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Abstract

In this paper, we propose a new fast algorithm for block motion vector (MV) estimation
based on the correlations of the MVs existing in spatially and temporally adjacent as well as
hierarchically related blocks. We first establish a basic framework by introducing new algo-
rithms based on spatial correlation, and then spatio-temporal correlations before integrating
them with multiresolution scheme for the ultimate algorithm. The main idea is to effectively
exploit the information obtained from the corresponding block at a coarser resolution level and
spatio-temporal neighboring blocks at the same level in order to select a good set of initial
MYV candidates, and then perform further local search to refine the MV result. We show with
experimental results that, in comparison with the full search algorithm, the proposed algorithm
achieves a speed-up factor ranging from 150 to 310 with only 2-7% MSE increase and a similar
rate-distortion performance when applied to typical test video sequences.

1 Introduction

Video image compression plays an important role in transmission and storage of digital video data.
The applications include multimedia transmission, teleconferencing, videophone, high-definition
television (HDTV), CD-ROM storages, etc. The main idea to achieve compression is to remove
temporal and spatial redundancies existing in video sequences. One effective method commonly
used in reducing temporal redundancy is motion compensated predictive coding, which is also
employed in the MPEG standard [3], [10], [L1]. The key ingredient in motion compensated coding
is motion vector (MV) estimation. The block matching technique has been widely used for MV
estimation due to its simplicity. A straightforward way to obtain MV is to perform the full search
block matching algorithm (FBMA) by searching all locations in a given search area and selecting

the position where the matching residual error is minimized. However, this procedure requires an
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extremely large amount of computation. MV estimation is known to be the main bottleneck in
real-time encoding applications, and the search for an effective MV estimation algorithm has been
a challenging problem for years.

Fast block matching algorithms have been developed [12] to reduce the computational cost.

They can be categorized into different groups as detailed below.

1.1 Fast Block Matching With Unimodal Error Surface Assumption

Most fast block matching algorithms [4], [5], [6], [13], [14], [15] restrict the number of search locations
using the unimodal error surface assumption, namely, the matching error increases monotonically as
the search moves away from the position of the global minimum error. However, this assumption
usually does not hold and, as a result, the search could be trapped to a local minimum with a
relatively large matching error. Moreover, these algorithms treat each block independently and
tend to result in a noisy motion field and create the blocking effect in reconstructed images. Some
well-known algorithms in the class include the three-step search (TSS) [6] and the two-dimensional

logarithmic search (TDL) [5].

1.2 Fast Block Matching with Pixel Subsampling

Another interesting technique to reduce the complexity of MV estimation is block matching with
pixel subsampling proposed by Liu and Zaccarin [9]. Instead of limiting the number of search
locations, the number of pixels used in matching error computation is reduced. The technique is
called alternating 4:1 pixel subsampling in [9], since there are four possible 4:1 pixel subsampling
patterns to be used alternatively. It was shown that using all four patterns in a specific alternating
manner gives a better result than using only one 4:1 subsampling pattern. This technique reduces
the number of matching operations by a factor of 4. Furthermore, two other techniques were also
presented in [9] to enhance the performance. One is called subsampled motion-field estimation which
exploits the idea of block subsampling, and the other is called sub-block motion-field estimation
where a smaller block size is used. The first one reduces the number of operations by a factor
of 2 while the second one has a reduction factor of 4. Finally, two fast algorithms based on the
combination of the first (alternating 4:1 pixel subsampling) and the second (subsampled motion-
field) techniques and the combination of the first and the third (sub-block motion-field) techniques
were proposed. They reduce the computational complexity by factors of 8 and 16, respectively. The
above three techniques provide a set of good tools which can be incorporated in several existing

algorithms to obtain an additional amount of computational reduction.



1.3 Fast Block Matching with Spatial/Temporal Correlations

Another direction for fast MV estimation approach is to exploit information from adjacent blocks
by using spatial and temporal correlations of MVs [18], [20]. The main idea is to select a set of
initial MV candidates from spatially and/or temporally neighboring blocks and choose the best
one (according to a certain rule) as the initial estimate for further refinement. Theoretically, the
initial estimate can be obtained by using an autoregressive (AR) model [18],[20]. For such a simple
model, only one candidate is chosen and used as the initial estimate in experiments. The refinement
process involves a full search with a reduced search area. It turns out that the full search procedure
still requires a considerable amount of computation despite being performed on the reduced search
area.

A hybrid algorithm which use both block-recursive and block-matching methods was proposed
in [17]. Although its original motivation did not aim at the use of spatial and temporal correla-
tions, it did provide an interesting way to use both correlations effectively. In the algorithm, the
MV candidates were selected from two spatially and one temporally neighboring blocks. In the
refinement process, a block recursive idea was explored to compute the gradient direction for MV
update. However, the gradient approach does not work well for real-world fast motion image se-
quences since an oscillation in the search direction may occur in refinement. It is therefore limited

to applications with relatively slow motion, e.g. videoconferencing.

1.4 Hierarchical and Multiresolution Fast Block Matching

One family of fast block motion estimation algorithms relies on the idea of predicting an approxi-
mate large-scale MV in a coarse-resolution video and refining the predicted MV in a multiresolution
fashion to obtain the MV in the finer resolution. They are called the hierarchical [1], [2] or the
multiresolution methods [7], [16], [19], [21]. The hierarchical methods [1], [2] use the same image
size but different block sizes at each level. The underlying assumption is that the MV obtained
from a larger block size provides a good initial estimate for MVs associated with smaller blocks
which are contained by the larger block. This assumption is often not true and the estimate can
be very poor. Furthermore, a larger block size implies a higher computational cost in performing
block matching. The multiresolution methods [7], [16], [19], [21] use different image resolutions
with a smaller image size at a coarser level (i.e. of a pyramid form). They can be further divided
into two groups: constant block size and variable block size.

