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Summary

The direction finding problem is to estimate the bearings [i.e., directions of arrival (DOA)] of a
collection of sources from an array of measurements made at a collection of time points. In
applications, the Rayleigh criterion sets a bound on the resolution power of classical direction
finding methods. In this report we summarize many of the so-called super-resolution subspace-
based direction finding methods which may overcome the Rayleigh bound. We divide these
methods into two classes, those that use second-order statistics, and those that use second- and
higher-order statistics.

Not only do we describe all of the popular subspace-based algorithms, but we also provide
flowcharts and figures that guide a reader to understand when to use a second-order or a higher-
order statistics based method. Using these flowcharts and figures, it is possible for a potential user
of a subspace-based direction finding method to decide which method(s) is (are) most likely to give
best results for his/her application.

This report is a chapter that will appear in the Digital Signal Processing Handbook, that
will be published by CRC Press in 1997 or 1998.
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1 Introduction

Estimating bearings of multiple narrowband signals from measurements collected by an array of
sensors has been a very active research problem for the last two decades. Typical applications of
this problem are radar, communication, and underwater acoustics. Many algorithms have been
proposed to solve the bearing estimation problem. One of the first techniques that appeared was
beamforming which has a resolution limited by the array structure. Spectral estimation techniques
were also applied to the problem. However, these techniques fail to resolve closely spaced arrival
angles for low signal-to-noise ratios. Another approach is the maximum-likelihood (ML) solution.
This approach has been well documented in the literature. In the stochastic ML method [Schmidt,
1981], the signals are assumed to be Gaussian whereas they are regarded arbitrary and deterministic
in the deterministic ML method [Wax, 1985]. The sensor noise is modeled as Gaussian in both

methods, which is a reasonable assumption due to the central limit theorem. The stochastic ML



estimates of the bearings achieve the Cramer-Rao bound (CRB). On the other hand this does not
hold for deterministic ML estimates [Stoica and Nehorai, 1990]. The common problem with the ML
methods in general is the necessity of solving a nonlinear multidimensional optimization problem
which has a high computational cost and for which there is no guarantee of global convergence.
Subspace-based (or, super-resolution) approaches have attracted much attention, after the work of
[Schmidt, 1981], due to their computational simplicity as compared to the ML approach, and their
possibility of overcoming the Rayleigh bound on the resolution power of classical direction finding

methods. Subspace-based direction finding methods are summarized in this section.

2 Formulation of the Problem

Consider an array of M antenna elements receiving a set of plane waves emitted by P (P < M)
sources in the far field of the array. We assume a narrow-band propagation model, i.e., the signal
envelopes do not change during the time it takes for the wavefronts to travel from one sensor to
another. Suppose that the signals have a common frequency of fo; then, the wavelength A = ¢/ fo

where ¢ is the speed of propagation. The received M-vector r(t) at time ¢ is

r(t) = As(t) + n() 1)

where s(t) = [s1(t),---,sp(t)]T is the P-vector of sources; A = [a(6;),---,a(fp)] is the M x P
steering matrix in which a(6;), the ith steering vector, is the response of the array to the ith source
arriving from 6;; and, n(t) = [ny(t),- - -, nar(t)]7 is an additive noise process.

We assume: (1) The source signals may be statistically independent, partially correlated, or

completely correlated (i.e., coherent); the distributions are unknown; (2) The array may have an



arbitrary shape and response; and, (3) The noise process is independent of the sources, zero-mean,
and it may be either partially white or colored; its distribution is unknown. These assumptions
will be relaxed, as required by specific methods, as we proceed.

The direction finding problem is to estimate the bearings [i.e., directions of arrival (DOA)]
{6:}, of the sources from the snapshots r(t), t =1,---,N.

In applications, the Rayleigh criterion sets a bound on the resolution power of classical direction
finding methods. In the next sections we summarize some of the so-called super-resolution direction
finding methods which may overcome the Rayleigh bound. We divide these methods into two

classes, those that use second-order and those that use second- and higher-order statistics.

3 Second-Order Statistics-Based Methods

The second-order methods use the sample estimate of the array spatial covariance matrix R =
E{r(t)r(t)"} = AR,A¥ +R,, where R, = E{s(t)s(t)!} is the P x P signal covariance matrix and
R, = E{n(t)n(t)"} is the M x M noise covariance matrix. For the time being, let us assume that
the noise is spatially white, i.e., R, = L. If the noise is colored and its covariance matrix is known
or can be estimated, the measurements can be “whitened” by multiplying the measurements from
the left by the matrix A~/2EH obtained by the orthogonal eigendecomposition R,, = E,AEH.
The array spatial covariance matrix is estimated as R=yN, r(t)c(t)¥/N.

Some spectral estimation approaches to the direction finding problem are based on optimization.
Consider the minimum variance algorithm, for example. The received signal is processed by a
beamforming vector w, which is designed such that the output power is minimized subject to the

constraint that a signal from a desired direction is passed to the output with unit gain. Solving



this optimization problem, we obtain the array output power as a function of the arrival angle 6 as
Poiu(8) = a—gmlrla('é')‘. The arrival angles are obtained by scanning the range [-90°,90°] of § and
locating the peaks of P, (#). At low signal-to-noise ratios the conventional methods, like minimum
variance, fail to resolve closely spaced arrival angles. The resolution of conventional methods are
limited by signal-to-noise ratio even if exact R is used, whereas in subspace methods, there is no
resolution limit; hence, the latter are also referred to as super-resolution methods. The limit comes
from the sample estimate of R.

