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Abstract

We propose a scale-limited signal model based on wavelet representation and study the
reconstructability of scale-limited signals via extrapolation in this research. In analogy with the
band-limited case, we define a scale-limited time-concentrated opera'tor, and examine various
vector spaces associated with such an operator. It is proved that the scale-limited signal space
can be decomposed into the direct sum of two subspaces and only the component in one subspace
can be exactly reconstructed, where the reconstructable subspace can be interpreted as a space
consisting of scale/time-limited signals. Due to the ill-posedness of scale-limited extrapolation,
a regularization process is introduced for noisy data extrapolation.

1 Introduction

The band-limited signal model has been widely used in the past three decades [12], [13], and
band-limited extrapolation has been extensively studied and applied in signal reconstruction [4],
(11]. Possible applications include spectrum estimation, synthetic aperture radar (SAR) imaging,
limited-angle tomography, beamforming and high resolution image restoration. The performance
of an extrapolation algorithm is highly dependent on a proper modeling of the underlying signal.
There are however signals which are not band-limited such as time-limited signals. Wavelet theory
has recently attracted a lot of attention as a useful tool for signal modeling, and the multiresolution
wavelet representation leads naturally to a scale-limited signal model.

The scale-limited model includes the band-limited model as a special case, since by choosing
the wavelet basis to be the sinc functions, the scale-limited model is reduced to the band-limited
one. To illustrate the additional modeling power of the scale-limited model, we may consider

the following two examples. First, the cubic cardinal B-spline wavelet basis [2] spans a function
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space whose elements are second-order polynomials between knots and with continuous first-order
derivate at knots. Many practical signals can be well approximated with such a function space.
Second, time-localized wavelet bases such as the Haar and Daubeches wavelets are more suitable
than the conventional Fourier basis in modeling signals with interesting transient information such
as those arising from the electrocardiogram and radar applications.

There exist two fundamental questions in signal extrapolation, i.e. the reconstructability of a
signal via extrapolation, and the sensitivity of the extrapolation process to noise. With respect
to the band-limited case, these two questions have been examined thoroughly. The answer to the
first question is positive. That is, a band-limited signal can be exactly reconstructed from its any
segment when no noise exists. As to the second question, it is well known that the band-limited
extrapolation process is an ill-posed problem. By adding a small amount of noise in observed
data, the extrapolated solution may change dramatically. To overcome the ill-posedness of the
extrapolation process, it is often to introduce a regularization technique.

Theory on band-limited signal modeling and extraplation has been well developed [13]. It can be
dated back to the work [12] of Slepian in early 60’s. In order to provide a meaningful explanation for
band-limited signals, Slepian [12] constructed a complete set of band-limited functions by using the
eigenfunctions of a time-concentrated band-limited operator, known as the prolate spheroidal wave
functions (PSWFs). Papoulis [11] and Gerchberg [4] develpoed an iterative algorithm for band-
limited signal extrapolation, and proved the convergence of the algorithm by using the PSWFs
in the 70’s. Many interesting problems can also be conveniently solved based on PSWFs. They
include band-limite extrapolation for noisy data [19] and with unevenly sampled observations [1].
The discrete prolate spheroidal sequence (DPSS) has also been studied by researchers [6], [15].

In this research we attempt to answer the above two fundamental questions in the scale-limited
context. In analogy with the band-limited case, we define a scale-limited time-concentrated op-
erator, and examine various vector spaces associated with such an operator. It is proved that
the scale-limited signal space can be decomposed into the direct sum of two subspaces and only
the component in one subspace can be exactly reconstructed. We show that the reconstructable
subspace can be well interpreted as a vector space consisting of scale/time-limited signals with a
significant amount of energy in the observed interval. In contrast with the band-limited case where
every band-limited signal can be exactly reconstructed via extrapolation regardless of the length
and position of the observation interval, this result appears to be more consistent with our intuition.
It is important to point out that the reconstructability of band-limited signals is fundamentally
linked to the fact that every band-limited function is analytic. However, this assumption is too

strong to hold in many practical situations. We feel that the scale-limited model provides not



only a more general and but also more natural choice than the conventional band-limited one, and
should receive more attention. We also prove the ill-posedness of scale-limited extrapolation, and
introduce a regularization process in handling noisy obervations.

