USC-SIPI REPORT #293
Embedded DCT Still Image Compression

by

Jiankun Li, Jin Li and C.-C. Jay Kuo

December 1995

Signal and Image Processing Institute
UNIVERSITY OF SOUTHERN CALIFORNIA
Department of Electrical Engineering-Systems
3740 McClintock Avenue, Room 404
Los Angeles, CA 90089-2564 U.S.A.

Embedded DCT Still Image Compression

Jiankun Li, Jin Li, and C.-C. Jay Kuo*
December 4, 1995

Abstract

Motivated by Shapiro’s embedded zerotree wavelet (EZW) coding and Taubman’s layered
zero coding (LZC) approaches, we propose an embedded DCT still image compression scheme
in this work. The new method generates a single embedded bit stream for DCT coefficients
according to their importance. It is demonstrated that the new method performs better than
the JPEG standard in rate-distortion tradeoff.

Keywords: Embedded coding, progressive quantization, arithmetic coder, JPEG.

I. INTRODUCTION

The JPEG baseline system uses the Huffman coder while the extended system use the arithmetic
coder [1]. In both coders, one coefficient has to be completely encoded before the coding of the
next coefficient. More recently, a concept known as embedded coding was proposed by Shapiro [2]
and further developed by Taubman and Zakhor [3] in the context of wavelet transform coding. In
contrast with the coefficient-by-coefficient approach, they adopted a new approach in which each
coefficient is successively quantized into a certain number of bits. The most significant bits of all
coefficients are grouped together to form one layer and encoded first. Next, we move to the layer
of the second significant bits and so on. Such a coding order is consistent with the importance of
each bit so that the decoder can stop at any time in decoding bit streams. The embedding coding
method has many important applications such as rate-control, progressive image transmission and
unequal error protection.

The embedded coding can also be applied to compression schemes using the block DCT trans-
form. Even though the generalization is not difficult, we feel that it is valuable to make its detailed
implementation available, which is the primary objective of the letter. Another contribution of this

work is to demonstrate the performance improvement of the new method over JPEG.

II. EMBEDDED CODING
For a given 8 x 8 DCT block, let us arrange the 63 AC coefficients in the zig-zag scanning
order and denote them by Cj, Ca, - -+, Csa. Consider an example that the AC coefficient takes

*This work was supported by the National Science Foundation Presidential Faculty Fellow Award ASC-9350309.
The authors are with the Signal and Image Processing Institute and the Department of Electrical Engineering-
Systems, University of Southern California, Los Angeles, California 90089-2564.

a value ranging from —1023 to 1023 so that it requires 11 bits for representation (including the
sign bit). We label them with Bo, B, - -+, Bio, where By is the sign bit, B; the most significant
bit (MSB) and Bjo the least significant bit (LSB). The JPEG arithmetic coder encode this bit
matrix in a coefficient-by-coefficient manner. It first encodes all bits for coefficient Cj, next all bits
for coefficient C,, then C3 and so on. For each coefficient, we perform a two-way scan. The first
scan starts from Bjo back to By to locate the most significant bit B; for the current coefficient
C;. A second scan records bits B;, Biyi, -+, Bio and the sign bit Bo. By this way, the number
of intermediate symbols sent for arithmetic coding can be greatly reduced. In fact, the conversion
to intermediate symbols achieves a compression ratio comparable to that of the JPEG Huffman
coder, and the following arithmetic coding procedure offers an additional compression ratio less
than 1.5 to 1. The major disadvantage with the above approach is that the bit streams cannot be
truncated arbitrarily since such a truncation will eliminate all DCT coefficients in the remaining
blocks and yield an incomplete image. Also, rate control is difficult to implement since it is difficult
to estimate the number of coding bits generated for a given Q factor.

To achieve embedded coding, we adopt a different scanning order. That is, we group the bit
B; of coefficients Cj, 1 < j < 63, together into layer L;, and encode first layer Lo formed by the
most significant bits By followed by layers Ly, Ly and so on. Within each layer L;, the scanning
order follows the coefficient order, i.e. starting with coefficient C;, then C», C3, - - -, Ce3s. The layer-
by-layer scanning provides a better rate-distortion trade-off (see Table 2 in Section IV). Another
important advantage is the embedding property. Since the output bit stream is organized in an
order of decreasing importance, it is easy to perform rate control by truncating the bit stream at
the desired rate.

It is worthwhile to point out that the new scanning method produces more intermediate symbols
than the previous one. A scan of layer L; generates exactly 63 intermediate symbols for each DCT
block. Thus, there is no compression in converting bits into intermediate symbols. However,
the resulting intermediate symbols can be effectively encoded by exploring the property that the
arithmetic coder is very suitable for the coding of long sequences of 0’s. In comparison with the
compression factor of 1.5 associated with the coefficient-by-coefficient approach, the intermediate
symbols are compressed by the arithmetic coder by a factor ranging from ten to several hundreds
(see Table 1 in Section 1V).

ITI. DETAILED IMPLEMENTATION
The detailed implementation of the proposed embedded DCT compression algorithm is de-
scribed in this section.
Step 1: Block DCT transform and DCT coefficient scaling
We partition the input image into 8 x 8 blocks, and apply the block DCT transform to each
block. Furthermore, the DCT coefficients C'; are scaled with the elements given by the quantization
table Q, i.e. C; = %, j=0,---,63. The scaling is performed to emphasize the visual importance

of low frequency components.