The subspace-based methods exploit the eigendecomposition of the estimated array covariance
matrix R. To see the implications of the eigendecomposition of R, let us first state the properties
of R: (1) If the source signals are independent or partially correlated, rank(R;) = P. If there
are coherent sources, rank(R;) < P. In the methods explained in Sections 3.1 and 3.2, except for
the WSF method (see Section 3.1.1), it will be assumed that there are no coherent sources. The
coherent signals case is described in Section 3.3. (2) If the columns of A are independent, which
is generally true when the source bearings are different, then A is of full-rank P. (3) Properties
1 and 2 imply rank(AR,Af) = P; therefore, AR;A” must have P nonzero eigenvalues and
M — P zero eigenvalues. Let the eigendecomposition of AR,AY be ARAH = :}i, a;e;e;!: then
a1 >y > > ap > apyy = ---= ap = 0 are the rank-ordered eigenvalues, and {e,-}f-"il are the
corresponding eigenvectors. (4) Because R, = oI, the eigenvectors of R are the same as those
of AR,A¥, and its eigenvalues are \; = s+ 0%, if 1 <i < Pyor \; =0 if P+1< i< M.
The eigenvectors can be partitioned into two sets: E; = [e1,---,ep] forms the signal subspace,
whereas E, 2 [ep+1,+ -+, en] forms the noise subspace. These subspaces are orthogonal. The
signal eigenvalues A, = diag{A1,---,Ap}, and the noise eigenvalues A, = diag{A\p4+1, -y AM}-

(5) The eigenvectors corresponding to zero eigenvalues satisfy ARAHe; =0,i =P+ 1, -+, M;



hence, Afle; = 0,i= P+ 1,---, M, because A and R, are full rank. This last equation means
that steering vectors are orthogonal to noise subspace eigenvectors. It further implies that, because
of the orthogonality of signal and noise subspaces, spans of signal eigenvectors and steering vectors
are equal. Consequently there exists a nonsingular P X P matrix T sﬁch that E, = AT.

Alternatively, the signal and noise subspaces can also be obtained by performing a singular
value decomposition directly on the received data without having to calculate the array covariance
matrix. Li and Vaccaro [1991] state that the properties of the bearing estimates do not depend
on which method is used; however, singular value decomposition must then deal with a data
matrix that increases in size as the new snapshots are received. In the sequel, we assume that the
array covariance matrix is estimated from the data and an eigendecomposition is performed on the
estimated covariance matrix.

The eigenvalue decomposition of the spatial array covariance matrix, and the eigenvector par-
titionment into signal and noise subspaces, leads to a number of subspace-based direction finding
methods. The signal subspace contains information about where the signals are whereas the noise
subspace informs us where they are not. Use of either subspace results in better resolution per-
formance than conventional methods. In practice, the performance of the subspace-based methods
is limited fundamentally by the accuracy of separating the two subspaces when the measurements
are noisy [Marple, 1987]. These methods can be broadly classified into signal subspace and noise
subspace methods. A summary of direction-finding methods based on both approaches follows

next.
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3.1 Signal Subspace Methods

In these methods, only the signal subspace information is retained. Their rationale is that by
discarding the noise subspace we effectively enhance the SNR, because the contribution of the
noise power to the covariance matrix is eliminated. Signal subspace methods are divided into

search-based and algebraic methods, which are explained next.

3.1.1 Search-based methods

In search-based methods, it is assumed that the response of the array to a single source, the
array manifold a(f), is either known analytically as a function of arrival angle, or is obtained
through the calibration of the array. For example, for an M-element uniform linear array,
the array response to a signal from angle 6 is analytically known and is given by a(f) =
[l,e_j2"§35"(9),---,e‘ﬂ“(M‘l)iﬂ“(o)]T, where d is the separation between the elements, and A
is the wavelength.

In search-based methods to follow (except for the subspace fitting methods), which are spatial
versions of widely-known power spectral density estimators, the estimated array covariance matrix is
approximated by its signal subspace eigenvectors, or its principal components, as R~ Zf:l \ieje;
Then the arrival angles are estimated by locating the peaks of a function, S(8) (—90° < 6 < 90°)
which depends on the particular method. Some of these methods and the associated function S(6)
are summarized in the following [Johnson and Dudgeon, 1993, Marple, 1987, Nikias and Petropulu,
1993):

Correlogram method: In this method, S(8) = a(§)¥Ra(8). The resolution obtained from the
Correlogram method is lower than that obtained from the MV and AR methods.

Minimum Variance (MV) [Capon, 1969] method: In this method, S(0) = 1/a(@)"R1a(6).



The MV method is known to have a higher resolution than the correlogram method, but lower
resolution and variance than the AR method.

Autoregressive (AR) method: In this method, S(f) = 1/|uTR~'a(6)|* where u = [1,0,- - -, 0]7.
This method is known to have a better resolution than the previous ones.

Subspace Fitting (SSF) and Weighted Subspace Fitting (WSF) Methods: In Section 2 we
saw that the spans of signal eigenvectors and steering vectors are equal; therefore, bearings can be
solved from the best least-squares fit of the two spanning sets when the array is calibrated [Viberg
and Ottersten, 1991]. In the Subspace Fitting Method the criterion [§, T] = argmin ||E,W/2 -
A(8)T||? is used, where ||.|| denotes the Frobenius norm, W is a positive definite weighting matrix,
E; is the matrix of signal subspace eigenvectors, and the notation for the steering matrix is changed
to show its dependence on the bearing vector #. This criterion can be minimized directly with
respect to T, and the result for T can then be substituted back into it, so that 6 = argmin Tr{(I-
A(0)A(0)#)E,WEH}, where A# = (AHA)1AY,

Viberg and Ottersten have shown that a class of direction finding algorithms can be approx-
imated by this subspace fitting formulation for appropriate choices of the weighting matrix W.
For example, for the deterministic ML method W = A, — ¢?I, which is implemented using the
empirical values of the signal eigenvalues, A;, and the noise eigenvalue o. TLS-ESPRIT, which
is explained in the next subsection, can also be formulated in a similar but more involved way.
Viberg and Ottersten have also derived an optimal Weighted Subspace Fitting (WSF) Method,
which yields the smallest estimation error variance among the class of subspace fitting methods.
In WSF, W = (A, — ¢2I)2A;!. The WSF method works regardless of the source covariance (in-
cluding coherence) and has been shown to have the same asymptotic properties as the stochastic

ML method; hence, it is asymptotically efficient for Gaussian signals (i.e., it achieves the stochastic
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CRB). Its behavior in the finite sample case may be different from the asymptotic case [Viberg,
Ottersten and Kailath, 1991]. Viberg and Ottersten have also shown that the asymptotic properties
of the WSF estimates are identical for both cases of Gaussian and non-Gaussian sources. They have
also developed a consistent detection method for arbitrary signal corrélation, and an algorithm for
minimizing the WSF criterion. They do point out several practical implementation problems of
their method, such as the need for accurate calibrations of the array manifold and knowledge of the
derivative of the steering vectors w.r.t 8. For nonlinear and nonuniform arrays, multidimensional

search methods are required for SSF, hence it is computationally expensive.