This paper is organized as follow. We define a scale-limited time-concentrated operator, examine
various vector spaces associated with such an operator, and study the reconstructability of scale-
limited signals for the continuous-time case in Section 2. The discrete-time case is developed in
parallel in Section 3. We describe a scale/time-limited extrapolation algorithm proposed by Xia,
Kuo and Zhang [18] and prove its convergence in Section 4. The ill-posedness of scale-limited
extrapolation is shown, and a regularization process for noisy data extrapolation is introduced in
Section 5. Numerical experiments are provided in Section 6 to illustrate the performance of the

regularized extrapolation algorithm. Some concluding remarks are given in Section 7.

2 Reconstructability of Continuous-time Scale-limited Signals

The scale-limited signal model is based on multiresolution analysis and wavelet theory. Consider a
sequence of successive approximation space P; of L?(R) satisfying,

s CPg CP1CPoCPLCPyev+, with UPJ-;:LQ(R)' ﬂ’P_,v:{{]}.
b] J

Let ¢(t) be the associated scaling function so that {¢;(t) }xez, Where ¢jk(t) = 27/2¢(27t — k), is
an orthonormal basis of the wavelet subspace P;. The mother wavelet function corresponding to
@(t) is denoted by ¥(t). Then, {¥;r(t) = 21/24(27t — k), j,k € Z} forms an orthonormal basis in
L%(R). For any f(t) € L*(R), we have

fit)= i i bjkik(t). (2.1)

j=—o0 k=—o00

The projection fj(t) of f(t) in Py can be written as

[=o]

Bie Y eptnli=T S bukald. (2.2)

k==c0 i<d k=—c0
We call f;(t) a scale-limited signal, since its wavelet coefficients are zero for j > J. The wavelet
coefficients bjk, 7 < J, can be computed from coefficients ¢ by a fast recursive formula, and vice
versa [8].
In analogy with the band-limited time-concentrated operator, we define the scale-limited time-
concentrated operator H as an integral operator which maps f(t) € L?(R) to g(t) € L*[-T,T]
via

S ([T 1606l ds) b0 = ), 1€ [-1,1) -

k=—c0



In words, this operator projects the function f(t) into the wavelet subspace Py and then truncates
the projected function in the time domain. The signal extrapolation problem with a scale-limited
model P, can be formulated as the solution of H f = g for the projected f;(t) of f(t) in P; based
on the observation g(t). By reconstructability, we mean that f;(t) can be solved uniquely for any
g(t) € L*[-T,T). The operator H is clearly linear and bounded. To get more insight into this
problem, it is important to examine various vector spaces associated with H and its adjoint H*. It

is easy to derive that H H* defines an integral operator from L?[—T, T to itself, i.e.

T
HHg(t) = [ 9(9)Qs(s,)ds, te[-T,T), (2.4)
where
E Z bak(s)par(t), (s,t) € R?, (2.5)
k=—00

is the reproducing kernel for the reproducing kernel Hilbert space P [17], [18].

In what follows, we assume that Q(s,t) is continuous in [~T,T)* and finite in R%. The
eigenfunctions of HH* can be examined by using the adjoint operator theory. For a real scaling
function ¢, (t), the operator HH* is self-adjoint and positive semidefinite so that all eigenvalues
A of HH™ are real and nonnegative. We can arrange them in a descending order in terms of
magnitude,

00 > |Ao| 2 [A1] 2 -+ 20,

and use ro(t), ry(t), - -+ to denote their corresponding eigenfuctions, i.e.

H*r(t) = Mere(t), te[-T,T). (2.6)
The compactness of HH™ can be proved in the following lemma.
Lemma 1 The operator HH™ is compact.

