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A new method for source localization is described that is based on a modification of the well
known multiple signal classification (MUSIC) algorithm. In classical MUSIC, errors in the esti-
mate of the signal subspace can make it difficult to accurately locate multiple sources using pro-
Jections of the array vectors onto the signal subspace. Instead, recursively applied and projected
(RAP) MUSIC finds multiple sources in a recursive fashion, by projecting both the signal subspace
estimate and the array vectors against the orthogonal complement of the array gain matrix corre-
sponding to the sources already found. Special assumptions about the array manifold structure,
such as Vandermonde or shift invariance, are not required. We show through Monte-Carlo trials
that this approach can provide improved performance in comparison to MUSIC and to the previ-
ously proposed “sequential” methods, S- and IES-MUSIC. This new method is described in the
context of principal angles or principal correlations. Furthermore, through the use of these “sub-
space” correlations, we present a unified description that includes weighted subspace fitting meth-
ods. Finally, we describe extensions of RAP-MUSIC to cases of several sources which are diversely

polarized or other vector sources which produce multidimensional array manifolds.

*This work was supported in part by the National Institute of Mental Health Grant RO1-MH53213 and by Los
Alamos National Laboratory, operated by the University of California for the United States Department of Energy
under contract W-7405-ENG-36.
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I. INTRODUCTION

Signal subspace methods in array processing encompass a range of techniques for localizing
multiple sources by exploiting the eigenstructure of the measured data matrix. Multiple signal clas-
sification (MUSIC) [13] and its many variants are among the more frequently studied subspace
methods. The attractions of these MUSIC methods are twofold. First, they can provide computa-
tional advantages over direct least squares methods in which all sources are located simultaneously.
More importantly, they also allow exhaustive searches over the parameter space for each source,
thereby avoiding potential problems with local minima encountered in searching for multiple
sources over a non-convex error surface. Subspace methods have been most widely studied in
application to the problem of direction of arrival estimation for narrow-band linear equally spaced
arrays. Other applications involve broadband and near-field sources and arrays with arbitrary ele-
ment locations. In these cases, range and azimuth may become additional parameters over which
the search must be conducted. The problem can become even more involved when the sources are
diversely polarized, such that the array manifolds required to model the sources with unknown
polarization become multidimensional. Subspace methods can also be applied to nontraditional
array processing problems, for example, the localization of quasi-static electromagnetic sources

from eletrophysiological and meteorological data [6, 7, §].

One important application of subspace methods is to the localization of equivalent current
dipoles in the human brain from measurements of scalp potentials (the EEG) or external magnetic
fields (the MEG) (collectively E/MEG). These current dipoles represent the foci of neural current
sources in the cerebral cortex associated with neural activity in response to sensory, motor or cog-
nitive stimuli. In this case, the current dipoles have three unknown location parameters and an
unknown dipole orientation (which is equivalent to the diversely polarized case treated in [1, 13]).
A direct search for the location and orientation of multiple sources involves solving a highly
non-convex optimization problem. Problems with convergence to local minima have motivated
other E/MEG researchers to resort to alternative search strategies such as simulated annealing and

the use of genetic algorithms. As an alternative approach, we investigated a signal subspace

Los Alamos Technical Report # LA-UR-97-1881 Wednesday, May 28, 1997



Mosher, Leahy: RAP-MUSIC Page 4 of 31

approach based on the MUSIC algorithm [6]. Although initial results were promising, problems
are often encountered, primarily due to two factors. First, errors in the estimates of the signal sub-
space from noisy data can make it difficult to differentiate “true” from “false” MUSIC peaks. Sec-
ond, it is often difficult to find all of the true peaks when searching a three dimensional parameter

space over a discrete grid.

The method that we describe here was developed in an attempt to overcome the limitations of
MUSIC. In describing this method, we also review other signal subspace methods that we show
can be viewed in a unified framework. Since we are primarily interested in the E/MEG source
localization problem, we have restricted our attention to methods that do not impose specific con-
straints on the form of the array manifold. For this reason, we do not consider methods such as
ESPRIT [12] or ROOT-MUSIC [see 4], which may efficiently exploit shift invariance or Vander-

monde structure in specialized arrays.

One approach to source localization that can result in significantly reduced computation over
straightforward least-squares is the weighted subspace fitting (WSF) method [17, 18, 19]. We show
here an interpretation of least-squares and WSF in terms of principal correlations, from which the
MUSIC algorithm may also be developed. This framework of principal correlations can also be
used to develop the “sequential” forms of MUSIC, S- and IES- MUSIC [1 1, 15], as well as to intro-
duce two new methods: recursively applied (R-MUSIC) and recursively applied and projected

(RAP-MUSIC).