3.1.2 Algebraic methods

Algebraic methods do not require a search procedure and yield DOA estimates directly.

ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques)
[Paulraj, Roy and Kailath, 1985]: The ESPRIT Algorithm requires “translationally invari-
ant”arrays, i.e., an array with its identical copy displaced in space. The geometry and response of
the arrays do not have to be known; only the measurements from these arrays, and the displacement
between the identical arrays are required. The computational complexity of ESPRIT is less than
that of the search-based methods.

Let r'(t) and r?(¢) be the measurements from these arrays. Due to the displacement of
the arrays the following holds: r!(t) = As(t) + ni(t) and r’(t) = A®s(t) + na(t), where
P = diag{e‘ﬁ“%sme', e o,e‘jz”%”i“ 92} in which d is the separation between the identical arrays,
and the angles {6;}L, are measured with respect to the normal to the displacement vector between
the identical arrays. Note that the auto covariance of r!(t), R'"!, and the cross covariance between

r'(t) and r?(t), R?!, are given by R!' = ADAH + R, and R?! = A®DA¥ + R,,,,, where D is



the covariance matrix of the sources, and R,, and Ry,,, are the noise auto- and cross-covariance
matrices.

The ESPRIT algorithm solves for @, which then gives the bearing estimates. Although the
subspace separation concept is not used in ESPRIT, its LS and TLS versions are based on a signal
subspace formulation. The LS and TLS versions are more complicated, but are more accurate than
the original ESPRIT, and are summarized in the next subsection. Here we summarize the original
ESPRIT:

(1) Estimate the autocovariance of r!(t) and cross covariance between r'(t) and r?(t), as R =
LyN ()t (t)H and R?! = £ N, r?(t)r!(t)¥. (2) Calculate R'' = R - R,, and R* =
R# —R,,,, where R,, and Ry,,, are the estimated noise covariance matrices. (3) Find the singular
values ); of the matrix pencil R — \;R?!, i = 1,--+, P. (4) The bearings, 6; (i = 1,---, P), are
readily obtained by solving the equation A; = e2mRsind: for ;. In the above steps, it is assumed
that the noise is spatially and temporally white or the covariance matrices R, and R,,,, are
known.

LS and TLS ESPRIT [Roy, 1987]:

(1) Follow Steps 1 and 2 of ESPRIT; (2) stack R'! and R* into a 2M x M matrix R, as
R £ [R“T ﬁle]T, and, perform an SVD of R, keeping the first 2M X P submatrix of the
left singular vectors of R. Let this submatrix be E; (3) partition E; into two M x P matrices

T
E,; and E,, such that E; = [EslT ESQT] . (4) For LS-ESPRIT, calculate the eigendecomposi-

tion of (EHE,;)"'EfE,;. The eigenvalue matrix gives & = dz’a_q{e"ﬂ“%sm‘g‘,---,8_52”§Si"a"}
from which the arrival angles are readily obtained. For TLS-ESPRIT, proceed as follows: (5)
Perform an SVD of the M x 2P matrix [E;, Es2], and stack the last P right singular vectors

&
of [Es1, Eg2) into a 2P x P matrix denoted F; (6) Partition F as F 2 [FmT FyT] where F.



and F, are P x P; (7) Perform the eigendecomposition of —F;F;!. The eigenvalue matrix gives
$ = diag{e‘jz"%"i“ b1 ..., e*-*?”%“i“op} from which the arrival angles are readily obtained.
Different versions of ESPRIT have different statistical properties. The Toeplitz Approximation
Method (TAM) [Kung, Lo and Foka, 1986], in which the array measurement model is represented
as a state-variable model, although different in implementation from LS-ESPRIT, is equivalent to
LS-ESPRIT; hence, it has the same error variance as LS-ESPRIT.
Generalized Eigenvalues Utilizing Signal Subspace Eigenvectors (GEESE) [Kwon and
Pillai, 1989]: (1) Follow Steps 1-3 of TLS ESPRIT. (2) Find the singular values A; of the pencil
Eg — MEj, i = 1,-+-, P; (3) The bearings, 6; (¢ = 1,:-+, P), are readily obtained from A; =

275 sin0i The GEESE method is claimed to be better than ESPRIT [Kwon and Pillai, 1989].

3.2 Noise Subspace Methods

These methods, in which only the noise subspace information is retained, are based on the property
that the steering vectors are orthogonal to any linear combination of the noise subspace eigenvec-
tors. Noise subspace methods are also divided into search-based and algebraic methods, which are

explained next.

3.2.1 Search-based methods

In search-based methods, the array manifold is assumed to be known, and the arrival angles are
estimated by locating the peaks of the function S(#) = 1/a(8)¥ Na(8) where N is a matrix formed
using the noise space eigenvectors.

Pisarenko method: In this method, N = eﬂ,.,«eM”, where eps is the eigenvector corresponding

to the minimum eigenvalue of R. If the minimum eigenvalue is repeated, any unit-norm vector
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which is a linear combination of the eigenvectors corresponding to the minimum eigenvalue can be
used as eps. The basis of this method is that when the search angle # corresponds to an actual
arrival angle, the denominator of S(6) in the Pisarenko method, |a(8)" epr|?, becomes small due
to orthogonality of steering vectors and noise subspace eigenvectors; ‘hence, S(6) will peak at an
arrival angle.

MUSIC (Multiple Signal Classification) [Schmidt, 1981] method: In this method,
N = Z,-EPH e;je;ff. The idea is similar to that of the Pisarenko method; the inner product
la(8)® E?im-l e;|? is small when @ is an actual arrival angle. An obvious signal-subspace formula-
tion of MUSIC is also possible. The MUSIC spectrum is equivalent to the MV method using the
exact covariance matrix when SNR is infinite, and therefore performs better than the MV method.