In [7], [16], the same block size is used at each level. Thus, a block at the coarser level represents



a larger region than that at the finer level so that a smaller search area can be used at coarser levels.
If the image size reduced by half as the level becomes coarser, one block at a coarser level covers
four corresponding blocks at the next finer level. Then, the MV of the coarser-level block is either
directly used as the initial estimate for the four corresponding finer-level blocks [7] or interpolated
to obtain four MVs of the finer level [16]. In [19], [21], different block sizes are employed at each
level to maintain a one-to-one correspondence between blocks in different levels. Then, the MV
of each block is directly used as initial estimate for the corresponding block at the finer level.
Methods in this category work relatively well and provide fast computation. However, they only
use the information from coarser levels for the MV refinement in finer levels without considering
other useful information such as spatial and temporal correlations among MVs at the same level.
Furthermore, the refinement process is performed by using a full search with a reduced search area

which nevertheless requires a considerable amount of computation.

1.5 Overview of Our Work

Even though many fast MV estimation techniques have been proposed as reviewed before, we feel
that the spatial and temporal correlations of MVs have not yet been fully exploited in reducing the
search time while maintaining a reasonable rate-distortion trade-off. The use of an AR model to
characterize spatio-temporal correlations of the motion field could provide an elegant theoretical
result. However, its derivation requires a certain amount of computational complexity and its
practical value decreases. Our goal is to develop a sequence of fast MV estimation algorithms
which exploit the spatio-temporal correlations of MVs in a computationally simple way and yet
works effectively in the sense of producing small residual errors. Furthermore, we incorporate them
in a multiresolution framework to improve the overall performance.

This paper is organized as follows. We first propose two new algorithms using only the spatial
correlation. They are called S1 and S2 (where S denotes spatial) and introduced in Sections 2 and
3, respectively. Algorithm S1 provides the basic framework while algorithm S2 is a modified version.
To achieve a better performance, we incorporate the information from the temporal domain and
propose two fast algorithms based on spatio-temporal correlations. They are called ST1 and ST2
(where ST stands for spatial and temporal) and described in Sections 4 and 5, respectively. Then,
we integrate the spatio-temporal technique with the multiresolution scheme to obtain the ultimate
algorithm called MRST (where MR denotes multiresolution) in Section 6. The MVs obtained from
all proposed algorithms are compatible with the MPEG standard. The performance of all algorithm

is demonstrated via extensive experiments in Section 7. Concluding remarks are given in Section 8.



2 Fast Algorithm Based on Spatial Correlation: S1

The following framework is adopted in our discussion. Each image frame is divided into nonover-
lapping square blocks of 16 x 16 pixels as specified by MPEG. We use B(%, j, k) to represent a block
of the kth frame, where ¢ and j are block indices along the row and column directions, respectively.
For example, an image of size 352 x 240 has block indices ¢ = 0,1,...,14 and j = 0,1,...,21,
and B(0,j, k) and B(i,0,k) represent the blocks in the first row and first column, respectively.
We would like to determine the MV for each block between two consecutive frames with a certain
fast MV estimation algorithm. Without loss of generality, when we talk about the MV of block
B(i,3,k), it is calculated based on forward prediction, i.e. the MV between frames & — 1 and k.
However, the same idea can be applied to backward prediction and generalized to bidirectional
prediction.

It has been observed that the MV of a certain block is the same or very close to the MVs of
its spatially adjacent blocks. To illustrate the spatial correlation of MVs, we compute the MV
spatial differentials of consecutive blocks along the horizontal and vertical directions via full search,
and plot the histograms of x- and y-components of these differentials in Fig. 1. The high peaks
at the zero differential value indicate that the MV field is highly correlated along both horizontal
and vertical directions. Even though the specific data are calculated based on the 60th frame of
the “football” sequence, the observation is typical for any frame in an image sequence. Such an
observation suggests that the MV of a given block can be predicted from its spatially neighboring
blocks. This is the main idea behind our algorithm.

Based on this spatial correlation property of MVs, we propose a fast MV estimation algorithm
called S1 in this section. It consists of two major building elements: (1) the MV candidate selection
and (2) the MV refinement process. Before a detailed discussion on each component, we would like

to define the following terms to make the discussion clear.

e The initial MV candidates represent a set of MV candidates selected from spatial (and tem-
poral as well as hierarchical in later sections) neighboring blocks with a certain selection

rule.

e The best MV candidate represents the one MV chosen from the set of initial MV candidates

to serve as the starting point for the MV refinement process.

e The final MV represents the final MV result obtained.



2.1 MYV candidate selection

To begin the MV estimation process, we perform the full search block matching algorithm to de-
termine the MVs of the four blocks at the top left corner, i.e. B(0,0,%), B(0,1,%), B(1,0,k) and
B(1,1, k). Since the search cannot go beyond image boundaries, MVs of boundary blocks B(0,0, k),
B(0,1,k) and B(1,0,k) are limited to some directions and a full search at block B(1, 1, k) will pro-
vide more accurate initial MV candidate for the following estimation task. When performing a full
search, an alternating 4:1 pixel subsampling technique [9] can be used to reduce the computational
cost, i.e. for a block of size 16 x 16, only the values at 64 pixels are used to compute the MAD
(Mean of Absolute Difference). It was shown in [9] that a reasonably good MV estimate can be
obtained by using such a pixel subsampling technique. This gives a computational reduction by a
factor of 4 in comparison with a straightforward implementation of the MAD computation.

After the initialization step, we proceed to the next block according to a rowwise ordering, i.e.
starting from the left to the right for the 1st row, then the 2nd row, and so on, and use the MVs
of blocks B(i,7 — 1,k), B(i — 1,4,k), B(i — 1,7 — 1,k) and B(: — 1,7 + 1, k) as the initial MV
candidates for block B(i, j, k). Note, however, that blocks along the boundaries have fewer initial
candidates than the inner blocks. Among the four initial MV candidates, the one with the smallest
MAD (denoted by M ADy) is chosen as the best MV candidate (V) for block B(%, j, k) and used
as the starting point for further MV refinement. In other words, let C = {C},...,Cxr} be the set
of initial MV candidates, and M AD(C;) be the MAD corresponding to the vector C;. Then, the

best MV candidate Vj can be expressed as
Vo = arg min MAD(C).

