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Abstract

We present new methods for parameter estimation in the impulsive signal environ-
ments, which are modeled as symmetric alpha-stable (SaS) processes. There are two
parts in this report. In the first part, we present several methods for estimation of pa-
rameters (the characteristic exponent « and the dispersion ) of a SaS process. In the
second part, we apply the estimation algorithms to radar clutter modeling. It is shown
that SaS can characterize the clutter environments accurately.



1 Introduction

Stable distributions are important for statistical signal processing. By the Generalized Central
Limit Theorem, they are the only class of distributions that can be the limiting distributions for
sums of iid random variables with finite or infinite variances. Familiar members of the family
are Gaussian (o = 2) and Cauchy (a = 1) distributions. Many signal/noise processes are
impulsive in nature and can be best modeled as a-stable processes [3]. Unlike most statistical
models, the a-stable distributions (except Gaussian) have infinite second- or higher-order
moments. With this unique property, many fundamental theories in signal processing have to
be modified. For a comprehensive introduction of a-stable distributions and their applications
to signal processing, see the first monograph by C. L. Nikias and M. Shao [2]. An alternative
tool is the fractional lower-order moments (FLOM) and covariations.

Radar clutter is usually highly impulsive. Stable distributions are attractive candidate
for modeling of such environments. In the second part of this report, we apply the proposed
parameter estimation algorithm to clutter modeling using SaS distributions. Comparison has

been made against the Gaussian model.

2 Estimation of the Characteristic Exponent and the
Dispersion

2.1 Fractional Lower-Order Moments: Positive-Order and Negative-
Order

It has been shown that fractional lower-order moments E{|X|P} for a real, zero-location SaS
random variable X are finite for —1 < p < a [1]. More specifically,
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When X is an n dimensional spherically symmetric SaS random variable, a similar expression

is [5]:
DE2InG = E),yp,fa
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Especially, when n = 2, X is then called isotropic complex SaS random variable, we have:

E(|X|") = 2P , for —n<p<a. (2)

E(|X[) = Ca(p,a)y”®, for —2<p<a, (3)

where Cy(p, a) = ‘)PW.

An immediate application of the negative-order moments is for estimating the character-
istic exponent a and the dispersion 4 of SaS random processes. If X is a real SaS random
variable, with zero location parameter, then its positive order FLOM is given by E(|X|?) =
Ci(p,@)y?/®, for 0 < p < a; and its negative order FLOM is given by E(|X|?) = C(q, a)y"/*,
for —1 < ¢ < 0. Choosing p = —¢q (since —1 < g < 0, then 0 < p < min(e, 1) such that both

positive- and negative-order moments are finite), then we have:

2tan(pm/2)
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i.e., @ can be found by the solving the following sinc function:

,0 < p < min(a, 1). (5)
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The above equation does not involve 4. Once « is estimated, v can be solved by:
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2.2 Parameter Estimation with log |SaS| process

Assuming X is one-dimensional SaS random variable, we have shown its p*-order moment is:
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E{| X[’} = P p: -1 <p<a. (7)



We can rewrite E(|X|?) as E(e?'*¢1X), (note that log |X| is bounded because the pdf of X:
f(z) is bounded at = = 0, i.e., the probability of # = 0 is 0). Define a new random variable
Y =log | X|, therefore:

E(|X[P) = B(e? X)) = E(e). (®)
Notice the last term in the above equation E(¢?Y) is the moment-generating function of Y,

we can expand it into a power series:
v = N
E(e?) = > E(Y )F' 9)
k=0 '

On the other hand,
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Therefore, moments of Y of any order must be finite and they satisfy:
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Simplifying the above equation, we have:
E(Y) = Co(> = 1) + -1 (12)
=S P 087, Z
where C, = 0.57721566-- - is the Euler constant, a is the characteristic exponent, v is the
dispersion, and
Var(Y) = E{(Y —E{Y})*} = ﬁ (L + l) (13)
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where ((+) is the Riemann Zeta function, and ¢(3) is a constant: ¢((3) = 1.2020569 - - -.
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Order Moment of Y | Second-Order | Third-Order | Fourth-Order

& 1.5139 1.4837 1.3564
(0.1167) (0.2578) (0.3226)

3 1.0195 1.0079 0.9549
(0.0909) (0.1032) (0.1365)

Table 1: Estimator Performance v.s. Order of Moment of Y.