The paper is arranged as follows. In Section I, we develop weighted subspace fitting from a
least-squares perspective, then examine the principal correlations implicit in the central calcula-
tions of these metrics. We then review MUSIC in Section III from a principal correlation perspec-
tive. In Section IV, we review the related sequential forms of MUSIC, and describe our new
modification, RAP-MUSIC. We then summarize the WSF and MUSIC methods in Section V. In
Section VI, we describe extensions of RAP-MUSIC to the more general case of multidimensional
sources and array manifolds, and in Section VII we conclude with a simulation comparing the per-

formance of the various sequential forms of MUSIC.

Los Alamos Technical Report # LA-UR-97-1881 Wednesday, May 28, 1997



Mosher, Leahy: RAP-MUSIC Page 5 of 31

I1. SIGNAL SUBSPACE METHODS

We consider the standard m sensor element array problem, for which our goal is to estimate
the parameters for r sources impinging on the array. Each source is represented by an m > r (pos-
sibly complex) array manifold vector a(), each source parameter 6 may be multidimensional,

and the collection of the » manifold parameters is designated © = {0, ..., 8,}. These manifold

vectors collectively form an m X r array transfer matrix
A(©) = [a(®)), ...,a®,)] (1

which we assume to be of full column rank r for any putative set O, i.e., no array ambiguities exist.
Associated with each array vector is a time series s(#), and the data are acquired as
x(t) = A(B)s(r) + n(r), where s(t) is the vector of r time series at time ¢. The data are “pre-whit-

2

" o . . H
ened,” i.e., the additive noise vector n(f) has zero mean and covariance of E{n(f)n" (1)} = c,1,

where E{¢} is the expectation operator and superscript “/” denotes the Hermitian transpose.

The autocorrelation of x(#) can be decomposed into the well-known partitioning

E{x(n)x" (0}
A@)(E{ss" ) HA®)" +o’1 )

R

O[A+0.010" = d A DT + @ A @

where we have assumed that the time series s(¢) are uncorrelated with the noise. We assume that
the correlation of the signal time series yields a full rank matrix P = E {s(r)sH(r)} , and therefore
A(G))PA(@)H can be eigendecomposed as (IJSA(D:", such that span(A(©®)) = span(®,). The r

eigenvalues of the decomposition combine with the noise covariance to form the r X r diagonal

; 2 : : ; : ;
matrix A; = A+0o,I, with the eigenvalues in A, arranged in decreasing order. The

: : : : 2
(m—r)x (m-r) diagonal matrix A, contains the m — r repeated eigenvalues G, . Thus (2) rep-
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resents the well-known partitioning of the covariance matrix into signal subspace (span(®,) ) and
noise-only subspace (span(®,)) terms.

In practice, we acquire n samples of the data to form the spatio-temporal data matrix

X = [x(1), ..., x(n)]; we shall assume for simplicity that n > m. We may scale and decompose

this data matrix using an SVD as

~oA A

X/Jn = @Y (3)
where the orthogonal matrix of left singular vectors @ and the diagonal matrix of singular values

X are each m X m , and the orthogonal matrix of right singular vectors ¥ is n X m. Equivalently

we may eigendecompose the outer product of this scaled matrix as
xxy/n = O, )
We observe that (XX H)/ n is a sample estimate of R in (2). Accordingly, we designate the first
r left singular vectors in (3) as &)S , .e., our estimate of a set of vectors which span the signal sub-
space; similarly we designate &),, from the remaining eigenvectors. We designate 2 as the diag-

onal matrix containing the first r singular values and £, as the diagonal matrix containing the

~

remaining singular values. The diagonal matrix Ag = £, contains the first r eigenvalues and

2

-~ .3 2 - . .
A, = Z, the remaining eigenvalues from (4).

In least-squares fitting, we estimate the source parameters as

(0,83 = arg min||x - a@)s"|7 )

i.e., we minimize the squared Frobenius norm of the error matrix, where S is the matrix of associ-

ated time series for all sources. Well-known optimal substitution [2] of the linear terms yields

-

O = arg min [|X—AATX||2F (6)
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For convenience we will not explicitly show the dependence of A(®) on its parameters. Once the
minimizing set of parameters Oy has been found, the linear parameters are simply found as
-~ H A -f-
Sis = A(O) ' X.

The product of A and its pseudoinverse A' is an orthogonal projection operator IT, = AAT,

which may equivalently be represented by the outer product IT, = U, U:Z, where U, is the

matrix whose columns are the left singular vectors of A that correspond to nonzero singular values.
Substituting this definition and (3) into (6), then exploiting the Frobenius norm-preserving proper-

ties of orthogonal matrices yields the equivalent least squares statements,

A 3 2 2
O = arg mm{“X"F— "HAX”F} (7)

H A 2o H||2
= arg max\U U PZY | (8)

~A 2
= arg max"Ug(I)Z“F 9)
Substituting in our subspace representations of X yields
c U8 r+ Uit

s = arg max |UA s&sl g+ [|U A Pul| (10)

From (/0), we may observe the following. Since the singular values of X are ordered in

decreasing value, maximization of these least-squares equations favor fitting the first term contain-

ing £, rather than the second term containing £,,. Similarly, as we acquire more data, our estimate

of R improves, and consequently so does @, and &, . By construction, the true values project as
[I,H, = &, and [1,P, = 0. These observations lead to an alternative maximization criterion

function that focuses on just the first term,

-~

- H A
Omis = arg max"UA(DSZS

r (1)
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i.e., a “modified” least-squares criterion.

