
165

bits may be computed by the MATSH routing procesor. Since the FLAEM routing
algorithm takes a significant amount of processing time to compute all the nec-
essary switch settings, the option of equality given in the above relation is quite
advantageous. The second relation, Equation 7.2, given above provides that the
time penalty due to the relatively slow optical reconfiguration time 7., is com-
pensated by the use of high speed parallel optical data communication to provide
a payoff of massive data throughput. When communication cycle procedures are
established and the various fundamental hardware parameters are specified, these
relations ultimately provide general restrictions on other system design parameters
such as D (MM size), B (submodule size), and C' (number of wires or fibers per
MATSH routing processor node). System design concerns such as speed, size, cost,
device availability, and intended applications must be weighed to select appropriate

values for the system parameters.

7.1.2 Proposed SMOEC Implementations

When specifying an implementation of the SMOEC system the goal is to select
values for the parameters listed in the List of Notation preface section (page xiii).
It is essential that the selected parameter values be compatible with each other
to produce a practical implementable system, and that the parameter values be
appropriate for the envisioned system applications (i.e. general-purpose or spe-
cialized). This section presents a development of three example general-purpose
implementations: the first using current technology (System I¢), the second using

anticipated near-term (near future) technology (System Ip), and the third using

166

(medium-term) future technology (System Ig). Each of these three example sys-
tems will be developed for three different system sizes, n=10 (N=1024), n=15
(N=32,768), and n=20 (N=1,048,576), ultimately yielding nine different imple-

mentation recipes.

7.1.2.1 Interconnection Network Communication Cycle Composition

The first step in devising a specific SMOEC implementation is to specify the com-
ponents of the interconnection network communication cycle. Many possibilities
exist for the design of the network cycle for the SMOEC system, ranging from
fixed simple phases to complex variable adaptive phases. The network cycle may
be a fixed or variable combination of read phases, write phases, fetch-and-add
phases, and other phases. For specificity and simplicity, the example implementa-
tions developed herein will use a general-purpose fixed identical design for a basic
read/write cycle, as described below.

For these example systems, let the same FIER configuration (connection pat-
tern) be used to implement a read/write cycle, which is composed of a read cycle
followed by a write cycle. So, define a FIER cycle time to be composed of three
parts, as illustrated in Figure 7.1(a). The Switch component of the FIER cycle
time is the optical reconfiguration time, T, sy, which is the time for all the SLMs
in the FIER to switch simultaneously. The Read component of the FIER cycle
time is the total optical communication time, Ty, which is the time required
for an entire MM to dump its contents through the passive network to a PE. The

Write component of the FIER cycle time is also Tyg, since the time for a set of

167

<—FIER cycle time >
Switch Read Write
Optical
(a) FIER| 7o T Tess
Communication
Optical Total Optical Total Optical
Switching time Communication time Communication time
<—MATSH cycle time—>
Routing + Write Processing
Electronic
(b) MATSH Birssen
Processing

Total Electronic Control bit computation time

Figure 7.1: Read/write phase components: (a) FIER communication;
(b) MATSH processing.

168

PEs to sequentially load an entire MM is equivalent to the Read time. Thus for
the example under consideration,
FIER CYCle Time = TO-SW + QTI"IER‘ (7.3)

The cycle time for the MATSH is illustrated in Figure 7.1(b). Each MATSH
cycle must compute the switch settings for the FIER and perform write request

arbitration using subaddress fields. Thus,

MATSH Cycle Time = Tyursu

- — —
READ READ
= SF‘[‘I’nr-mn (TLROC) o Tg(MIT })

‘i’} ?(WRITE) _}[wm'rz)
+ WRITE (PROC < Tx.\-u'r (?'4)

= — -
READ) (READ)
+ \IJ READ (7 : + T)

FPROC XMIT
= — .
(WRITE) (WRITE)
+ lI"J\"Rl']‘l:l (TPROC + TKMIT)]

where the indices on the 7 parameters indicate times for the single cycle of the E-SE
stage (within the MATSH routing processor) to process (PROC) or transmit (XMIT)
the necessary bits for a read (READ) or write (WRITE) operation in the forward (=)
or reverse (+) directions, and the ¥ parameters indicate how many forward (-)
and reverse (+) passes through the MATSH are required, and which type of data is
acted upon, read-type (rREaD) or write-type (WrITE) data. (Recall that a MATSH
pass is defined to consist of S cycles through the E-SE within the MATSH.)
Finally, inserting Equations 7.3 and 7.4 into the bandwidth-balancing relation
of Equation 7.1 yields the fundamental balancing relation for the three SMOEC

implementations developed herein:

-T‘MATSH 5 TQ-SW + QTL‘IER (75)

169

From Section 5.3.2.2, the Basic-FLAEM routing algorithm (almost) always re-
quires 2 “tries” to complete the routing of an arbitrary connection pattern. These
2 tries translate to 5 (3 forward plus 2 reverse) MATSH passes. The simple fixed
read /write cycle illustrated in Figure 7.1 may be implemented by incorporating the
write request processing into the final pass of the Basic-FLAEM routing algorithm.
First, 4 passes of the MATSH are completed, operating solely on path vector data.
These 4 passes are thus read-type MATSH passes. Then the final forward MATSH
pass (pass #5) is performed, carrying out all the switch finalization procedures
required in the Basic-FLAEM routing algorithm, while performing the first for-
ward pass using the subaddress field data to perform the forward write arbitration
pass. The subsequent reverse MATSH pass (pass #6) performs the reverse write
arbitration pass, resulting in the completed de-combined arbitrated write requests
arriving at the requesting PEs as needed. The PEs are ready to write once they’ve
received these de-combined arbitrated write requests. These last 2 passes are the
final 2 passes of the 6 MATSH passes required to generate the FIER switch settings
and arbitrate the write requests. These two final MATSH passes are write-type
passes, since they operate on subaddress fields instead of path vectors. Thus, for
the example implementations developed herein, the numbers of MATSH passes

required for the simple read/write process are: two

_}

‘DREAD = 2

{_

‘DREAD = 2

N (7.6)
‘Ilwm'rz =1

{_

lIJWRITI; = 1

170

Thus, Equation 7.4 becomes:

s =
- (READ) (READ)
TMATSH — SF[QTPnoc + QTKMIT

— —
(WRITE) (WRITE)
+ TPROC + TXMIT

— —
(READ) 9 (READ)
+ 27-Pl't‘.':!ﬂ.' + "'TXM]'I'

i —
(WRITE) (WRITE)
+ T PROC + T XMIT

7.1.2.2 Development of Specific System Implementation Recipes

In the following three sections the development is presented for the specific values
of parameters for the example systems. The order of parameter determination is
important, and is determined by which parameters are particularly important or
troublesome. The order of development used herein is merely one of many possible
methods to determine parameters in a reasonable order given various hardware
characteristics. Other sequences of system parameter determination may be em-
ployed, proceeding from known hardware characteristics or desired application con-
straints to determine the necessary bounds on the remaining parameters. For the
examples under consideration, the following three-part order of presentation is em-
ployed. First, development is presented for parameters that vary solely among the
three system types. Next, development is presented for parameters that vary solely
among the three system sizes. Finally, individual developments are completed for
parameters that vary among both system type and system size, producing nine

system implementation recipes.

171

7.1.2.3 Three System Types: Ig, I, and Ip

The switching time of the ferroelectric liquid crystal TSLMs in the FIER is a
critical parameter for any SMOEC implementation. For the implementations under
development here, let the optical switching time characterize the three system

types. Thus, define [McKnight 95, Stevens 95, Kompanets 95]:

50us System I¢
Tosw = 4 10us System Ipg (7.8)
us System Ip

Now, start from the relation given in Equation 7.2, Tygr & To.s4, Which states
that the granularity of the communication time is chosen to balance the optical
switching time. Modify this to “Tyer is within a small multiple (call it £) of Ty sw,”

where £ is “a small number,” which may be expressed as:
%To.sw S Trer S ETosw- (7.9)

Choose (arbitrarily) £ = 4, yielding:

12us S Trer S 200us System I¢
2.5us S Triern S 40us System Ip (7.10)
0.75us S Toer S 12us System Ip

Now, assume that the individual laser diodes and detectors can do:

1GHz = 10%bps System I
reier = 4 10GHz = 10'bps System Iy (7.11)
50GHz = 5x10%ps System Ip

Using these values for reen, and plugging in D =Ty grrrer gives for the size D of

the MMs:
12,500 bits < D < 200,000 bits System I
25,000 bits < D < 400,000 bits System Iy (7.12)
37,500 bits < D < 600,000 bits System Ip

172

Choose for definiteness in the subsequent calculations:

214 = 16,384 bits System Ig
D=4 27 = 131,072 bits System Iy (7.13)
21 = 524 288 bits System Ip

which after using Trer = D/Tper, yields:

16us System I
Teier = 13pus System Iy (7.14)
10us System Ip

And finally, using the relation from Equation 7.5, Tyarsy S To.sw + 2T ver, the

values from Equations 7.8 and 7.14 yield:

83 s System I¢
Tyuarsu = 36us System Ipn (7.15)
24 s System Ig

Next, the parameters are developed that quantify how the D bits in the MMs
are divided up and transported through the MATSH routing processor. Each MM

is divided up into words or “submodules” of size B. For the three systems, choose:

32 System I
B= 64 System Iy (7.16)
128 System Ig

So, for each MM, there are L words, where

512 System Ig
L =4 2048 System I (7.17)
4096 System Ip

Now if the recirculating shuffle connection for each node in the E-SE (within the
MATSH) is interconnected with C wires or fibers, the data rate per wire or fiber

(K) may be reduced by a factor of C. For the systems under discussion, choose:

C =8, (7.18)
173

which yields the number of subaddress bits to be transmitted per fiber

64 System I
K=L/C =< 256 System Ipn (7.19)
512 System Ip

Thus K is the number of bits that need to be transmitted per wire or fiber in the
MATSH routing processor during a write operation. The number of bits necessary
for a read operation will be discussed later in this section. However, both read
and write operations will need a few status bits to facilitate routing decisions, so
allocate a few status bits U to be used for both operation types. For the examples

under discussion, specify:
U =4 (7.20)
Now, specify the data rate ry, through the individual wires or fibers that com-
prise the recirculating shuffle connection in the E-SE within the MATSH routing

processor. Select:

300MHz = 3x10%bps System I¢
rw = 1GHz 10%bps System I (7.21)
5GHz = 5x10%bps System Ig

I

Assuming that the time for forward write data transmission is equal to the time

for reverse write data transmission, these parameters may now be calculated:

g E 210ns System I
TOVRITE) _ FOWRITE) _ (fr 4 [T) [py, = ¢ 960ns System Iy (7.22)

XMIT XMIT

100ns System Ip
In addition, the simple case of reverse read data transmission may be simply cal-

culated:

- 13ns System I
Fuead ~Ufry={ i0ns System Iy (7.23)
0.80ns System Ip

174

7.1.2.4 Three System Sizes: n=10, n=15, and n=20

The SMOEC architecture is designed for “fine grained computing,” so the appro-

priate system sizes are:
N € {10% to 10°} =~ {2'° to 2%°}. (7.24)

Three choices for system size that span this range are selected, and labelled with

the value of n=1log, N. The three system sizes under consideration are:

210 — 1024 =~ 103 (n=10)
N =< 215= 32768 ~ 10*° (n=15) (7.25)
220 = 1,048,576 ~ 10° (n=20)

This set of values for N (i.e. n) will be maintained throughout the development
of the implementation recipes so that the impact of system size on the resulting
SMOEC system scalability will be clearly revealed.