The higher-order moments of Y always exist and from the second-order moment and above, the
equations only involve . This property provides a simple method to estimate the parameters

a and v of a SaS random variable. Since we can estimate the mean and variance of Y by:

Y =

(16)

where N is the number of samples and Y; are iid observations, then by solving Eq.(13), we
can obtain an estimate of a and substitute into Eq.(12), we can get an estimate of 4. The
log |SaS| process was first introduced by Zolotarev [4].

We can also use higher-order moments of Y to estimate a, but it is known that the variance
of the estimator of higher-order moments tends to increase as the order goes higher. Table 1
is a comparison of the results obtained by using different orders of moments. The true values
for the parameters are a = 1.5 and v = 1.0. Y is the log|SaS| process, Sample size is 1000,
and the experiment is repeated 1000 times independently. As we can see from Table 1, the
standard deviations of the estimators (a-estimator and v-estimator) increase as the order of
the moment of Y increases.

Table 2 lists the comparison of the log |[SaS| approach with the negative-order moment
method. X is the standard SaS random variable with o = 1.5 and Y = log |X|. We chose

p = 0.2 in the negative-order moment method. The experiment was repeated 1000 times

o1



Estimation Method | log |SaS| Approach | Negative-Order Moment

& 1.4969 1.5027
(0.0522) (0.0536)

3 0.9989 1.0023
(0.0385) (0.0423)

Table 2: Performance comparison of the log |SaS| approach v.s. the negative-order moment
method.

independently with 5000 iid samples.

Table 2 shows that these two methods have similar performance. But the advantages of

the log [SaS| approach are:

1. It gives explicit closed form expressions of the unknown parameters, whereas in the
negative-order moment method, « is involved in the sinc function, which does not have

a closed form expression.

b

The estimates of the parameters are completely determined by the samples collected,
whereas in the negative-order moment method, the estimation results are also affected

by the value p we choose, and the choice of p is often empirical.

It is worth noticing that the above proposed estimators are not the optimal ones as the
Maximum-Likelihood Estimators. However, MLEs do not have such simple closed form ex-
pressions and the estimates are obtained through solving nonlinear optimization problems.
Therefore, its application in real-time Sa$ signal processing is limited.

Similarly, if X is an isotropic complex SaS random variable then its pth order moment

satisfies (3). The log [SaS| approach yields:

1 1
E(Y) = Cc(a— 1) -}-10g2+alog')r, (17)



Sample Size 1000 5000 10000

el 1.2036 1.1997 1.1987
(true a = 1.2) | (0.0391) | (0.0184) | (0.0118)
0l 1.0037 1.0008 1.0026

(true y =1) | (0.0359) | (0.0162) | (0.0136)

Table 3: Performance of the log |SaS| Estimator for the isotropic complex SaS process.

2

Var(Y) = (:T?, (18)

where Y = log | X|, (17) and (18) can be used to estimate o and v of an isotropic complex SaS
process. Table 3 shows the average and standard deviation values (in parentheses) of Monte-
Carlo simulation results (see Appendix A for the isotropic complex SaS random number
generator). The experiment was repeated 100 times independently. The sample size ranges

from 1000 to 10,000.

3 Radar Clutter Modeling with Stable Laws

Radar clutter processes are highly impulsive. The empirical distribution densities of such
processes are usually algebraically decaying. This suggests that stable laws may characterize
such environments accurately.

This section includes the experiments we conducted on SaS modeling of radar clutters
using the real data files, which are from the Mountaintop Data Package tape. The clutter data
set contains measured monostatic clutter using Radar Surveillance Technology Experimental
Radar (RSTER). The data consist of four files: cm435al.bfr, cm435bl.bfr, cm435cl.bfr, and
ncal435a.bfr. These data files were collected on August 27, 1993 as part of the Clutter Map

Multi-Frequency Experiment. The data are unequalized I/Q data and the waveform employed



was a 5 pSec pulsed CW signal at 435 MHz. File cm435al covers from 3.5 to 43.5 nmi in
range. File cm435bl covers from 40 to 80 nmi in range. File cm435cl covers from 75 to 115
nmi in range. All of these files have enough CPls to cover 360 degrees in azimuth. The file
ncal435a contains the system noise. In our comprehensive study, we conduct our experiments
in 24 different azimuth with 15 degrees interval. Experiments with the actual raw data
are performed with the I/Q clutter data on Sensor # 1 (There are 14 sensors in the linear
array). In the SaS model, we assume that the 1/Q data are isotropic complex The parameters
(characteristic exponent o and dispersion 7) are first estimated using (17) and (18), then
estimated by amplitude probability density (APD) curve fitting through exhaustive search.
On the other hand, in the Gaussian model, the variance is estimated by taking standard
deviation of the data. The samples are assumed to be 1.i.d. and for convenience, the data
have been scaled by 10°. In the following figures, we show the [/Q data time series, estimated
parameters and APD comparison along azimuth at 0°, 15°, 30°, 45°, 60°, 75°, 90°, 105°, 120°,

135°, 150°, 165°, 180°, 195°, 210°, 225°, 240°, 255°, 270°, 285°, 300°, 315°, 330°, 345°.