Proof: Let us define the kernel
QJM— Z ¢Jm ¢J‘m()
|m|<M

We know from wavelet theory that the scaling function is well concentrated in the time domain so
that

Qs—Qumll= > / ] GIm(8)bam(t)dtds =+ 0, as M — co.

|m|>M

Let HysHjyy denote the integral operator with kernel @ as. Then, we have
|HH* — HyHy|| < Qs — Qumll =0, as M — oo.
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Since the rank of HpyHjf, is (2M + 1)2, it is compact. With the result in [10, pages 384, theorem
5.24.8], we conclude that HH* is compact. a

By using the above lemma and spectrum theory [10], we claim that the set of functions {ri(t)}.so
is complete and forms an orthogonal basis in L*[-T',T].
Now, let us focus on the set of eigenfunctions with nonzero eigenvalues, i.e. ri(t) with k¥ € K,

where
K={0,1,K: >2A 22Xk >0and \g4y; = Ag42=---=0}.

By using (2.4) and (2.5), we can extend these eigenfunctions from [-T,T] to R to define a new set

of functions

r(t) = ,\lkf_i re(s)Qu(s, t)ds = Aik Zﬂ: (f_z f‘k(3)¢Jn(S)dS) ¢un(t), teR. (2.7)

Some properties of 7y € L?(R) were derived in [18] and summarized in Lemma 2.
Lemma 2 The eigenfuction functions 7(t), k € K, satisfy the following three properties.
1. Fork € K, r(t) € Py, i.e. they are scale-limited.

2. The functions 7 (t), k € K, are orthonormal in (—co,00) and orthogonal in [-T,T)], that is,

oo T
/ FO)F(O)dt = 6, and f L OR()d = N

—-00

3. For any f(t) € Py and k € K,
ds= A i d
/_ f(s)rk(s) s k/_ f(s)rk(s] s.

4. The corresponding eigenvalues A with k € K are real and 0 < A\ < 1.

Let us denote the space generated by the orthonormal basis ¢, k € K, in L%(R) by
A . - . 2
= { closed linear span of {#x}rek in L (R)} ; (2.8)

It is clear from Property 1 of Lemma 2 that U/ is a linear subspace in Pj. Also, by Properties 2
and 3, the eigenvalue Ay can be interpreted as the energy contribution of 7x(t) in the time interval
[~T,T). However, unlike the band-limited case, the eigenfunctions #(t) are in general not complete
in the wavelet subspace P so that Uy # Py. This will be proved in the following main theorem.
For convenience, we use Pp to denote a space consisting of all functions f(t) € L*(R) with f(¢) =0
for t ¢ [-T,T). The orthogonal complements of P; and Pr are P and Pz. Clearly, P contains
all functions f(t) € L%(R) with f(t) =0 for ¢t € [T, T).

b



Theorem 1 For the U; defined in (2.8), we have Py = Uy & Uy where Uy is the orthogonal
complement of Uy in Py and
Uy = PsNPt.

Proof: Given J > 0, any f(t) € Py can be decomposed as f(t) = fi(t) + f2(t), where fy(t) is the
projection of f(t) onto Uy, and f2(t) is the projection of f(t) onto U3 . Therefore, we have

o]

fit) = 3 anin(t), where an=(f,n)= / F(t)Fa(t)dt. (2.9)

nekK =3
We want to prove that f,(t) € Py and fa(t) € ’Pff»'. First, since f(t) € Py, it follows that f3(t) € Pj.
Next, we will show that f,(¢) = 0 for ¢t € [-T,T]. This is equivalent to proving
ft)= ()= D anfa(t), te[-T,T). (2.10)
nek
Recall that {ri(t)} with all k£ > 0 forms an orthogonal basis of L?*[—~T,T]. To prove (2.10), we need
to show that

(f! rk)T = (Z anﬁn: rk)T for k 2 0, (211)
nGK

where the notation (a, b)r = f_TT a(t)b(t)dt is used.
We first consider the case k € K. To verify the equality in (2.11), we have (ry, r)T = Akdnk from
Property 2 in Lemma 2. By using Property 3 in Lemma 2 and (2.9), it is easy to see that (2.11)
holds for k € K.
For the case k ¢ K, we know

(Z anf*n,rk);r=<z antn,ri)7 =0, fork ¢ K,

neK neK
since the functions {r(t)} with k¥ > 0 form an orthogonal basis in [-T, T]. Furthermore, we have

T
f Tk

f; ( f_ : f(8)Qu(s, t)ds) ri(t)dt
]_: f(s) (/_TT re(t)Qu(s, t]dt) ds 2.