Current ferroelectric liquid crystal SLMs [McKnight 95, Stevens 95,
Kompanets 95] have resolutions up to 512x512 pixels. A 512x512 pixel SLM
has (27)? = 218=262,144 pixels available. For such a device, the maximum size
restricted-F RS-EGS main section stage (requiring W = N - F' pixels) would be
N = 2 =16,384 with F = 21 =16. Future SLMs with greater pixel resolutions
are expected to be developed, particularly because of the push to create high-
resolution display media for HDTV (high-definition television) applications, so
larger SMOEC implementations are expected to be quite feasible in the relatively
near future.

Now, the parameters that depend on the characteristics of the RS-EGS network
may be determined. For a restricted-F# RS-EGS with minimal device cost, the “fan-

out” F and number of main section stages Ss may be determined from the values

175

for N by using Richards’ formulae (listed in Table 3.1 on page 47):

16 (n=10)
F=1{ 16 (n=15) (7.26)
32 (n=20)
SO
4 (n=10)
f=log, F =1 4 (n=15) (7.27)
5 (n=20)
and
14 (n=10)
Ss=1 26 (n=15) (7.28)
33 (n=20)

Which gives for the total number of stages in the FIER optical network (and

recirculating passes through the E-SE in the MATSH routing processor):

22 (n=10
Sp=Ss+2f =1 34 (n=15) (7.29)
43 n=20)

In the forward direction, a read operation is required to transmit the path vector
for the connection in progress, plus the few status bits (U) previously mentioned.

The number of bits in the path vector (E) is:

28 (n=10)
E=n+f+Ss={45 (n=15) (7.30)
58 (n=20)

32 (n=10)
J=FE+U=<¢ 49 (n=15) (7.31)
62 (n=20)

176

7.1.2.5 Nine System Recipes: Three Types With Three Sizes

Now the development of the example systems is completed by finalizing the pa-
rameters for each of the nine combinations of system type and size.
The remaining forward read transmit time (Tgﬁi’;m) may now be specified using

the nine cases since the number of bits per read (J) varies with system size and

the MATSH data rate (ry) varies with system type:

110ns System Ic(n=10)

160ns System Ig(n=15)

210ns System Ic(n=20)

32ns System In(n=10)

Tﬁ,}m J/rw =4 49ns System In(n=15) (7.32)

62ns System Ipn(n=20)

6.4ns System Ip(n=10)

9.8ns System Ip(n=15)

12ns System Ig(n=20)

\

The four MATSH data transmit time per stage parameters may now be combined

with the number of stages to yield the total amount of time in the MATSH that

is devoted to transmitting information:

Tuge = Spl27000 4 Pomm | ofgms | Fummw] (7.33)
15ns System Ic(n=10)
27ns System Ig(n=15)
37ns System Ig(n=20)
13ns System In(n=10)
= 9§ 2lns System In(n=15) (7.34)
28ns System In(n=20)
4.8ns System Ip(n=10)
7.7Tns System Ip(n=15)
9.9ns System Ig(n=20)

177

so the time left in the MATSH to be devoted to processing information within the

E-SE nodes is:

68ns System Ig(n=10)
56ns System Ic(n=15)
46ns System Ig(n=20)
23ns System In(n=10)
”iinoc = Tyarsn — Txanr = § 15ns System IN(ﬂ: 15) (735)

8.5ns System In(n=20)
19ns System Ip(n=10)
16ns System Ig(n=15)
14ns System Ip(n=20)

.

These values for Tproe must be divided between the various types of processing

within the nodes in the E-SE in the MATSH, as follows:

i g . B [QT{RE!\D) £ T(wm’ra) s 27.(:{1 AD) 4 T[WRITE]] (7.36)

PROC PROC PROC PROC

To evaluate the practicality of the Tppoc values listed above, make some general

assumptions about the E-SE processing times:

S (READ) ~(READ)
TPROC << TPROC (7°37)
and
(%) Z(WRITE) — S (wWRITE) & Z(Rreap) |, T(reap) -
TPROC -é TPROC TPROC (TPROC + TPROC)' ({'38)

Thus, Equation 7.36 becomes:

'I-'I’RCJC — 4 SF T[fv;)oc 3

(7.39)

178

from which the final result for time available within each E-SE cycle for processing;:

'8

770ns System Ic(n=10)
410ns System Ic(n=15)
260ns System I (n=20)
270ns System In(n=10)
T o = Teroc/4SF = { 110ms System In(n=15) (7.40)

50ns System Ipn(n=20)
220ns System Ig(n=10)
120ns System Ip(n=15)

80ns System Ip(n=20)

.

These values are quite reasonable for the small numbers of simple operations re-

quired for read and write processing within the E-SE nodes.

7.1.2.6 Loss Calculations for Implementation Examples

It is essential to examine the optical loss encountered in the multistage implemen-
tations just specified. Calculations are now performed to determine the number of
optical repeaters required within the FIER optical network to permit an acceptable
amount of loss.

In order to perform these calculations, three assumptions are made. First, re-
quire a minimum of 1000 photons per bit at the detector for adequate bit discrim-

ination. From this, the minimum energy required at the detector is approximately

E® = 0.5f] =5x 107! Joules. (7.41)

MIN
Second, assume that the various input power levels from the laser diodes are:

100mW System Ig
Pwde =1 300mW System Ipn (7.42)
IW System Ig

Third, assume 50% loss per stage.

179

Now calculate the required minimum power at the detector, P{>5":
Det) _ J(D =
P’ = B - remen. (7.43)

Recalling the values for the optical data rate through the FIER optical network
given in Equation 7.11:
1GHz = 10°bps System I¢

rrier = § 10GHz = 10"bps System Ipg (7.44)
50GHz = 5x10%bps System Iy

yields for the minimum power at the detector:

0.5 W System I
PO =4 5uW System Iy (7.45)
25 W System Ip

Now, calculate the total tolerable optical loss factor (without repeaters) in the

FIER, from laser diodes to detectors:

peo) 2wl 2 29 System I
Lo = };\(;:K =4 6x10* 2 215 System In (7.46)
M 410t = 2 System Ip

So, with the assumed 50% loss per stage, the number of stages that may be cas-

caded without repeaters is:

17 stages System I¢
Stor = logy(Lrov) = 15 stages System Iy (7.47)
15 stages System Ip

Recall that the total number of stages in the FIER optical network is:

22 (n=10)
Sp=14 34 (n=15) (7.48)
43 (n=20)

180

Thus the number of repeaters, R, required by the nine system recipes is:

{

1 System Ig(n=10)
1 System Ig(n=15)
2 System Ig(n=20)
1 System Ipn(n=10)
R=42 System In(n=15) (7.49)
2 System Ipn(n=20)
1 System Ip(n=10)
9

System Ip(n=15)
System Ip(n=20)

[SV]

Therefore each of the nine system recipes specified herein requires either one or
two optical repeaters to be inserted in the FIER optical network.

The optical repeaters to be used in the FIER optical network must be capable
of operation at the high data rates employed in the FIER. Therefore the suggested
implementation for the one or two required optical repeaters is a simplified version
of the transmit and receive components that provide input to and output from
the FIER. Figure 7.2 provides an illustration of the components of an optical
repeater unit, showing where it is located in the FIER optical network, and how it
resembles the I/0 from the FIER to the PEs and MMs. The figure shows one high
speed optical repeater unit; two repeater units are required for some larger system
implementations (as derived above). Each of the two fiber bundles used in the
optical repeater unit provides bidirectional I/O to a section of the FIER optical
network. The high speed optical repeater unit uses independent transmit/receive
modules (Tx/Rx modules) which may be located on separate component boards.
Fach independent Tx/Rx module contains individual locally controlled laser diodes
and detectors that are identical to the Tx/Rx modules that are collocated with

the PEs on the PE boards and the Tx/Rx modules that are collocated with the

181

sappunq 12q1f woaf SurSiawa umoys auv siaqrf jpnprapuy Knonduas

d0f sjauupyd pondo Jo 1aquinu paompa. yim UMoys pup y1omjau

PO KO ‘ININ ~ [Ponudo Y[Jo 1011a1u] “umoys 1ou si2ffing pup saui] j0.41uod pup

Juawapiy Su1ssasold “qd 105§220.4d Sunnos SIVIN 1uf) 1aipaday ipondo) uv fo jimiap
Isapowd 241222 /1NUSUD.L] “XY/X L Juimoiys y1ompau [ondo Y1 241 puv SWIN ‘SHd Jo uonuv.sniyy

< HI0M1aN [eandO JALA >

Pauapsoys Kjawaapxa umoys PauaLoYs Jawapxa umoys

J[pung Jaq1j sade)g sa[punq JaqLj om} duisn sadelg ajpung JaqLj
O/ NN adueyoxg—agynys I 3peaday [eondQ padg ysry aSueyoxg—opynys 0o/1dd

°

S
i

182

FIER optical network

t within the

| repeater uni

1ca

.

XU/XL | XH/XL | XU/XL

An opt

.
.

MMM
— MM

Figure 7.2

MMs on the MM boards. Since identical technology is used to implement the
optical repeater unit as is used for optical data generation and detection, the
same high speeds may be maintained throughout the FIER optical network: at
the PEs, through the one or two optical repeater units, and at the MMs. The
high speed optical repeater unit design presented here differs from other optical
repeater techniques, such as SLMs with gain, which are not capable of such high

speed operation or as large an amount of gain.

7.1.2.7 Completed Specific System Implementations with Varied Sizes

The final nine system implementation recipes developed above are summarized in
the following three tables. Table 7.1 lists the parameters that vary with system
type, Table 7.2 lists the parameters that vary with system size, and Table 7.3 lists

the parameters that vary both with system type and size.