Asymptotic properties of MUSIC are well established [e.g., Stoica and Nehorai 1989, Swindle-
hurst and Kailath, 1992], e.g., MUSIC is known to have the same asymptotic variance as the
deterministic ML method for uncorrelated sources. It is shown by Xu and Buckley [1994] that
although, asymptotically, bias is insignificant compared to standard deviation, it is an important
factor limiting the performance for resolving closely spaced sources when they are correlated.

In order to overcome the problems due to finite sample effects and source correlation, a multi-
dimensional (MD) version of MUSIC has been proposed [Schmidt, 1981, Roy, 1987]; however, this
approach involves a computationally involved search, as in the ML method. MD MUSIC can be
interpreted as a norm minimization problem, as shown in [Ephraim, Merhav and Van Trees, 1995];
using this interpretation, strong consistency of MD MUSIC has been demonstrated. An optimally
weighted version of MD MUSIC, which outperforms the deterministic ML method, has also been
proposed in [Viberg and Ottersten, 1991].

Eigenvector (EV) method: In this method, N = Z:-‘ipﬂ %e;e;". The only difference between

11



the EV method and MUSIC is the use of inverse eigenvalue (the A; are the noise subspace eigenvalues
of R) weighting in EV and unity weighting in MUSIC, which causes EV to yield fewer spurious
peaks than MUSIC [Johnson and Dudgeon, 1993]. The EV Method is also claimed to shape the
noise spectrum better than MUSIC.

Method of Direction Estimation (MODE): MODE is equivalent to WSF when there are
no coherent sources. Viberg and Ottersten [1991] claim that, for coherent sources, only WSF is
asymptotically efficient. A minimum norm interpretation and proof of strong consistency of MODE
for ergodic and stationary signals, has also been reported [Ephraim, Merhav and Van Trees, 1995].
The norm measure used in that work involves the source covariance matrix. By contrasting this
norm with the Frobenius norm that is used in MD MUSIC, Ephraim et al relate MODE and MD
MUSIC.

Minimum-Norm [Kumaresan and Tufts, 1983] method: In this method, the matrix N is
obtained as follows [Haykin, 1991]: (1) Form E, = [ep41,---,enm]; (2) partition E, as E, =
[c CT]T, to establish ¢ and C; (3) compute d = [1 ((ch)‘lC‘c)T]T, and, finally, N = dd¥.
For two closely spaced, equal power signals, the Minimum Norm method has been shown to have
a lower SNR threshold (i.e., the minimum SNR required to separate the two sources) than MUSIC
[Kaveh and Barabell, 1986). [Li and Vaccaro, 1991] derive and compare the mean-squared errors
of the DOA estimates from Minimum Norm and MUSIC algorithms due to finite sample effects,
calibration errors, and, noise modeling errors for the case of finite samples and high SNR. They
show that mean-squared errors for DOA estimates produced by the MUSIC algorithm are always

lower than the corresponding mean-squared errors for the Minimum Norm algorithm.
P
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3.2.2 Algebraic methods

—j27 $ sin(0) - e—jz«(M—l)f-sin(a}]T’ _—

When the array is uniform linear, so that a(f) = [l,e
in 5(0) = 1/a(f)Na(f) for the peaks can be replaced by a root-finding procedure which yields
the arrival angles. So doing, results in better resolution than the search-based alternative, because
the root-finding procedure can give distinct roots corresponding to each source whereas the search
function may not have distinct maxima for closely spaced sources. In addition, the computational
complexity of algebraic methods is lower than that of the search-based ones. In the algebraic
methods, the roots {z;}M, of the M-th order polynomial p(z) = s; + s227" + -+ + smz~M are
calculated, where s 2 [s1,---,5m] is ep for Pisarenko, and d for Minimum-Norm methods. The
DOAs are obtained by solving the equation z; = 2??% sin 8; for 6;. The algebraic version of MUSIC
(Root-MUSIC) is given next; for EV method, N = E:-"ip_H :\!:e‘-e;h' in the first step of Root-MUSIC.
Root-MUSIC:

In root-MUSIC, the array is required to be uniform linear, and the search procedure in MUSIC is
converted into the following root-finding approach: (1) Form the M X M matrix N = Z£P+1 e;e;ll;
(2) form a polynomial p(z) of degree 2M — 1 which has for its ith coefficient ¢; = tr;[N], where tr;
denotes the trace of the ith diagonal, and i = —(M —1),---,0,---, M — 1. Note that ¢ro denotes
the main diagonal, tr; denotes the first super-diagonal, and tr_;denotes the first sub-diagonal. (3)
The roots of p(z) exhibit inverse symmetry with respect to the unit circle in the z-plane. Express
p(z) as the product of two polynomials p(z) = h(z)h*(27"). (4) Find the roots z; (i = 1,---, M)
of h(z). The angles 6; of the roots that are very close to (or, ideally on) the unit circle yield the

direction of arrival estimates, as f; = sin™! (ﬁz;), where i = 1,---, P. The root-MUSIC algorithm

has been shown to have better resolution power than MUSIC [Rao and Hari, 1989]; however, as
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mentioned previously, root-MUSIC is restricted to uniform linear arrays. Steps (2)-(4) make use of
this knowledge. Li and Vaccaro show that algebraic versions of the MUSIC and Minimum Norm
algorithms have the same mean-squared errors as their search-based versions for finite samples and
high SNR case. The advantages of root-MUSIC over search-based MUSIC is increased resolution

of closely spaced sources and reduced computations.

3.3 Spatial Smoothing [Evans, Johnson and Sun, 1981, Shan and Kailath, 1985]

When there are coherent (completely correlated) sources, rank(R,), and consequently rank(R) is
less than P, and hence the above described subspace methods fail. If the array is uniform linear,
then by applying the spatial smoothing method, described below, a new rank-P matrix is obtained
which can be used in place of R in any of the subspace methods described earlier.