2.2 MV refinement process

The refinement process begins with the best MV candidate (Vp) and its corresponding MAD value
(MADy). A threshold TH, is set so that if MADy < TH,, the best MV candidate Vj is chosen
as the final MV for block B(1,j, k). If MADg > T H,, we use the spatial correlation property and
assume that the best MV candidate Vj is close to the desired final MV. Even though the assumption
that the matching error increases monotonically as the searching point moves away from the global
minimum (i.e. the unimodal error surface assumption) is generally not true, it seems reasonable
to assume that the matching error surface is monotonic in a small neighborhood around the global
minimum. This assumption was used to find small motion for low bit rate coding applications

in [8]. It implies that if the initial search point is close to the global minimum, there is a high
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probability to find the global minimum. In the current context, the best candidate Vj is viewed
as a new search center so that a search is performed around its neighborhood. The search starts
at the new center and its eight neighboring points. If either the minimum MAD among nine of
them occurs in the middle (center), or the new smaller MAD has the value < T'Hy, the procedure
stops. Otherwise, it keeps the same search procedure by using the position with the new minimum
MAD as the new search center. The process iterates until either the stopping criterion is satisfied
or the pre-set maximum number (S) of search steps is reached. We call the above search procedure
local search around, and depict it in Fig. 2. As shown in the figure, eight surrounding locations are
searched at each step.

It is observed that the 4:1 pixel subsampling technique gives an unacceptably coarse matching
result in the current context, since we consider nine search points at a time and need an accurate
local minimum point for the next step. It is nevertheless possible to reduce computation in the
MAD calculation at each location. That is, we consider the checker-board partitioning of 16 x 16
pixels within each block, and use one half of the pixels beginning at top left pixel for matching.
It turns out that this reduction gives sufficiently good results required by a further refinement.
Furthermore, even though we have to compute the MAD for nine points at the first step, the MAD
has to be computed at only three or five positions in the following steps due to the overlap of the
neighborhoods of consecutive centers.

As discussed above, there are three possible conditions for the local search around procedure
to stop. First, if it stops because MAD < T H,, the position corresponding to this MAD value is
chosen as the desired final MV. Second, if the procedure stops because of reaching the maximum
step number of iteration, it is likely that the MV of the current block may not be close to MVs
of its neighboring blocks. This phenomenon is often resulted from motion discontinuity, occluded
regions or a certain type of mixed motion. Thus, we perform a full search with alternating 4:1
pixel subsampling to find the MV for this block. Third, if the search stops because the minimum
MAD occurs in the middle among nine points, it seems reasonable to choose that point as the final
MYV. However, it is possible that the best MV candidate Vj is too far from the desired final MV
so that we actually get trapped to a wrong local minimum. To avoid such a problem, we check
the MAD value at that point. If its MAD value is not larger than a threshold value TH, (another
threshold which is greater than T H,), then we choose the corresponding position to be the final
MV. Otherwise, a full search with alternating 4:1 pixel subsampling is performed to determine the
MYV for the current block. This completes our refinement process. Let us summarize Algorithm S1

as follows.



Algorithm S1

1. The algorithm is initialized by performing a full search with an alternating 4:1 pixel sub-
sampling technique on four blocks located at the top left corner, i.e., B(0,0,%), B(0,1,k),
B(1,0,k) and B(1,1,k). The full search has the maximum displacement £W along both

horizontal and vertical directions.

2. We proceed the MV search for the block from the top left to the bottom right with a rowwise
ordering. For block B(i,j,k), we use the MVs from its four neighboring blocks B(i,j —
1,k),B(i—1,j,k), B(i— 1,5 — 1,k) and B(i — 1,7 + 1, k) as possible initial candidates and
choose the one with the smallest MAD (M ADy) as the best MV candidate (Vj) for the block
B(i,j, k).

3. If MADy < TH,, the best MV candidate Vj is chosen as the final MV, Then, we move to the
next block (returning to Step 2). Otherwise, go to Step 4.

4. If MADqy > TH,, perform the local search around procedure until reaching one of the follow-

ing three stopping criteria:

(i) the new minimum MAD < T'Hy;

(ii) the minimum MAD among nine points at one step occurs at the middle (center) location;
(iti) the search step number reaches the maximum limit (S).

5. If the search stops because of condition (i), the position giving the minimum MAD is chosen
as the final MV. If the search stops due to condition (ii), we check the minimum MAD value
in the center. If the MAD value < T'H; (another threshold greater than T'H;), the position
is accepted as the final MV. Otherwise, switch to the full search mode with alternating 4:1

pixel subsampling to determine the MV. If the search stops because of condition (iii), the full

search with alternating 4:1 pixel subsampling is performed to obtain the final MV.

6. Proceed to the next block by returning to Step 2. After all the blocks in a frame are processed,

go to the next frame with Step 1.

3 Modified Spatial Based Algorithm: S2

The spatial correlation of MVs was exploited to develop a fast MV estimation algorithm known

as S1 in Section 2. In this section, we propose another algorithm called S2 with the objective to
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speed up the search computation while maintaining a similar performance in the resulting MSE (or
rate-distortion). The new algorithm is motivated by the observation that, in many cases, the MVs
have a long range spatial correlation. That is, the MVs associated with 2:1 horizontally or vertically
subsampled blocks still have a strong spatial correlation. Thus, by using block subsampling, we
classify blocks into several different types. Then, the MV of a certain type of blocks can have its
initial MV candidates coming from four noncausal spatial directions rather than causal directions
(i.e. upper and left) only as occurred in S1. The resulting scheme provides a faster search for
these blocks since a better set of initial MV candidates is used. Consequently, we obtain an overall

performance improvement.

3.1 MYV candidate selection

We classify each block into one of the three types G1, G2 and G3 as shown in Fig. 3. We first
treat the image as if it consists only of G1 blocks, and perform the MV estimation for blocks in
the G'1 group with Algorithm S1. That is, for block B(i, j, k) in G1, we use the MVs from blocks
B(i,j — 2,k), B(i — 2,j,k), B(i —2,j — 2,k) and B(i — 2,j 4 2,k) to be initial MV candidates as
shown in Fig. 4 and the one with the smallest MAD is chosen as the best MV candidate for further
MYV refinement to obtain the final MV.

Each G2 block is surrounded by four G1 blocks at its four corner positions. We use the MVs
from the four G'1 blocks as initial MV candidates and choose the one with the smallest MAD as
the best MV candidate for further refinement. There are some G2 blocks which lie along image
boundaries and require some special attention. Following the above rule, its initial MV candidates
come from one or two nonboundary blocks. However, the boundary blocks can only have a certain
range of MVs so that their MVs may be quite different from those of the inner blocks. Thus, we
include the MV from the nearest G2 block located on the same boundary which has been obtained
earlier as an additional initial MV candidate for boundary G2 blocks. Finally, we perform the MV
refinement process to obtain the final MV for G2 blocks.