In the above derivation, equality (1) is based on the fact f(t) € P; and equality (2) is due to that
any ri(t) with k ¢ K is in the null space of the integral operator H H* defined by (2.4). o

(f(t), re(E))T

,..‘
=
=

By using the orthogonal projection, it follows that the coefficients a, for n € K in (2.9) can be

written as

T
an = (f,fn) = -;:(f, PR = )\_];;./Tf(t)rn(t)dt'
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The coefficients a,, n € K, can be completely determined with the knowledge of the segment of f(t)
over the interval [T, T]. It means that f;(t) can be uniquely determined from f(¢) on [-T7,T]. In
the band-limited case, since fp(t) =0 for t € [-T,T] as proved above, we have fo(t) =0 fort € R
by using the analytic property of the function f(t). This is however not true for general wavelet
bases. As discussed above, a scale-limited signal f(t) € Py can be written as f(t) = f1(¢) + f2(t),
where fi(t) and f,(t) are the projections of f(t) onto U and U7, respectively. The component
f1(t) can be uniquely determined from the values of f(t) in [-T,T] while the component f5(t)
cannot since f(t) contains no information of fa(t) in [T, T).

In the context of signal extrapolation, the value of a signal f(t) is observed in [-T,T]. We
first assume that the function f(t) has a certain finest resolution (or scale) J. It is clear to see
that, for a certain scale J > 0, we can determined only a finite portion of f(t). Let us assume
that the observation of f(t) in the interval [T, T] can uniquely determine the value of f(t) up
to [-II,II] in the time domain. Given T', the value of II depends on the regularity of the signal
and the scale parameters J. The mathematical relationship between these parameters is still open.
However, for wavelets with compact support, we can estimate Il based on Theorem 1. Let f;(t1)
be the projection of f(t;) onto Py, which is the convolution of f(t;) with #(27t —¢;). It is obvious
that if the projection f;(¢;) does not intersect with the observation interval [-T', T, it cannot be
determined from the observations in [-T,T]. Hence, the extrapolation interval [—II,II] can be
obtained by shifting the scaling function ¢;(t) along the time axis while maintaining a nonzero
intersection of [T, T] and the shifted ¢ ().

3 Reconstructability of Discrete-time Scale-limited Signals

We first introduce some notation and concepts required for the discrete case. To get the discrete
sequence, we sample the function f(t) via z[k] = f(kT;) = f(z-—’}’,—), where T, = 277+ is the sampling
period. Since the scaling function ¢(t) behaves like a lowpass filter, we have

s =S~ [ 108l - gide =27 [ f)6su0de =2 ey,

—00

Where we assume that J; is large enough for the above approximation to be valid. Given cy, x (or
z[k]), we can perform the finite scale wavelet transform by computing the wavelet coefficients ¢k
and b;x with J < j < J, recursively. The operator which transforms cj, « to cjx and bjx with
J < j < Jgdenoted by Dy j,. Since Dy, is linear, it can be represented in a matrix form. When
the wavelet basis is real and orthogonal, its inverse operator D}!}’ is the transpose of D 7,. We call

Dy, and D}ﬂlj’ the discrete wavelet tranform (DWT) and the inverse discrete wavelet transform



(IDWT), respectively. A sequence z[k] is called scale-limited if its wavelet coefficients bjr = 0,
J < j < Jy, for a certain J. We use P; to denote the set of scale-limited discrete signals.
Then, the operator
D5, TyDy,,

be the projection operator which project the sequence onto the subspace Py, where the operator Ty
truncate the wavelet coefficients bj, for J < j < J,. Let P be the dimension of the subspace Py,
which is the number of possible non-zero wavelet transform coefficients of the sequence z[k] € Pj.

Then, without loss of generality, we can express T as
Ty= SgSp,
where Sp = {l;;} is a P x co matrix operator

i 1, ifi=j, and 1< 4,5 < P,
¥ 7] 0, otherwise.