183

System System | System
Parameter Computed by Ic In Ip
Ty Hardware Parameter 50/s 10pus 3.0us
Optical switching time
Poris Hardware Parameter 1 GHz | 10 GHz | 50 GHz
Data rate through FIER
D Restricted choice 16,384 | 131,072 | 524,288
Memory Module size (bits)
Trrer = D/reesn 165 13us 10us
Time to access entire MM thru FIER
TMATSH To.sw T 2TF‘IER 83;.55 36,.[!5 24;,;5
Time to perform routing in the MATSH
B Restricted choice 32 64 128
Word size in MMs (“submodule” size)
L =I5 512 2048 4096
Number of words per MM
C Restricted choice 8 8 8
Number of wires or fibers per MATSH node
K = L/€ 64 256 512
Number of words per MATSH wire or fiber
U Software Parameter 4 4 4
Number of status bits for MATSH routing
Fiv Hardware Parameter 300 MHz | 1 GHz | 5 GHz
Data rate between recirc. stage in MATSH
_}
Thar® = (K + U)/ry 210ns | 260ns | 100ns
S(WRITE) __ - (WRITE) ; ;
i B =TS on 210ns 260ns 100ns
T®READ) _ [y 13 4.0 0.80
aa? =Ulrs 13ns 1.0ns .80ns

Table 7.1: SMOEC system implementation parameters for three system
types

184

System Size
Parameter Computed by n=10| n=15 n=20

N = " 210 ~ 103 215 ~ 104‘5 2‘20 ~ 106
System size =1024 =32,768 | =1,048,576

F from Richards’ Formulae 16 16 32
“Fan-out” and “Fan-in”

f = log, I 4 4 5

Ss from Richards’ Formulae 14 26 33
“Main section” stages in FIER

Sk =Ss+2f 22 34 43
Total number of stages in FIER

E =n+f+Ss 28 45 58
Number of Path Vector Bits

J =E+4+U 32 49 62
Number of Bits per READ

Table 7.2: SMOEC system implementation parameters for three system

sizes

185

System | System | System | System
Parameter Computed by Size Ic In Ip

_}

TS = P n=10 | 110ns 32ns | 6.4ns
n=15 | 160ns 49ns | 9.8ns
n=20| 210ns 62ns 12ns

— —+
Toar = Sp2T5ea? + 700 |l =10 15us | 13pus | 4.8us
e —
427 (B0 ORI | =18 || 27us | 2lps | T.7us
Time devoted to data .
transmission in the MATSH n=20 3Tps 2O e
Trroc = Twarsu — Txaar =10 68 s 23us 19us
Time devoted to routing n=15 56pus 15ps 1645
processing in the MATSH
n =20 A6ps | 8.5us 14ps
TIE:OC - T1PROC /4 SF n= 10 7701]5 270113 QQUHS
Available processing n=15 410ns 110ns 120ns
time in a MATSH node
n=20 || 260ns 50ns 80ns
R (see Section 7.1.2.6) n=10 1 1 1
Number of optical n=15 1 2 2
t its
repealer unils n 20 2 2 2

Table 7.3: SMOEC system implementation parameters for three system
types and three system sizes

186

7.1.3 Conclusions From Implementation Examples

The SMOEC architecture is shown to be a feasible design, because sets of im-
plementation parameters based on practical hardware characteristics illustrate the
realizability of systems using current (as well as future) device technology. Prac-
ticality of the architecture is the fundamental objective of the design.

The development of these nine SMOEC implementation recipes illustrates the
flexibility and adaptability of the SMOEC architecture. Throughout the specifica-
tion of the preceding nine recipes, choices were available concerning which elements
of the architecture to emphasize or give precedence to over other elements. Thus a
SMOEC implementation may be tailored to reflect particular hardware capabilities
or to optimize system behavior for particular intended applications.

The nine SMOEC implementation recipes also serve to demonstrate the scala-
bility of the SMOEC architecture. The system parameters vary very slowly with
system size; larger system sizes have quite reasonable hardware requirements and
operating parameters.

Thus the SMOEC architecture is shown to exhibit practicality, flexibility, and

scalability through the use of the nine implementation recipe examples.

7.2 Applications

The SMOEC computer is designed to function as a general-purpose parallel com-
puter. However, some applications will naturally be more adaptable to the SMOEC

architecture and be able to take advantage of its unique features.

187

One important feature of the SMOEC is its ability to take advantage of data
that is organized into logical units within the MMs (as mentioned in Section 7.3).
This means that the SMOEC is especially suitable for applications with data that
are organized and accessed in an orderly manner. Examples of this type of ap-
plication include digital simulation of physical phenomena such as aerodynamics
and fluid flow, simulation of highway or air vehicle traffic patterns, analysis of
data sets, and other structured scientific computing. Applications that depend on
random data references are likely to be a poorer fit to this architecture. Further
applications suitable for the SMOEC may also be found by selecting appropriate
deterministic algorithms that are implemented on the RP3 [Darema 86, such as
molecular dynamics and large 2-dimensional Fast Fourier Transforms (FFTs).

Another aspect of the SMOEC architecture with a large impact on applica-
tions is the result of large block data transfers. This aspect adds more weight
to the preference for logically organized data. Thus structured data references to
data blocks within the MMs will be very efficiently implemented in the SMOEC.
Applications that work on structured data but which have unstructured, repeated
random data requests will perform relatively slower. This preference for structured
data references to logically organized data is a direct consequence of the reconfigu-
ration rate of the FIER hardware (SLM switching speed) being much smaller than

the bandwidth of data transfer through the passive FIER.

188

7.2.1 Simplified SMOEC Architectures For Specific
Applications

For some types of applications, the algorithms may be developed to require only
one-to-one connection patterns (permutations). A permutation-restricted SMOEC
may be designed to run these types of applications, by replacing the FIER with a
simplified permutation-restricted version which replaces the two TSLMs per stage
with a single HWP SLM. This simplified FIER does not have the architecturally-
required 50% loss per stage since no combine or broadcast operations are ever
performed. In this case the MATSH would be identical to the MATSH for the
general case SMOEC,

As a further special case, the SMOEC is also suitable for implementing sets of
pre-computed fixed permutation patterns, like those that the GF11 [Beetem 85,
Weingarten 90, Butler 93] was designed to implement. The GF11 was designed
to do large-scale numerical solutions of problems in quantum chromodynamics
(QCD). It stored 1024 fixed interconnection patterns for its rearrangeable network,
which could be chosen as needed during run time. No other interconnection pat-
terns could be directly implemented. The QCD algorithms operated on grids from
6x6x6x6 to 16x16x16x16. Numerical integration over from 72,576 to 4,670,016
dimensions are required for such calculations. It is likely that such QCD problems,
or any similar orderly problems that work well on fixed sets of interconnection
patterns, would also be very suitable for a simplified SMOEC.

A fixed-permutation-set SMOEC may be designed for such applications that

require only specific sets of permutation interconnection patterns. For this case

189

the MATSH may be replaced by a control bit set storage bank. Since only one-
to-one connection patterns will be implemented, the previously mentioned sim-
plified FIER with single HWP SLMs replacing TSLM pairs would also be used.
Restriction of the SMOEC to SIMD operation may also be appropriate for such

applications.

7.3 Comparison with Other Shared Memory

Computers

The SMOEC is, in several ways, similar to the electronic computer architecture
known as the RP3 [Pfister 85a). This computer is also based on a shared mem-
ory model (although it can also implement message passing — direct PE-to-PE
communications). At the same time, these two architectures have some very in-
teresting differences, which have implications on the method of operation of the
SMOEC, the ability to simulate its performance, and the type of applications that
are particularly suited to its strengths.

The RP3 uses two separate networks to do the processor-to-memory communi-
cation [Pfister 85a]. It has a simple “low latency” network that is used for simple
communication tasks that are not expected to need combining, and a “combining”
network that will combine such messages as F&A (Fetch-and-add, described in
6.3). The SMOEC really has four types of processor-memory communication, but
they do not operate in separate networks. These communication types are: read

phase, write phase, F&A phase, and data sort phase. Unlike the RP3, these phases

190

all incorporate message combining as an integral part of the procedure. The op-
tical interconnection network is dedicated exclusively to one of these phases at at
time.

The RP3 handles message conflicts in both networks by an elaborate set of
queues that serve to hold messages until they can be properly routed or combined
[Norton 85]. Both internal link conflicts and output port conflicts are buffered in
these queues. This is in marked contrast to the SMOEC, which has no message
queues whatsoever. All communication requests of a given type in the SMOEC
are required to be satisfied in O[1] network passes. Conflicts are resolved during
the progress of the routing algorithm rather than being stored for later process-
ing. The SMOEC resolves internal link conflicts by using the routing algorithm
within the Address Computer to effectively utilize the extra nodes provided by
the EGS network design. Thus link conflicts which could arise in smaller networks
(such as a simple © network) are avoided. Output port conflicts are resolved by
incorporating message combining (of messages destined for the same MM) into
the communication algorithms used in the SMOEC; thus in the SMOEC there are
effectively no possible output port conflicts.

The lack of queues in the SMOEC has an interesting side benefit. Often a
critical assumption in the simulation of the RP3 is that it has infinite queues, so
that queue overflow will not have to be modelled. It is also assumed that memory
requests are randomly distributed in an even manner. However, these assumptions
may be invalid because in some cases hot spots can cause such queues to overflow in

a tree-like pattern, slowing down or halting the entire network. Since the SMOEC

191

does not have queues, and resolves all requests in O[1] network passes, it may be
simulated without requiring these limiting simplifications.

An especially important difference between these two architectures is the de-
sired arrangement of information in the MMs. In the RP3, a hashing function is
required to translate virtual addresses to physical addresses so that the probabil-
ity of multiple (nonidentical) requests to the same MM is reduced [Gottlieb 83a).
This is because if a MM receives m independent requests, they must be handled
by carrying out m serial memory accesses. On the other hand, since the SMOEC
dumps the entire contents of a MM when data is requested from it, all requests
are simultaneously satisfied. In fact, since the contents of a MM are delivered as
a complete package, it is preferred that data be logically grouped together so that
each MM contains logically related data. A hashing function would only serve to
decrease the performance of the SMOEC.

One similarity between the SMOEC and the RP3 is that both are amenable
to the same techniques of software data caching and ensuring cache coherence
[Brantley 85]. A cache is a block of memory located within each PE that maintains
private copies of some frequently used MM data. The purpose of caches is to reduce
the number of relatively slower accesses to the shared memory by introducing
another layer to the memory hierarchy between local memory and global shared
memory. Cache coherence is the requirement that a value stored in the cache be
identical to the last value stored at the corresponding shared MM location. This is
accomplished in the RP3 by requiring compile-time coherence checks which tag a
datum as either cacheable or noncacheable. Software data caching in this manner

can easily be added to the SMOEC.

It is important to remember that for evaluating the relative merits of these
two architectures, network metrics such as bandwidth and path count cannot be
relied upon to give accurate measures. Only simulation of actual algorithms on
these computers can give a reliable estimate of performance [Levitan 85]. Thus it
is especially helpful that the SMOEC requires no inherent statistical assumptions
to be made for simulation of its performance. Simulation of the operation of the

SMOEC is an important area for future work.

193

Chapter 8

CONCLUSIONS

The objective of this research has been the design of a hybrid parallel digital com-
puter system architecture which offers improved computational power over existing
parallel computers, while maintaining a realizable hardware complexity level and
utilizing only current and/or near future hardware devices. The anticipated im-
provement in performance stems from the use of an innovative shared memory
architecture involving an integration of electronic processing elements with a novel
passive optical interconnection network.