Step 2: Coding of DC coefficients

The layer coding concept cannot be easily applied to DC coefficient V; due to differential error
accumulation. Thus, we encode the DC coefficients in the same way as adopted by the JPEG
arithmetic coder. An alternative is to apply a differential layer coding [3]. We observed that the
performance of the two schemes were about the same.

Step 3: Successive quantization of AC coefficients

The conventional coding applies the one-step quantization right after scaling. The purpose
is to map the DCT coefficient to a finite index set which can be conveniently converted to in-
termediate symbols and encoded by an entropy coder. In the proposed new scheme, we adopt a
different approach to AC coefficient quantization. It is a successive quantization procedure using
a gradually refined step size. Two symbols “0” (insignificant) or “1” (significant) are produced for
each AC coefficient to form a layer of bits as the result of each quantization step. Depending on
whether a coefficient has been identified as significance, we apply two different rules: (1) significance
identification"and (2) refinement quantization.

To begin with, we apply the significance identification rule to layer Ly. The initial quantization
step Tp for this layer is chosen to be one half of the maximum magnitude of the scaled AC coef-
ficients. For each scaled AC coefficient Cj, if its magnitude is greater than threshold T, we use
symbol 1 to denote its significance and record its sign as well. Otherwise, we generate symbol 0 to
indicate insignificance. For each advanced layer L;;,, ¢ = 0,1, -+, we refine the quantization step
size by half, i.e. T;4; = T3/2, and quantize all AC coefficients accordingly. For each AC coefficient,
if it is insignificant in all previous layers, the significance identification rule is applied. Otherwise,

the refinement quantization rule is applied. In terms of mathematics, we have

1. significance identification:

C;>T, S;i=1 E;j;i=C;;-15-T;,
C;<-Ti, Sji=-1, E;;=Cj;i+15-T;,
otherwise, S;;=0, E;;=Cj,

where symbol E;; in the last column denotes the quantization residue at layer L;.

2. refinement quantization:

F;i120, R;;=1, FE;j;=FE;;1-T;
E;i.1<0, Rj;=-1, Ej;=E;j;.1+T;.

Note that symbols S;; and R;; are generated with a decreasing importance order to form an
embedded coding bit stream.
Step 4: Context adaptive arithmetic coding

We adopt the context adaptive arithmetic coder used in the JPEG extended system to encode
the significance identification symbols S;, 1 = 0, 1,2, - for layer L;, and refer to [1] (Chapters 12—
14) for its detailed implementation. The context used in our embedded DCT coder is illustrated

.,

2
7

Z

7
o

L7

Z
%

NN\

ARiainmraiaty

Figure 1: Illustration of significant symbol coding context, where * is the current coding position,
o is the significant symbol of current layer and e is the significant symbol in the previous layer.

in Fig. 1. For each circle position, we use 1 bit to represent the current significance status of the
symbol. We combine the 6 bits to form a context for arithmetic coding to predict the current
significance identification symbol S;, consisting of 4 spatial prediction points (since spatially neigh-
boring blocks are likely to have similar DCT coefficients) and 2 frequency prediction points (since
frequency neighboring coefficients are likely to have similar scale of magnitude). Our layer-by-layer
coding turns out to be more efficient than the coefficient-by-coefficient JPEG coding. This can be
explained by the reason that for the layer-by-layer coding, we only predict whether a symbol is
significant or not, which is much easier than the prediction of the coefficient value.

The refinement symbol R; is distributed evenly between 1 and -1, so we simply use an equal

probability arithmetic coder.

IV. EXPERIMENTAL RESULTS

In Table 1, we show some experimental data associated with each layer coding for the Lena
image, which are results of Steps 3 and 4 described in the previous section. We see that the

arithmetic coder does an excellent job of compressing the intermediate symbols.

Table 1: Intermediate symbols and arithmetic coding results for Lena

layer || S symbol | R symbol | compressed | compression
size ratio
0 | 258048 0 69 bytes 467:1
1 257999 49 385 bytes 83.8:1
2 257549 499 982 bytes 32.8:1
3 256234 1814 1865 bytes 17.2:1

Next, we compare our embedded DCT algorithm with the JPEG baseline Huffman coder and
the JPEG arithmetic coder. For a fair comparison, we strip the header of the JPEG coding bit
stream. The experimental images are Lena and Baboon of size 512 x 512. In Table 2, we fix the
PSNR values of the decoded Lena and Baboon images, and list the compressed bit stream length

Table 2: Performance Comparison for Lena (with PSNR=29.22dB) and Baboon image (with
PSNR=22.65dB)

Huff. | Arith. | New | Gain (H) | Gain (A)

(%) (%)

Lena | 6540 | 4660 | 4370 33.2 6.2
Baboon || 11476 | 8537 | 7959 30.6 6.8

(in terms of bytes) of the JPEG baseline Huffman coder, JPEG arithmetic coder and our embedded
DCT coder in the first 3 columns. The gain of our new method over the other two methods is given
in the last 2 columns. We see that the embedded DCT algorithm outperforms the JPEG Huffman
coder and the JPEG arithmetic coder by about 30% and 6%, respectively. Besides, our coder
generates an embedded bit stream which is organized with the significant order. This property is

very useful for rate-control, unequal error protection and progressive transmission.

References

[1] W. B. Pennebaker, JPEG still image data compression standard New York: Van Nostrand
Reinhold, 1993.

[2] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,” IEEE Trans.
on Signal Processing, Vol. 41, No. 12, pp. 3445-3462, 1993.

[3] D. Taubman and A. Zakhor, “Multirate 3-D Subband Coding of Video,” IEEE Trans. on Image
Processing, Vol. 3, No. 3, pp. 572-588, 1994.