Let W = D},_IL S;, a 00 X P matrix Then,
D3}, TyDyy, = D35,SpSpDyy, = WWT (3.1)

In analogy with the continuous-time case, the discrete scale-limited time-concentrated operator

operator can be defined as
- (=]
Hy[n] = Z wﬂwfy[k], forn=-N,---,-1,0,1,--+, N,
k=—o00

and HH* be the matrix operator mapping from R2N+1 to iterself, that is,

N
HH*y[n] = Z wywiylk] forn=-N,---,-1,0,1,---,N, (3.2)
k=—-N

where w,, a 1 X P vector, is the n-th row vector of matrix W. Here, we are interested in the

eigensystem of the operator HH*, ie.
N
Z wnwkru;[k]=/\,-u,-[n] forn=-N,---,-1,0,1,---, N. (3.3)
k=—N

Let us arrange the A; in order of decreasing magnitude, and vectors u; € R2N+! are the corre-

sponding orthogonal eigenvectors. With the symmetric property of the operator, we can construct

{uy,ug,- -+, ugn41} as an orthogonal basis of R2V*+! with the orthogonality,
N
> wilklu;k] = Aidi (3.4)
k==N



Now, let
K={k:X\#0, and k€{0,1,2,---2N+1}}.

For i € K, to extend u;[n], with |r| < N, in (3.3) to all integer, we obtain
1 & T
@i[n] = - ng wawiui[k], withn € Z. (3.5)

It follows that [n] € Py.
Let us consider the orthogonal property for @[n] € P;. By (3.5), we have

o ) ) o 1 N N
> win)ii]= ) == ( > wnwg'u;[k]) ( > waw{ ujl] (3.6)
n=—00 n=—co V) \k==N I=—N
By using the definition of W, we have
S wlw,=WTW =8pDy,,D7} ST =SpSt =1p, (3.7)

n=—0oo

where Ip is an identity matrix of dimension P X P. Therefore, it follows that

=]
T T T T T T

Z WpWi WpWi = Wi WL WIW| + WoWj Wow; +
n=—0oo

= wkwfwlw?' + kaEWQwF e L

[ o]
T T T
= Wi E W, WnW = WiW; .

Nn=—oo

Then, (3.6) can be rewritten as

N N 1 T 1 N 1 N i
Z A.,\.wkwi uilklu;[l] = % Z u;[k] o Z wiw; uj[l]
k==NI==N "1 i N JI=-N
1 N
= 1+ 2 wlkluilk]
P E==N

Therefore, the orthogonality of the eigenvectors u; can be written as

(= +]

Z a;[K]a;[k] = & ;. (3.8)

k=—00

As in the continuous-time case, The space generated by the orthonormal basis i, for k € K,
is denoted by
= A " " 5 2
Uy = { closed linear span of {i} in [ (Z]}

9



For the discrete extrapolation problem, we are given a segment of scale-limited sequence z[k] €
Py with k] < N, where N is a certain positive integer. Ior the consistency with continuous-time
case, we assume that N = 2—'1';; Since the operator HH* has finite dimension, the result in Section
2 can be directly used in the discrete-time case. Therefore, we can decompose z[k] = z;[k] + z5[k],
where 21(k] = 3. ai; can be completely recovered via extrapolation while z5(k] € P; and
za[k] = 0 for [k| < N. Since the sequence z[k] contains no information about z[k], we cannot

reconstruct the component ;[k] via extrapolation.

4 Convergence of Scale-limited Extrapolation Algorithm

We first examine the continuous-time case. Let f(t) € P; be a scale-limited function. We use P,
Pr, Q, Qr to denote the projection operators which project functions onto the subspaces Py,
Pr, Py and Pg, respectively. Given the value of f(t) for |t| < T, t_.he generalized PG algorithm
proposed by Xia, Kuo and Zhang [18] is to recover f(t) from its segment g(t) = Prf(t) via the
following iteration:

fO@) = g(t),

fU+D () = QP fO &)+, =0,1,2 (4.1)