Spatial smoothing starts by dividing the M-vector r(t) of the ULA into K = M - S +1
overlapping subvectors of size S, ré,k (k = 1,--+,K), with elements {rg,---,rr4s5-1}, and 1-*’3,'.c
(k=1,---,K), with elements {r};_;,1, " rM—s—k+2)- Then, a forward and backward spatially
smoothed matrix R/? is calculated as Rf® = 2?;1 Zfﬂ(ré,k(zﬁ]ré‘;f (t) + rf'g‘k(t)rf’g’kH(t))/KN.
The rank of R/ is P if there are at most 2M/3 coherent sources. S must be selected such that
P.4+1<S <M - P./2+1 in which P, is the number of coherent sources. Then, any subspace-
based method can be applied to R/? to determine the directions of arrival. It is also possible to do

spatial smoothing based only on ré!k or r?glk, but in this case at most M /2 coherent sources can be

handled.
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3.4 Discussion

The application of all the subspace-based methods requires exact knowledge of the number of
signals, in order to separate the signal and noise subspaces. The number of signals can be estimated
from the data using either the Akaike Information Criterion (AIC) [Wax and Kailath, 1985] or
Minimum Descriptive Length (MDL) [Wax, 1985] methods. The effect of underestimating the
number of sources is analysed by [Radich and Buckley, 1994], whereas the case of overestimating
the number of signals can be treated as a special case of the analysis in [Stoica and Nehorai, 1990].

The second-order methods described above have the following disadvantages: (1) Except for
ESPRIT (which requires a special array structure), all of the above methods require calibration
of the array which means that the response of the array for every possible combination of the
source parameters should be measured and stored; or, analytical knowledge of the array response
is required. However, at any time, the antenna response can be different from when it was last
calibrated due to environmental effects such as weather conditions for radar, or water waves for
sonar. Even if the analytical response of the array elements are known, it may be impossible to know
or track the precise locations of the elements in some applications (e.g., towed array). Consequently,
these methods are sensitive to errors and perturbations in the array response. In addition, physically
identical sensors may not respond identically in practice due to lack of synchronization or imbalances
in the associated electronic circuitry. (2) In deriving the above methods it was assumed that the
noise covariance structure is known; however, it is often unrealistic to assume that the noise statistics
are known due to several reasons. In practice, the noise is not isolated; it is often observed along
with the signals. Moreover, as [Swindlehurst and Kailath, 1992] state, there are noise phonemena

effects which can not be modeled accurately, e.g., channel crosstalk, reverberation, near-field, wide-



band and distributed sources. (3) None of the methods in Sections 3.1 and 3.2, except for the
WSF method and other multidimensional search-based approaches, which are computationally
very expensive, work when there are coherent (completely correlated) sources. Only if the array
is uniform linear, can the spatial smoothing method in Section 3.3 be used. On the other hand,
higher-order statistics of the received signals can be exploited to develop direction finding methods

which have less restrictive requirements.

4 Higher-Order Statistics-Based Methods

The higher-order statistical direction finding methods use the spatial cumulant matrices of the ar-
ray. They require that the source signals be non-Gaussian so that their higher- than second order
statistics convey extra information. Most communication signals (e.g., QAM) are complez circular
(a signal is complex circular if its real and imaginary parts are independent and symmetrically
distributed with equal variances) and hence their third-order cumulants vanish; therefore, even-
order cumulants are used, and, usually fourth-order cumulants are employed. The fourth-order
cumulant of the source signals must be nonzero in order to use these methods. One important fea-
ture of cumulant-based methods is that they can suppress Gaussian noise regardless of its coloring.
Consequently, the requirement of having to estimate the noise covariance, as in second-order sta-
tistical processing methods, is avoided in cumulant-based methods. It is also possible to suppress
non-Gaussian noise, [Dogan and Mendel, 1995], and, when properly applied, cumulants extend the
aperture of an array [Dogan and Mendel, 1995, Shamsunder and Giannakis, 1994] which means
that more sources than sensors can be detected. As in the second-order statistics-based methods,

it is assumed that the number of sources is known or is estimated from the data.
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The fourth-order moments of the signal s(t) are E{sis;*sksi*} 1 < 4,7,k,0 < P and the
fourth-order cumulants are defined as c44(%,7,k,1) = cum(s;, 5%, sk, 51%) = E{sis;*sgsi*} —
E{sis;*}YE{sksi"} — E{sisi*}E{sks;*} — E{sis;} E{sr"s:"}, where 1 < 4,5,k,1 < P. Note that
two arguments in the above fourth-order moments and cumulants a.fe conjugated and the other
two are unconjugated. For circularly symmetric signals, which is often the case in communication
applications, the last term in ¢4 5(3, 7, k, [) is zero.

In practice, sample estimates of the cumulants are used in place of the theoretical cu-
mulants, and these sample estimates are obtained from the received signal vector r(t) (t =
1+, N), ast a0 (i, )k, 1) = TiL, ri(@)rs™ (Ora@)re (¢)/N = Ty ri()r™ () T2y re(@)r (8)/N? —
SN i) (t) SN, re(t)r;7(t)/N?, where 1 < 4,j,k,] < M. Note that the last term in
ca (1,7, k, 1) is zero, and therefore, it is omitted.

Higher-order statistical subspace methods use fourth-order spatial cumulant matrices of the
array output, which can be obtained in a number of ways by suitably selecting the arguments
i,j,k, 1 of c4r(4,5,k,1). Existing methods for the selection of the cumulant matrix, and their
associated processing schemes are summarized next.

Pan-Nikias [1988] and Cardoso-Moulines [1995] method: In this method, the array needs to
be calibrated, or its response must be known in analytical form. The source signals are assumed to
be independent or partially correlated [i.e, there are no coherent signals]. The method is as follows:
(1) An estimate of an M X M fourth-order cumulant matrix C is obtained from the data. The
following two selections for C are possible [Pan and Nikias, 1988, Cardoso and Moulines, 1995]: ¢;; =
car(4,7,5,5) 1 <4, < M, or, ¢i5 = SM_ ¢y (i,5,m,m) 1 < i,j < M. Using cumulant properties
[Mendel, 1991], and (1), and a;; for the ijth element of A, it is easy to verify that cq,(¢,4,7,7) =