I-component of the clutter data on Sensor#1 at 0 degree (scaled by 1e+5) Q-component of the clutter data on Sensor#f1 al 0 dagree (scaled by 1e+5)
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Figure 1: Measured [/Q-components of radar clutter: Azimuth: 0°, estimated mean: 0.0217 +
70.05, estimated a: 1.1222, v: 0.0395.

Comparison of the empirical APD with Gaussian and SaS models
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Figure 2: Comparison of the empirical, SeS, and Gaussian amplitude probability distributions



I-component of the clutter data on Sensor#1 at 15 degrees (scaled by 1e+5).

Q-component of the clutter data on Sensor#1 at 15 degrees (scaled by 1e+5).
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Figure 3: Measured [/Q-components of radar clutter: Azimuth:

sampla number

70.0099, estimated a: 0.7318, v: 0.0413.
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15°, estimated mean: 0.0043+

Comparison of the empirical APD with Gaussian and SaS models
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Figure 4: Comparison of the empirical, SaS, and Gaussian amplitude probability distributions
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clutter

I-component of the clutter data on Sensor#1 at 30 degrees (scaled by 1e+5). Q-component of the clutter data on S 1 at 30 deg led by 1e+5).
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Figure 5: Measured [/Q-components of radar clutter: Azimuth: 30°, estimated mean: 0.001 +
70.0667, estimated a: 1.164, v: 0.0351.
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Figure 6: Comparison of the empirical, SaS, and Gaussian amplitude probability distributions
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I-component of the clutter data on Sensor#1 at 45 degrees (scaled by 1e+5). Q-component of the clutter data on Sensor#1 al 45 degrees (scaled by 1e+5).
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Figure 7: Measured I/Q-components of radar clutter: Azimuth: 45°; estimated mean:

—0.0121 4 70.0247, estimated a: 0.8301, v: 0.0537.

Comparison of the empirical APD with Gaussian and SaS models
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Figure 8: Comparison of the empirical, SaS, and Gaussian amplitude probability distributions
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I-component of the clutter data on Sensor#1 at 60 degrees (scaled by 18+5). Q-component of the clutter data on Sensor#1 at 60 degrees (scaled by 18+5).
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Figure 9: Measured 1/Q-components of radar clutter: Azimuth: 60°, estimated mean: 0.0051+
70.005, estimated a: 0.6886, v: 0.0394.

Comparison of the empirical APD with Gaussian and SaS models
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Figure 10: Comparison of the empirical, SaS, and Gaussian amplitude probability distribu-
tions
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I-component of the clutter data on Sensor#1 at 75 degrees (scaled by 1e+5). Q-component of the clutter data on Sensor#1 at 75 degrees (scaled by 1e+5).
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Figure 11: Measured I/Q-components of radar clutter: Azimuth: 75°, estimated mean:
—0.1138 — 70.0687, estimated a: 1.4621, 4: 0.041.

Comparison of the empirical APD with Gaussian and SaS models
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Figure 12: Comparison of the empirical, SaS, and Gaussian amplitude probability distribu-
tions
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I-component of the clutter data on Sensor#1 at 90 degrees (scaled by 1e+5). Q-component of the clutter data on Sensor#1 at 90 degrees (scaled by 1e+5).
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Figure 13: Measured [/Q-components of radar clutter: Azimuth: 90°, estimated mean:
0.0731 + 70.0793, estimated a: 1.5375, v: 0.0244.
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Figure 14: Comparison of the empirical, SaS, and Gaussian amplitude probability distribu-
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I-component of the cluttar data on Sensor#1 at 105 degrees (scaled by 1e+5). Q-component of the clutter data on Sensor#1 at 105 degrees (scaled by 1e+5).
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Figure 15: Measured I/Q-components of radar clutter: Azimuth: 105°, estimated mean:

0.028 — 50.0241, estimated a: 1.1045, v: 0.0249.