This is also known as the scale-limited extrapolation algorithm. In band-limited extrapolation,
Papoulis [11] used the PSWF to prove the convergence of the PG algorithm. Here, we use theorem
1 to investigate the convergence of the generalized PG algorithm. Note that the convergence of
the generalized PG algorithm has been proved by Xia et. al. in [18]. However, the convergence
proof given there only applies to the wavelet basis with analytic scaling function. Thus, their proof
does not include many well-known wavelet bases such as the Daubechies basis and coiflet. In the
following, we will give a more generic convergence proof, which turns out to be a direct consequence

of Theorem 1.
Corollary 1 Let ¢(t) be an orthogonal scaling function. If

Qu(s,) & Y dsn(s)dun(t). (4.2)
k

is continuous and positive definite in the region [-T,T] x [-T,T]. Given a segment g(t) = P f(t)
of the scale-limited signal f(t) € Py, for |t| < T, then the solution of the generalized PG algorithm

will converge to a point fT, which is the orthogonal projection of f(t) onto the subspace Uy.

Proof: We decompose the signal f(t) to be f(t) = fi(t) + f2(t) where fi(t) € Uy and fo(t) € UF.
It is clear from Theorem 1 that P7f(t) = P7fi(t) = g(t). By using the fact that f,(¢) € Uy can

10



be uniquely determined in U; from its segment g(t) for t € [T, T] and Theorem 3 in [18], we
conclude that the generalized PG algorithm converges to f;(t) which is the orthogonal projection
of f(t) onto Uj. O.

The solution is further identified as a minimum norm solution in [7], i.e.
I /1]l = min{||A|| : k € Ps,Prh = Prf}. (4.3)

Next, we examine the discrete-time case. Define the projection operator

Tall={ “Th 25N

Given a segment y = Tyz[k], [k| < N, of a scale-limited sequence z[k] € Py, the discrete ex-
trapolation problem is to recover z[k] for |k| > N. Since z[k] € Pj is a scale-limited sequence, we
have '

y = TyD3} TyDyy,x = TaD7} SESpDy,x. (4.4)

The extrapolation is equivalent to solving for x with a given y. For a scale-limited signal z[k] € P},
we can rewrite it as
zlk] = z1[k] + z2lk] = ) aitilk] + za[K],
ieK
where
z,[k] € P;, and y=Tuz[k]= Tuzy[K].

Due to the orthogonality property, z;[k] has to be a minimum norm solution for (4.4). In a similar
manner, one can prove that the following discrete generalized PG algorithm provides an iterative
procedure to solve (4.4):

zOn] = Tyz[n),

:z:{l'*"l}[n] = Tyz[n]+ (I- TM)D}"ILTJDJ!J‘Q:(I)[H], [=0,1,2,::+ (4.5)

where [ is the identity operator. In fact, the above algorithm leads to a basic decent method for

the solution of (4.4) and converges to the minimum norm solution z;[k]. For details, we refer to

(7.
5 Noisy Data Extrapolation via Regularization

The scale-limited extrapolation as given in (2.3) is a special case of the Fredholm integral equation
of the first kind. It is well known that this problem is essentially an ill-posed one and the generalized

PG algorithm fails to compute a meaningful solution when observed data are corrupted by noise.
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To determine an approximation solution of an ill-posed problem, which is less sensitive to the noise
but still close to the original signal, the idea of utilizing the energy constraints of signal and noise
was examined by Xu [19] in the band-limited extrapolation case. These constraints are usually
referred to as “regularizers”. In this section, we formulate the scale-limited extrapolation with a
noise energy constraint, derive a regularized solution by using the eigenfunctions of the scale-limited
time-concentrated operator, and propose a practical algorithm.

We adopt the following norm notation

00 T
15O = [~ 1@Pd, and 170 = [ 176P

—_00 —_

The problem of extrapolating noisy data can be stated as the recovery of a scale-limited signal

f(t) € P based on observed noisy data

g(t) = f(t) +n(t), tel-T,7]). -

where n(t) is zero-mean white noise with energy |[n(t)||3 < €*. We consider a constrained minimum

norm solution in Uy, i.e.

;e IF@N?  and [If* - gllF < €. (5.1)

By using the Lagrangian multiplier, this is equivalent to the minimization problem:
: 2 2 _ 2 _
min {1+ (I - olft~ &)} (5:2)

where 1 is the regularization parameter. By using the definition in [16, page 51), || f||* is a stabilizing

functional and we call the solution of (5.2) a “regularized solution”.