I'J

p=1 Gip Z;‘:m:l aja*ajrajs ce s(p, q,r,s), which, in matrix format, is C = AB where A is the
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steering matrix and B is a P X M matrix with elements b;; = Z£F‘3=1 ajg*ajrajs"cq s(1,q,1,S8).
Similarly, SM_, e4, (6,5, mym) = T8y aip (Shemy TH_, tmetmses,s(p,0,7,8)) ajo", 1 < 4,5 <
M, which, in matrix form can be expressed as C = ADA*, where D is a P x P matrix with
elements d;; = Z,fszl Zﬁf:l Amr@ms*Cq,s(1,J, 7, 5). Note that additive Caussia.n noise is suppressed
in both C matrices, because higher than second-order statistics of a Gaussian process are zero.
(2) The P left singular vectors of C = AB, corresponding to nonzero singular values, or, the
P eigenvectors of C = ADA* corresponding to nonzero eigenvalues, form the signal subspace.
The orthogonal complement of the signal subspace gives the noise subspace. Any of the Section 3
covariance-based search and algebraic DF methods (except for the EV method and ESPRIT) can
now be applied (in exactly the same way as described in Section 3) either by replacing the signal and
noise subspace eigenvectors and eigenvalues of the array covariance matrix by the corresponding
subspace eigenvectors and eigenvalues of ADA*, or by the corresponding subspace singular vectors
and singular values of AB. A cumulant-based analog of the EV method does not exist, because
the eigenvalues and singular values of ADA* and AB corresponding to the noise subspace are
theoretically zero. The cumulant-based analog of ESPRIT is explained later.

The same assumptions and restrictions for the covariance-based methods apply to their analogs
in the cumulant domain. The advantage of using the cumulant-based analogs of these methods is
that there is no need to know or estimate the noise-covariance matrix.

The asymptotic covariance of the DOA estimates obtained by MUSIC based on the above
fourth-order cumulant matrices are derived in [Cardoso and Moulines, 1995] for the case of Gaussian
measurement noise with arbitrary spatial covariance, and are compared to the asymptotic covari-
ance of the DOA estimates from the covariance-based MUSIC algorithm. Cardoso and Moulines

show that covariance- and fourth-order cumulant-based MUSIC have similar performance for the

18



high SNR case, and that, as SNR decreases below a certain SNR threshold, the variances of the
fourth-order cumulant-based MUSIC DOA estimates increase with the fourth power of the recip-
rocal of the SNR, whereas the variances of covariance-based MUSIC DOA estimates increase with
the square of the reciprocal of the SNR. They also observe that for .high SNR and uncorrelated
sources, the covariance-based MUSIC DOA estimates are uncorrelated, and the asymptotic vari-
ance of any particular source depends only on the power of that source (i.e., it is independent
of the powers of the other sources). They observe, on the other hand, that DOA estimates from
cumulant-based MUSIC, for the same case, are correlated, and the variance of the DOA estimate
of a weak source increases in the presence of strong sources. This observation limits the use of
cumulant-based MUSIC when the sources have a high dynamic range, even for the case of high
SNR. Cardoso and Moulines state that this problem may be alleviated when the source of interest
has a large fourth-order cumulant.

Porat and Friedlander [1991] method: In this method, the array also needs to be calibrated,
or its response is required in analytical form. The model used in this method divides the sources
into groups that are partially correlated (but, not coherent) within each group, but are statistically
independent across the groups, i.e., r(t) = ZE:I Ags, + n(t), where G is the number of groups
each having p, sources (Zg’;l pg = P). In this model, the p, sources in the gth group are partially
correlated, and they are received from different directions. The method is as follows: (1) Estimate
the fourth-order cumulant matrix, C,, of r(f) ® r(t)* where ® denotes the Kronecker product. It
can be verified that C, = Zf=1 (Ag®A")C,, (A ® A"g)ﬂr where C_ is the fourth-order cumulant
matrix of s;. The rank of C, is Y5 p,?, and since C, is M? x M?, it has M?* — Zf=1 Py’ zero
eigenvalues which correspond to the noise subspace. The other eigenvalues corrrespond to the

signal subspace. (2) Compute the SVD of C, and identify the signal and noise subspace singular
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vectors. Now, second-order subspace-based search methods can be applied, using the signal or noise
subspaces, by replacing the array response vector a(f) by a(8) ® a*(6).

The eigendecomposition in this method has computational complexity O(M°®) due to the Kro-
necker product, whereas the second-order statistics-based methods (e.g., MUSIC) have complexity
Oo(M3).

Chiang-Nikias [1989] method: This method uses the ESPRIT algorithm and requires an array
with its entire identical copy displaced in space by distance d; however, no calibration of the
array is required. The signals r'(t) = As(t) + n1(t) and r?(t) = A®s(t) + na(t). Two M x M

LWk < M,

matrices C! and C? are generated as follows: ¢'i; = cum(r';,r';", rlg, r'"), 1

IA

and c%; = cum(r?;,rY;", rl,r1t") 1 < 4,5,k < M. It can be shown that C! = AEAH and
C2= APEAH where ® = diag{e‘jz”{‘ﬂ“e‘ R 6'52”§”i"9‘°} in which d is the separation between
the identical arrays, and E is a P x P matrix with elements ¢;; = Zf’r:l Qkq@kr"Ca,s(1, 4, T, 7).
Note that these equations are in the same form as those for covariance-based ESPRIT [the noise
cumulants do not appear in C! and C? because the fourth-order cumulants of Gaussian noises are
zero); therefore, any version of ESPRIT or GEESE can be used to solve for @ by replacing Rl
and R?! by C! and C?, respectively.

Virtual Cross Correlation Computer (VC?®) [Dogan and Mendel, 1995]: In VC?, the
source signals are assumed to be statistically independent. The idea of VC?® can be demonstrated
as follows: Suppose we have 3 identical sensors as in Fig. 1, where ry(t), ro(t) and r3(t) are
measurements, and, dy, dy and d3 (d_;; = d; + d-;) are the vectors joining these sensors. Let the
response of each sensor to a signal from @ be a(f). A virtual sensor is one at which no measurement

is actually made. Suppose that we wish to compute the correlation between the virtual sensor v (¢)

and r5(t), which (using the plane wave assumption) is E{r3(t)vi(t)} = 20—, |a(9p)|2o'pze“jk;"d3.
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Consider the following cumulant cum(r3(t), r1(t), r3(t), r3(t)) = Z‘f:l la(6,) |4'ype‘j";'d: e=ikp-d2 —
E;f‘:l |a(9},}|"7pe‘jk;‘£ . This cumulant carries the same angular information as the cross correlation
E{r3(t)vy(t)}, but for sources having different powers.