Effectively, £; in (//) represents a weighted sum of the projections of the estimated signal sub-

space eigenvectors. A more general expression replaces the diagonal matrix with an arbitrary
e : 172 : . ; i s
weighting matrix W °~ that can be adjusted to reflect the quality of these estimates, yielding
- H » 2
Owsf = arg max"UA(I)SWVZHF (12)

This criterion function is known as weighted subspace fitting (WSF) [17, 18]. This terminology

originates by noting that since span(A) = span(®,) in the noiseless case, then the two matrices
must be related by an invertible transformation matrix T, such that

¢ = AO)T. 13)
Since we only have the estimate @, , we may attempt to minimize the error in this statement using

a Frobenius norm of the difference. Including an arbitrary weighting matrix w2 yields the equiv-

alent weighted subspace fitting statement,
A o s 2
10, T}ast = arg min|d, W' a@)1]7 (14)

The same transformation steps presented above for least-squares (5) readily equate (/2) and (/4).

With the appropriate statistical assumptions for the source and noise, an optimal weighting for
WSF has been shown to be the diagonal matrix [4, 14]
Wy = (A—2D) A (15)
Since these quantities are unknown in the inverse problem, their estimates are used instead,

- -~ ,.2 2"—1
WUP[ = (AI‘GHI) AS (16)

Designating the set of signal subspace eigenvalues in the matrix A; as {1, ..., A}, we observe

that the j th diagonal element of Wopl may be equivalently expressed as

22

Wl o= (Ri-8D) /Ay = A -82/A)", (17)
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3 " - . 3 A 2 .
Thus we “derate” those signal subspace components closest to the estimated noise floor &,, . Signal

subspace fitting (SSF) [17] is simply WSF (/2) with the weighting matrix set to the identity matrix,

2
F (18)

A H
Oy = arg maxHUA b,

; H 4
In least-squares, WSF, and SSF, we note the common inner product U, ®;. We now decom-

pose this product with an SVD to yield

U b, = ¥3.2" (19)

where Y and Z are each r X r orthogonal matrices. We designate the r ordered singular values in

the diagonal matrix X, as {c|, ..., ¢,} . Substituting (/9) into (/2) yields

- ~ 1/2]|2
Ousr = arg ma.r{"ZCZHWOPI F} (20)

We designate the r columns of Z as [z, ..., z,] and the jth element of the k th vector as Zh i

(i.e., the j, k th element of the matrix Z ). We may therefore express (20) as

r r
Owsr = arg max{ 2 cf 2 ZE, jﬁ’?j} Q1)

k=1 j=1

i.e., each cﬁ has an associated weight. By comparison, SSF (W set to identity) yields simply an

unweighted sum

C:)ssf = arg max{ z cf} (22)
k=1

since iji,j is unity by construction in (/9). We thus see that (weighted) subspace fitting fits

those source parameters ® which maximize a (weighted) sum of the singular values found in (/9).

The decomposition shown in (/9) yields the principal correlations between the subspaces

spanned by A and &, [3], also known as the canonical correlations (e.g. [16]). In the appendix,
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we summarize the steps for calculating these “subspace correlations” to yield a function we desig-

nate as
[Cis vensiCis f’, 2] = subcorr{A, B} (23)

which returns the ordered set of principal correlations {c|, ..., c,}, 1 2¢; 2... 2¢, 20, between

the two subspaces spanned by A and B, where r is the minimum of the ranks of A and B. The

appendix contains the definitions of the auxiliary data products Y and Z, which are used below.

We may thus interpret SSF (WSF) as simply minimizing the (weighted) sum of the squared prin-

cipal correlations between A(®) and ®;.

III. MUSIC

The least-squares and WSF methods reviewed above require nonlinear multidimensional
searches to find the unknown parameters. MUSIC was introduced by Schmidt [13] as a means to
reduce the complexity of the nonlinear search. Here we review MUSIC in terms of the principal
correlations, which in turn leads to recently proposed modifications to MUSIC [10, 11, 15] and our

proposed RAP-MUSIC approach.