Theorem 2 Let ri(t),k > 0, be the eigenfunctins of the scale-limited time-concentrated operator

derived in Section 2 and

g(t) =D exri(t)  fort e [-T,T).

k>0

Then, the regularized solution to the noisy extrapolation problem is of the form

. Akper .
= qP BREE oy 5.3
fr(t) g}:{l_*_/\k# k(t) (5.3)

where the regularization parameter u is the solution of

Akek 2
= €. 5.4
L%( (14 Appe)? = ¢ (54)

12



Proof: For any f(t) € Uy, we know from theorem 1 that

F@E) =) difi(t). (5.5)
keK
Based on the Property 2 in Lemma 2, we have
If=gllF =D Ael(di — ex)™. (5.6)
keK

By applying the Lagrangian multiplier to (5.2), we are led to the minimization of the functional

keK keK

L(dk,,u) = E di + i [Z Ak(dr — ek)z - 62} .

The solution can be obtained via

OL(dk, 1) Akper .
— d = e— 1 .7
8d, "0 = %=1.3a (1)
aL(aﬂl =0 = Z Ak(dy — ek)z = ¢, (5.8)
H keK

By substiuting (5.7) into (5.5) and (5.8), we have the results given in (5.3) and (5.4), respectively.
O
Note that the choice of regularization parameter x depends on the noise energy. When noise is
small, we need a large p value so that the regularized solution will be close to the observed signal.
On the other hand, for a larger noise level, we need a smoothness constraint on the solution to
stabilize the ill-posed problem. This however reduces the accuracy of the regularized solution. Thus,
the choice of an appropriate parameter plays an important role in a regularization procedure.
The regalirized form as given in (5.3) in not practical in numerical implementation due to the
expensive cost in computing the eigenfunctions and their corresponding eigenvalues. It is therefore
important to seek an iterative method to compute the regularized solution numerically. Based on

the regularization theory [14], we can adopt the following iterative process:

Initialization  fy(t) = 0. (5.9)

Forn=0,1,2,---
hoyi1(t) = (1—a)fa+ ap(g — Prfn), (5.10)
fr® = [ haa(s)Quls, t)ds. (5.11)

By using the eigenfunctions of the scale-limited time-concentrated operator discussed in Section 2

to analyze the above iterative procedure, we obtain the following theorem.
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Theorem 3 Assume that u is given and

2
14 pAg

The iteration (5.9)-(5.11) converges to the regularized solution in Theorem 2. That is, limp—eo f, (1) =

().

Proof: By using (5.9)-(5.11) with n = 0, we have

I<ac<

fi(t) =< g(t)lQJ(3|t) >
Recall that the ri(t) with k > 0 form an orthogonal basis of L2[—T,T]. Therefore, we can write
9(t) = Tisoexri(t) for t € [T, T). Then, since < ri(t), Qu(s,t) >7= 0 for k ¢ K, we have
L) = ap ) er <ri(t),Qu(s,t) >

keK '

= ap E exAkTE(t).
keK

Thus, fi(t) € U;. Furthermore, we apply the fact < Fe(t), Qu(s,t) >= fi(t) and < #(2),Qu(s,t) >r=
Akfi(t) in (5.10) and (5.11). It follows that if f,,(t) € Uy, fus1(t) also belongs to ¢y. By induction,
we have f,(t) e Uy forn=1,2,--. Hence,

fa(t) =D dinfr(t).
keK

Based on the iteration (5.10) and (5.11), we can derive

diknt1 = (1= a)din + ap(Arer — Ardyn)
= [1 —a(l+ ,u)\k)] din + apAier,

forn=0,1,--- with dro = 0. Therefore,

deny1 = E:[l"' a(1+ pAR)] (adipe)ex

— Ak#ek - n+1
= 1_3?7175[1 (1= a1+ pA))™].

