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Abstract

The multiple signal characterization (MUSIC) algorithm locates multiple asynchronous dipolar
sources from electroencephalography (EEG) and magnetoencephalography (MEG) data. A signal
subspace is estimated from the data, then the algorithm scans a single dipole model through a
three-dimensional head volume and computes projections onto this subspace. To locate the
sources, the user must search the head volume for local peaks in the projection metric. This task is
time consuming and subjective. Here we describe an extension of this approach which we refer to
as RAP (Recursively APplied) MUSIC. This new procedure automatically extracts the locations of
the sources through a recursive use of subspace projections. The new method is also able to deal
with synchronous sources through the use of a spatially independent topographies (SPIT) model.
This model defines a source as one or more non-rotating dipoles with a single time course. Within
this framework, we are able to locate fixed, rotating and synchronous dipoles. The recursive sub-
space projection procedure that we introduce here uses the metric of subspace angles as a multi-
dimensional form of correlation analysis between the model subspace and the data subspace. By
using subspace angle computations, we recursively build up a model for the sources that account
for a given set of data. We demonstrate here how RAP-MUSIC can easily extract multiple asyn-
chronous dipolar sources that are difficult to find using the original MUSIC scan. We then demon-
strate RAP-MUSIC applied to the more general SPIT model and show results for combinations of
fixed, rotating, and synchronous dipoles.

1.0 Introduction

The problem of localizing the sources of event related scalp potentials (the electroencephalogram
or EEG) and magnetic fields (the magnetoencephalogram or MEG) can be formulated in terms of
finding a least squares fit of a set of current dipoles to the observed data. Early attempts at source
localization were based on fitting the multiple dipole model to a single time sample of the measure-
ments across the EEMEG (EEG and/or MEG) array [4], [19], [28]. By noting that physiological
models for the current sources typically assume that they are spatially fixed for the duration of a
particular response, researchers were able to justify fitting the multiple dipole model to a complete
spatio-temporal data set [2],[16], [17]. The spatio-temporal model can result in substantial
improvements in localization accuracy. Processing the entire data set leads to a large increase in
the number of unknown parameters since the times series for each source must now be estimated
in addition to the dipole location and orientation. However, in [10] we show that since these time
series parameters are linear with respect to the data, they can be factored out and the source loca-
tions found without explicit computation of their associated time series.

While factoring out the linear parameters can reduce the dimensionality of the search required to
localize the sources of the measured fields, the fundamental problem remains that the cost function
is non-convex with respect to the locations of the dipoles. Consequently inverse methods based on
direct minimization of the squared error through gradient-based optimization or simplex searches
often lead to improper locations of the sources due to trapping in local minima. In an attempt to
overcome this problem, we examined the use of signal subspace methods that are common in the
array signal processing literature [7]. The method that we used in [10], which was originally
referred to as the MUSIC (for MUItiple Slgnal Characterization) algorithm in [18], replaces the
multiple dipole directed search with a procedure in which a single dipole is scanned through a grid

RAP_MUSIC_LAUR_SIPL.mk5 Print Date: 10/30/96



Mosher, Leahy “RAP-MUSIC” Page 3 of 30

confined to a three dimensional head or source volume. At each point on this grid, the forward
model for a dipole at this location is projected against a signal subspace that has been computed
from the E/MEG data. The locations on this grid where the source model gives the best projection
onto the signal subspace correspond to the dipole locations. We also show in [10] that we do not
need to test all possible dipole orientations at each location, but instead can solve a generalized
eigenvalue problem whose solution gives us the orientation of the dipole which gives the best fit to
the signal subspace for a source at that location.

One of the major problems with the MUSIC method, and one that is addressed by the new approach
described here, is how we choose the locations which give the best projection on to the signal sub-
space. In the absence of noise and with perfect head and sensor models, the forward model for a
source at the correct location will project entirely into the signal subspace. In practice, of course,
there are errors in the estimate of the signal subspace due to noise, and errors in the forward model
due to approximations in our models of the head and data acquisition system. An additional prob-
lem is that we compute the metric only at a finite set of grid points. The effect of these practical
limitations is that the user is faced with the problem of searching the gridded source volume for
“peaks” and deciding which of these peaks correspond to true locations. It is important to note that
a local peak in this metric does not necessarily indicate the location of a source. Only when the
forward model projects entirely into the signal subspace — or as close as one would expect given
errors due to noise and model mismatch — can we infer that a source is at that location. The effect
of this limitation is that some degree of subjective interpretation of the MUSIC *“scan” is required
to decide on the locations of the sources. This subjective interpretation is clearly undesirable and
can also lead to the temptation to incorrectly view the MUSIC scan as an image whose intensity is
proportional to the probability of a source being present at each location.

Two other problems that arise with the use of MUSIC are due to the fact that the computation of
the signal subspace from the data is based on the assumption that the data are produced by a set of
asynchronous dipolar sources and are corrupted by additive spatially-white noise. Often both of
these assumptions are incorrect in clinical or experimental data. If two dipoles have synchronous
activation, then the two-dimensional signal subspace that would have been produced if they were
asynchronous collapses into a one dimensional subspace. Scanning of a single dipole against this
subspace using MUSIC will fail to localize either of the sources. The RAP MUSIC algorithm
described here is able to localize synchronous sources through the use of a modified source repre-
sentation which we refer to as the spatially independent topographies (SPIT) model. This model is
described in detail in Section 3. The second problem, the issue of nonwhite noise, is not addressed
in depth here. However, we note that it is straightforward to modify both the original and RAP
MUSIC algorithms to cope with colored noise through a standard pre-whitening procedure [20].
In practice the pre-whitening could be achieved by using pre-stimulus data to estimate the covari-
ance of the background noise.

The MUSIC localization technique uses the SVD (singular value decomposition) of the data mtrix
or eigenanalysis of the data correlation to generate an estimate of the “signal subspace.” MUSIC
was preceded in the E/MEG literature by dipole fitting using principal components analysis (PCA)
with techniques such as the Varimax rotation [3], [8], [9], [29]. While the initial PCA used in these
methods is essentially identical to the SVD approach of MUSIC, the subsequent processing meth-
ods are very different. Fundamental to most of the earlier work on PCA was the assumption that
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there was a one-to-one correspondence between each principal component and a particular source.
In general this is not correct, as discussed in [3], [8], [9], [29]. In contrast, the MUSIC method is
based on the far less restrictive observation that the signal subspace and that generated by the cor-
rect combination of sources should coincide.

We begin the paper with a combined formulation of the E/MEG forward problem in which we
develop a standard matrix notation for the relationship between the source and data. In Section 3
we then describe the spatially independent topographies model in which, rather than treating indi-
vidual current dipoles as sources, we define a source as one or more non-rotating dipoles with a
single time course. In this way our model is constrained to consist of a number of sources equal to
the rank of the signal subspace. In Section 4 we review the definition and properties of the signal
subspace. In Section 5, we introduce the use of subspace correlations as a metric for computing the
goodness of fit of putative sources to the signal subspace. We then review the MUSIC algorithm in
Section 6 in the light of the preceding development. The new RAP MUSIC algorithm is then devel-
oped in Section 7. We present some examples of the application of RAP MUSIC to fixed, rotating
and synchronous sources in Section 8. Finally, in Section 9, we discuss the properties, limitations
and some extensions of the RAP MUSIC approach.

2.0 Background

Quasi-static approximations of Maxwell’s equations govern the relationship between neural cur-
rent sources and the E/MEG data that they produce. For the signal subspace methods for source
localization that are described here, these relationships must be expressed in matrix form. In [14]
we examined explicit forms of the “lead field” for EEG and MEG measurements, for both spherical
and general BEM head models. In each case, the measurements can be expressed as an explicit
function of primary current activity; the passive volume currents are implicitly embedded in the
lead field formula. The model should also account for the sensor characteristics of the measurement
modality, such as gradiometer orientation and configuration in MEG or differential pairs in EEG.
We show in [14] that these effects can be incorporated into simple transformations that modify the
basic lead field kernels. The result is that our EEG or MEG measurement f, (r) at sensor location
r may be expressed as

fulr) = [glrr)- jor')dr’ (1)
Vv

where V is the volume of sources, j(r’) represents the primary current density at any point r’ in
the volume, and g(r, r’) is commonly known as the “lead field vector” (cf. [24]). The scalar func-
tion f, (r) represents either the voltage potential or the magnetic field component that may be
observed at observation (sensor) point r.