The next step is to estimate the MVs for G3 blocks. As shown in Fig. 4, we now have the
initial MV candidates from G'1 and G2 blocks. To be more precise, for a G3 block B(i, j, k), we use
the four MVs from blocks B(i,j — 1,k), B(i,7+ 1,k), B(i — 1,7,k) and B(i + 1, j, k) as its initial
MYV candidates. These MV candidates come from blocks located at the same row or the same
column, and they tend to provide a better candidate set than the ones provided by four corner
blocks. Blocks along boundaries can also be handled in a straightforward fashion. The best MV

candidate is obtained from the one giving the smallest MAD, and used for the further refinement.



3.2 MYV refinement process

The refinement process for blocks in groups G1 and G2 is performed in the same way as that in S1
(see Section 2.2) with a slight modification for G3 blocks. As mentioned above, G3 blocks tend to
have a better set of initial MV candidates than G1 and G2 blocks so that the MV of each G3 block
should be close to one of its surrounding initial MV candidates. Thus, the refinement for G3 blocks
is performed without switching to the full search mode. In other words, after choosing the best
MV candidate (Vp) with the smallest MAD among initial MV candidates, if MADy < TH,, the
vector Vp is chosen to be the final MV. Otherwise, we perform the local search around. Whatever
condition stops the search, we accept the position with the last minimum MAD as the final MV.

Algorithm S2 is summarized as follows.

Algorithm S2

1. Assign each block to one of three types G'1, G2 and G3 as shown in Fig. 3

2. Treat the subsampled G1 blocks as neighbors, and apply Algorithm S1 to determine the MVs
of all G1 blocks.

3. After obtaining all MVs of G1 blocks, determine the best MV candidate of G2 blocks based
on the four initial MV candidates from their four corner neighboring G1 blocks. For G2
boundary blocks, add one more candidate obtained from the nearest G2 block along the same

boundary. Then, we perform the MV refinement process as used in S1.

4. Determine the MV of each G3 block by using the MVs from its four nearest neighboring
blocks belonging to G1 or G2 as initial MV candidates. Choose the one with the smallest
MAD (M ADy) as the best MV candidate, and if M ADg > T Hy, perform the MV refinement

process without the full search mode.

5. After all the blocks in a frame are processed, proceed to the next frame beginning with Step
1,

In the next section, we will show how to incorporate the information from the temporal direction

to improve the performance.
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4 Fast Algorithm Based on Spatio-Temporal Correlation: ST1

In addition to the spatial correlation, MVs are also highly correlated in the temporal direction. We
observe that the histogram of MV temporal differentials is similar to that of MV spatial differentials
as shown in Fig. 1 with a high peak appearing at the zero differential value. The temporal correlation
property provides additional information for selecting a better set of initial MV candidates and leads
to an overall improvement in the search speed and the resulting MSE. In this section, we modify
Algorithm S1 by including temporal information. The resulting algorithm is called Algorithm ST1.

A simple way to incorporate the temporal information in Algorithm S1 is to include the MV of
the block at the same location from the previous frame (i.e. B(i,j,k — 1)) in the set of initial MV
candidates. Furthermore, we can obtain information from noncausal directions by including two
more initial MV candidates obtained from the blocks in the previous frame, i.e. B(i+ 1,j,k— 1)
and B(?,j+1,k—1). Finally, it is natural to include MVs of B(i—1, j, k) and B(Z,j7 — 1, k). Thus,
for block B(%, j, k), there are five initial MV candidates from blocks

B(i,j—1,k),B(i—1,j,k), B(¢,j,k—=1), B(i,j+ 1,k—1), B(i+ 1,5,k —1).

Recall that we initialize the MV estimation process in S1 by performing a full search for the
four blocks at the top left corner by exploiting the spatial correlation only. By including temporal
information, we can use temporal information to select initial MV candidates for these four blocks
without a full search in initialization. After selecting a set of initial MV candidates, we choose the
one giving the smallest MAD value (M ADy) as the best MV candidate (Vp) and perform further
refinement to improve the MV result. The refinement process is performed in exactly the same way

as stated in Section 2.2. Algorithm ST1 is summarized as follows.

Algorithm ST1

1. We obtain the MV for the block from the top left to the bottom right with a rowwise or-
dering. For block B(i,j, k), we select its initial MV candidates from B(i,j — 1,k), B(i —
1,5,k),B(¢,j,k — 1),B(i,j + 1,k — 1) and B(i + 1,4,k — 1) except for the first predicted
frame where the temporal information is not available and Algorithm S1 can be performed to
find the MVs. Among the initial MV candidates, we choose the one with the smallest MAD
(M ADy) as the best MV candidate (Vq) for the block B(z, 7, k).

2. If MADy < TH,, the best MV candidate Vj is chosen to be the final MV. Then, we proceed

to the next block by returning to Step 1. Otherwise, go to Step 3.
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3. Perform the MV refinement process using the same procedure as stated in Algorithm S1

(Steps 4 and 5).

4, Move to the next block by returning to Step 1. After all the blocks in a frame are processed,

go to the next frame.

5 Modified Spatio-Temporal Based Algorithm: ST2

With the framework of the modified algorithm S2, we propose the new spatio-temporal correlation
based algorithm ST2 by incorporating the temporal correlation information to improve the speed
of Algorithm ST1.

In Algorithm ST2, each block is assigned to one of three groups in the same pattern as in
Algorithm S2 (Fig. 3). For G1 blocks in Algorithm S2, the only available initial MV candidates come
from spatially subsampled blocks in causal (upper left) directions. In ST2, we include candidates
from blocks in lower, right and the same locations from the previous frame. Thus, for block B(i, j, k)
in the G'1 group, we select the MVs from two spatially adjacent blocks B(7, j—2, k) and B(i—2, j, k),
and three temporally adjacent blocks B(i,j,k — 1), B(i,j+ 1,k —1) and B(i + 1,7,k — 1) to be
initial MV candidates as shown in Fig. 5. The best MV candidate is obtained by choosing the one
with the smallest MAD. Then, we perform further refinement.