If [1—a(14+ )| < 1or equivalently 0 < o < 2/(14pu)x), we have limpgeo (1 —a(14pA))"H =0
which implies lim, o fu(t) = f*(2). (]

Another implementational issue is the computation of the regularization parameter M required
in (5.10). To compute p with (5.4) is expensive since the eigenvalues of the scale-limited time-

concentrated operator are needed. Thus, we seek an approximating regularization parameter close

14



to the one given by (5.4). We can express the regularized solution f(¢) in (5.3) explicitly as a

function of iz and ¢t and examine

_ 2 _ (Arper)?
N(p) = [If(s )]l —kEZK eSS

B = 1) -9l = ¥ i

Note that N(u) and E(p) are monotonically increasing and decreasing functions of u, respectively.
The continuous curve consisting of (N (x), E(p)), p > 0, is called the L-curve. The importance of
this curve was first discussed by Miller [9]. Recently, Hansen and O’Leary [5] used the L-curve to
determine the regularization parameter. It was shown in [5] that the L-curve is concave and there
exists a sharp corner on this curve which gives the optimal regularization parameter.

Here, our basic idea to estimate y is to first determine its upper and lower bounds and to obtain
an initial estimation based on these bounds. Then, we exploit the monotonicity and concavity of
the L-curve and apply a linear search method. With this approach, a good approximation of u can

be obtained by only a few iterations. To compute the lower bound, we have

)12 el
M= ”9{62)”3" = ZhK A (149 p?) = (4 1)

LkeK T A

where Property 4 in Lemma 2 is used in the above inquality. For the upper bound, we have

(Meper)? Akei 2 2.2
flp,t 2= —_— = Ty ARLT 2 Aminpt €,
IO = B W3 = g T ™ >

so that
IIf(Ju, )II2

T Amin€
In analogy with the continuous-time case, we can derive a discrete-time regularizarion algorithm.
We simply summarize the main result below. Given noisy observations y[n] = z[n] 4+ n[n] with
|n] < N and bounded noise energy i.e. EﬂN=_N n%[n] < €?, the regularized extrapolation method is

equivalent to the minimization of the functional

o0 N
> (z[n])*>  under the constraint of > (yln) - z[n])* < €

n=-co n=—-N

The discrete regularized solution is
Z Ak ek kb o
14 App
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where y denotes the regularization parameter. The iterative algorithm (5.9)-5.11) can be modified

asxg=0and, forn=0,1,2,---,

Znt1 = (1=a)xn + au(y — Prx,),

-1
Xn41 = DJ"J‘TJDJ,J,zn+1-

6 Experimental Results

Numerical examples are given in this section to illustrate the performance of the proposed algo-
rithms. We use the orthogonal and compactly supported coiflet of order N = 10 [3] as the wavelet
basis for signal modeling. The coiflet mother wavelet is nearly symmetric around the y-axis so that
the filter bank implementation consists of almost linear-phase filters. The high order of vanishing
moments implies the smoothness of the waveform and the compact support property makes the
implementation easy. Consider a scale-limited sequence z[n] generated by randomly choosing the
wavelet coefficients ¢y with J = 1 and -3 < k < 4 while setting other wavelet coefficients to
zero for the coiflet basis functions. A synthesized clean signal observed at the scale J;, = 4 is
plotted in Fig. 1 (a). Then, the signal is corrupted by zero-mean additive white Gaussian noise
with SNR = 8 and we assume that 81 (i.e. M = 40) observed noisy data points are available as
given in Fig. 1(b). In this experiment, we avoid the signal modeling problem by assuming that the
scale-limited information is partially known a prior, i.e. only c¢jx with J =1 and -3 < k < 4 are
nonzeros and the wavelet basis is coiflet. However, the exact values of these cofficients ¢ are not
known. The extrapolated results by using the regularization approach with the regularization pa-
rameter g = 10, 50 and 10° are shown in Fig. 2. It is clear that for u = 10 we have a oversmoothed
result. In contrast, the solution for u = 10° is divergent and the case with u = 50 gives the best

result.

7 Conclusion

Instead of using the traditional Fourier-based technique, the scale-limited signal model based on
the wavelet representation is investigated for signal extrapolaton. We proved properties of scale-
limited extrapolaton by examining the eigenfunctions of the scale-limited time-concentrated oper-
ator. Based on the results, we also proved the convergence of the generalized PG extrapolation

algorithm and developed a regularization solution for noisy data extrapolation.

16



Figure 1:  Test Problem: (a) the original signal and (b) observed noisy data with M = 40 and
SNR = 8dB.
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