If we assume that the primary current exists only at a discrete point rys i.e., the primary current is
JrHo(r - r)s where &(r’ ~F,) is the Dirac delta function, then (/) simplifies in E/MEG to

fm) = grry) - q (2)
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where g is the moment of a current dipole at r q .We assume here that our source consists of p cur-
rent dipole sources. We assume simultaneous recordings at m sensors for n time instances. We can
express the m - by n spatio-temporal data matrix as

fm(rl’rl) spe fm(r]’rn) g(rl’rql)T g(rl’rqp) ql(r]) q](rn)

(3)

T
fm(r'm, r!) o f'm(rnl, r”) g(rm’ rql) ( m? {HJ) qp('t]) o qp(t;;)

or

F, =[G, ... Gy Q" 4)

We refer to G(r,) as the dipole “gain matrix” [10] that maps a dipole at r, 4i into a set of measure-
ments. The three columns of the gain matrix represent the possible forward fields that may be gen-
erated by the three orthogonal orientations of the i th dipole at the m sensor locations {r,, ..., r,,
Each row of the full gain matrix |G(r . G(r )jl represents the lead field, sampled at [he dlS—
crete dipole locations {rqI reena g } "lqhe matux . 18 our model matrix of perfect measured data,
i.e., the magnetic field component or scalp potentlal data we would observe, in the absence of noise,
given our model.

The columns of Q represent the time series associated with each of the three orthogonal compo-
nents of each dipole, i.e., with each column of the gain matrix. For the “fixed” dipole model, whose
moment orientation is time invariant, we can separate the orientation of each source from the
moments [10] as:

144

ql 0 Sql(ti) Sql(fn)
F, =[Gt ... 60| ... (5)
0 Wy sqp(rl) sqp(rn)

such that g,(z;) = u 4iS (t) where u i is a unit norm orientation vector. The scalar time series
s,i(t;) are the linear pdrameters of our model, the corresponding dipole locations r_. are the non-

qi
linear parameters, and the dipole orientations u; are the quasi-linear parameters.

qi
The data model defined by (5) assumes a collection of p fixed dipoles. In [10], we also considered
a “rotating” dipole as one whose time series could not be decomposed into a single fixed orientation
and time series. Physically, a rotating dipole may be viewed as two nearly collocated dipoles with
independent time series, such that they are indistinguishable from a model comprising a single
dipole whose orientation is allowed to vary with time. The “hybrid” models in [10] comprised both
fixed and rotating dipoles. In the following section we will return to the fixed dipole model as the
basic element of our source model. From this we develop a representation for the data that we will
refer to as the spatially independent topographies model.
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3.0 Spatially Independent Topographies

Our goal in this section is build up a model for the data as the sum of contributions from a fixed
number of spatially independent topographies. Associated with each of these topographies is a
source consisting of one or more fixed dipoles which have a single time course. By building up the
model in this way we are guaranteed that the rank of the signal subspace that we compute in
Section 4 is equal to the number of these sources. This representation then provides a convenient
framework for describing and implementing the RAP MUSIC algorithm that is the main contribu-
tion of this paper.

3.1 The Single Dipole Case

In the following we adopt a fixed-dipole only model, with rotating dipoles modeled as two collo-
cated fixed dipoles. We elaborate on this point, since its construction generalizes to the “spatially
independent topographies” model we will introduce. Consider a single dipole model and its corre-
sponding time series, expanded in Cartesian coordinates to reveal the “elemental” (cf. [10]) dipoles
in directions x, y, and z,

q.lty) ... q,(t,)
T
Gro)@1 = [g,(r,) 8,y 8:0r)] |a,0) .. 4,1, (6)
a.t) - aty)

Our construction hinges on the dependence of the elemental time series, or equivalently, on the
rank of the inner product matrix,

R, = Q?Ql = (DIAI(DT (7)

where @, is the matrix of eigenvectors and A, is the diagonal matrix of eigenvalues. Equivalently,
we may perform a singular value decomposition of @, ,

0 = U5, v{ (8)

where U, and V| are the left and right singular vectors, respectively, and Z, is a diagonal matrix
of singular values. If the dipole is fixed in orientation, then A, (Z,) comprises only a single non-
zero eigenvalue (singular value) with a corresponding eigenvector (left singular vector). Equiva-
lently, we say R, (@Q,) is of rank one. In this instance, we may designate this eigenvector or left
singular vector as the dipole orientation vector u 4l and we use the corresponding right singular

vector and singular value to create a time series Sq1 = V41941 - Our one dipole model then
becomes
T T
G(rql)Ql = I:gx(rm) gy(rql) gz(rql):luqloqivql (9)
T
= [G(r‘,‘,])uql]sql (10)
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r
= a(ry;, u,)s (11)

where, in general for the i th dipole,

a(r

gis Ugd) =Gr)u ;. (12)

We refer to this column vector as a “single dipolar topography,” since it represents the spatial pat-
tern of a single fixed orientation dipole across the m sensors.

If Q, is rank two, with corresponding left singular vectors U, and u
one dipole model as

42 then we may specify our

T c,, O T
G(rqI)Ql E [gx(r(“) gy(rql) gz(rq!):l [uq["uq?.]|igT ][vql’vcﬂ] (13)
q2
In [10], we designated this form as a “rotating” dipole. Here, we find it more convenient to continue
to use our single dipolar topography model by rewriting (13) as the sum of two single dipolar
topographies,

T
G(rq])QT = t::(r(;,],f,tq,])sqI +.a(rq|,uq,2)sqr2 (14)

where s, = v 56, This combines the same gain matrix G(r ;) with two different orientations
U, and u_, to form two different single dipolar topooraphjes a(r,,,u l) and a(rq,, u q.,) The
case for QI of rank three follows similarly. We note that the specrgc orientations in the rotating

dipole model are arbitrary and an infinite number of expansions of the form in (/4) are possible.

This combination of single dipolar topographies can be rewritten by expressing (/4) in matrix
form,

G(r,)0Q| = [a(ry,uy), alryy up)s 5,00 (15)
= A(p,0)S’ (16)

where p={r_ |, r ,} is the set of dipole locations, 6 = {u,, u,} is the set of dipole orientations,
and A(p,0)=[a rq1s ql) a(r g2 U ,,)] is the spatially independent topographies (SPIT) matrix
formed from the gain matrix G(p) in the appropriate linear combinations determined by 0. In this
rotating dipole example, r,; = r,,, i.e., the two dipoles in A(p, 0) are collocated. Their corre-
sponding time series are the columns of S . Our requirement in the SPIT model is that A(p, 0) and
S are each of full column rank, and that their product A(p, B)S is of the same rank.

3.2 The Multiple Dipole Case

For the case of multiple dipoles, we enforce the full column rank requirement by examining the
“outer product” of our full spatio-temporal model matrix,
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R, =F,F' = G(p)Q 0G(p) (17)

m-m

We perform an eigenanalysis of R, to determine the rank of the model, or equivalently, we per-
form an SVD of G(p)Q to determine the number of nonzero singular values. Assuming that the
dipoles are well-separated, the rank of R, will be less than or equal to 3 p, and the determining
factor will be the rank of Q. If each of the dipoles is fixed in orientation, and these fixed dipole
time series are linearly independent, then the rank of Q and equivalently R, will be at most p. In
this instance, a model of p single fixed dipole topographies is appropriate,

R, = G(p)QQ G(p)" = A(p,0)S SA(p,0)" (18)

where p = {rql, rqp} and 0 = {ugl, ey U P}, the set of dipole locations and orientations,
respectively, have been generalized to the case of p dipoles, and each column of A(p, 0) is formed
as in (12). If any of the dipoles are rotating, we simply add that dipole’s location and its other ori-
entation vector or vectors into the sets p and 0, i.e. we treat each of the additional independent
orientations as an additional fixed dipole at the same location contributing its own independent
topography. For simplicity, we will assume below that all dipoles are fixed in orientation.