The formidable interconnection network requirements of the MIMD shared
memory paradigm are in part satisfied through the incorporation of optics in sev-
eral ways. The potentially large number and high bandwidth of the data lines
through the passive optical interconnection network (FIER) provide massive data
throughput. The capability of loading the FIER control signals in parallel permits
a separate electronic routing procesor unit to perform routing control bit computa-
tion off-line and in parallel with data passing through the FIER. Furthermore, the

need for simultaneous parallel access to individual shared memory locations also

194

warrants the incorporation of optics. Passive optical switching, with the enhanced
combine and broadcast capabilities, provides powerful facilities for read and write
conflict resolution. In addition, although the FIER was developed as the central
subsystem for the SMOEC system, it is a self-contained subsystem that may be
adapted for use in other computing and communication systems.

Essential routing and control aspects of interconnection network design are
often not explored in sufficient detail to ensure that these aspects will not un-
duly limit system performance. Control issues for the FIER optical network
are presented herein so that they can be solved during the design process. The
FLAEM routing algorithm was designed to control a regular simplified combining
(or permutation-restricted) EGS network in a circuit-switched manner in O[log N]
time. This algorithm is a useful new method for this class of EGS networks, which
are particularly suited for passive optical implementation.

The philosophy employed in the SMOEC design process involved addressing
architecture goals simultaneously with hardware concerns and control algorithm
development. Simultaneous focus on these areas was crucial since each decision
made in one area had a strong impact on the other two areas. This design philos-
ophy is an important aspect of this effort. It is an uncommon philosophy in the
field of optical and hybrid parallel computing, since control algorithms and their
corresponding impact on computer architecture and optical hardware design have
typically been given at most secondary consideration.

An example of the impact of the design philosophy’s triple focus is the balancing
of execution times of control bit computations, data communication phases, and

optical interconnection network reconfiguration. The control algorithm for the

195

interconnection network in such a shared memory architecture is fairly complex,
and takes significant computation time even when computed on a parallel machine
(e.g. by the address computer). This provides a good match to the relatively slow
(expected) switching time of the spatial light modulators (SLMs) in the optical
interconnection network, while still providing rapid optical data transfer through
the FIER (by using, for example, high-bandwidth laser diode sources and detectors
at the FIER inlets and outlets). While SLM switching time will likely improve
substantially with progress in the component optical technnologies, it is interesting
that corresponding improvements in control and communication algorithms may
also be needed for the faster switching times to be fully reflected as proportional

increases in computer performance.

196

8.1 Contributions

Contributions of the research presented herein are summarized below.

e The FIER optical network: Designed a novel optical interconnection net-
work (the Free-space Interconnection with Externally-controlled Routing) which
incorporates the following features.

> Passive switching allows high speed optical data rates.
> No buffering within the network, so hot spots cannot form.

> Circuit switching allows more powerful routing and arbitration techniques.

> The network is nonblocking; all requests are satisfied during each commu-

nication cycle.

> Homosyndetic (identical) optical shuffle-exchange stages are fully cascad-

able.

> RS-EGS network topology is flexible and well-suited to optical implemen-
tation.

> Broadcast and combine switch settings in the FIER allow combining of
requests within the network.

> Fiber bundle interfaces to and from the FIER provide a flexible method

for conversion of signals between the optical and electronic domains.

> The FIER is a self-contained subsystem that is applicable to other com-

puter and communication systems (other than the SMOEC).

197

e The FLAEM routing algorithm: Developed and simulated an algorithm
for routing in a circuit-switched combining RS-EGS network (the Flexible Lo-
calized Algorithm for EGS-network Management) which provides the following

advantages.
> Combining of requests is supported (and required, unless permutation-
restricted operation is enforced).

> Communication algorithms support multiple PEs writing to and/or read-
ing from the same MM.

> Routing decisions are based solely on local data available within a switch
during routing.

> The FLAEM simulation illustrates excellent performance; it requires only
a small constant (~2) number of “tries” to complete a full pattern of N

individual routing requests.
> The FLAEM satisfies a full set of N connection requests in O[log N] time.

> The FLAEM method has the potential for application to other related

interconnection networks.

198

e The SMOEC system architecture: Presented a detailed exposition of a
hybrid parallel computer architecture (the Shared Memory Optical/Electronic

Computer) which was designed to achieve the following properties.

> Hybrid system: The SMOEC system incorporates electronic processing
and optical communication, to best exploit the strengths and accomodate

the weaknesses of the two technologies.

> System-level design focus: Throughout the development of the
SMOEC system each of the three design aspects, architecture, hardware,
and control, were allowed to impact the design of the other two aspects,

to produce a balanced system.

> System-level design advocacy and support: The SMOEC system
illustrates the results of a strong emphasis on system-level design. A
system-level focus is explicitly and implicitly advocated throughout the

presentation.

> Shared memory architecture: Parallel access to memory is provided

at the hardware level.

> Flexibility: The SMOEC may be tailored for particular applications or
to fit specific hardware requirements.
> Realizability: The SMOEC is implementable using current technology

or future technology.

> Scalability: The SMOEC architecture provides viable system designs for

a wide range of system sizes.

199

> Sample system recipes: Nine detailed system recipes exemplify the

realizability, scalability, and flexibility of the SMOEC system.

> General-purpose MIMD operation: The SMOEC is designed to run
as a synchronous MIMD computer (it may also be designed for SIMD oper-
ation). It is suitable for a large class of applications which have structured
(not random) patterns of memory access, such as physical simulations and

image processing.

Appendix A

WOLLASTON PRISM
ANALYSIS

QUESTION: For what range of angles are the angular offsets produced by a

Wollaston prism (relatively) constant?
Recall Snell’s law for refraction at an interface between two indices of refraction,

n; and n,, where the angle of incidence is ¥J; and the angle of refraction is 7,

n;sind; = n, sin .. (A.1)

Recall that the two eigenindices of a birefringent crystal are known as n, for the
“ordinary ray,” and n, for the “extraordinary ray.” Figure A.1 shows the effect of
the Wollaston prism on orthogonally polarized rays (notated () and). Each ray
undergoes refraction at three surfaces as it passes through the Wollaston prism,
and is affected by differing indices of refraction.

At the first surface, the ray A is aligned to propagate undeflected regardless

of polarization. For the ray B, Snell’s law holds for (. (In this discussion it is

201

® n,=1.66%
& n,=1.49

Calcite

Figure A.1: The Wollaston Prism.

o
(8]

assumed that n, > n., such as in calcite. An analogous calculation would hold for
the opposite case.) For the case of §, assume that Snell’s law holds approximately
for small angles §, such that n, =~ n. . Then, for the incident angle §, and the

refracted angles §, and d;:

@y M=l ne=n, = sind = n,sind,

(A.2)
T =15 0487 = sin § & n, sin §,
For small 4, sin § = &, therefore:
®: §d=xn,d = Jdy=é/n,
° o6/ (A3)

1: d=ndy = dy=d/n

At the second surface in the Wollaston prism, the index difference is in op-

posite directions. Therefore, the refracted () and § rays bend away from and
toward the surface normal, respectively. This is what allows the Wollaston prism
to accomplish the splitting of the two polarized rays. Due to the crystal axis

orientation relative to this surface, the following index relations hold:

& ng=ns; Ty = N
(A4)

1: niRn; Ny = N,
The second surface is at an angle « to the first surface. Therefore, ray A is
incident to the second surface at angle a. For ray B, the incident angles to the
second surface become a + d; and « + §;. So the relations at the second surface

for the refracted rays A and B for both polarizations become (again using small

angle approximations):

®: naxnfy; no(a + 85) = ne(fBs + €5)
1: neaxn.f;; ne(a + 6;) & no(By + €4)

Combining equations A.3 and A.5 yields:

@i Ny BnEy; = EgRAIng

(A.6)

1: nbimngg; = g=é/n,

At the third surface (the exit face) of the Wollaston prism, the rays exit into

air. Thus the indices of refraction for all rays are now:

®: n;=n.; n, = 1
(A.7)
t: ni=n; n, =1

Define new (small) angles relative to the exit surface normal (note: all angles are

treated as unsigned):

|I>

©: Y,
RV

Using these angles, the relations for the refracted rays at the exit face become:

(A.8)

4

O: ndy=dy; ne(do + €o) ® Iy + €

(A.9)
T nody RV no(Vy — &) =V, — €
Combining equations A.6 and A.9 yields:
O ey N €, = € 0
= d (A.10)
1 ngmRe > R

Define ¢ to be the angle between the exit rays A and Ay. Further, define ¢+Ad¢
to be the angle between the exit rays B, and B;. Then A¢ is the difference in the
angular offsets produced by the Wollaston prism. Note that A¢ =€, — €. Since
equation A.10 implies that ¢} ~ ¢}, one can conclude that A¢ a2 0. Therefore the
Wollaston prism will produce relatively constant offsets as long as the small angle

approximation is valid for all angles involved.

Appendix B

The Sim-FLAEM PROGRAM

The C program implementation of the Basic-FLAEM algorithm is listed here.
Notes about aspects of the program appear below and as comments within the

program listing itself.

B.1 Sim-FLAEM C Program Notes

The following sim-FLAEM C program listing contains all the major routines to
implement the Basic-FLAEM routing procedure. However, some simpler routines
have not been included in the listing, and are summarized here. These functions
are described briefly in Table B.1.

The state variables used in the C program below differ slightly from those
explained elsewhere. They were changed for the text to add clarity to the algorithm
presentation. Table B.2 lists the correspondence between the state variables as

mentioned in the text and as used in the C program:

Function

Purpose

initutils()

set _EGS_params()

init_datafiles()

clear node()

form_path_vector()

set_permuted pri()

pull link()

propagate()

path_surgery ()

exchmsb()

report_final_summary ()

print_variousline()

Initialize various wutility functions

Assigns values to the fundamental EGS network
parameters N, F', Ss, ete.

Initialize the data files for oulput of routing
traces and summary reports

Reinitialize a node, setting ils state variable
(EGS[1[].cnd) to FREE

Compose a path vector from a given inlet index,
path number, and outlet index

Assigns a permutation of the numbers from 0 to
F —1 to the priorities of the I request copies
during the “fan-out” into the W -wide EGS array

Ezxtracts a link number from a path vector, given
the path vector and the stage number of the link

Copies all the parameters associated with a re-
quest copy at a link in a given stage to the next
specified link in the next stage

Alter the path vector to use an different path;
used in a flexible state during modpath

Invert the Most Significant Bit (MSB) of a link

address

Produces a report of the number of patterns that
took varying numbers of tries.

Used to generate traces of the various routing
passes for the purposes of program vertfication
and illustration

Table B.1: Summaries of FLAEM simulation C program routines.

206

Discussions C program
in the text variables
THRU NSAT
FIXED SATS
RUN PROG
FREE FREE
CONFLICT CONF
COMBINED COMB

Table B.2: State variable correspondences.