Given that the rank of A(®) is r and the rank of ®; is at least r, the smallest principal corre-

lation value,

min subcorr{ A(®), &} =c, = ufvr = (A(@)ﬁr)H&)SE,,, (24)
represents the minimum principal correlation (maximum principal angle) between principal vec-
tors in the column space of A(©) and the signal subspace @, ; see the appendix for the definitions

of j?r and Er . The subspace correlation of any individual column a(8) € A(®) with the signal sub-

space must therefore equal or exceed this minimum principal correlation,
subcorr{a(®,), &} 2 minsubcorr{A©), d;},i = 1,...,r (25)

As the quality of our signal subspace estimate improves (either by improved signal to noise
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ratios or longer data acquisition), then &, will approach ®, and the minimum correlation
approaches unity when the correct parameter set © is identified, such that the r distinct sets of
parameters 8; have principal correlations approaching unity. Thus a search strategy for identifying
the multiple parameter set © = {6,, ..., 0,} is to identify r peaks of the metric

a"(©)d,d! a(0)
la(o)|®

where the squared subcorr operation is readily equated with the right hand side, since the first argu-

subcon’z{a(ﬁ), (i)s} = (26)

ment is a vector and the second argument is already orthonormal. We recognize this form as the

multiple signal classification (MUSIC) metric [13], with the minor difference of using the signal

: H . ;
subspace projector ®,®; rather than the more commonly used noise-only subspace projector

o oH

®,®, . If our estimate of the signal subspace is perfect, then we will find r global maxima equal
to unity. If we assume scalar parameters 6, then the advantage of MUSIC is obvious: the
least-squares or WSF search over an r-dimensional space © is replaced by a one dimensional

search. The MUSIC advantage for higher dimensional 0 is even greater.

Errors in our estimate ®; typically reduce (26) to a function with a single global maximum and

at least (r — 1) local maxima. Identifying the local maxima becomes more difficult, since nonlinear
search techniques may miss shallow or adjacent peaks and return to a previous peak. We also need
to locate the r best peaks, not simply a peak associated with a simple local extremum of the mea-
sure. As illustrated in Fig. 1, at low SNR the other sources may not even exhibit an adequate
“peak-like” structure, but rather exhibit only a deflection in the side of an adjacent peak. This
“peak-picking” problem becomes more difficult as the dimension of each individual source rises,

such as in two and three-dimensional source localization.
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IV. SEQUENTIAL FORMS oF MUSIC

A. R-MUSIC
As noted, least-squares, WSF, and SSF require a single multidimensional search, while MUSIC

consists of a series of low-dimensional searches for r peaks. From the principal correlation view-
point, we recognize that several intermediate correlations are possible between the cases repre-

sented by MUSIC and SSF. In the case of perfect estimation of the signal subspace, we already note

that a single set © = {0,,...,0,} yields ¢, = 1,
¢y, ....c,] = subcorr{ A(©), ®}. (27)
We further note that there are r possible subsets each containing (r— 1) parameters, each subset
yielding
[cy,..onc,y] = subcorr{A({6,,...,0,_;}), D} (28)
where c¢,_; = 1. For subsets comprising k sources from the r total sources, we observe that the

r

combinatorics yield ( K

) sets, each set yielding ¢, = 1.

|
—

The case k = 1 is MUSIC. For k = 2, there are r(r— 1)/2 possible sets yielding ¢, =

L,

An alternative approach, however, is to fix one of these pairs of sources using a peak from k
leaving just (r—1) source locations such that ¢, = 1. If we fix the second source parameter at
one of these peaks, then for the case k = 3 there remain (r—2) source locations such that
¢y = 1. This sequential search through the subspace correlations in the perfect subspace case @

suggests the design of an algorithm that bypasses the peak-picking problem of MUSIC.

We refer to this method as recursive MUSIC (R-MUSIC). The first recursion of R-MUSIC is
identical to MUSIC,

0, = arg maxsubcorr{a(0), &} (29)

This maximization is easily carried out by first searching over a grid of putative 0, then initializing
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a nonlinear refinement from the best grid point. For an r dimensional signal subspace, we antici-

pate at least r peaks, but we retain only the source location associated with the maximum peak.

With the best single source parameter identified, we form the preliminary array transfer matrix
A = ad). (30)
To find the second source, we maximize
0, = arg max{c,} 31)

where ¢, is the second principal correlation of

A I A
[c),c,] = subcorr{[A( ), a(9)], d,} (32)
i.e., the concatenation of the array vectors for the first identified source with those for our putative

locations for a second source. A search through source locations 6 should reveal at least r— 1

peaks of ¢,, but in general not at 8, since the subspace associated with this source has already

. ; oy Al . ; ; ; .
been identified with A"’ . With the second source identified at the global maximum of ¢, , we form
the trial array transfer matrix as

~(2) A 5
A = [a(0)), a®)]. (33)

We repeat this recursion r times, such that on the final iteration we are searching for the single glo-

bal maximum of
0, = arg max{c,} (34)
where
[, oonc,] = subcorr{[A" ™", a(0)], d,} (35)

Thus the kth recursion generates a measure with at least (r + 1 — k) peaks, but we need only

search for the maximum peak which is considerably simpler than looking for multiple local peaks.