Next we consider the case when the first two out of p dipoles are synchronous in their time series.
This synchronicity may occur in bilateral response studies, for example. We will continue to
assume that the other p — 2 dipoles have time series independent of the first two. In this instance,
R, isof rank p—1, and we alter our SPIT model by considering the rank-one decomposition of
the combined dipolar time series,

G (19)
qz(rl) ‘Iz(rn)

Since we have assumed these two dipoles are synchronous, we have only one nonzero singular
value in the decomposition. We then alter our matrix of single dipolar topographies to be

T
5

Fy = [aprm) atrgpugg) ] |7 (20)
7

where the set p; ={r,, "qz} comprises the two synchronous dipoles, and the gain matrices for
these two dipoles have been combined into a single column vector a(p, ;) = [G(rq] ); G(rqz)]u -

This process combines the first two fixed dipoles into a single “2-dipolar topography,” with its cor-
responding time series s, =v,0, from the decomposition in (/9). The vector u, is now dimension
six with unit norm. The other columns of the topographies matrix remain single dipolar topogra-
phies, and the number of columns in our topographies matrix A (p, 6) and our time series matrix
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S is now p — 1. By design, both matrices are now of full column rank p — 1, as is their product,
thereby maintaining the SPIT model requirement.

The generalization to arbitrary topographies follows. We cluster the p dipoles into r subsets and
redefine (4) as

F, =GP (21)
T
5
= I:a(pl,ul) o [ u,.)} (22)
T
Sr
= A(p, 0)S" (23)

where p={p,, ..., p, } represents r clusters of dipoles, with the i th cluster comprising p; dipoles
with the location parameter set p; = {rql, o .-}‘ The set O ={u,, ..., u,} contains the corre-
sponding unit norm vectors that correspond to the left singular vectors found as the extension of
(19) to p; dipoles. The ith column of A(p, 8) is found by extending (12):

a(p,u,) = [G(rq,) G("qp,.)]"i (24)

We refer to this column vector as a “ p; -dipolar topography.” Thus each column of A(p, 6) is now
a p,-dipolar topography, with a corresponding time series found as the i th column of S . By con-
struction, the time series in S are also independent. Note that in the SPIT model, the concept of
dipole orientation is generalized to represent the orientation of all dipoles in a given p;-dipolar
topography. The vector u; is a single unit norm orientation parameter for the i th topography of
dimension 3 p; . This orientation parameter defines the particular weightings necessary to combine
all of the dipoles together into a single gain vector.

In this general multiple dipole model we assume that each independent topography comprises one
or more well-separated dipoles. The case where dipoles are so spatially close that their correspond-
ing topography is ambiguous with other simpler spatial models will be addressed in a future paper.
Implicit in the requirement that A(p, 0) is of full column rank is that the number of sensors (num-
ber of rows) sufficiently exceeds the number of dipoles, such that the SPIT matrix remains well-
conditioned. In fact, the number of sensors should well exceed this number for the MUSIC meth-
ods described below.

We will conclude this section with some examples. Three asynchronous dipoles yield a rank three
model, and hence our SPIT model comprises three single dipolar topographies. If two of these
dipoles are synchronous, but the third remains asynchronous from the others, then the rank of the
model is two, and our SPIT model comprises one single dipolar topography and one 2-dipolar
topography. If all three are synchronous, then our SPIT model comprises a single 3-dipolar topog-
raphy. A single time slice of a p dipole model is always rank one, and our SPIT model is therefore
a single p-dipolar topography. For the MEG spherical head model, a single “rotating” dipole
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becomes two fixed orientation dipoles corresponding to two single dipolar topographies, with
Py = Py = ryy; for other head models, the dipole may possibly rotate in three dimensjons,

| = Py =P3 =Ty Note that the m X2 (or m X 3) SPIT matrix [a(pl’u') a(p,, “2)] (or
T“(P b uy) alp,, uy) a(ps, us) ) properly remains of full column rank.

To summarize, all “sources” in a SPIT model must be mutually spatially and temporally indepen-
dent. Under this requirement, the rank of the noiseless spatio-temporal data matrix determines the
number of independent topographies. Each topography in turn may comprise multiple dipoles with
synchronous time courses. The SPIT model can handle arbitrary combinations of synchronous and
asynchronous, and fixed and rotating dipoles.

4.0 Signal Subspaces
We will now investigate the relationship between the SPIT model and the signal subspace that we
estimate from th?g data. Assume that a random noise matrix N = (n, ... "j is added to the data
F, = A(p,0)S" ,toproduce an m X n “noisy” spatio-temporal data set,

F = A(p,0)S +N (25)

For convenience we will occasionally drop the explicit dependence of A on its parameters. The
goal of the inverse problem is to estimate the parameters, {p, 6, S}, given the data set F . We will
use the common assumption that the noise is zero-mean and white, i.e.:

E{n} =0, E{nn;'} = o)1, and E{nn;'} = 0, i #j. (26)

where E{*} denotes the expected value of the argument, and I is the identity matrix. The case for
colored noise is readily treated with standard pre-whitening methods [20], provided a reasonable
estimate of the noise covariance is available. For event related studies the noise covariance can
probably be estimated using sufficiently long periods of pre-stimulus data.

; . . T : :
In signal subspace processing, we focus on the matrix outer product FF° . Under the white noise
assumption

n
Rp=E{FF'} = AS"SA" + ¥ E@m(t)n"(t)) (27)
i=1
= AS"SAT +noll (28)
Here we have assumed that our model parameters and the diprolar Ttime series are deterministic.
From our independent topographies model, we know that AS" SA" is rank r. We designate the
singular value decomposition of A as A = U,Z,V,, where U, retains only the r left singular

vectors associated with the r nonzero singular values. The outer product AS" SA™ may be fac-
tored in terms of the SVD of A :

R .=AS"SAT = U,(Z,Vis"SV, 32U} (29)
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and also using the eigendecomposition:

R, = ®A® (30)

where @ _ contain the m X r eigenvectors of R corresponding to its non zero eigenvalues and A
is the corresponding r X r diagonal matrixlof nonzero eigenvalues. The remaining m — r eigenvec-
tors are contained in @7 . The notation @ reflects the property that its columns are orthogonal to
those of ®_. We can therefore decompose the correlation matrix Ry of the noisy data by combin-
ing (28) and (30) as:

1A +n52 0 L
Rp = [@, @3] 0 7 (@, @7 (31)
0 ”GN
T O 1T
= O AP, + DA, D; (32)

where Ap=A + noyl is the rx r diagonal matrix combining both the model and noise eigen-
values, and A, =ncyI is the (m —r) X (m—r) diagonal matrix of noise only eigenvalues. There-
fore an eigendecomposition of R yields r eigenvalues greater than nc), .

By eigendecomposing the term in parentheses in (29) into its r X r eigenvector and eigenvalue
matrices, it is straightforward to show that U, Ty, = ®,, where T, is a full rank r X r trans-
formation matrix relating the two. The r dimensional subspace spanned by @, is therefore the
same as the r dimensional subspace spanned by U , . We refer to this space as the signal subspace.
The remaining m — r vectors in @ span the orthogonal signal subspace, or noise-only subspace,
which is also often, but somewhat erroneously, referred to as the noise subspace.