The G2 blocks have more MV information available for its spatially neighboring blocks than G1,
since each G2 block is surrounded by four G1 blocks at its four corner positions. We use the MVs
from four spatial G1 blocks and one temporal G2 block on the same location from the previous
frame as initial MV candidates as shown in Fig. 5.

Similar to Algorithm S2, G3 blocks have initial MV candidates from G1 and G2 blocks which
are located in either the same row or column. Thus, for a G3 block B(i, j, k), we use the four MVs
from spatial blocks B(i,7 — 1,k), B(i,j + 1,k), B(i — 1,4,k) and B(i + 1,7, k) and one MV from
temporal block B(i,j, k — 1) as its initial MV candidates. The selection rule is shown in Fig. 5.

Note that each G2 or G3 block is surrounded by four spatial candidates with one temporal
candidate in the middle location. Such a candidate pattern suggests a simple modification on the
decision rule. That is, if all five initial candidates are the same, such a vector can be used as
the final MV without any further refinement. This modification saves a certain amount of MAD
computation with little sacrifice in the performance. If they are not the same, we employ the
original rule where the best MV candidate is set to the candidate with the smallest MAD. Then,

we perform the same local refinement as that in Algorithm S2 for each group. Algorithm ST2 is
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summarized as follows.

Algorithm ST2

1. Assign each block to one of three group types G1, G2 and G3 as shown in Fig. 3.

2. Treat the subsampled G1 blocks as spatial neighbors, and select the initial MV candidates
from spatio-temporal neighboring blocks B(i,j — 2,k), B(i — 2,4, k), B(i,j,k — 1), B(i,j +
1,k—1) and B(i+1,j,k—1) with the exception of the first predicted frame where Algorithm
S2 is performed. The best MV candidate is the one giving the smallest MAD. The same

refinement process as done in S2 is performed to determine the final MVs of all G1 blocks.

3. After obtaining all MVs of G'1 blocks, determine the MV of each G2 block based on four
initial MV candidates from its four corner spatially neighboring G1 blocks and one initial
MYV candidate from temporally neighboring block at the same location. If all five candidates
give the same vector, it is the final MV. Otherwise, choose the one with the smallest MAD

as the best candidate and perform the MV refinement as used in S2.

4. Determine the MV of each G3 block by using the MVs from its four nearest neighboring
blocks belonging to G1 or G2 and one temporally neighboring block at the same location as

initial MV candidates. The remaining procedure is the same as that in Step 3.

5. After all the blocks in a frame are processed, move to next frame beginning with Step 1.

The proposed MV selection procedure of ST2 provides a scheme to use spatial and temporal
information in a complement way. For example, G1 blocks do not have as many good spatial
candidates as the G2 and G3 blocks do, therefore, they need more information from the temporal
direction. For G2 and G3 blocks, we give a higher priority to noncausal information from the
spatial domain than the temporal domain as reflected from the fact that four (noncausal) spatial
neighboring MVs and one temporal MV are used for G2 and G3 blocks.

We have seen so far that all proposed algorithms S1, S2, ST1 and ST2 require threshold param-
eters TH; and T Hj. These parameters are pre-set as a certain fixed numbers. However, it would
be desirable if such parameters can be chosen or adjusted automatically from the algorithm it-
self. In the next section, we propose a new fast algorithm based on multiresolution-spatio-temporal

correlations, which not only solves the threshold problem but also improves the overall performance.
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6 Fast MV Estimation Using Multiresolution-Spatio-Temporal
Correlations: MRST

The multiresolution approach has been recently studied and applied to motion estimation problem
(7], [16], [19], [21]. It provides a relatively fast computational speed while giving a reasonably
good prediction. With this approach, an image frame is decomposed into different resolutions.
The multiresolution nature provides a hierarchical motion field obtained at different scales, and a
smaller search area is used at a coarser level. The MV estimation is first performed on the coarsest
resolution and then the MVs of finer resolutions are refined based on the motion information
obtained at coarser resolutions. Most existing algorithms use only information from coarser levels
to refine the MV in finer levels, and do not exploit spatio-temporal correlations of the MVs at
the same level. In the section, we propose a new fast algorithm called MRST by combining the
multiresolution, spatial and temporal correlation properties.

In this work, a coarser resolution image is obtained by computing the mean of 2 x 2 pixels
from finer levels to represent a pixel in the next coarser level so that the image size is reduced by
half along both horizontal and vertical directions. Note that since we focus on the MV estimation
problem without worrying about the residual coding, only a simple averaged mean is used here to
obtain coarser resolution images. We also employ different block sizes at different levels as presented
in [19], [21], and blocks of smaller sizes are used in the coarser levels so that each level has the
same number of blocks. Thus, there is a one-to-one correspondence of blocks between coarser and
finer levels. The MVs at different levels are highly correlated since they represent the same motion
activities at different scales.

In the proposed algorithm MRST, each image frame is decomposed into 4 resolution levels with
a block of size 2 x 2 at the coarsest level and a block of a size 16 x 16 at the finest level. The
level numbers are ordered from 0 to 3, where levels 0 and 3 represent the coarsest and finest levels,
respectively. We begin with the coarsest level by performing a full search to obtain the MV for
each block. Due to the coarse scale of the MV, the maximum search displacement at the coarsest
level is reduced from W to £W/8 so that only a small amount of computation is required.

For each of the finer resolution level (level 1 to 3), we adopt the framework of Algorithm
ST2 (except for the first predicted frame for which Algorithm S2 is applied) by using the MV
information from the coarser level as well as spatially and temporally neighboring blocks at the
same level. Most existing algorithms rely only on the initial information from the corresponding

coarse-scaled MVs for further refinement. However, the coarse-scaled MVs for some blocks may not
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be accurate enough and could cause some errors which propagate along the hierarchical structure.
Our algorithm exploits the information from both multiresolution and spatio-temporal adjacent
blocks to select a number of initial MV candidates. Note that the MV from the coarser level has
to be properly scaled to serve as the initial candidate in the finer level. For example, if a block at
level ! has the motion vector V/, then the corresponding block at level / + 1 uses 2V as its initial

MYV candidate. The set of initial MV candidates can be expressed as:

{Cla C‘Zv' . '!CMs CM+1}

where Cy,...,Cp are initial MV candidates obtained from the MV selection procedure specified
in ST2 and Chr4, is the initial candidate from the corresponding coarser level.