If the dimensionality of each source parameter 0 is low, then a search for the global maximum at

each recursion may readily be carried out on a dense grid of putative source locations. Once a set
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of r sources is identified, we can refine these peaks in a full nonlinear maximization using
weighted subspace fitting or a least-squares approach. If the final correlation ¢, is close to unity,

then this refinement may be unnecessary.

In [5, 9, 10], we implement this R-MUSIC algorithm for the case of localizing current dipoles
in the human brain, using E/MEG data acquired over an array of sensors. We discuss some of the
special considerations for this form of array manifold in Section VI. In a subsequent search of the
literature for similar MUSIC approaches, we learned of the “sequential” forms S-MUSIC [1 1] and
IES-MUSIC [15], with the latter presented as an extension of the former. Our further investigations
of these approaches, in combination with our needs in E/MEG processing, lead in this section to
an improved variation of R-MUSIC that we call recursively applied and projected MUSIC
(RAP-MUSIC).

B. S- and IES-MUSIC

S-MUSIC [11] and IES-MUSIC [15] are two sequential modifications of MUSIC that are
closely related to the R- and RAP-MUSIC methods introduced here. Both methods find the first
source by maximizing the MUSIC metric for a single source (we will continue to express the met-
rics using the signal subspace eigenvectors &, rather than the noise-only eigenvectors). Using the

first source, we form the orthogonal projection operators

Mg, = @@a’@))/fa@|’ (36)

1

ey = 11,4, 37

In S-MUSIC [11], we apply the projection operator (37) to the array manifold and find the second

source as

A

{02}s = arg max g(0) (38)

where
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L
a())

‘ H:él}a(e)‘|2

(or g(6) = 0 equals zero if ||nj(é”a(9)” = 0). Remark: In the alternative noise-only subspace

s o H
CROL X0 W)

g0 =

(39)

minimization form as presented in [11], g(8) is at a minimum for both the first and second source

estimates, therefore increasing the complexity of the search algorithm. In the signal subspace max-

imization form presented here (39), we simply look for the maximum to find the second source.
In IES-MUSIC [15], the denominator of (39) is dropped as inconsequential to overall perfor-

mance, and the following modification is suggested,

i H Nl s 2 H A
86,p) = a @I -p 15 )b,BS (1-pTI_ ; )a(®) (40)
This measure is effectively S-MUSIC for p = 1 and is MUSIC for p = 0. IES-MUSIC designs
an optimal scalar p for the case of two sources, but this scalar requires knowledge of the two

sources 6; and 8,. Since these parameters are unknown, IES-MUSIC first obtains the estimated

locations 8 and 8, from another approach, such as MUSIC. Using the same estimated optimal

weighting matrix from WSF fitting, Wop[ (16), the approach forms the matrix W g as

A A Ha ~-1 H A A
Wigs = [a(01), a(62)] DWW, D5 [a(8)), a(62)] (41)
The estimated optimal weighting scalar f is then formed as [15]

mW:ES(2, 1)

Sp—— 42)
(a"(01)a®2))W (1, 1)

where Wgc(i, j) is the i, j th element of the matrix. The location of the second source is then

refined as the point which maximizes (40). Extensions of S- and IES- MUSIC to more than two
sources are possible, as noted in [15]. For S-MUSIC the extension is straightforward: the projection
operator in (37) is replaced with one that is generated from the concatenation of the array vectors

for all sources that have been found (cf. (33) to (35)). The extension for IES-MUSIC is not so
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straightforward, since the weighting scalar p becomes a function of more than two sources.

C. RAP-MUSIC

- : L
The projection using IT )

in the sequential forms of MUSIC described above and the recur-
sive procedure of R-MUSIC can be combined into an alternative form of R-MUSIC, which we call
recursively applied and projected (RAP) MUSIC¥. In this method, as with all the previous sequen-

tial forms, the first source is found using a traditional MUSIC search. The second source is then

found by applying the projector operator H ) to both arguments of subcorr in (32) to yield

¢y(2) = subcorr{ a(0), -, & } (43)

a(®)) a(6,)

where we note that II [a(Bl), a(®] = [0, H

a(1) a(0)] to yield (43). The notation ¢,(2)

a®))
denotes the principal correlation of the second stage of the source localization procedure. The need

for this notation will become clear in the section on extensions of the method.

By explicitly forming the normalizations required in (-£3), we may express it in a form compa-

rable to the other MUSIC methods as

_subcorrz{ adn? a(0), I a(@) }

I R T T S ] (34)
(@ (OIT 5, Ps(V oy Za@n Y a@) Ps Ty5,2(0))
n 2
na(él)a(e)|

where we have orthogonalized the projected signal subspace using an SVD as

- » & ~ H
Ha{é])&)s = Uatél)za(énva(é.) (45)

and, retaining only the nonzero singular value components of (+5), we note that

*In [5, 10], we referred to R-MUSIC as RAP-MUSIC; we have since adopted the terminology
used here to differentiate the two methods.
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A 1 ~ —}
Vaty = Ha(éoa)svatéuza(é.}' (29)
Substitution using (+46) and the idempotent property of projection operators yields (44), a form

comparable to (39) and (40).