207

B.2 Sim-FLAEM Program Correctness

When using a computer simulation to evaluate the performance of an algorithm,
it is essential that the program correctness be verified. The simulation must be
verified for reasonable data sets so that the simulation results may be trusted.
The Sim-FLAEM program was designed to produce data which trace the routing
process from start to completion. Trace data were generated for minimal restricted-
F' RS-EGS networks for n =4 through n =7 (N =16 through N =128) and a
non-minimal case for n = 3. Alghough the data traces were extremely large, it
was necessary to product trace data for networks larger than n =5 because the
larger networks have more complexities involved in the routing procedure, such as
multiple flexible stages. Therefore a full range of networks large enough to display
sufficiently general routing characteristics were verified by hand. Sample (small)
data output from the sim-FLAEM program are provided in the next section for
the n = 3, I/ = 4, Sg = 3 example that was illustrated in Section 5.2.3. The
print_various-line() routines mentioned in the preceding section were used to
generate these output traces line by line. Data such as these were used to verify

program correctness.

B.3 Sim-FLAEM Trace Data Sample Output

EGS Network:

(n=2) N=4 F=4 Ss=3 (St=5) -- Custom (non-minimal) Parameter set
Additionally: (p=3) P=8 (w=4) W=16 pv=T7
7-bit Path Vector: (xxffpyy)

nms

=1 = # of flexible stages

st=Stage#, SRC=Source PE#, Link=Link index, pri=Priority, DEST=Destination PE#,

comb = the request copy was combined with another in the previous stage
link in next stage to be used by the request copy (from path vector).

n

next

m => modpath (randomly-generated path vector altered to avoid a conflict --

used in flexible stages only)
=> conflict (see "with" line for PE# it conflicted with)

=> combined in previous stage (used for reverse propagation bookkeeping)

I => marker indicating no special data in a request copy

#
@ => combined (see "with" line for PE# it combined with)
v
1
|

=> satisfied (SATS) connection

RANDOMLY-GENERATED CONNECTION PATTERN:

00 01 02 03
to to to to
02 03 01 03
>>>>> Try #1:
st=01 —_—
Link 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015
SRC 00 00 00 OO0 O1 01 O1 O1 02 02 02 02 03 03 03 03
pri 2! o! 1t 3¢ 21 ot 4r 3! of 1! 3! 2¢ 2! o0 1! 3!
with ! ! ! ! ! ! ! ! m! ! ! ! 1 01 ! !
next 000 003 005 006 009 011 012 015 001 002 004 007 008 011 013 014
st=02 e
Link 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015
SRC 00 02 02 00 02 00 00 02 03 01 == 01 01 03 03 01
comb ! ! ! ! ! ! ! ! ! ! v ! ! ! !
pri 2t or 1! o! 3t 1t 3! 2! 2% 2! o# 1! 1# 3# 3!
with ! ! ! ! ! ! ! ' 00 ! . 00 ! 00 00 !
next 001 002 004 007 008 011 013 014 001 003 007 009 011 013 015
st=03
Link 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015
SRC == 00 02 01 02 == == 00 02 01 == 00 == 00 02 O1
comb F ! ! ! ! ! ! ! ! . ! ! !
pri .20 0 20 1t or 3! 1! 1! . 3¢ 2 31
with : ! ! ! ! i ! ! ! ! . ! ! !
next . 002 005 007 009 . 014 001 003 006 . 010 013 015
st=04
Link 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015
SRC == 02 00 01 == 02 00 01 == 02 00 == == 02 00 O1
comb 5 ! ! ! ! ! ! ! ! ! ! !
pri . 31 21t 1} or 1! 2! 11 31 2! 0! 3!
! ! ! ! ! ! ! ! ! ! !
DEST [01] [02] [03] [01] [02] [03] fo1] [02] [01] [02] [03]

209

>>>>> Try #2:

st=01
Link 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 016
SRC == == == () == == == (] == == (2 == 03 03 03 03
pEL s o5 s | ow o& x| | 11 2! o! 3@
with' . . = | » « o« | R e T)
next : . . 006 . 2 . 015 . 004 . 009 011 012 015
st=02____
Link 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015
SRC == == == == (02 == 00 == == 03 == (03 (03 == == 01
comb | . | . . ! ! ! v
pei, & 9 & s 1 &« 1 ¢ i 1 2! 0! |
with ; . 3 2 | P [i 2 ! ‘ ! ! . [
next 008 . 013 . . 003 . 007 009 015
st=03
Link 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015
SRC == == == (03 == == == (03 02 03 == == == (00 == 01
comb : ; : ! ; : : ! | !) | |
pri . . .1 . . . 20 | o! [|
with . 3 3 ! 5 5 . 01 | ! . | |
next % . . 007 . . . 015 001 003 . 010 015
st=04__ - _
Link 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015
SRC == (02 == 03 == == == (03 == == 00 == == == == (1
comb . | ; ! ; ; ; ! | v
pri . | . o' . . . 11 | |
| ! ! | |
DEST [o1] 03] 03] [02] [03]
===== Pattern SATISFIED in 2 tries. =====
>>>>> FINAL VERSION of Pattern Settings
st=01 e e ey
Link 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 016
SRC == == == 00 == == == 01 == == 02 == == == == (3
pri . & w f = & = | y |
with . . . I . . . | | S
next . : . 006 ; . . 015 004 . . 016
st=02 N
Link 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015
SRC == = == == (2 == 00 == == == == == == = == 01
comb | . | 5 v
pri o« & ow o« | o« | s |
with | . | i |
next 5 g 2 . 008 . 013 5 . 0156
= 0 O T pay —
Link 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015
SRC == == == == == == == == 2 == == = == (00 = 01
comb | |
pri, w = & 9z s & & @ | | I
with . . ‘ ; ' . . . [. . | . |
next g 5 . A . . i . 001 . 010 . 015
st=04_______ o
Link 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015
SRC == (02 == == == == == == == == () == == == == 0l
comb . | | I
pri . | | |
| | |
DEST [o1] [02] [03]

B.4 Sim-FLAEM C Program Listing

#include "rt-hdr.h"

/+ CONDITIONS: (used in PE[].cnd and EGS[][].cnd) «

#define
#define
#define
#define
#define
#define

#define
#define

#tdefine
#define
#define

#tdefine
#define
#define
#tdefine
#tdefine
#define

NSAT
SATS
PROG
FREE
CONF
COMB

MIN_PRI -1 /« Minimum Unused Priority number (used in PE[].pri)
-1 7+ Negative .wth field indicates modpath was used {or NO)

MODDED

SKIP
PERMS
COMBS

nmax
Nmax
STmax
Fmax
Wmax

3
2
i
0]
=,
-2

=1
0
i

MAX_TRIES

1+« Newly Satisfied link, can use: [NSAT,SATS]>SATS +
/+ Link is complete, has a dest. (>0) v

/+ Link is being routed, has a dest. (>0) «

/+ Link is unused (Other fields may not be MT) +

1+ Link aborted due to conflict (<0) «

/+ Link has been combined, solo progress aborted. (<0) 4
1+ NOTE: aborted conditions above have flags< 0. 4

/+« and conditions with a dest have flags>0. +

7+ For variable do_combs «

12

(1<<nmax) /«
(2*nmax-1)
16
(Nmax*Fmax)
20

— 21’1 max

*f

211

/+ Fundamental set of EGS “constants”
long int N; /+ N = Number of PEs, MMs +
long int F; I+ F' = Fan-in, Fan-outl «
long int W; f« W =N.F = Number of links in “Main Section” «/
/+ of EGS network. «
short int n; /s logy(N) = Number of bits in PE# (1...N) +
short int £; /« log,(F) = Number of bits in Fans (1...F)
short int w; /s logo(W) = Number of bits in Linkz# (1...W) «
short int Ss; /« What the richards_fan_table() uses. (#stgs w/o fans) «
short int St; /+« Sp, where St = Ss + 2 «/
/+ (fanin,fanout = 2 stages) +
short int Sf; /« Sp-1 = The final used “main” stage, +/
/+ (final fanout stg = St) »/
long int P; /(«P=F. (255)/}\' = Number of paths «
short int p; /« logs(P) = Number of bits in path only +
short int pv; /« n+p-+n = length (bits) of full zzzppyyy path vector «
short int nms; /« n+p—w = # of stages after fan-in (=stg#1) that
/+ contain modifiable path vectors; +/
s t.e. whose desired link address ends in “p” instead 4+
/+ of “y” when extracted from the path vector. +/
/+ Can show in addition, that nms = p— [(usingw =n+) «
/+ nms = Number of Modifiable Stages

typedef char Logical; /« use lype char to hold Logical values +
typedef char Tiny; /+ use type char to hold tiny integer flag values

Logical modpath; /= Is path vector modification on-the-fly to be employed? +
Logical verbose; /= 0 =>no routing display info, else verbose=1 «

Logical do_combs; /+ 1 =>combinations, 0 = permutations +/

int num_patts; /= # of perms or combinations to be performed s

#include "rt-bitmanip.h"

struct PE_struct {
Tiny cnd; /+ CoNDition «
short int dst; /« DeSTintation MM#
short int pri; /« PRlority — used to pick which successful conn is NSAT
} PE[Nmax];
struct EGS_struct {
Tiny end; 7« CoNDition +
Tiny pri; /+ PRlority (lo value =>hi priority) +
Logical cmb; /+ Prev stg had CoMBined conn.
pv_type pvec; s+ Path VeClor «
short int src; /« SouRCe PE# (extra var. — for ezecution speed)
short int dst; /« DeSTintation MM# (extra var. — for execution speed) «/
short int wth; s« PE# Comb’d or Conf’d WiTH; or if PROG, YES =modpath «
} EGS[STmax] [Wmax]; /+ NOTE: stg. st=0 is not used, nor is st=Sr+
short int conn_tries[MAX_TRIES+1];

212

#include "rt-util.h"
#include "rt-setup-EGS.h"
#include "rt-fcns-EGS.h"

FILE *run,*out,*trc;
char trcfilename[30],runfilename[30],runcmd[50];
#include '"rt-display.h"

void main(void)

{

long int
long int
long int
long int
long int
short int
short int

short int

short int

pn; /= pn = PE# «
st,sp,sn; /« st = Stage#, sp = prev Stage#, sn = next Stage# +/
1nk,eln; /« Ink = Link#, eln = exch(ink), +
pln,uln; /+ pln = Link# in prev stage, uln = Link# for undoing «
nln; /+ nln = Link# in next stage
conflicts_exist; /« Number of conflicts encountered in a conn try +
conn_try,patt_num; ;+« Connection try index, Pattern attempt indez +
mod_stgs_left; /= Count modifiable stages; For example: +