The best MV candidate is obtained by using the same rule as that described in ST2. Similar to
Algorithm ST2, we also adopt a majority checking rule to select best MV candidate for G2 and G3
blocks. According to the above selection process, each G2 or G3 block has a total of 6 candidates
(4 from spatial, 1 from temporal and 1 from the coarser level). The new checking rule is that if at
least five candidates are the same, this value is the final MV and no further refinement is required.
This allow us to save a certain amount of computation with little sacrifice in MSE increase.

Note that when the MV information from the coarse level is used, we can only have the MV of
an even number of length as the initial candidate. On the other hand, if only the spatio-temporal
information is used as in ST2, there are some blocks that still require a full search (those having the
MAD greater than T'H; or reaching the maximum iteration limit). By incorporating the coarser
level information, the MV obtained from the full search in the coarsest level provides a better set
of candidates so that the full search mode is not needed at finer levels. The new algorithm is more
robust in the sense that the second threshold 7'H; is no longer needed.

One important issue in the refinement process is the selection of threshold TH;. It is one main
factor to determine the computational speed since it indicates whether to choose the best MV
candidate as the final MV (according to the criterion M ADg < TH;). In Algorithms S1, S2, ST1
and ST2, the threshold TH; is a fixed number for every frame throughout the entire estimation
process. It would be more desirable to find a rule such that TH; can be adjusted adaptively for
different frames to provide a higher computational speed. Such a rule should be related to the
knowledge of matching error (MAD) information. In Algorithm MRST, we obtain the values of
minimum MADs via full search at the coarsest level. Such values should give us some rough idea
about the range of smallest MADs for each frame. Therefore, we compute the averaged mean of

smallest MADs over all blocks at the coarsest level for each frame (denoted as uj; where k is the
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frame number) and use it to determine the value of 7'"H;. We also observe that ) tends to have
a small increase as the resolution level goes finer for most frames. Based on the observation, we

choose the threshold value TH; by adding 0.5 to uj every time as the level becomes finer, i.e.
THi(l) = ux+ (0.5 % 1)

at level /. Although we know the smallest MAD of each block at the coarsest level, there is no
direct relationship among the smallest MADs of blocks at different levels. Therefore, it is difficult
to adopt any specific rule for TH; value of each block separately since it could give a large error to
some blocks. Instead, we use the averaged mean value as described above so that the threshold TH,
is good enough in the average sense and would not produce a significantly large error. Based on
the above rule, threshold T'H; is automatically chosen from the MAD information of the coarsest

level. The new algorithm MRST is summarized as follows.

Algorithm MRST

1. Obtain the coarser resolution images by computing the averaged mean of the nonoverlapping
2 x 2 pixels from finer-level images for each pixel in coarser-level images until the block size
at the coarsest level becomes 2 x 2. Let the total number of resolution levels be L. The image
at resolution [ is divided into blocks of size 2/~L+1B x 2!=L+1 B  where B (= 16) is the block

size of the finest resolution L — 1 and I =0,1,...,L — 1. (L=4 in the current case).

2. At the coarsest level, perform a full search with the maximum search displacement % (W/25-!)
to obtain the MV for each block.

3. For each finer level, perform Algorithm ST2 (except for the first predicted frame for which
S2 is applied) by including one more candidate from the corresponding block in the previous
coarser level by multiplying the coarser-scaled MV by a factor of 2. The refinement process
is performed in the same way as done in ST2 except the adoption of full search in any case

for any block type (G1,G2 or G3).

4. After the MVs at finest level are obtained, move to the next frame beginning with Step 1.

7 Experimental Results

Experiment results using all proposed algorithms S1, S2, ST1, ST2 and MRST are reported in
this section. They are applied to five MPEG test videos: bicycle, cheer (leaders), flower, football,
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and mobile. Each video contains 150 frames and each frame has a size of 352 x 240 obtained by
subsampling CCIR601 720 x 480 luminance component only. These sequences provide a variety of
motions including still, slow and fast movements, camera panning, and zooming. A 16 X 16 square
block is used as a macroblock for MV estimation as specified by MPEG. Only forward prediction is
implemented in the experiments. The maximum horizontal and vertical search displacement is 16
(W = 16) so that the maximum search locations for one block is 33 x 33 (33 = (2 x 16) + 1). We
use MAD as the error measure in performing block matching, while the MSE per pixel is computed
between the original and the resulting motion-compensated frames as the quality measure. For
Algorithms S1, S2, ST1 and ST2, the threshold parameters used are TH; = 4 and TH; = 35 and
the maximum step number for local search around is S = 10. Algorithm MRST does not require
TH; and THj, and the maximum search step number for each finer level is 2.

For comparison, we show in Table 1 the results obtained from the full search block matching
algorithm (FBMA) and the 2-D logarithmic search. To demonstrate the performance of our algo-
rithms, we present various results with all five proposed algorithms in Tables 2-6. All values in the
tables are the averaged values by using data obtained from 149 predicted frames. The meaning of

each column is explained below.

e Speed-up represents the speed-up factor gained from the algorithms. To be more precise, a
speed-up factor = P means that the matching operations are reduced by a factor of P from
the full search. Equivalently, we can say that it requires (1/P) x 100% operations with the

total number of operations required by full search normalized to one.

e MSE (% increase) represents the increased MSE of reconstructed motion-compensated frames
with the MSE obtained via full search as the reference, which is expressed in terms of per-

centage.

e Search step represents the averaged step number in performing the local search around (pre-
sented in Tables 2-5). This includes step number 0 with M ADy < TH, (i.e. the best MV

candidate is used as the final MV without MV refinement).

e FS bks shows the averaged number of blocks requiring full search for each frame (presented

in Tables 2-5).

o MYV bits represents the number of bits used in the coding of MVs, where the differential coding
scheme adopted by the MPEG standard [10] is applied.

ki



By comparing Algorithms S1 and ST1, and Algorithms S2 and ST2, we can see a significant
improvement in the speed-up factor by using both spatial and temporal correlations than using the
spatial correlation only. Furthermore, we see from Tables 2-5 that the averaged speed-up factors
of ST2 (or S2) are higher than those of ST1 (or S1) in all five sequences. The main reason of
gaining a high speed-up factor in ST2 (or S2) is due to computational reduction in G2 and G3
blocks, especially in G'3 blocks where the number of blocks counts for one half of the total number
of blocks. In Table 6, we see that the speed-up factors of MRST are higher than those of S1, S2,
ST1, ST2 and log search. Due to multiresolution and spatio-temporal correlations, we can obtain
a better set of initial MV candidates so that there is no need to perform the full search at finer
levels (no T'H;). Note, however, that for “mobile” sequence, MRST gives a little lower speed-up
factor than ST2 with a similar MSE result. This is because the MVs of “mobile” sequence have
very strong spatial and temporal correlations so that very few blocks require full search in ST2
(only the average of 0.7 block in ‘F'S bks’ column). For this case, multiple levels in MRST seem to
add a little more computation which causes a lower speed-up factor than that of ST2. For “cheer”
and “football” sequences which have a larger number of ‘FS bks’, we see that Algorithm MRST
results in a much higher speed-up factor than ST2.