The fact that we are interested only in the directional information carried by correlations be-
tween the sensors lets us therefore interpret a cross correlation as a vector (e.g., d_;';), and a fourth-
order cumulant as the addition of two vectors (e.g., di + d3). This interpretation leads to the idea
of decomposing the computation of a cross correlation into that of computing a cumulant. Doing
this means that the directional information that would be obtained from the cross correlation be-
tween nonexisting sensors (or between an actual sensor and a nonexisting sensor) at certain virtual
locations in the space can be obtained from a suitably defined cumulant that uses the real sensor
measurements.

One advantage of virtual cross correlation computation is that it is possible to obtain a larger
aperture than would be obtained by using only second-order statistics. This means that more
sources than sensors can be detected using cumulants. For example, given an M element uniform
linear array, VC? lets its aperture be extended from M to 2M — 1 sensors, so that 2M — 2 targets
can be detected (rather than M — 1) just by using the array covariance matrix obtained by VR
in any of the subspace-based search methods explained earlier. This use of VC? requires the array
to be calibrated. Another advantage of VC® is a fault tolerance capability. If sensors at certain
locations in a given array fail to operate properly, these sensors can be replaced using VC?.
Virtual ESPRIT (VESPA) [Dogan and Mendel, 1995]: For VESPA, the array only needs
two identical sensors; the rest of the array may have arbitrary and unknown geometry and response.
The sources are assumed to be statistically independent. VESPA uses the ESPRIT solution applied

to cumulant matrices. By choosing a suitable pair of cumulants in VESPA, the need for a copy of
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the entire array, as required in ESPRIT, is totally eliminated. VESPA preserves the computational
advantage of ESPRIT over search-based algorithms. An example array configuration is given in
Fig. 2.

Without loss of generality, let the signals received by the identical sensor pair be ry and r5. The
sensors r; and ro are collectively referred to as the guiding sensor pair. The VESPA algorithm is:
(1) Two M X M matrices, C' and C?, are generated as follows: c';; = cum(ry,r",ri,r;*),
1 < 14,7 < M, and ¢%; = cum(rg,m*,riyr;") 1 < 4,j < M. It can be shown that these
relations can be expressed, as C! = AFAY and C? = A®FA¥, where the P X P matrix
F2 diag{vss,|a11]? -+ -  Ya,5pl01p|*}, {74,,,,}:::1, and ® has been defined before. (2) Note that
these equations are in the same form as ESPRIT and Chiang and Nikias’s ESPRIT-like method;
however, as opposed to these methods, there is no need for an identical copy of the array; only
an identical response sensor pair is necessary for VESPA. Consequently, any version of ESPRIT or
GEESE can be used to solve for & by replacing R!! and R?! by C! and C?, respectively.

Note, also, that there exists a very close link between VC? and VESPA. Although the way we
chose C! and C? above seems to be not very obvious, there is a unique geometric interpretation
to it. According to V3, as far as the bearing information is concerned, C! is equivalent to the
autocorrelation matrix of the array, and C? is equivalent to the cross-correlation matrix between
the array and its virtual copy (which is created by displacing the array by the vector that connects
the second and the first sensors).

If the noise component of the signal received by one of the guiding sensor pair elements is inde-
pendent of the noises at the other sensors, VESPA supresses the noise regardless of its distribution
[Dogan and Mendel, 1995]. In practice, the noise does affect the standard deviations of results

obtained from VESPA.
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An iterative version of VESPA has also been developed for cases where the source powers have
a high dynamic range [Gonen, 1996]. Iterative VESPA has the same hardware requirements and
assumptions as in VESPA.
Extended VESPA [Gonen, Mendel and Dogan, 1994]: When -there are coherent (or, com-
pletely correlated) sources, all of the above second- and higher-order statistics methods, except
for the WSF method and other multidimensional search-based approaches, fail. For the WSF and
other multidimensional methods, however, the array must be calibrated accurately and the compu-
tational load is expensive. The coherent signals case arises in practice when there are multipaths.
Porat and Friedlander present a modified version of their algorithm to handle the case of coherent
signals; however, their method is not practical, because it requires selection of a highly redundant
subset of fourth-order cumulants that contains O(N?) elements, and no guidelines exist for its
selection; and, 2nd-, 4th-, 6th- and 8th-order moments of the data are required. If the array is
uniform linear, coherence can be handled using spatial smoothing as a preprocessor to the usual
second- or higher-order [Chen and Lin, 1994, Yuen and Friedlander, 1995] methods; however, the
array aperture is reduced. Extended VESPA can handle coherence and provides increased aper-
ture. Additionally, the array does not have to be completely uniform linear or calibrated; however,
a uniform linear subarray is still needed. An example array configuration is shown in Figure 3.

Consider a scenario in which there are G statistically independent narrowband sources,
{ug(t)}&.,. These source signals undergo multipath propagation, and each produces p; coher-
ent wavefronts {s1,1,**,S1,p;," "1 5G,1,"* "1 8Gpg ) (Z,-C;l p; = P) that impinge on an M element
sensor array from directions {0y1,-+,01p,,"**,0G,1,",0G s}, where 0,, , represents the angle-
of-arrival of the wavefront s, , that is the pth coherent signal in the gth group. The collection of

p; coherent wavefronts, which are scaled and delayed replicas of the ith source, are referred to as
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the ith group. The wavefronts are represented by the P-vector s(t). The problem is to estimate
the DOAs {01,1,-+*,01,p,,-**,0G,1,"**,0G,pc}-

When the multipath delays are insignificant compared to the bit durations of signals, then the
signals received from different paths differ by only amplitude and pha;se shifts, thus the coherence

among the received wavefronts can be expressed by the following equation:

51 (t) C1 o --- 0 (751 [t)
s(t) = Sz_m S MY 2 que )
| sG(t) ] ) 0 0 --- cq 11 ug(t) ]

where s;(t) is a p; X 1 signal vector representing the coherent wavefronts from the ith independent
source u;(t), ¢; is a p; x 1 complex attenuation vector for the ith source (1 < 7 < G), and Q is
P x G. The elements of ¢; account for the attenuation and phase differences among the multipaths
due to different arrival times. The received signal can then be written in terms of the independent

sources as follows:
r(t) = As(t) + n(t) = AQu(t) + n(t) = Bu(t) + n(t) (3)

where B £ AQ. The columns of M x G matrix B are known as the generalized steering vectors.
Extended VESPA has three major steps:

Step 1: Usestep (1) of VESPA by choosing ry(t) and ry(t) as any two sensor measurements. In this

case C! = BGBH and C? = BCGB. where G 2 diag(vau [bu1l% - Yawalb161%)s {Tauy)Se

A . .
and C = dzag(%?-f, -y gff;} Because of the coherence, the DOAs can not be obtained at this step
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from just C! and C?, since the columns of B depend on a vector of DOAs (all those within a group).
In the independent sources case, the columns of A depend only on a single DOA. Fortunately, the
columns of B can be solved for, as follows: (1.1) Follow Steps 2-5 of TLS ESPRIT by replacing R!!
and R?! by C! and C?, respectively, and using appropriate matrix dimensions; (1.2) determine the
eigenvectors and eigenvalues of quFy“l; Let the eigenvector and eigenvalue matrices of —F,,,F!’_,1
be E and D, respectively; and, (1.3) obtain an estimate of B to within a diagonal matrix, as
B = (U E + U,ED™1) /2, for use in Step 2.

Step 2: Partition the matrices B and A as B = [by,---,bg] and A = [Ay,---, Ag], where the
steering vector for the ith group b; is M x 1, A; & [a(6:1),---,a(8:p)] is M x p;, and, 6;,, is

the angle-of-arrival of the mth source in the ith coherent group (1 < m < p;). Using the fact

Il

that the ith column of Q has p; nonzero elements, express B as B = AQ = [A;cy,- -, Ageg];
therefore, the ith column of B, b;, is b; = A;c; where 7 = 1,---,G. Now, the problem of solving
for the steering vectors is transformed into the problem of solving for the steering vectors from
each coherent group separately. To solve this new problem, each generalized steering vector b;
can be interpreted as a received signal for an array illuminated by p; coherent signals having a
steering matrix A;, and covariance matrix cicH. The DOAs could then be solved for by using a
second-order-statistics-based high-resolution method such as MUSIC, if the array was calibrated,
and the rank of ¢;c/f was p;; however, the array is not calibrated and rank(cicl) = 1. The solution
is to keep the portion of each b; that corresponds to the uniform linear part of the array, by ;, and
to then apply the Section 3.3 spatial smoothing technique to a pseudocovariance matrix bL',-b[_,‘,-H
for i = 1,---,G. Doing this restores the rank of c;c¥ to p;. In the Section 3.3 spatial smoothing

technique, we must replace r(t) by by ; and set N = 1.

The conditions on the length of the linear subarray and the parameter S under which the
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rank of bs.gbs‘{H is restored to p; are [Gonen, 1996]: (a) L > 3p;/2, which means that the linear
subarray must have at least 3p,,4,/2 elements, where pyq, is the maximum number of multipaths
in anyone of the G groups; and, (b) given L and pmaz, the parameter S must be selected such that
Pmaz +1< S < L - pmaz/2+ 1.
Step 3: Apply any second-order-statistics-based subspace technique (e.g., root-MUSIC, etc.) to
R;”’ (t=1,---,G) to estimate DOAs of up to 2L/3 coherent signals in each group.

Note that the matrices C and G in C! and C? are not used; however, if the received signals
are independent, choosing ry(t) and ry(t) from the linear subarray lets DOA estimates be obtained
from C in Step 1, because, in that case, C = diag{e'jz”%"’i“ 0 .. -,e‘jz”%s}“e"}; hence, extended

VESPA can also be applied to the case of independent sources.

4.1 Discussion

One advantage of using higher-order statistics-based methods over second-order methods is that the
covariance matrix of the noise is not needed when the noise is Gaussian. The fact that higher-order
statistics have more arguments than covariances leads to more practical algorithms which have less
restrictions on the array structure (for instance, the requirement of maintaining identical arrays for
ESPRIT is reduced to only maintaining two identical sensors for VESPA). Another advantage is
more sources than sensors can be detected, i.e., the array aperture is increased when higher-order
statistics are properly applied; or, depending on the array geometry, unreliable sensor measurements
can be replaced by using the VC® idea. One disadvantage of using higher-order statistics-based
methods is that sample estimates of higher-order statistics require longer data lengths than covari-
ances; hence, computational complexity is increased. In their recent study, [Cardoso and Moulines,

1995] present a comparative performance analysis of second- and fourth-order statistics based MU-
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SIC methods. Their results indicate that dynamic range of the sources may be a factor limiting the
performance of the fourth-order statistics based MUSIC. A comprehensive performance analysis of
the above higher-order statistical methods is still lacking; therefore, a detailed comparison of these

methods remains as a very important research topic.

5 Flowchart Comparison of Subspace-based Methods

Clearly, there are many subspace-based direction finding methods. In order to see the forest from
the trees, to know when to use a second-order or a higher-order statistics-based method, we present
Figs. 4-9. These figures provide a comprehensive summary of the existing subspace-based methods
for direction finding and constitute guidelines to selection of a proper direction finding method for
a given application.

Note that:

Figure 4: Independent sources and ULA

Figure 5: Independent sources and NL/Mixed array

Figure 6: Coherent and correlated sources and ULA

Figure 7: Coherent and correlated sources and NL/Mixed array
All four figures show two paths: SOS (second-order statistics) and HOS (higher-order statistics).
Each path terminates in one or more method boxes, each of which may contain a multitude of
methods. Figures 8 and 9 summarize the pros and cons of all the methods that we have considered
in this chapter.

Using Figures 4-9, it is possible for a potential user of a subspace-based direction finding method

to decide which method(s) is (are) most likely to give best results for his/her application.
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Figure 1: Demonstration of VC?.
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Figure 2: The main array and its virtual copy.



AT _{M-L) Element arbitrary and
/ - unknown subarray

/ L L Element linear subarray

ke R
1l -
Fl
0

M 1o

Figure 3: An example array configuration. There are M sensors, L of which are uniform linearly positioned;
r1(t) and ry(¢) are identical guiding sensors. Linear subarray elements are separated by A.
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