The second source is then found by maximizing the principal correlation ¢(2). Additional

sources are found by repeating the procedure, i.e. to find the K" source, we form the projector
£ .
H.&‘*" ), on to the orthogonal complement of the column space of the array transfer matrix for the

first k — 1 locations:

A%V < [a@)), a®y)...ad_ )] (47)

The k" source location is then found as that which maximizes the principal correlation:
L L 4
c, k) = subcorr{ﬂﬁu_“a(ﬂ), H;;“‘”{Ds} (48)

As we will demonstrate in the simulations below, we found RAP-MUSIC to be numerically
superior to the other forms of MUSIC, including our own R-MUSIC. We also found RAP-MUSIC
to be more computationally efficient than R-MUSIC, and hence in Section VII we will focus our

performance comparisons on RAP-MUSIC only.

V. SUMMARY OF SIGNAL SUBSPACE METHODS
Using the preceding development, we can now describe the various subspace fitting and
MUSIC methods in a common framework. The modified least-squares and subspace fitting meth-

ods in Section II can be stated in the general form:

a

© = arg max" Uj(@]ci),w

1/2 ; (49)

" x 1748
where W'/? = 2 yields the modified least squares method(//), w2 = Wope yields WSF

(12),and W''? = I yields SSF (/8). We may restate (49) as (cf. [4, 18, 19]),
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O = arg max{T+{T1,5&,Wd} }}, (50)

where 7r{*} is the trace of the matrix. Alternatively, similar subspace-based estimators, such as

MODE [14], can be generalized as

O = arg min{ Tr{A(@)HCb,,beA(G)W}} (51)
where the weights W .as described in [14], correspond to several different subspace estimators.
Both of these estimators, (50) and (5/), require multidimensional searches over the parameter set
© and can be shown to be asymptotically related (cf. [4]).

The various MUSIC methods presented in this paper may be placed in this same framework.
For the case of two scalar-valued source parameters as a pair of one dimensional searches, the first

source is found as the solution of

{a”(e)ci‘).ffl‘)f a(e)}
(Hg max

6, = 5 (52)
la(®)|
and the second source is found as
. a’0:0) bWl a0:0))
0, = arg max - (53)
lace;6,)]
= arg max{ Tr{na(e-é.}&)s W@f }} (54)

where @(6;0;) is an altered form of the array manifold, based on the location of the first source,

and IT is the projection operator onto the spaced spanned by this altered array manifold. In

a(;8))

Table 1, we summarize the specific forms of a(8;0,) and W for the projected methods presented
in Section IV. Extensions of these methods to more than two sources are discussed in Section I'V
and Section VI.

Finally, we may also restate these sequential MUSIC methods, using our subcorr function, as

follows:
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MUSIC:
éz = arg max subcorr{a(0), CTDS} (55)
S-MUSIC:
0, = arg maxsubcorr{l'[j(éI]a(ﬁ), (bs} (56)
IES-MUSIC:
0, = arg max“I—ﬁ*l'Ia(gl)a(B)“z'
. (57)
subcorr? {(I-p I[1,5,)a(0), b}
RAP-MUSIC:
~ 1 L 9
0, = arg maxsubcorr{ Ha(él)a(e), Ha(él)q)f} (58)

VI. EXTENSIONS
Some source localization problems involve multidimensional array manifolds and source
parameters. For example, the multidimensional manifold can represent “diverse polarization,” [1,
[3]. In [5, 9, 10] we show how to extend R-MUSIC to the E/MEG problem, where each source

location is a three dimensional vector, and each source is represented by a three-dimensional man-
ifold. We specifically describe in these references how the additional matrices Y and Z from the

subspace correlation function are useful in estimating the “quasi-linear” polarization parameters,

such that the RAP-MUSIC search remains a function of just the nonlinear location parameters.

The extensions of RAP-MUSIC to multidimensional array manifold matrices and multiple
sources are straightforward. For instance, in E/MEG [6, 9], the array manifold matrix for a single

source is typically represented as a three column matrix,
G(r) = [g,(r), 8,(r), g, ("] (59)

expressed in Cartesian coordinates. Generally, G(r) is of full column rank, but in special cases it
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may be of rank two [6]. An additional parameter is the source orientation g, assumed of unit mag-

nitude, such that the combined source parameter setis 6 = {r, ¢} and the array manifold vector

may be expressed as
a(®) = G(r)q (60)
These orientation parameters g are effectively linear (i.e., “quasi-linear”) and need not be

explicitly included in the search. Instead, in the first recursion of RAP-MUSIC we compute
[cy(1), cy(1), e5(1)] = subcorr{G(r), (f)s} 61)
for each location r, and we set the first location as

P, = arg max{c(1)} (62)

Once this optimal location has been determined, we then extract the optional parameters Y and Z

(see appendix),

[c,(1), ex(1), ¢5(1), ¥, Z] = subcorr{G(#,), &} (63)
We note that by construction, the linear combination of G(#;) most correlated with ®, is found
as the principal vector G(#)¥,, i.e, we use the first column of ¥ . We therefore set §, = ¥,/ 13|
to yield the first estimate §; = {#.4,}.