In summary, the spatio—tem%oral matrix of noisy data has an expected correlation with precisely r
eigenvalues that exceed noy, . The corresponding eigenvectors span the signal subspace which is
identical to the space spanned by the columns of the SPIT version of the gain matrix A(p, 0).
Therefore we can determine the parameters (p, 8) of the sources as those that cause the column
space of A(p, 0) to coincide with that of @ . To estimate tl"l\e signal subspace @ from the data,
we can use an eigendecomposition of the sample covariance Rr = FF" or, equivalently, compute
the SVD of the data F . If the number of time slices is large, we may find the eigendecomposition
of Ry more practical. In either case, we select the r dominant eigenvectors or left singular vectors
to represent our estimate @ . In the subspace discussions below, we will find it notationally con-
venient to refer to this estimate ®, as the signal subspace estimate, although strictly d, is a matrix
whose columns span an estimate of the true signal subspace.

5.0 Subspace Correlations
As noted above, we can find the source parameters, and hence the dipole locations, by comparing

the column space of the SPIT matrix A(p, 8) to an estimated signal subspace. In this section we
will describe how we use the metric of subspace correlations [6] to measure the fit between these
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two subspaces. Since the signal subspace is spanned both by the columns of A(p, 8) and the eigen-
vectors in @, there must exist a full rank (r X r) transformation matrix T such that

A(p,O)T = ®,. (33)

Since the signal subspace is computed from the data, however, we only have an estimate of the sig-
nal subspace matrix @

A(p, 0)T = @, (34)

One approach to source localization using (34) is the weighted subspace fitting (WSF) method (cf.
[71, [21], [25], [26]) in which the parameters {p, 0, T} are found by minimizing the squared error

¢y = [&:W -4, 07| (35)

where W is a weighting matrix designed to improve the estimator performance [26], and II-IIi is
the square of the Frobenius norm of the matrix (i.e., the sum of the squares of all elements in the
enclosed matrix). Here we propose an alternative procedure in which, rather than solving directly
for the parameter set {p, 0, T'}, we instead examine the angles between the subspaces spanned by
A(p, 0)and ®,, using subspace correlations.

The subspace correlation function subcorr{A, 5133} = {5, 8y, ..., 5,} defined in Appendix A
yields a set of r ordered scalars 125, 2>... 25,20. These scalars are equal to the cosines of the
principal angles between pairs of principal vectors chosen from the two subspaces A and @y,
where r is the minimum of the ranks of the two subspaces. The set of r principal vectors for each
of the two subspaces are orthonormal. The first pair of principal vectors are chosen using one vector
from each of the two subspaces so as to minimize the angle between the two vectors. The second
pair are again chosen to minimize the angle between the vectors from the two spaces, but under the
constraint that the second principal vector from A must be orthogonal to the first principal vector
from A , and similarly for the first two principal vectors from ®,. The process is repeated until a
set of r pairs of principal vectors have been found, along with the associated ordered correlations
corresponding to the cosines of the angles between each pair.

The computation of the subspace correlation between the signal subspace @ and the SPIT matrix
A(p, 0) provides the fundamental basis for the RAP MUSIC algorithm. We describe how this can
be computed using the SVD in Appendix A; additional details can be found in [6]. The significance
of the subspace correlation function is that if one subspace is entirely contained within another,
then the cosines of all the principal angles will equal unity. Conversely, if the two spaces are orthog-
onal, the cosines of all the principal angles will equal zero. For cases between these extremes, the
set of cosine values provide a measure of the similarity between the two subspaces. We will see
below that the MUSIC metric corresponds to computing a subspace correlation between a single
topography in a SPIT matrix and the estimated signal subspace. The subspace correlations leads to
a natural extension of MUSIC. We can recursively build up our source estimate by appending puta-
tive sources to the SPIT matrix and using the minimum of the subspace correlations as a metric for
adding a new source. We expand on this below, but first consider an illustrative example of this con-
cept.
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2-D Plane

Figure 1. Geometric interpretation of subspace angles. The two-
dimensional plane is spanned by the two columns, A, and A,, of the
matrix A . These vectors and the vector b pass through the coordi-
nate origin. The function subcorr{A, b} returns the principal corre-
lation s, = cos®,, where 0, is the principal angle between the line
and the plane. The principal vectors are a, and b, which are unit
length vectors in the plane and line, respectively.

To give an intuitive geometric insight into these subspace correlations, consider subcorr{A, b},
where we briefly suspend our E/MEG notation and define the columns of a 3 X 2 matrix A to rep-
resent two vectors that form a basis for a two-dimensional plane in a three-dimensional space. Sim-
ilarly, let the 3 X 1 vector b represent a one-dimensional vector (line). The subspaces A and b
both pass through the origin. In this case, subcorr{A, b} yields a single correlation coefficient,
representing the cosine of the angle between the line and the plane. From the discussion in
Appendix A, we can directly form @; = Ax,, which is the unit length vector in the plane of A
closest to b. We illustrate this case in Figure 1. If the correlation is unity, then b lies in the plane
of A and a, = b/||b|; if the correlation is zero, then b is perpendicular to the plane, and x, is
arbitrary.

Next, consider a second 3 X 2 matrix B, and again the planes formed by the columns of both A
and B pass through the origin. We find that the first (maximum) correlation of subcorr{A, B} is
always unity, since two such planes always intersect along a line, namely the line found by Ax, or
By, . The second correlation is the cosine of the angle between the planes, the angle we intuitively
picture when visualizing two intersecting planes.

Resuming our E/MEG notation, we define the function distance{A, é)s} [6] as

distance{A, ®,} = Jl —min{sy, S, ...,s’,};1 - Jl —SE. (36)

Assuming that the rank of A(p, 0) is less than or equal to that of the signal subspace estimate d,,
the distance as defined in (36) will approach zero as the column space of A(p, 8) matches that of
®, . Consequently we can determine the parameters {p, 0} of the sources that produced the esti-
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mated signal subspace as the set that jointly minimize the distance between our topographies
matrix A(p, 6) and our estimated signal subspace (iJ,:

{P, 8} mindgist = arg min{ distance {A(p, ), ®;}}. (37)

For each candidate set of parameters {p, 8}, we generate a spatial topographies matrix A(p, 0).
We then compute the minimum subspace correlation s, of this SPIT matrix with our estimated sig-
nal subspace. We can then find the set {p, é}mindm that maximizes this minimum correlation or
equivalently minimizes distance{A, ®;}, such that the subspace spanned by our topographies
matrix is as close as possible to “parallel” with our signal subspace estimate.

For multiple dipoles, the key concept that makes subspace distance easier to use than least-squares
fitting is that if A(p, 8) is parallel to ®,, then so is each column (each topography) of A(p, 0).
Since the principal vector of A associated with s, = min{subcorr{A, ®,}} corresponds to the
linear combination of the columns of A that minimizes the correlation between the two spaces, it
follows that the ith column of A, i.e., the ith independent topography, must have a correlation
greater than or equal to this minimum subspace correlation,

subcorr{a(p;, u,), Ci)s} = min{ subcorr{ A(p, 0), D, F: (38)

In our SPIT model, each column of A represents an independent topography, where each topogra-
phy may comprise multiple synchronous dipoles. For exemplary purposes, let us assume that each
topography represents a single current dipole. Let us further assume that we have a perfect signal
subspace estimate @, in which case the minimum subspace correlation will be unity for the true
parameters {p, 0} . From (38), each of the independent topographies formed by each dipole must
also have a correlation of unity with the subspace. We can therefore find the dipole parameters by
searching for the p dipole locations that each have unity correlation. Thus a search strategy for
minimizing the distance between the topographies matrix and the rank r signal subspace estimate
is to search for a single dipole model whose subspace correlation is maximized with respect to ®;.
We should find r such dipole locations in our dipolar space, each yielding a correlation value of
unity. This search strategy is the basis of the MUSIC algorithm that we described in [10] and will
briefly review in the next section.