To gain more insights, we plot the frame-by-frame speed-up factor by using the log search, S2,
ST2 and MRST for “football” and “flower” sequences in Figs. 6 (a) and (b), respectively. We see
that MRST provides the highest speed-up factor for most frames in both sequences. Besides, we
observe from the plots that ST2 has a high fluctuation in the speed-up factor. This is due to the use
of a fixed T'H, for all frames, where the value of TH; may be too small or too big for some frames.
On the other hand, MRST gives a smaller fluctuation in the plot due to the adaptive nature of
TH, for each frame.

As a tradeoff of fast MV estimation in MRST, we observe only small MSE increase (between
2 — 7%) in comparison with the full search. It supports our claim that the multiresolution-spatio-
temporal correlations can be effectively used to reduce the computational cost without sacrificing
much in MSE. For “flower” and “mobile” sequences, the results of ST2 and MRST are similar, while
for “bicycle”, “cheer” and “football”, MRST gives a better result in terms of a higher speed-up factor
and a lower MSE value. Note also that the MSE difference between ST1 and ST2 is very small. This
Justifies the idea of exploiting the block subsampling technique in ST2. The frame-by-frame plots
of percentage of MSE increase with the log search, S2, ST2 and MRST algorithms for “football”
and “flower” are given in Figs. 7 (a) and (b), respectively. It is clear that the percentages of MSE

increase from MRST is much smaller than those from other algorithms. Algorithm MRST not only
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gives smaller MSE increases in average but also provides smaller deviations in MSE increase. This
implies that the quality of the output video obtained from MRST should be better in consecutive
display.

In Tables 2-5, the search step number gives us information about how close the best MV
candidate is to the final MV. It is also clear that a smaller number of search step implies a higher
speed-up factor. Even though the maximum step number S is set to 10, most blocks require only
a few steps to reach the final MV. The “flower” and “mobile” sequences have the averaged step
number even less than one, since there are many blocks with M ADgy < TH; that do not require
the local search around process.

For the column of ‘FS bks’, we see that the numbers are relatively small compared to the total
of 330 blocks used in the full search. The ‘FS bks’ number gives us a rough idea of the occurrence
of motion discontinuity or regions that cannot be well represented by those in neighboring blocks
or frames due to occlusion, zooming, mixed motions, etc. The ‘FS bks’ and search step numbers
are two main factors which determine the speed-up factor. For example, even though the “cheer”
sequence has a search step less than that of the “bicycle” sequence, it has a larger number in ‘FS
bks’ and, therefore, a lower speed-up factor.

Next, we examine the column of MV bits. We see from tables that all five proposed algorithms
use fewer bits in the coding of MVs than the full search. This is a direct consequence of a smooth
motion field by using the spatial correlation for MV estimation. The temporal correlation does not
play an important role in MV coding since the coding is based on spatial differentials as specified by
MPEG. Both full search and log search do not use the MV information from neighboring blocks. In
both methods, each block is treated independently of others. This may cause MVs to jump around
in some regions and result in a higher number of MV bits. We also observe that, for “bicycle”,
“cheer” and “football”, the MV bits of MRST are a little larger than those from ST2, which could
be resulted from the use of MVs obtained from the full search at the coarsest level.

Finally, we consider the coding of residual errors to obtain the rate-distortion (R-D) plot. We
do not go through the whole coding process of MPEG which contains bit stream syntax, layered
structure and so on. Instead, we only perform MYV differential coding and DCT residual error
coding, and add the numbers of bits together to represent the ‘rate’ with the unit of bpp (bits
per pixel). The distortion is represented by PSNR, which is computed via MSE measured from
the final reconstructed images (with residual coding). Two R-D plots for “football” and “flower”
sequences are demonstrated in Figs. 8 (a) and (b), respectively. In both R-D plots, we see a small

deterioration from the results of our algorithms in comparison with the full search while the results
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of the log search are much worse. The results of MRST and ST2 are very similar, and they are
both better than that from S2. For the “football” sequence, the R-D plot of ST2 is in fact a little
better than that of MRST despite a larger MSE. The reason could be that in some regions the ST2
gives higher correlated residual errors so that fewer bits are required by DCT. For the “flower”
sequence, the results of ST2 and MRST are so similar that they appear to coincide with each other.
To conclude, the proposed algorithm MRST provides a very fast MV estimation procedure while

maintaining a good performance in terms of MSE as well as the rate-distortion tradeoff.

8 Conclusions

In this work, we first introduced two fast MV estimation algorithms S1 and S2 based on spatial
correlation of MVs between adjacent blocks and then incorporated the temporal information to
obtain Algorithms ST1 and ST2. We finally proposed the ultimate algorithm MRST by combining
the multiresolution scheme with spatio-temporal correlations. The initial MV candidates of MRST
are selected from the corresponding coarser-level block as well as spatially and temporally neigh-
boring blocks at the same level. We showed with experimental results that the proposed algorithm
MRST has a speed-up factor ranging from 150 to 310 with only 2-7% MSE increase and a similar
rate-distortion performance in comparison with the full search. Therefore, this algorithm can be

very useful for real-time video encoding applications.
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Experimental results of five test video sequences with the log search and the full search.
Experimental results of five test video sequences with Algorithm S1.

Experimental results of five test video sequences with Algorithm S2.

Experimental results of five test video sequences with Algorithm ST1.

Experimental results of five test video sequences with Algorithm ST2.