/+ mod.stgs_left==2 =>stages 2 & 3 are mod’able
fo; /+« Counter: multiple Fan-Out copies to stage #1 »

long int path,rmn_path;
Logical prev_wins;

init_utils();
set_EGS_params();
init_data_files();

for (patt_num=1 ; patt_num<=num_patts ; patt_num++) {

/+ Choose a set of desired PE-MM connections to be performed
(do_combs==COMBS) assign_rnd_conns();

else if (do_combs==PERMS) assign_rnd_perms();

if (verbose) print_reqd_conns(trc);

if

I+ Initialize the EGS array info «
for(st=1;st<St;st++) for(lnk=0;1lnk<W;lnk++) clear_node(st,lnk);

conn_try = 0; /« number of tries to make a particular set of connections +/
/» LOOP (Counting: conn_try) until there are no conflicts +

do {

conn_try++;
if (conn_try > MAX_TRIES) max_tries_err_exit(patt_num);
if (verbose) fprintf(trc,"\n>>>>> Pattern #%d, Try #4d\n",

patt_num, conn_try);

213

1+ Do the “fan-out” into the W-wide EGS array from the PE req’s «
if (p>f) rmn_path = two_to(nms); /+ using nms = p-f, where »
else rmn_path = 0; /+ p-f = num of remaining unset path +;
for(pn=0 ; pn<N ; pn++) { /+ bits after the input Fan-Out +;
if (PE[pn].cnd==SATS) continue;
for(fo=0 ; fo<F ; fo++) {
lnk = pn*F + fo;

if (rmn_path>0) path = (fo<<nms) + rnd(rmn_path);

else path = fo;
EGS[1][1nk].src = pn;
EGS[1][1nk] .dst = PE[pn].dst;

form_path_vector(&EGS[1] [1nk].pvec , pn , path , PE[pn].dst);

EGS[1][1nk].cnd = PROG;
EGS[1] [1nk].wth = NO;
EGS[1] [1nk].cmb = NO;
}
set_permuted_pri(pn);
}

if (verbose) {
print_link_line(1);
print_src_line(1);

}

1+ MAIN ROUTING PROCESSING LOOPS +
for(st=2,sp=1,mod_stgs_left=nms ; st<St ; st++,sp++,mod_stgs_left—-) {

for(pln=0 ; pln<W ; pln++) {
if (EGS[spl[pln].cnd==SATS) continue; /« continue to next for:pln +
if (EGS[spl[pln].cnd==FREE) continue; /« continue to next for:pln +
1nk = pull_link(EGS[sp] [plnl.pvc,st); /« Ink=link# req’d this stg. +

if (EGS[st][1nk].cnd==FREE) {
propagate(sp,pln,st,lnk);
continue; ;+ continue to next for:pln ./

¥

1+ Here, assume busy current node EGS[st][ink] ==PROG or ==SATS +

if (EGS[spl[pln].dst==EGS[st][1nk].dst) { /« | COMBINE| .

EGS[sp] [plnl.cnd = COMB;
EGS[sp] [pln] .wth = EGS[st] [1nk].src;
EGS[st] [1nk].cmb = YES;

EGS[st] [1nk] .pri = Min(EGS[sp] [pln].pri , EGS[st][lnkl.pri);
continue; /« to next for:pln
} srendifiy

214

/= Now, assume busy current node, and incompatible dests s
if (modpath && (mod_stgs_left>0)) { /«|MOD PATH VECTORS|
eln = exch(lnk);
if (EGS[st][eln].cnd==FREE) {
path_surgery(&EGS [sp] [pln].pvc,st); /+ To:
/+ change the puc in prev stage sp lo »
/% point to eln in current stage st. «
propagate(sp,pln,st,eln);
EGS[sp] [pln].wth = MODDED;
continue; /« continue to next for:pln «
} else if (EGS[st][eln].dst==EGS[sp]l[pln].dst) {
/+ | COMBINE-and-MODPATH | ./
path_surgery(&EGS [sp] [pln].pve,st); /+ To: «
/+ change the puc in prev stage sp to «/
/= point to eln in current stage st. +/
EGS[spl [pln] .cnd = COMB;
EGS[sp] [pln] .wth = -EGS[st] [eln].src; /« neg to show modpath +
EGS[st][eln].cmb = YES;
EGS[st] [eln] .pri = Min(EGS[sp][pln].pri , EGS[st][eln].pri);
continue; s« to next for:pln +
}
} sxendifiy

2 y
7« Now, must assume that there is an unavoidable conflict
if (EGS[st] [1nk].cnd==SATS) prev_wins = NO;
else {/+ Assume (EGS[sp][pln].cnd==PROG) s
if (EGS[sp] [pln].pri==EGS[st][1nk].pri) prev_wins = rnd(2);
else prev_wins = (EGS[sp] [pln].pri < EGS[st][lnk].pri);
T
if (prev_wins) {
uln = pull_link(EGS[st][1nk].pvc,sp);/+ get Link# for the conn
/+ leading to current link «
EGS[sp]l [uln].cnd = CONF;
EGS[sp] [uln] .wth = EGS[sp] [pln].src;
propagate(sp,pln,st,lnk);
continue; /« continue to next for:pln +
} else { /+ so current wins «
EGS[sp] [pln] .cnd = CONF;
EGS[spl [pln] .wth = EGS[st] [1nk].src;
continue; /« continue to next for:pln «

}

nou

} s-endfor:pln.

/*?**#**t*i*tt****t**t***********;*tttt*¥¥¥)¥#¥t¥#t*tt#tt***i*#******#*

« Now, if this is a modpath stage, step through current links to see
=+ if any requests should be split and copied (or even combined!)

s+ with the adjacent exch node, at a new priority. if verbose,

w label each split/copy in the output stage listings.

ke

- [NOT IMPLEMENTED |

*k
****#************************************#**#*tl***********************

=/

if (verbose) { j«— DISPLAY DATA TRACE Section —«/

print_pri_line(sp); /+ These functions print data from the s
print_with_line(sp); /+« EGS[][] array, producing a trace of +
print_next_line(sp); /+ the connection routing process. +/

print_link_line(st);
print_src_line(st);
print_comb_line(st);

}
} /xendfor:sty

if (verbose) { ;«— FINAL DATA TRACE DISPLAY Section —«
print_pri_line(Sf);
print_dest_line(Sf);

}

7+ This is the backward trace, where satisfied conns are set to
w EGS[][].cnd=SATS; while untree-ing any combined successful paths
w and calling clear_node for any unsuccessful paths.
w Mark new PROG nodes in final stage as NSAT: for each new conn, mark:
wx PE[].end=NSAT and EGS[][].cnd=NSAT.
w Go thru each stage (st) in reverse order, converting or clearing nodes
w link by link (Ink). Check EGS[][].cmb for add’l connections to be
« marked SATS. Mark PE[].cnd=NSAT for new COMB’d conns.
=/
for (1nk=0 ; 1lnk<W ; lnk++) {
if (EGS[Sf][1nk].cnd!=PROG) continue;
pn = EGS[S£][1nk].src;
PE[pn].cnd = NSAT;
EGS[Sf][1nk].cnd = NSAT;

216

/+ Now propagate satisfied conns backward thru EGS array «
/% noting that COMBs can cause new PE#s to be NSAT +
for (st=Sf-1,sn=Sf ; st>=1 ; st--,sn—-) {
for (1nk=0 ; lnk<W ; lnk++) {
switch (EGS[st][1lnk].cnd) {

case SATS:
case FREE:
case CONF:
case PROG:

case COMB:

default:

break;

clear_node(st,lnk); break;

/+ Check if node in next stage is SATS or NSAT
nln = pull_link(EGS[st] [1nk].pvc,sn);

if (EGS[sn][nln].cnd<SATS) clear_node(st,lnk);

else EGS[st] [1nk].cnd = NSAT;

break;
/+ Check if node in next stage is SATS or NSAT «
nln = pull_link(EGS[st] [1nk].pvec,sn);
if (EGS[sn][nln].cnd<SATS) clear_node(st,lnk);
else {

pn = EGS[st][1lnk].szc;

PE[pn].cnd = NSAT;
EGS[st] [1nk].cnd = NSAT;
}
break;

printf("Bizarre error in backprop\n"); exit(1);

} /xendswitch(EGS[][].cnd)s/

} sxendfor:inksy
} /«endfor:styy

217

/+ (1) Loop across first stage st=1 and record MazPri for EGS.cnd==NSAT
w nodes (skipping SATS and FREE links), saving it in PE[].pri
w+ (2) Loop across first stage to find the first node in which
s« EGS.pri==PE.pri, and mark it with with: PE.cnd=SATS & EGS.cnd=SATS.
«+ So after Loops (1) & (2) have single “best” (MaxPri) successful
sx links marked SATS each newly successful (PE[].cnd==NSAT) connection.
«+ (3) Loop across first stage to clear superfluous remaining NSAT
« marked nodes.
*/
for (pn=0;pn<N;pn++) if (PE[pn].cnd==NSAT) PE[pn].pri = MIN_PRI;
for (1lnk=0 ; 1lnk<W ; 1lnk++) { /« Loop (1) «
if (EGS[1][1nk].cnd!=NSAT) continue;
pn = EGS[1] [1nk].src;
PE[pn].pri = Max(EGS[1][1nk].pri , PE[pn].pri);
EGS[1] [1nk].cnd = NSAT;
}
for (1lnk=0 ; 1lnk<W ; lnk++) { /« Loop (2) +
pn = EGS[1] [1nk].src;
if (PE[pn].cnd!=NSAT) continue;
if (EGS[1][1nk].cnd!=NSAT) continue;
if (EGS[1][1lnk].pri==PE[pn].pri) { /+« Only mark the first time that +
PE[pn].cnd SATS; /+ equal .pri’s are encountered.
EGS[1] [1nk] .cnd = SATS;
}
}
for (1nk=0 ; 1nk<W ; 1lnk++) { /« Loop (3) +
if (EGS[1][1nk].cnd==NSAT) clear_node(1,1lnk);
}

I n

218

conflicts_exist = 0; /« [nitialize to “no conflicts” «
/«+ LOOP THROUGH PEs TO SEE IF ALL ARE PE[].cnd==SATS «
for (pn=0;pn<N;pnt++) if (PE[pn].cnd!=SATS) conflicts_exist++;
/« NOTE(t): To get the link number for the two nodes that were combined
w tnto node “Ink”, have: one is “pln” the usual way. The other is
++ found by:
«« > EGS[st][1nk].pve = (xxxxffpyyy)
« > bedefg Link# at stage st=3
«x > abcdef Link# al stage sp=2
=+ If pln==abcdef then the other combined-in link in stage sp is:
wx eln=(~a)bedef
*f
/+ Clean up and resolve NSAT stuff +/
for(st=2,sp=1 ; st<St ; st++,sp++) {
for(1lnk=0 ; 1lnk<W ; lnk++) {
if (EGS[st][1lnk].cnd==NSAT) {
pln=pull_link(EGS[st] [1nk].pvc,sp); /+ pin=link# req'd prev stg. +
if (EGS[st]l[lnk].cmb) { /« If Node was COMB’d from 2 prev nodes «f
eln = exch_msb(pln); /+ See NOTE(t) above. w
if ((EGS[spl [pln].cnd==SATS) || (EGS[sp][eln].cnd==SATS)) {
EGS[st] [1nk].cnd = SATS;
EGS[st] [1nk].cmb = ((EGS[spl[pln].cnd==SATS)
&& (EGS[sp] [eln].cnd==SATS));
if (EGS[spl[eln] .cnd==SATS) {
EGS[st][1nk].src = EGS[sp] [eln].src;
EGS[st] [1nk].pvc = EGS[sp] [eln].pvc;
} else {
EGS[st] [1nk].src = EGS[sp] [pln].src;
EGS[st] [1nk].pve = EGS[sp] [pln].pvc;
}
} else clear_node(st,lnk);
} else {
if (EGS[sp] [plnl.cnd==SATS) {
EGS[st][1nk].cnd = SATS;
EGS[st][1nk].src = EGS[spl [plnl.src; s« Ensure same src labely/
EGS[st][1nk].pvc = EGS[spl [pln].pvc; /« and same puc fieldy
} else clear_node(st,lnk);
}
}
}
}

if (verbose) {
if (conflicts_exist==0) fprintf(trc,"Pattern #/d SATISFIED in %d %s.\n",

patt_num, conn_try, ((conn_try==1) ? "try" : "tries"));
fprintf(trc,"\f");
}

} while (conflicts_exist>0);