Before proceeding to a description of MUSIC, we first address the problem of finding the orienta-
tion vector ;. The dipole parameters are chosen to maximize

subcorr{a(p; u,), D} (39)

However, u; simply represents a linear combination of the columns of the gain matrix G(p,) (see
equation (24) and preceding discussion). We can avoid searching for the optimal orientation vector
by noting that the maximum of the subspace correlation vector subcorr{G(p,), d,} gives us the
best way of combining the columns of G(p;) so that they are as close as possible to the signal sub-
space. We can therefore find the optimal orientation vector #; for each candidate location p; as
that which maximizes the subspace correlation at that location, i.e.:

max{ subcorr{ G(p,), ®;}} (40)
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Therefore we can find the dipole locations by solving (40) at each candidate dipole location, and
then searching for the true locations at which this maximum correlation equals, or is sufficiently
close to, unity. Once we find these locations, we can then explicitly form the corresponding best
orientation (from Appendix A, set u; to “x,” and scale to unity norm), to determine the indepen-
dent topography vector a(p;, u,) .

6.0 Classical MUSIC

In [10] we adapted a “diversely polarized” form of Schmidt’s original MUSIC algorithm [5], [18]
to the problem of multiple point dipoles. We briefly review and update that presentation here to
include our discussion of subspace correlations. The steps are:

1. Obtain a spatio-temporal data matrix F, comprising information from m sensors and n time
slices. Decompose F using the SVD to yield F = UpZpVp.

2. Examine the singular values in £, and select the rank of the signal subspace to obtain b, . Over-
specifying the true rank by a couple of dimensions usually has little effect on performance.
Underspecifying the rank can dramatically reduce the performance.

3. Create a relatively dense grid of dipolar source locations. At each grid point, form the gain matrix
G for the dipole. At each grid point, calculate the subspace correlations subcorr{G, ®,}.

4. As a graphical aid, plot the inverse of ,/1 - s? , where s, is the maximum subspace correlation.
Correlations close to unity will exhibit sharp peaks (indeed, perfect correlation yields an infi-
nite spike). Locate r or fewer peaks in the grid. At each peak, refine the search grid to improve
the location accuracy, and check the second subspace correlation. A large second subspace cor-
relation is an indication of a “rotating dipole.”

The measure ,/1 — s? is equivalent to the correlation with the noise-only subspace, the original pro-
posal by Schmidt. As we discussed in [10], plotting the inverse of this measure makes graphical
location of the peaks easier; however, since that publication we have found it more informative to
plot the principal correlation, since correlation is a direct measure of how well the model fits the
data.

7.0 RAP-MUSIC

Problems with the use of MUSIC arise when there are errors in the estimate of the signal subspace
and the subspace correlation is computed at only a finite set of grid points. The largest peak is usu-
ally easily located by searching over the grid for the largest correlation; however, the second and
subsequent peaks must be located by means of a three-dimensional “peak-picking” routine. Sup-
pose that an incorrect set of locations are picked. While individually each of the dipoles may have
good correlations with the signal subspace, there is no guarantee that their combined SPIT model
has a small distance from the signal subspace, since we test only one dimension at a time. The
RAP-MUSIC methods overcomes this problem by recursively building up the SPIT model and
comparing this full model to the signal subspace. A second problem with MUSIC as discussed in
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[10] is that it will fail to locate synchronous sources - this problem is also addressed by the RAP-
MUSIC algorithm.

In the following we assume that our independent topographies each comprise one or more dipoles.
We search first for the single dipolar topographies, then the two-dipolar topographies, and so forth.
As we discover each topography model, we add it to our existing SPIT model and continue the
search. We build the source model by recursively applying the subspace correlation measure, the
key metric of MUSIC, to successive subspace correlations.

For exemplary purposes, we assume that the r independent topographies each comprise a single
dipole. Conceptually, RAP-MUSIC begins by finding the first dipole location as that which maxi-
mizes (40). Single dipole locations are readily found by scanning the head volume. At each point
in the volume, we calculate

{81,895 .o F = subcorr{G(rq), d,} 41)

where {s,, 55, ...} is the set of subspace correlations. We find the dipole location frql which max-
imizes the primary correlation s, . As discussed in Appendix A, the corresponding dipole orienta-
tion @, is easily obtained from subcorr{G(? ), ®s}, and we designate our topography model
comprising this first dipole as

AT = a0y (42)

To search for the second dipole, we again sez}r{(il;l the head volume; however, at each point in the
head, we first form the model matrix M = [A" , G(r q)] . We then calculate

{5189, ...} = subcorr{M, d,} (43)

but now we find the dipole point that maximizes the second subspace correlation, s, ; the first sub-
space correlation should already account for a(?,, #,) in the model. The corresponding dipole ori-
entation fz, may be readily obtained by projecting this second topography against the subspace,

subcorr{G(f-qz), &d,}, and we append this to our model to form

« (2 . A . A
A{ } = [a(rqls u[): a(rqzs u2)] (44)

We repeat the process r times, maximizing the kth subspace correlation at the kth pass,
k = 1, ..., r. The final iteration is effectively attempting to minimize the subspace distance
between the full » topographies matrix and the signal subspace estimate.

If the r topographies comprise r; single-dipolar topographies and r, 2-dipolar topographies, then
RAP-MUSIC will first extract the r, single dipolar models. At the (r| + 1) th iteration, we will
find no single dipole location that correlates well with the subspace. We then increase the number
of dipole elements per topography to two. We must now search simultaneously for two dipole loca-
tions, such that
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{5183} = subcorr{ (A", 6, «in} (45)

is maximized for the subspace correlation s, ., , where p = {r ., r ,} comprises two dipoles. If
the combinatorics are not impractical, we can exhaustively form all pairs on our grid and compute
maximum subspace correlations for each pair. The alternative is to begin a two-dipole nonlinear
search with random initialization points to maximize this correlation. This low-order dipole search
can be easily performed using standard minimization methods.

We proceed in this manner to build the remaining r, 2-dipolar topographies. As each pair of two
dipoles is found to maximize the appropriate subspace correlation, the corresponding pair of dipole
orientations may be readily obtained from subcorr{G(p), &, 1, as detailed in Appendix A. Exten-
sions to more dipoles per independent topography are straightforward, although the complexity of
the search obviously increases. In any event, the complexity of the search will always remain less
than the least-squares search required for finding all dipoles simultaneously.

To summarize, we assume that our forward model has been corrupted by additive noise, and that
this noise is zero mean, i.i.d., with a known spatial covariance matrix ¢, . The case of non i.i.d.
noise is readil¥ treated with standard “pre-whitening” 1}rocedures [20]. We then SVD F to yield
F = UpXE,V, or alternatively eigendecompose FF' to yield FF' = UpZzUp, where we
retain only those components corresponding to strictly nonzero singular values.

We examine the singular values to determine the rank r of the signal subspace, and we retain only
the corresponding r singular vectors in U to form &, , which is our estimate of a set of vectors
that span the signal subspace. If the rank is uncertain, we should err towards overspecifying the
signal subspace rank. If we overselect the rank, the additional subspace vectors should span an arbi-
trary subspace of the noise-only subspace, and the probability that these vectors correlate with our
model is small; hence, we may in general overspecify the rank of the signal subspace. However, as
the overspecification of the noise-only subspace increases, so does the probability that we may
inadvertently obtain a noise subspace component that correlates with our models, so some pru-
dence is called for in rank selection.

We design a sufficiently dense grid in our volume of interest, and at each grid point /; we form the
head model for the single dipole gain matrix G(I;) .We initialize the topography complexity as “1-
dipolar topography,” i.e., each topography comprises a single dipole. We then proceed as follows:

1. For index from 1 to rank r:

Z; Let A = (@), ..o Qingex - ])] be the model extracted as of the previous loop (A is anull
matrix for the first loop).

3. Form sets of grid points A;, where for a 1-dipolar topography each set consists of the loca-
tion of a single grid point. For a 2-dipolar topography, A; contains the locations of pairs of grid
points, and so on for higher order dipolar topographies. If the combinatorics make it impractical
to consider all possible combinations of grid points, choose a random subset of the possible
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combinations.

4, For each set of grid points ?ui, form the grid model M; = [;1, G(A)], i.e., concatenate the
set of grid point models to the present extracted model.

3 Calculate the set of subspace correlations, {s|, s,, ...} = subcorr{M,, b, }, using the
algorithm described in Appendix A.