Experimental results of five test video sequences with Algorithm MRST.

Figure Captions

Histograms of MV spatial differentials of x- and y- components along the (a) horizontal and
(b) vertical directions for the 60th frame of the “football” sequence (ft60)

Local search around procedure: the search starts at the new center (best MV candidate) Vp
and its eight neighboring points, and moves from V; to V; and to V; since the minimum points
in the first two steps are not in the center and the new MADs are still greater than TH,.
The search stops after searching around V5 since the minimum is located at the center V5.

Block pattern employed in Algorithm S2 (and ST2 in later section) where blocks are divided
into three groups: G1, G2 and G3 denoted by numbers 1, 2 and 3 in the figure, respectively.

The MV candidate selection procedure for Algorithm S2.
The MV candidate selection procedure for Algorithm ST2.

The plot of the speed-up factor as a function of the frame number with log search, S2, ST2
and MRST: (a) football and (b) flower.

The plot of percentage of MSE increase as a function of the frame number with log search,
S2, ST2 and MRST: (a) football and (b) flower.

Comparison of the rate-distortion performance with full search, log search, S2, ST2 and
MRST, where the rate is represented by bits per pixel (bpp) while distortion is represented
by PSNR(dB): (a) football and (b) flower.
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Video Log search FBMA
Speed- MSE MV || MSE | MV
up (% increase) | bits bits
Bicycle 48.6 | 535.9 (27.7%) | 2695 || 419.5 | 2405
Cheer 56.4 | 542.6 (16 9%) | 1856 || 464.3 | 2121
Flower 54.0 | 250.1 (13.2%) | 1297 |[ 221.0 | 1080
TFootball || 45.6 | 231.3 (32.6%) | 3149 || 174.6 | 2450
Mobile 62.6 | 349.0 (7.0%) | 893 || 326.3 | 840

Table 1: Experimental results of five test video sequences with the log search and the full search.

Video Proposed algorithm S1
Speed- MSE Search | FS | MV
up (% increase) | step | bks | bits

Bicycle 74.3 | 458.8 (9.4%) | 1.81 | 11.9 | 1946
Cheer 55.1 | 495.6 (6.7%) | 1.57 | 19.4 | 1904
Flower || 110.2 | 226.7 (2.6%) | 0.87 | 7.3 | 957
Football 83.1 |205.3 (17.6%) | 1.51 10.8 | 1991
Mobile || 128.4 | 330.6 (1.3%) | 0.87 | 5.6 | 807

Table 2: Experimental results of five test video sequences with Algorithm S1.

Video Proposed algorithm S2
Speed- MSE Search | FS | MV
up (% increase) | step | bks | bits
Bicycle 85.8 | 463.6 (10.5%) | 1.81 8.2 | 1934
Cheer 70.6 | 512.4 (10.3%) | 1.57 | 13.0 | 1863
Flower 128.9 | 228.6 (3.4%) | 0.85 | 5.5 | 981
Football || 95.2 | 207.9 (19.1%) | 1.50 | 84 | 2039
Mobile 138.0 | 331.5 (1.6%) 0.86 4.8 | 802

Table 3: Experimental results of five test video sequences with Algorithm S2.
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Video Proposed algorithm ST1
Speed- MSE Search | FS | MV
up (% increase) step | bks | bits
Bicycle 110.7 | 450.1 (7.3%) 1.56 5.7 | 1997
Cheer 84.4 489.9 (5.5%) 131 | 114 | 1911
Flower 178.1 | 224.6 (1.7%) 0.75 3.0 | 954
Football || 151.5 [ 195.2 (11.8%) | 1.24 | 3.7 | 2034
Mobile 217.5 | 330.4 (1.3%) | 0.80 | 1.2 | 808

Table 4: Experimental results of five test video sequences with Algorithm ST1.

Video Proposed algorithm ST2
Speed- MSE Search | FS | MV
up (% increase) | step | bks | bits
Bicycle 131.8 | 455.2 (8.5%) 1.54 | 3.1 | 1960
Cheer 119.6 | 505.7 (8.9%) 1.23 | 6.4 | 1860
Flower 271.5 | 225.5 (2.0%) | 0.57 | 1.4 | 951
Football || 177.3 | 198.3 (13.6%) | 1.23 | 2.1 | 2035
Mobile 356.7 | 331.8 (1.7%) 0.55 | 0.7 | 793

Table 5: Experimental results of five test video sequences with Algorithm ST2.

Video Proposed algorithm MRST
Speed- MSE MV
up (% increase) | bits
Bicycle || 150.4 | 448.7 (7.0%) | 2107
Cheer 231.5 | 492.8 (6.1%) | 1957
Flower 287.8 | 224.6 (1.6%) | 958
Football || 208.4 | 186.7 (6.9%) | 2219
Mobile || 314.5 | 332.6 (1.9%) | 786

Table 6: Experimental results of five test video sequences with Algorithm MRST.
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Figure 1: Histograms of MV spatial differentials of x- and y- components along the (a) horizontal
and (b) vertical directions for the 60th frame of the “football” sequence (ft60)
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Figure 2: Local search around procedure: the search starts at the new center (best MV candidate)
Vo and its eight neighboring points, and moves from V; to V; and to V; since the minimum points
in the first two steps are not in the center and the new MADs are still greater than TH;. The
search stops after searching around V; since the minimum is located at the center V5.
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Figure 3: Block pattern employed in Algorithm S2 (and ST2 in later section) where blocks are
divided into three groups: G'1, G2 and (3 denoted by numbers 1, 2 and 3 in the figure, respectively
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Figure 4: The MV candidate selection procedure for Algorithm S2
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previous frame > current frame

Figure 5: The MV candidate selection procedure for Algorithm ST2
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Figure 6: The plot of the speed-up factor as a function of the frame number with log search, S2,
ST2 and MRST: (a) football and (b) flower.
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Plot of percentage of MSE increase from Football
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Figure 7: The plot of percentage of MSE increase as a function of the frame number with log search,
S2, ST2 and MRST: (a) football and (b) flower.
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R-D plot from Football
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Figure 8: Comparison of the rate-distortion performance with full search, log search, S2, ST2 and
MRST, where the rate is represented by bits per pixel (bpp) while distortion is represented by
PSNR(dB): (a) football and (b) flower.

30