Comparison of the empirical APD with Gaussian and SaS models
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Figure 16: Comparison of the empirical, SaS, and Gaussian amplitude probability distribu-
tions
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I-component of the clutter data on Sensor#1 at 120 degrees (scaled by 1e+5). Q-component of the clutter data on Sensor#1 at 120 degrees (scaled by 1e+5).
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Figure 17: Measured I/Q-components of radar clutter: Azimuth: 120°; estimated mean:
—0.0199 + 70.0215, estimated a: 1.1314, v: 0.0171.

Comparison of the empirical APD with Gaussian and SaS models
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Figure 18: Comparison of the empirical, SaS, and Gaussian amplitude probability distribu-
tions
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I-component of the clutter data on S 1 al 135 deg (scaled by 1e+5). Q-component of the cluttar data on S 1at 135 deg (scaled by 1845).
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Figure 19: Measured [/Q-components of radar clutter: Azimuth: 135°, estimated mean:
0.0191 + 70.0194, estimated a: 1.5358, v: 0.0028.
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Figure 20: Comparison of the empirical, SaS, and Gaussian amplitude probability distribu-
tions
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I-component of the clutter data on Sensor#1 at 150 degrees (scaled by 18+5). Q-component of the clutter data on Sensor#1 at 150 degrees (scaled by 1e+5).
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Figure 21: Measured 1/Q-components of radar clutter: Azimuth: 150°, estimated mean:
—0.0102 — 70.0043, estimated a: 0.9783, ~: 0.0144.

Comparison of the empirical APD with Gaussian and SaS models
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Figure 22: Comparison of the empirical, SaS, and Gaussian amplitude probability distribu-
tions
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I-component of the clutter data on Sensor#1 at 165 degrees (scaled by 18+5). Q-component of the clutter data on S 1 at 165 deg (scaled by 1e+5),
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Figure 23: Measured 1/Q-components of radar clutter: Azimuth: 165°, estimated mean:
—0.0046 + 70.1344, estimated a: 1.5249, ~: 0.031.

Comparison of the empirical APD with Gaussian and SaS models

\

0.9F

© o o
(=2 B O - - |

Pr(ll-componentl>x
o
W

.\-

dashdot:Gaussian(var=1.3315)
I

b N .
0411 ° — dotted:SaS(alpha=15249,gamma=0.031)
] /_ N
0.3F l.l. \'\. ]
1 r dashed:SaS(alpha=1.1 437,g%rqma=0.0233}
o2H ! - Mg :
5l solid:empirical APD T |
0 - -l:-i'-"""“---—- o e S, : e s e
0 05 1 15 2 25

X (scaled by 1.0e+5)

Figure 24: Comparison of the empirical, SaS, and Gaussian amplitude probability distribu-

tions
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I-component of the clutter data on Sensor#1 at 180 degrees (scaled by 1e+5). Q-component of the clutter data on S
15

#1 at 180 deg {scaled by 18+5).
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Measured I/Q-components of radar clutter: Azimuth: 180°, estimated mean:

—0.0734 — 50.0939, estimated a: 1.7156, v: 0.0155.
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Figure 26: Comparison of the empirical, SaS, and Gaussian amplitude probability distribu-
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I-component of the clutter data on Sensor#1 at ? degrees (scaled by 1e+5). Q-component of the clutter data on Sansor# 1 at 7 degrees (scaled by 18+5).
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Figure 27: Measured [/Q-components of radar clutter: Azimuth: 195°, estimated mean:
—0.1158 + 70.0059, estimated a: 1.6606, v: 0.0195.
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Figure 28: Comparison of the empirical APD with Gaussian and SaS models



I-componant of the clutter data on Sensor#1 at 7 degrees (scaled by 1e+5). Q-component of the clutter data on Sensor#1 at 7 degrees (scaled by 1e+5).
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Figure 29: Measured I/Q-components of radar clutter: Azimuth: 210°, estimated mean:
0.014 + 70.0025, estimated a: 0.8981, ~v: 0.0254.
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Figure 30: Comparison of the empirical APD with Gaussian and SaS models



I-component of the clutter data on Sensor#1 at 225 degrees (scaled by 18+5). Q-component of the clutter data on Sensor#1 at 225 degrees (scaled by 1e+5).
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Figure 31: Measured 1/Q-components of radar clutter: Azimuth: 225°, estimated mean:
—0.0099 — 70.0248, estimated a: 1.322, v: 0.0079.
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Figure 32: Comparison of the empirical APD with Gaussian and SaS models
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I-component of the clutter data on Sensor#1 at 240 degrees (scaled by 1e+5). Q-component of the clutter data on S r#1 at 240 deg (scaled by 1e+5).
10 T T 2 T