By extension, the kth recursion of RAP-MUSIC for multiple sources, a d -dimensional array

manifold matrix, and an r dimensional signal subspace is

ék = {f’k, Qk}- (64)
where
P, = arg max{c,(k)} 62
ey (), ..y Copina, o), Y,Z] = subcorr{nj‘*‘”c(?k)’ ni“'”&)s} i
A®=D = 146, ..., aB;_] (o0
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a®) = G(#))q;,i = 1,...,k-1,where g, = ¥1/||¥4|| - and y, is the first column of ¥ in (66),

as defined in the appendix.

VII. SIMULATION
We have followed the simulations in [15] in order to draw performance comparisons between
the various forms of MUSIC. The sensor array is the conventional uniform linear array of sensors

spaced a half-wavelength apart. The sources are far field narrow-band and impinging on the array

from scalar direction 0. The array manifold vector may therefore be specified as

imsin® fn(m—l]sinB]T

a®) = [1,e yeeer € ) (68)

where 6 = 0 is broadside to the array, and [|a(8)[|?> = m . The source time series are assumed to be
complex zero-mean Gaussian sequences with covariance matrix
H
E{s(t)s(t) ' } = P. (69)

We assume fifteen sensor elements and two sources at 25 and 30 degrees. The source covari-
ance matrix is specified as
Ly

%*

Y 1

P = (70)

where |y| <1 determines the degree of correlation between these two sources of equal power. The

variance of the noise is set to unity, such that the signal to noise power ratio is also unity.

We simulate n samples of both the signal and noise, form the estimated data covariance matrix,

then extract the matrix & comprising the two estimated signal subspace vectors. The noise vari-

ance is estimated as the mean of the noise-only subspace eigenvalues. For each realization, we find

the maxima of the MUSIC measure in a region about each of the true solutions. The source with

the better correlation was considered source 6, . The second source 8, was then found by maxi-

mizing the appropriate measure, (55) - (38). Since IES-MUSIC is a “two-pass” algorithm, i.e., it

requires an initial estimate of both source parameters, we used the RAP-MUSIC source estimates
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for the initial estimate, as the RAP-MUSIC solution was on average superior to the MUSIC and

S-MUSIC estimates. We also ran as a comparison IES-MUSIC with p set to the true optimal value
using the true source angles. Our preliminary studies showed R-MUSIC to be performing only as
well as S-MUSIC, yet at a greater computational cost than RAP-MUSIC; we therefore did not per-

form further analysis of R-MUSIC in order to focus the presentation on RAP-MUSIC.

In [15], closed-form formulae are presented for calculating the theoretical error variance of
MUSIC, S-MUSIC, and IES-MUSIC. For each estimator, we also calculated a numerical root

mean squared (RMS) error,

1 Runs g 1/2
RMS = [ > (82(1)-6,) J ; a1
=1

Runs
1

where éz(i) represents the estimate from the i th Monte Carlo run. In each of these runs, we deter-

mined which of the two MUSIC peaks in the regions about the true answer was greater and
declared this source as él . We then estimated the second source, then tabulated the actual number
of runs used for both 8, = 25 or 30 degrees, which is approximately evenly split at about 250

Monte Carlo runs each.

In Table 2, we held the number of time samples constant at n = 1000 and varied the degree of
correlation between the two sources. For uncorrelated sources, Y = 0, all measures performed
similarly, as also demonstrated in [15]. The differences in performance begin to arise at y = 0.7,
as tabulated in our table, where we observe that IES-MUSIC and RAP-MUSIC have RMS error
about 25% better than MUSIC and S-MUSIC. Aty = 0.925, we see that RAP-MUSIC continues

to have performance comparable to that of perfect IES-MUSIC, but that estimated IES-MUSIC is
beginning to degrade in comparison; MUSIC and S-MUSIC have RMS error almost twice that of
[ES-MUSIC and RAP-MUSIC at this point. By ¥ = 0.975, all methods are experiencing compa-

rable difficulty in estimating the sources. MUSIC is particularly poor at this correlation, since in

many trials an adequate peak-like structure did not occur in the region around the true answer, as
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we illustrate in Fig. 1.