219

if (verbose) {
fprintf(trc,"FINAL VERSION of Pattern #)d\n",patt_num);
print_link_line(1);
print_src_line(1);
for(st=2,sp=1 ; st<St ; st++,sp++) {
print_pri_line(sp);
print_with_line(sp);
print_next_line(sp);
print_link_line(st);
print_src_line(st);
print_comb_line(st);
¥
print_pri_line(Sf);
print_dest_line(Sf);
}

conn_tries[conn_tryl++;
} /«endfor:patt_numsy
report_final_summary();

} /+end-function-mains/

220

Bibliography

[Abdennadher 92] A. Abdennadher and T.-Y. Feng, “On rearrangeability of

[Barakat 87]

[Beetem 85]

[Borodin 85]

[Brantley 85]

[Brenner 88|

[Butler 93]

[Cheng 92]

omega-omega networks,” in Proc. 1992 Int. Conf. on Parallel
Processing, pp. 1159-1165, Aug. 1992.

R. Barakat and J. Reif, “Lower bounds on the computational
efficiency of optical computing systems,” Appl. Opt., Vol. 26,
No. 6, pp. 1015-1018, Mar. 1987.

J. Beetem, M. Denneau, and D. Weingarten, “The GF11 super-
computer,” in Proc. 12th Ann. Int. Symp. on Computer Archi-
tecture (IEEE Computer Society Press, Washington, DC), pp.
108-115, June 1985.

A. Borodin and J. E. Hopcroft, “Routing, merging, and sorting
on parallel models of computation,” J. Comput. and System
Sciences, Vol. 30, pp. 130-145, 1985.

W. C. Brantley, K. P. McAuliffe, J. Weiss, “RP3 processor-
memory element,” in Proc. 1985 Int. Conf. on Parallel Pro-
cessing (IEEE Computer Society Press, Washington, DC), pp.
782-789, Aug. 1985.

K.-H. Brenner and A. Huang, “Optical implementations of the
perfect shuffle interconnection,” Appl. Opt., Vol. 27, No. 1, pp.
135-137, Jan. 1988.

F. Butler, H. CHen, J. Sexton, A. Vaccarino, and D. Wein-
garten, “Hadron mass predictions of the valence approximation
to QCD,” Phys. Rev. Lett., Vol. 70, No. 19, pp. 2849-2852, May
1993.

L. Cheng and A. A. Sawchuk, “Three-dimensional omega net-
works for optical implementation,” Appl. Opt., Vol. 31, No. 26,
pp. 5468-5479, Sept. 1992.

o]
| S%]
[—

[Cloonan 92]

[Cloonan 94]

[Darema 86]

[Feldman 88|

[Feng 74]

[Fortune 78]

[Freeman 92]

[Giles 86]

[Goodman 84]

T. J. Cloonan, G. W. Richards, A. L. Lentine, I'. B. McCormick,
and J. R. Erickson, “Architectural issues related to the optical
implementation of an EGS network based on embedded con-
trol,” Opt. and Quant. Elect. Vol. 24, No. 4, pp. S415-S412,
Apr. 1992.

T. J. Cloonan, G. W. Richards, R. L. Morrison, A. L. Lentine,
J. M. Sasian, F. B. McCormick, S. J. Hinterlong, and H. S.
Hinton, “Shuffle-equivalent interconnection topologies based on
computer-generated binary-phase gratings,” Appl. Opt., Vol.
33, No. 8, pp. 1405-1430, Mar. 1994.

I'. Darema-Rogers, G. I'. Pfister, and K. So, “Memory access
patterns of parallel scientific programs,” IBM Research Re-
port RC12086 (IBM T. J. Watson Research Center, Yorktown
Heights, NY), July 1986.

M. R. Feldman, S. C. Esener, C. C. Guest, and S. H. Lee,
“Comparison between optical and electrical interconnects based
on power and speed considerations,” Appl. Opt., Vol. 27, No.
9, pp. 1742-1751, May 1988.

T.-Y. Feng, “Data manipulating functions in parallel processors
and their implementations,” IEEE Trans. Comput., Vol. C-23,
pp. 309-318, Mar. 1974.

S. Fortune and J. Wyllie, “Parallelism in random access ma-
chines,” in Proc. 10th Ann. ACM Symposium on Theory of
Computing (Association for Computing Machinery, NY), pp.
114-118, 1978.

M. O. Freeman, T. A. Brown, D. M. Walba, “Quantized com-
plex ferroelectric liquid crystal spatial light modulators,” Appl.
Opt., Vol. 31, No. 20, pp. 3917-3929, July 1992.

C. L. Giles and B. K. Jenkins, “Complexity implications of op-
tical parallel computing,” in Proc. Twentieth Annual Asilomar
Conference on Signals, Systems, and Computers, pp. 513-517,
Nov. 1986.

J. W. Goodman, F. I. Leonberger, S.-Y. Kung, R. A. Athale,
“Optical interconnections for VLSI systems,” Proc. IEEE, Vol.
72, No. 7, pp. 850-866, July 1984.

[S]
SV
(S

[Gottlieb 83a)

[Gottlieb 83b]

[Guha 90]

[Handschy 87]

[Hartman 86]

[Hinton 93a)

[Hinton 93b]

[Hwang 93]

[Jahns 88]

[Jenkins 86]

A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L.
Rudolph, and M. Snir, “The NYU Ultracomputer — design-
ing an MIMD shared memory parallel computer,” IEEE Trans.
Comput., Vol. C-32, No. 2, pp. 179-183, Feb. 1983.

A. Gottlieb, B. D. Lubachevsky, and L. Rudolph, “Basic tech-
niques for the efficient coordination of very large numbers of
cooperating sequential processors,” ACM Trans. Prog. Lang.
Syst., Vol. 5 No. 2, pp. 165-189, April 1983.

A. Guha, J. Bristow, C. Sullivan, and A. Husain, “Optical in-
terconnections for massively parallel architectures,” Appl. Opt.,

Vol 29, No. 8, pp. 1077-1092, Mar. 1990.

M. A. Handschy, K. M. Johnson, W. T. Cathey, and L. A.
Pagano-Stauffer, “Polarization-based optical parallel logic gate
utlilizing ferroelectric liquid crystals,” Opt. Lett., Vol. 12, No.
8, pp- 611-613, Aug. 1987.

D. H. Hartman, “Digital high speed interconnects: a study of
the optical alternative,” Opt. Eng., Vol. 25, No. 10, pp. 1086-
1102, Oct. 1986.

H. S. Hinton, J. R. Erickson, T. J. Cloonan, G. W. Richards,
“Space-division switching,” in Photonics in Switching, J. E.
Midwinter, ed. (Academic Press, Boston MA) Vol. II, pp. 119-
167, 1993.

H.S. Hinton, J. R. Erickson, T. J. Cloonan, F. A. P. Tooley, F.
B. McCormick, and A. L. Lentine, An Introduction to Photonic
Switching Fabrics, (Plenum Press, New York NY') 1993.

K. Hwang, Advanced Computer Architecture: Parallelism, Scal-
ability, Programmability, (McGraw-Hill, New York NY) 1993.

J. Jahns and M. J. Murdocca, “Crossover networks and their
optical implementation,” Appl. Opt., Vol. 27, No. 15, pp. 3155-
3160, Aug. 1988.

B. K. Jenkins and C. L. Giles, “Parallel processing paradigms
and optical computing,” in Proc SPIE Vol. 625 Optical Com-
puting, pp. 22-29, Jan. 1986.

223

[Jenkins 88]

[Jenkins 92]

[Johnson 87]

[Johnson 88§]

[Jutamulia 89]

[Kompanets 95]

[Kumar 86]

[Lee 86]

[Lee 88]

[Lev 81]

B. K. Jenkins and C. L. Giles, “Superposition in optical com-
puting,” Proc. SPIE Vol. 963, ICO Optical Computing, pp. 407-
413, Aug. 1988.

B. K. Jenkins, S. H. Lee, and C. L. Giles, “Optical computing:
introduction by the feature editors,” Appl. Opt., Vol. 31, No.
26, pp. 5423-5425, Sept. 1992.

K. M. Johnson, M. A. Handschy, and L. A. Pagano-Stauffer,
“Optical computing and image processing with ferroelectric lig-

uid crystals,” Opt. Eng., Vol. 26, No.5, pp. 385-392, May 1987.

K. M. Johnson, M. R. Surette, and J. Shamir, “Optical inter-
connection network using polarization-based ferroelectric liquid
crystal gates,” Appl. Opt., Vol. 27, No. 9, pp. 1727-1733, May
1988.

S. Jutamulia, and G. Storti, “Incoherent optical interconnects
(perfect shuffle) based on shadow casting,” Appl. Opt., Vol. 28,
No. 20, pp. 4262-4263, Oct. 1989.

I. N. Kompanets, “Spatial Light Modulators: Russian Research,
Development, and Applications,” Optical Society of America
Topical Meeting on Spatial Light Modulators and Applications,
1995 Technical Digest Series, (Optical Society of America,
Washington DC), pp. 144-145, Mar. 1995.

M. Kumar and G. I'. Pfister, “The onset of hot spot con-
tention,” in Proc. 1986 Int. Conf. on Parallel Processing (IEEE
Computer Society Press, Washington, DC), pp. 28-34, Aug.
1986.

G. Lee, C. P. Kruskal, D. J. Kuck, “The effectiveness of com-
bining in shared memory parallel computers in the presence of
‘Hot Spots’,” in Proc. 1986 Int. Conf. on Parallel Processing
(IEEE Computer Society Press, Washington, DC), pp. 35-41,
Aug. 1986.

S. H. Lee and S. C. Esener, “Justifications for a hybrid approach
to optical computing,” Proc. SPIE Vol. 881 Optical Compuling
and Nonlinear Malerials, pp. 177-178, Jan. 1988.