6. Find the maximum over all sets of grid points A; for s e.g., for index = 2, find the

maximum second subspace correlation.

index *

7. Optionally, if the set of grid points {A,} is not particularly dense or complete, then use a
nonlinear optimization method (e.g., Nelder-Meade simplex) to maximize s,,4., » beginning the
optimization at the best set of grid point A; . If the grid is dense and our sets in Step 3 complete,
this step may not be necessary.

8. Is the correlation at the location of the maximum “sufficient,” i.e., does s;,,., indicate a

good correlation? If the correlation is adequate, proceed to Step 11. If it is not, proceed to

Step 9.

9. (Insufficient correlation in Step 8). We have two situations to consider. We may have over-
specified the true rank of the signal subspace, in which case we are now attempting to fit a
topography into a noise-only sg\b§pracc comp(h)rTlent. We can test for this condition by forming
the projection operator P, = AA  (where A~ is the pseudoinverse, see [10] and references
therein) from the existing estimated model, then forming the residual F_,, = F-P . F.
Inspection and testing of the residual should reveal whether or not we believe a signal is still
present. If we believe the residual is simply “noise,” break this loop. Otherwise, proceed to

Step 10.

10. (Signal still apparent in the residual) Increase the complexity of the topography (e.g. from
one to two dipolar) and return to Step 3 without increasing the loop index.

11.  (Good correlation in Step 8) We have found the best set of locations P4, of the next inde-
pendent topography, with corresponding gain matrix G, ;,.(P;nqe) - We need the best fitting
orientation. From the discussion in Appendix A, calculate the principal orientation vector x,
from subcorr{G ,4p(Pinder)> Ps}, normalize @4, = x,/|x ||, and form the topography

vector &Ende.t = G.r'ndex(ﬁEnde.\')ﬁindex‘
12. Increment the index and loop to Step 1 for the next independent topography.

In Step 8, we recommend here that the correlation exceed at least 95%. In [12], we discuss some
of the means for determining if a MUSIC peak represents “adequate” or “sufficient” correlation,
and we will return to this topic in future papers. Our recommendation here of 95% reflects our
empiricism that a “good” solution should generate a topography which explains at least 90% (the
square of the correlation, i.e., the “R-squared” statistic) of the variance of the topography identified
in the data. If we overselect the rank of the signal subspace, then we will in general break out of
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the loops at Step 9, once we have found the true number of sources and have only noise left in the
residual. We will not address the determination of statistical “sufficiency” of the model in this
paper. The interested reader may refer to ([1], [23]) among others for discussions on the testing of
the residual for remnant signals.

If the grid is dense or we performed Step 7 for each topography, we may find the RAP-MUSIC set
of parameters is already a good solution. The RAP-MUSIC algorithm has maximized a set of sub-
space correlations, a metric different from that of the more traditional least-squares approach. If so
desired, we may proceed with a local least-squares search:

13. Our RAP-MUSIC search has yielded an estimate of the full spatial topographies gain matrix
A = [ay, ...,a,], which is a function of the estimated full set of dipole locations p and ori-
entations 6. Beginning with these parameters, initialize a nonlinear search for the cost func-
tion,

A A T 2
{p, 0} = arg max{"UA(p.e)UFEF"F} (46)

where U 4, ¢) is an orthogonal matrix spanning the same subspace as A(p, 8), found for example
by an SVD or QR decomposition of A(p, 0). In (46), we have stripped away the norm preserving
orthogonal matrices in order to increase the computational speed of what is otherwise a straight-
forward nonlinear least-squares search; see [10] for more discussions on the details of implement-
ing efficient least-squares solutions.

Step 13 represents an increase in the complexity in the nonlinear search over that of RAP-MUSIC,
at possibly diminishing returns in terms of improvement in the solution. Each iteration of the non-
linear search must now adjust the parameters of all of the dipoles, not just a single topography as
in RAP-MUSIC. Analysis of the benefits of one estimator over another usually require statistical
assumptions that may be difficult to justify for short sequences of data (cf. [27]). We may also find
in practice that other modeling assumption errors, such as head models, sensor models, and source
models, as well as environmental contaminations and unaccounted “brain noise”, may be suffi-
ciently confounding to preclude the additional refinement of any specific source model.

Once we find the optimal {p, 8}, we can find the remaining linear temporal parameters as

T -1 T
§ = VA{fJ. é)ZA(ﬁ. é)UA({s, é)F (47)

i.e., we use the pseudoinverse of A(p, 0), as discussed in [10] and its references.

8.0 Computer Simulations

We present two simulations to illustrate some of the features of our proposed SPIT model and the
RAP-MUSIC algorithm. In the first simulation, we arranged 255 EEG sensors about the upper

region of an 8.8 cm single shell sphere, with a nominal spacing between sensors of one cm. For
illustrative purposes, we arranged three dipolar sources in the same plane, z = 7 cm, and the three
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Noiseless Sensor Waveforms

Figure 2. The upper plot is the over-
lay of the response of all 255 EEG
sensors to the simulated three dipo-
lar sources. The sources were given
independent, overlapping time
i e e B e, series. White Gaussian noise was
added such that the SNR was
20 dB, and the percent variance
explained by the true solution was
91% of the total variance.

sources were given independent, overlapping time courses. The overlay of the responses of all sen-
sors is given in the upper plot of Figure 2. We then added white Gaussian noise to all data points,
scaled such that the squared Frobenius norm of the noise matrix was one-tenth that of the squared
Frobenius norm of the noiseless signal matrix, for an SNR of 20 dB. The lower plot of Figure 2
shows the overlay of all sensors for the signal plus noise data.

The singular value spectrum was clearly rank three, but we selected rank five to illustrate the
robustness of rank over-selection. We created a one mm grid in the z = 7 cm plane and calculated
the correlation between a single dipole model and the signal subspace. Figure 3 displays these cor-
relation as an image whose intensities are proportional to imary correlation s, . In Figure 4,
we have replotted the same data, but in this case plot 1/(,/1 —s]) in order to graphically intensify
the appearance of the peaks. This image is essentially the original MUSIC scan proposed in [10].
The largest correlation of 99.8% is easily found at [-1, -1, 7]. The peak at [1, 1, 7] is apparent in
Figure 4, but the peak at [0, 0, 7] is obscured in either figure. Graphically or computationally
declaring the location of these other two peaks is non-obvious without subjective interpretation by
the viewer.

We generated the forward field for this first dipole, then re-scanned the subspace correlation on the
same grid with the combined model. Figure 5 displays the second subspace correlation; in this and
subsequent figures, we will resume plotting the correlation value directly, rather than the inverted
metric. We can now more clearly see the peaks corresponding to the two remaining sources, and
the first source has been suppressed. The maximum peak of this image at 99.7% is easily located
at [1:1:71

We generated the forward field for this second dipole and appended it to the first dipole’s forward
field. We then re-scanned the subspace correlations on the same grid with the combined model.
Figure 6 displays the third subspace correlation, where we now readily observe the single remain-
ing peak of the third source, 99.6% at [0, 0, 7]. Visual examination of the residual at this point
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Z=7.0 cm slice Angle 1 Z=7.0 cm slice Angle 1. MUSIC image
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Figure 3. Principal correlation between an Figure 4. Rather than image each pixel
EEG dipolar model and the rank five signal as a scaled version of a correlation value
subspace extracted from the data, The corre- s, asinFigure 3, here we instead image
lations were calculated in the z = 7 ¢m plane 1/(,/1-5s7). This image metric is
on a one mm grid. Each grid point was then equivalent to our MUSIC metric dis-
scaled in intensity per the color bar on the cussed in [10]. We see two of the three
right side of the figure. The largest correla- peaks rather clearly, but the central
tion of 99.8% is at [—1, -1, 7]; however, this peak is somewhat obscured, since its
peak and the other two peaks, as indicated by graphical “intensity” is about 75% of
the arrows, are not readily discernible, either the intensity of the other two peaks.
graphically or computationally. Although the peaks are better defined
than in Figure 3, interpretation of the
intensity scale is now ambiguous, and
the user must still “peak pick” graphi-
cally or algorithmically in three dimen-
sions. Subsequent figures resume the
correlation scaling of Figure 3.

indicated no remaining signal, and subspace correlations of multiple dipole models yielded no sub-
stantial correlations. We thus correctly halted the algorithm after this third topography.