T

clutter

|

clutter
o
j
i
£
-

-2

-6} i

- B L -1.5 1 i
ao 500 1000 1500 0 500 1000 1500
sample number sample numbear

Figure 33: Measured 1/Q-components of radar clutter: Azimuth: 240°, estimated mean:
—0.0092 — 50.007, estimated a: 0.8358, ~: 0.0337.
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Figure 34: Comparison of the empirical APD with Gaussian and SaS models
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I-component of the clutter data on Sensor#1 at 255 degrees (scaled by 1e+5). Q-component of the clutter data on Sensor#1 at 255 degrees (scaled by 1e+5).
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Figure 35: Measured I/Q-components of radar clutter: Azimuth: 255°, estimated mean:
0.0085 — 70.0215, estimated a: 1.0626, v: 0.0234.
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Figure 36: Comparison of the empirical APD with Gaussian and SaS models
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I-component of the clutter data on Sensor#1 at 270 degreas (scaled by 1e+5). Q-component of the clutter data on Sensor#1 at 270 degrees (scaled by 1e+5).

. . 25 .
15 E 2 1
1.5} ]
1 B
1} ]
0.5
= 5 08 :
3 ° | 3
0
-0.5 E
-05
-1
=1 4
15 1 -15 ]
-2 - < -2 - .
“0 500 1000 1500 () 500 1000 1500
sample number sample number

Figure 37: Measured I/Q-components of radar clutter: Azimuth: 270°, estimated mean:
—0.0085 — 70.0055, estimated a: 0.8239, ~v: 0.0327.
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Figure 38: Comparison of the empirical APD with Gaussian and SaS models
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I-component of the clutter data on Sensor#1 al 285 degrees (scaled by 18+5). Q-component of the clutter data on Sensor#1 at 285 degrees (scaled by 1e+5).
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Figure 39: Measured 1/Q-components of radar clutter: Azimuth: 285°; estimated mean:
0.0239 — 70.0141, estimated a: 0.9738, v: 0.0336.
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Figure 40: Comparison of the empirical APD with Gaussian and SaS models



I-component of the clutter data on S 1 at 300 led by 18+5). Q-component of the clutter data on Sensor#1 at 300 degrees (scaled by 1e+5).
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Figure 41: Measured I/Q-components of radar clutter: Azimuth: 300°, estimated mean:
—0.0137 + 70.0308, estimated a: 1.2517, v: 0.0159.
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Figure 42: Comparison of the empirical APD with Gaussian and SaS models
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I-component of the clutter data on Sensor#1 at 315 degrees (scaled by 1e+5).

Q-component of the clutter data on Sensor#1 al 315 degrees (scaled by 1e+5).
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Figure 43: Measured 1/Q-components of radar clutter: Azimuth: 315°, estimated mean:
0.017 + 70.0079, estimated a: 1.0304, 4: 0.0193.
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Figure 44: Comparison of the empirical APD with Gaussian and SaS models
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5 I-component of the clutter data on Sensor#1 at 330 degrees (scaled by 1e+5). Q-component of the clutter data on S 1 at 330 deg (scaled by 1e+5).
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Figure 45: Measured I/Q-components of radar clutter: Azimuth: 330°, estimated mean:
—0.0015 + 70.0063, estimated a: 0.7749, v: 0.0239.
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Figure 46: Comparison of the empirical APD with Gaussian and SaS models
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I-component of the clutter data on Sensor#1 at 345 degrees (scaled by 1e+5). Q-component of the clutter data on Sensor#1 at 345 degrees (scaled by 1e+5).
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Figure 47: Measured I/Q-components of radar clutter: Azimuth: 345°, estimated mean:
—0.0097 4 70.0051, estimated a: 0.7785, v: 0.0345.
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Figure 48: Comparison of the empirical APD with Gaussian and SaS models
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Our experiments show SaS distribution is superior to the traditional Gaussian distribution

for modeling the actual radar clutter data.
4 Conclusion

In this report, we introduced new methods for parameter estimation of SaS processes and
argued that stable laws could approximate impulsive processes such as radar clutter envi-
ronments accurately. Extensive experiments were conducted using real clutter data. These
experiments showed stable distributions were very close to the empirical densities of the clutter

data.
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