G. F. Lev, N. Pippenger, and L. G. Valiant, “A fast parallel
algorithm for routing in permutation networks,” IEEE Trans.
Comp., Vol. C-30, No. 2, pp. 93-100, Feb 1981.

224

[Levitan 85]

[Li 92]

[Li 95]

[Lin 87]

[Lohmann 86a)

[Lohmann 86b]

[Lohmann 95]

[McAdams 90]

[McKnight 95]

S. P. Levitan, “Evaluation criteria for communication structures
in parallel architectures,” in Proc. 1985 International Conf. on
Parallel Processing (IEEE Computer Society Press, Washing-
ton, DC), pp. 147-154, Aug. 1985.

K.-Y. Li, B. K. Jenkins, and C. Waterson, “Optical parallel-
access read /write shared memory based on photorefractive crys-
tals,” Optical Society of America Annual Meeting, 1992 Tech-
nical Digest Series, (Optical Society of America, Washington
DC), paper ThX1, p. 144, Sept. 1992.

K.-Y. Li, and B. K. Jenkins, “Optical parallel-access shared
memory system: analysis and experimental demonstration,”
Appl. Opt., Vol. 34, No. 2, pp. 358-369, Jan. 1995.

S.-H. Lin, T. F. Krile, and J. . Walkup, “2-D optical multistage
interconnection networks,” Proc. SPIE Vol. 752 Digital Oplical
Computing, pp. 209-216, Jan. 1987.

A. W. Lohmann, W. Stork, and G. Stucke, “Optical perfect
shuffle,” Appl. Opt., Vol. 25, No. 10, pp. 1530-1531, May 1986.

A. W. Lohmann, “What classical optics can do for the digital
optical computer,” Appl. Opt., Vol. 25, No. 10, pp. 1543-1549,
May 1986.

A. W. Lohmann, “The history of optical computing: a per-
sonal perspective,” Optical Society of America Topical Meeting
on Spatial Light Modulators and Applications, 1995 Technical
Digest Series, (Optical Society of America, Washington DC),
pp. 252-254, Mar. 1995.

L. R. McAdams, R. N. McRuer, and J. W. Goodman, “Liquid
crystal optical routing switch,” Appl. Opt., Vol. 29, No. 9, pp.
1304-1307, Mar. 1990.

D. J. McKnight, S. A. Serati, I{. M. Johnson, and M. H. Schuck,
“Liquid crystal over silicon spatial light modulators: emphasis
on design for applications,” Optical Society of America Topical
Meeting on Spatial Light Modulators and Applications, 1995
Technical Digest Series, (Optical Society of America, Washing-
ton DC), pp. 126-129, Mar. 1995.

225

[Miller 89]

[Nassimi 81]

[Noguchi 91]

[Norton 85]

[Ostermayer 83]

[Parker 80]

[Patel 81]

[Patel 87]

[Pfister 85a]

[Pfister 85b)]

D. A. B. Miller, “Optics for low-energy communication inside
digital processors: quantum detectors, sources, and modulators
as efficient impedance converters,” Opt. Lett., Vol. 14, No. 2,
pp- 146-148, Jan. 1989.

D. Nassimi and S. Sahni, “A self-routing Benes network and
parallel permutation algorithms,” IEEE Trans. Comp., Vol. C-
30, No. 5, pp. 332-340, May 1981.

K. Noguchi, T. Sakano, and T. Matsumoto, “A Rearrangeable
multichannel free-space optical switch based on multistage net-
work configuration,” J. Lightwave Tech., Vol. 9, No. 12, pp.
1726-1732, Dec. 1991.

A. Norton and G. F. Pfister, “A methodology for predicting
multiprocessor performance,” in Proc. 1985 Int. Conf. on Par-
allel Processing, pp. 772-781, Aug. 1985.

F. W. Ostermayer, Jr., P. A. Kohl, and R. H. Burton, “Pho-
tochemical etching of integral lenses on InGaAsP/InP light-
emitting diodes,” Appl. Phys. Lett., Vol. 43, No. 7, pp. 642-644,
Oct. 1983.

D. S. Parker, Jr., “Notes on shuffle/exchange-type networks,”
IEEE Trans. Comput., Vol. C-29, pp. 213-222, Mar. 1980.

J. H. Patel, “Performance of processor-memory interconnec-
tions for multiprocessors,” IEEE Trans. Comp., Vol. C-30, No.
10, pp. 771-780, Oct. 1981.

J. S. Patel and J. W. Goodby, “Properties and applications
of ferroelectric liquid crystals,” Opt. Eng., Vol. 26, No. 5, pp.
373-384, May 1987.

G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey,
W. J. Kleinfelder, K. P. McAuliffe, E. A. Melton, V. A. Nor-
ton, J. Weiss, “The IBM research parallel processor prototype
(RP3): introduction and architecture,” in Proc. 1985 Int. Conf.
on Parallel Processing (IEEE Computer Society Press, Wash-
ington, DC), pp. 764-771, Aug. 1985.

G. F. Pfister and V. A. Norton, “ ‘Hot spot’ contention and
combining in multistage interconnection networks,” in Proc.
1985 Int. Conf. on Parallel Processing (IEEE Computer So-
ciety Press, Washington, DC), pp. 790-797, Aug. 1985.

b
[Sv]
(=2}

[Pinkston 92]

[Psaltis 90]

[Richards 91a]

[Richards 91b]

[Richards 93]

[Sawchuk 87]

[Sawchuk 88]

[Schenfeld 95]

[Schwartz 80]

[Sheng 89]

T. M. Pinkston, “T’he GLORI strategy for multiprocessors: in-
tegrating optics into the interconnect architecture,” Ph.D. Dis-
sertation, Stanford University, Stanford, CA, 1992.

D. Psaltis, M. A. Neifeld, A. Yamamura, and S. Kobayashi,
“Optical memory disks in optical information processing,”
Appl. Opt., Vol. 29, No. 14, pp. 2038-2057, May 1990.

G. W. Richards, “Concurrent multi-stage network control ar-
rangement,” U.S. Patent Number 4,991,168, Feb. 5, 1991.

G. W. Richards, “Network control arrangement for process-
ing a plurality of connection requests,” U.S. Patent Number
4,993,016, Feb. 12, 1991.

G. W. Richards, “Theoretical aspects of multi-stage networks
for broadband networks,” Tutorial Notes from IEEE Infocom
93, San Francisco, CA, Mar. 28, 1993.

A. A. Sawchuk, “3-D optical interconnection networks,” in Proc.
SPIE Vol 813 Proc. 1fth Congress of the Int. Commission for
Optics, pp. 547-548, Aug. 1987.

A. A. Sawchuk and 1. Glaser, “Geometries for optical imple-
mentations of the perfect shuffle,” in Proc. SPIE Vol. 963 Proc.
Int. Optical Computing Conf., pp. 270-279, Aug. 1988.

E. Schenfeld, “Massively parallel processing with optical inter-
connections: what can be, should be and must not be done with
optics,” Optical Society of America Topical Meeting on Spatial
Light Modulators and Applications, 1995 Technical Digest Se-
ries, (Optical Society of America, Washington DC), pp. 16-18,
Mar. 1995.

J. T. Schwartz, “Ultracomputers,” ACM Trans. Prog. Lang.
Syst., Vol. 2, No. 4, pp. 484-521, Oct. 1980.

Y. Sheng, “Light effective 2-D optical perfect shuffle using Fres-
nel mirrors,” Appl. Opt., Vol. 28, No. 15, pp. 3290-3292, Aug.
1989.

&
0D
-3

[Stevens 95]

[Stirk 88]

[Stone 71]

[Stone 73]

[Thomas 86]

[Vishkin 83]

[Waterson 91|

[Waterson 94a]

[Waterson 94b]

[Waterson 95]

A. J. Stevens, J. Gourlay, S. Samus, W. J. Hossack, D. G.
Vass, and D. C. Burns, “Experimental Investigation of Free
Space Optical Interconnects,” Optical Society of America Topi-
cal Meeting on Spatial Light Modulators and Applications, 1995
Technical Digest Series, (Optical Society of America, Washing-
ton DC), pp. 38-41, Mar. 1995.

C. W. Stirk, R. A. Athale, and M. W. Haney, “Folded perfect
shuffle optical processor,” Appl. Opt., Vol. 27, No. 2, pp. 202-
203, Jan. 1988.

H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE
Trans Comput., Vol. C-20, No. 2, pp. 153-161, Feb. 1971.

H. S. Stone, “Problems of parallel computation,” in Complezity
of Sequential and Parallel Numerical Algorithms, J. F. Traub
ed., Academic Press, New York, pp. 1-16, 1973.

R. H. Thomas, “Behavior of the Butterfly (tm) parallel proces-
sor in the presence of memory hot spots,” in Proc. 1986 Int.
Conf. on Parallel Processing (IEEE Computer Society Press,
Washington, DC), pp. 46-50, Aug. 1986.

U. Vishkin and A. Vidgerson, “Dynamic parallel memories,”
Information and Control, Vol. 56, pp. 174-182, 1983.

C. Waterson and B. K. Jenkins, “Shared Memory Optical/Elec-
tronic Computer: Architecture and Design,” Optical Society of
America Topical Meeting on Optical Computing, 1991 Technical
Digest Series, (Optical Society of America, Washington DC),
pp- 195-198, Mar. 1991.

C. Waterson and B. K. Jenkins, “Shared Memory Optical/Elec-
tronic Computer: Architecture and Control,” Appl. Opt., Vol.
33, No. 8, pp. 1559-1574, Mar. 1994.

C. Waterson and B. K. Jenkins, “Passive optical interconnec-
tion network employing a shuffle-exchange topology,” Appl.
Opt., Vol. 33, No. 8, pp. 1575-1586, Mar. 1994.

C. Waterson and B. K. Jenkins, “Routing algorithm for a
circuit-switched optical extended generalized shuffle network,”
Optical Society of America Topical Meeting on Optical Comput-
ing, 1995 Technical Digest Series, (Optical Society of America,
Washington DC), pp. 29-31, Mar. 1995.

228

[Weingarten 90] ~ D. Weignarten, “The status of GF11,” Nuclear Physics B (Proc.
Suppl.), Vol. 17, pp. 272-275, 1990.

[Wu 80] C.-L. Wu, T.-Y. Feng, “On a class of multistage interconnection
networks,” IEEE Trans. Comput., Vol. C-29, No. 8, pp. 694-702,
Aug. 1980.

[Wu 81] C.-L. Wu, T.-Y. Feng, “The universality of the shuffle-exchange
network,” IEEE Trans. Comput., Vol. C-30, No. 5, pp. 324-332,
May 1981.

[Yew 86] P.-C. Yew, N.-F. Tzeng, and J. H. Lawrie, “Distributing hot-

spot addressing in large-scale multiprocessors,” in Proc. 1986
Int. Conf. on Parallel Processing (IEEE Computer Society
Press, Washington, DC), pp. 51-58, Aug. 1986.

229