The second simulation was designed to demonstrate the localization of a “rotating” dipole and a
pair of synchronous dipoles, as well as to illustrate the use of a directed search algorithm to refine
these locations. In this simulation, we arranged 240 MEG planar gradiometer sensors about the
upper hemisphere, with a nominal spacing of about two cm and a baseline separation of one cm. A
“rotating” dipole was located at [0, 0, 7] cm, and a pair of dipoles with synchronous activation was
located at [-2, -2, 7] and [2, 2, 7] cm. We then created a 1.5 mm grid in the z = 6.5 cm plane,
i.e., in a plane displaced from the true source plane, and the gridding was slightly coarser than the
first simulation. The noise level was again set to 20 dB. The true rank of the signal subspace was
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Z=7.0 cm slice Angle 2 » Z=7.0 cm slice Angle 3
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Figure 5. The forward field from the first Figure 6. We generated the forward
dipolar solution was formed and concate- fields for the first two dipolar locations
nated with the forward field generated by  and concatenated that set with the field
each point on this grid. The subspace corre-  generated by each point in the grid. We
lations were again computed between this  then reran the subspace correlations,
combined model and the signal subspace.  then imaged the third subspace corre-
The second subspace correlation is displayed ~ lation. The remaining source solution
here as an image. The original peak has been  is now easily observed at [0, 0, 7], with
suppressed, and we more clearly see two @ correlation of 99.6%. The percent
peaks in this image. The maximum correla-  variance explained by the combined
tion in this images is found at [1,1,7]] of  three dipoles was 91%.

99.7%.

three, with the rotating dipole comprising two single-dipolar topographies, and the third topogra-
phy comprising a two-dipolar topography. Figure 7 displays the overlay of the noiseless and noisy
Sensor responses.

We again overselected the rank of the signal subspace rank to be five, then scanned the one dipole
model against the signal subspace. We found a single good peak at 99.3%, as displayed in Figure 8.
Note the absence of any other peaks; the remaining “rotating” dipolar topography is obscured by
this peak, and the other topography is not a single dipole. The peak observed in the grid was at
[0.1,-0.2, 6.5] cm. We initiated a directed search from this point to maximize the correlation to
99.8% at [0.0, 0.0, 7.0] cm, the correct solution for the single dipole topography.

As in the previous example, we then scanned for a second dipole, observing the second subspace
correlation. The maximum correlation in the grid was again high, 99.2%, at [-0.1,-0.2, 6.5], as
shown in Figure 9. A directed search initiated at this point maximized the second subspace corre-
lation at 99.7% at [0, 0, 7], the same dipole location as the first solution. The dipole orientations
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Noiseless Sensor Waveforms Z=6.5 cm slice Angle 1
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Figure 8. Principal correlation between
the one dipole model and the rank five

Figure 7. MEG Simulation comprising 240
planar gradiometers with a one cm baseline

spaced about two cm apart, arranged about
the upper region of a 12 cm sphere. A “rotat-
ing” dipole was located at [0, 0, 7] cm,and a
pair of dipoles with synchronous activation
was located at [-2,-2,7] and [2,2,7] cm.
The white Gaussian noise was scaled such
that squared Frobenius norm of the signal
was ten times that of the noise (20 dB). The
true rank of the signal subspace was three,
but we again overselected it to be five.

MEG subspace. A single peak is
observed at the location of the “rotating”
dipole; the second dipolar source is effec-
tively buried by this peak. This plane
was scanned at z = 6.5 c¢cm, but the true
solution lay above this scanning plane.
The peak in this plane was used to ini-
tiate a directed search for the maximum
correlation, which was located correctly
at [0,0,7] cm.

of the two solutions were nearly orthogonal, [0.94, 0.34, 0] and [0.3, 0.95, 0], indicating we had
correctly identified the simulated “rotating” dipole at this point.

We then scanned for a third single dipole solution, but only a peak of 88.8% was found, and a
directed search maximization only improved this correlation to 88.9%. Thus this third dipole could
only account for (88.9%)% = 79.0% of the variance of the third topography, and we rejected this
third single dipolar topography solution.

Since one dipole was inadequate to describe the third topography, we shifted to our next putative
solution, that of two dipoles. Our grid comprised 729 dipole locations, and all combinations of two
dipoles yielded 265,356 sets. Rather than exhaustively search all set combinations, we randomly
selected a small subset of these sets for a total of about 3,000 sets. We then concatenated each of
these 3,000 pairs with the first two dipole solutions, calculated the subspace correlation of the com-
bined model and observed the third subspace correlation. The maximum third correlation of 98.4%
corresponded to the pair at [-2,-1.9, 6.5],[1.8, 1.8, 6.5]. We initiated a two dipole directed
search from this set and achieved a maximum correlation of 99.7% at
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[-2.0,-2.0,7.0], [2.0, 2.0, 7.0] cm, the correct solution. In Figure 10, we plot two-dimensional
cross-slices of this six-dimensional function, holding constant the correct z plane and the true loca-
tion of one of the two dipoles. We clearly observe the correlation metric peaking at the correct solu-
tion. As in the first example, visual examination of the residual from this model revealed that no
signal was present, and further correlations with multiple dipole models yielded no substantial cor-
relations. The algorithm was thus correctly halted after this third topography.

This relatively simple pair of simulations has illustrated some of the key concepts of the RAP-
MUSIC algorithm and the SPIT model. Both simulations used relatively dense grids of EEG or
MEG sensors, such that sensor spacing was not an issue; see [11] for analysis of the effects of EEG
and MEG sensor spacing on dipole localization performance. In both simulations, we overselected
the true rank of the signal subspace to illustrate the robustness to such an error; we repeated the
localization results with the true rank and achieved nearly identical results to those presented here.
In these simulations, as in [10], the subspace scans were presented as images to highlight the
MUSIC peaks; however, the RAP-MUSIC algorithm readily extracts these peaks without the need
for the user to manually observe and select these solutions. Indeed, in these simulations, the set of
MUSIC peaks would have been difficult to discriminate either graphically or computationally, due
to their proximity and the noise.

In practice, after we have scanned on a relatively good grid for any of the single or multiple dipolar
solutions, we always then initiate a directed search from these points to maximize the correlation.
By optimizing the correlation in this manner, we bypass some of the concerns of coarse or inade-
quate gridding. In the first simulation, each of the three dipoles was located with a single dipole
search of three location parameters; by contrast, a full nonlinear least-squares would have required
nine parameters. In the second simulation, we performed two single-dipole searches, followed by
a two-dipole search of six nonlinear parameters. A full nonlinear least-squares search would have
required a twelve parameter search.

9.0 Discussion

We have introduced the concept of spatially independent topographies (SPIT) to describe the spa-
tio-temporal data matrix. The number of independent topographies is equal to the rank of the signal
subspace. In the forward problem, we can easily determine this rank by an SVD of the noiseless
spatio-temporal data matrix. In the inverse problem, the conditioning of the data matrix may be too
poor to allow estimation of the full signal subspace in the presence of the noise. In these instances,
the number of independent topographies has effectively dropped, and we adjust our model of asyn-
chronous and synchronous dipoles accordingly. The RAP-MUSIC procedure handles initial over-
specification of the signal subspace rank and allows the user at each iteration to examine the true
rank.

RAP-MUSIC was designed to address two common problems in E/MEG processing. Due to either
bisynchronous activation or strong noise, we often encounter dipolar sources that are effectively
fully correlated in their time sequence activation. The SPIT model allows a straightforward inter-
pretation of these correlated sources that in turn allows us to proceed theoretically with a simple
extension of our original MUSIC approach [10]. The second problem, however, arises from the fact
that while other nonlinear optimization methods require a search for a single global optimum,
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Figure 9. Second subspace correlation
between the one dipole model and the
rank five MEG subspace, using the
solution from Figure 8. The peak in this
plane was used to initiate a directed
search for the maximum second corre-
lation, which was located correctly,
again at [0, 0, 7] ¢m as in Figure 8. We
have thus located a “rotating” dipole.
The remaining SPIT source was not a
single dipole and thus not observed in
these single dipole scans.
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Figure 10. Third subspace correlation of
the MEG simulation, computed in a six-
dimensional space comprising the syn-
chronous two-dipole topography. Pairs
of dipoles were concatenated to the
model identified in the first two topogra-
phies, then the third subspace correla-
tion computed. The top figure is a two-
dimensional slice through this six-
dimensional space, holding fixed the true
location of one of the dipoles and the
true z = 7 cm value of the second
dipole. We observe the correlation peak-
ing correctly at [2, 2, 7]. The bottom fig-
ure holds fixed this dipole and the same
z value, and peaks correctly at the other
dipole, [-2,-2, 7].
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MUSIC requires a search for multiple peaks whose amplitudes have been perturbed by noise.
While “peak-picking” multiple peaks in a single parameter case (the common presentation in much
of the array signal processing literature on MUSIC) is possible, we found the problem confounding
in even our simplest case of single dipolar topographies, where we must search for peaks in three-
dimensions. Graphically searching for multiple peaks in two-dipolar topographies (a six-dimen-
sional space) is generally not practical.

By maximizing each successive subspace correlation, the RAP-MUSIC approach solved the mul-
tiple peak search problem, since each peak corresponds to a separate correlation value. We also
solved a second, more subtle issue regarding this search. In a subsequent review of the signal pro-
cessing literature for similar approaches, we found two comparable MUSIC algorithms, S-MUSIC
[15] and IES-MUSIC [22], with the latter introduced as an extension of the former. These “succes-
sive” MUSIC algorithms were described for two single-parameter independent sources. The pos-
sibility of extending the successive approach to more sources in a manner similar to RAP-MUSIC
is mentioned, but specifically not pursued ([22], Remark 2). Both methods, however, implement
the successive search in a projection matrix approach different from the subspace correlations
approach of RAP-MUSIC. As pointed out in [22], when searching for the second solution, S-
MUSIC is undefined at the location of the first solution, and the first solution location must there-
fore be algorithmically avoided. IES-MUSIC still retains a peak at the first solution, and therefore
the search for the second source must also algorithmically avoid this prior location. By recursively
shifting to the next subspace correlation, the RAP-MUSIC algorithm bypasses this problem of pre-
vious solution points and simply maximizes each subsequent correlation.

In this paper, we have used multiple dipoles as our source model, increasing the independent topog-
raphy complexity by simply increasing the number of synchronous dipoles. In future work, we will
introduce other source models that can account for more distributed sources and show that these
models follow the same source framework established here. We will find these “focal source” mod-
els useful in situations where many closely spaced dipoles have been synchronously activated, such
that errors preclude our ability to resolve the individual clustered dipoles.
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Appendix A Subspace Correlation

Here we summarize the definition and method for computation of the subspace correlation. Given
two matrices, A and B, where A is m X p, and B is m X g, let r be the minimum of the ranks of
the two matrices. We wish to calculate a function subcorr{A, B} = {s,,s,, ..., s,}, where the
scalars s, are defined as follows.

S = MaAX e AMAXy e p @ b = arby (48)
subject to:
lall = ll2]l = 1
T
a 4; i=1,..,k-1 (49)
bTbl- i = 1,...,k—1
The vectors {a,, ...,a,} and {b,...,b,} are the principal vectors between the subspaces

spanned by A and B, and by construction, each set of vectors represents an orthonormal basis.
Note that 1 25, 25,2 ... 25,20. The angles cos8, = s, are the principal angles, representing
the geometric angle between a, and b, , or analogously, s, is the correlation between these two
vectors. The steps to compute the subspace correlations are as follows [6] (p. 585),

I.If A and B are already orthogonal matrices, we redesignate them as U, and U, and skip to
Step 2. Otherwise, perform a singular value decomposition (SVD) of A, such that
A = U,X,V,. Similarly decompose B. Retain only those components of U, and Up that
correspond to nonzero singular values, i.e., the number of columns in U, and Up correspond
to their ranks, and the other matrices are square, with dimension equal to the ranks. If A and
B are known to be of full column rank, other orthogonal decompositions, such as QR, are also
suitable.

2.Form C = ULU,.

3. If only the correlations are desired, then compute only the singular values of C (the extra com-
putation for the singular vectors is not required). The r ordered singular values
I 2s,2...25,20 are the subspace or principal correlations between A and B.

4. If the principal vectors are also desired, then compute the full singular value decomposition,
C = U Z-V. The r ordered singular values are extracted from the diagonal of Z.. Form
the sets principal vectors U, = U U, and U, = U,V forsets A and B respectively.

The matrices U, and U, are each orthogonal, and the columns comprise the ordered sets of prin-
cipal vectors for matri 2A and B respectively. If both matrices are of the same subspace dimen-
sion, the measure ,/1 — s, = sin®, is called the distance between spaces A and B [6]. When the
distance is zero, we see that A and B are parallel subspaces. A maximum distance of unity
(s, = 0)indicates at least one basis of A is orthogonal to B if the principal correlation s; = 0,
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then all bases are orthogonal. We see that minimizing the distance is equivalent to maximizing the
minimum subspace correlation between A and B.

We may also readily compute the specific linear combinations of A and B that yielded these prin-
cipal vectors and angles. By construction, we know that AX = U, for some X, and X can be sim-
ply found using the pseudoinverse of_f]l. If we have used the SVD to decomqose A, then the
calculation of X reducesto X = VX, U ; similarly, we compute ¥ = VBEE Ve.

The best way to linearly combine the columns of A (i.e. the combination that minimizes the angle
of the resulting vector with B) is found in the first column of X =[x, ..., x,] (similarly define
Y),a; = Ax,,whichisbestcorrelated with B when it is arranged as b, = By, . In other words,
there is no other x (excepting a scale factor of x, ) for which a corresponding best fitting y will
yield a better correlation between a and b . The first columns of U, and U, are @, and b, .

Similarly, the worst way to linearly combine A is a, = Ax,. The best fit to this particular x is
b, = By,, with a correlation of only s,. No other x will yield a best fitting y such that the corre-
lation is lower. Hence x, and y, yield the “minimum maximum” (minimax) correlation,
s, = min{subcorr{A,B}}.

If two correlations are identical, for instance s; = s, = 1, then the two corresponding vectors x,
and x, are themselves arbitrary, but they form a plane such that any linear combination of the two
vectors yields a vector whose corresponding correlation is s, = s, . By extension, repeated singu-
lar values equal to zero have corresponding orientation vectors that are individually arbitrary, but
the set forms a subspace in which any vector is orthogonal to B .

In E/MEG MUSIC processing, we may compute the subspace correlations between a dipole model

and the signal subspace, e.g., subcorr{G(rq), @} . In this case, the orientations in X represent the

dipole orientations. By scaling the first orientation to unity, #; =x,/|x,|, we obtain the unit

dipole orientation that best correlates the dipolar source at r, with the signal subspace. For a two-

dipolar topography, subcorr{ [G(F l1}.,6(." 2], @}, then u, represents the concatenation of the
. : . T q q § ;

two dipole orientations, #; = [q,, g, ], such that the two-dipolar topography

[G(rg)), G(ryn)luy = G(ry g, + G(ryr)q, (50)

best correlates with the signal subspace. Consistent with our SPIT model description, we note that
the dipole orientations ¢, and g, in (50) are themselves not unit vectors, but that their concatena-
tion u, is.

See [13] for further discussions on subspace correlations and examples of applying them to the
problem of E/MEG head modeling.
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