In general, the RMS error of MUSIC and S-MUSIC match the theoretical bounds established
in [15] quite well, and our RMS errors agree well with those presented in [15] for their comparable
cases. RAP-MUSIC consistently maintains an improved RMS error over that of IES-MUSIC, and
we note again that IES-MUSIC depends on some other technique in order to arrive at an initial set
of source estimates. IES-MUSIC performance using the optimally designed p agrees quite well

with the theoretical bounds, but this performance obviously requires prior knowledge of the true

solution.

These RMS errors were calculated at a relatively large number of time samples. We also tested
small sample performance. In Table 3, we held the correlation constant at Y = 0.9 and varied the
number of time samples. At lower numbers of time samples, we generally had a difficult task deter-
mining a second MUSIC peak, and the MUSIC results were unreliable. RAP-MUSIC consistently
maintained improved performance over the other methods, and the performances were generally in

good agreement with the theoretical bounds established by [15].

VIII. CONCLUSION

We have presented a novel framework, based on the principal correlations between subspaces,
in which to view least-squares, weighted subspace fitting, MUSIC, and their variations. The
MUSIC methods replace the search for multiple sources with procedures for separately identifying
each source. For multiple sources, classical MUSIC requires the identification of multiple local
maxima in a single metric. While it is straightforward to identify the first source using the global
maximum of this metric, finding subsequent sources requires a peak-picking procedure and can
lead to errors, particularly when these sources are weak or strongly correlated with the first source.
The other sequential MUSIC forms presented here are measures designed to make localization of
the second source more straightforward. Our modifications, R-MUSIC and RAP-MUSIC, are
derived from a principal correlations perspective. Our original R-MUSIC algorithm, derived for

E/MEG research, had performance comparably to S-MUSIC, but the numerical studies presented
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here show our newer RAP-MUSIC to yield improved simulation performance over the other forms
of MUSIC. Extensions of the RAP-MUSIC approach to many sources and higher dimensionality

of the manifold are also more straightforward than the other sequential forms.

APPENDIX: PRINCIPAL CORRELATION
Here we summarize the definition and method for computation of the principal or “subspace”

correlation — the definition and computation method are equivalent to those in [3]. Given two matri-
ces, A and B, where A is mx p, and B is m X g, let r be the minimum of the ranks of the two

matrices. We define the function
8500 &5 Y,Z] = subcorr{A, B}, (72)

as follows. The scalars ¢, are the set of ordered principal correlations which follow from the recur-

sion,
cp = um:); vn;a; u'ly = uka, k= Lyt (73)
subject to
e = 7l =1 (74)
wlu, =0  i=1,.,k-1 (75)
vlv.=0  i=1,.,k-1 (76)
The vectors {uy,...,u,} and {v,,...,v,} are the principal vectors between the subspaces

spanned by A and B, and by construction, each set of vectors represents an orthonormal basis.

Note that 1 2 ¢, 2¢, 2... 2¢,20. The scalar c; is the principal correlation between u; and v;,

or analogously, the angles 8, , where cos6, = ¢, are the principal angles, representing the geo-

metric angle between these two vectors. The steps to compute the subspace correlations are as fol-
lows [3 (p. 585)]:

1.If A and B are already orthogonal matrices, we redesignate them as U4 and Up and
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skip to Step 2. Otherwise, perform a singular value decomposition (SVD) of A , such that
A=U,Z, V:. Similarly decompose B = UBEBVE. Retain only those components of
U, and Uy that correspond to nonzero singular values, i.e., the number of columns in U ,

and Up correspond to their ranks.
3
3. If only the correlations are needed, then compute only the singular values of C (the

extra computation for the singular vectors is not required). The r ordered singular values

12¢ 2... 2¢,20 are the principal correlations between A and B.

4. If the principal vectors are also required, then compute the full singular value decom-
position, C = YZCZT. The r ordered singular values are extracted from the diagonal of
Z .. Form the sets of principal vectors U, = U,Y and U, = UzZ for sets A and B

respectively.
The matrices U, and U, are each orthogonal, and the columns comprise the ordered sets of

principal vectors for matrices A and B respectively. If both matrices are of the same subspace

dimension, the measure Jl —ci’ = sin0, is called the distance between spaces A and B [3].
When the distance is zero, A and B are parallel subspaces. A maximum distance of unity (¢, = 0)

indicates at least one basis vector of A is orthogonal to B ; if the maximum principal correlation is

¢, = 0, then two subspaces spanned are orthogonal. We see that minimizing the distance is equiv-
alent to maximizing the minimum principal correlation between A and B.

We may also readily compute the specific linear combinations of A and B that yield these prin-
cipal vectors and angles. By construction, we know that A Y =U o forsome Y ,and Y can be sim-
ply found using the pseudoinverse of A . If we have used the SVD to decompose A, then the

calculation of ¥ reduces to

¥ = v, Y; (77)
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similarly, we compute
Z=V,3,Z. (78)
The best way to linearly combine the columns of A (i.e. the combination that minimizes the
principal angle of the resulting vector with B ) is found in the first column of Y= [y iwnes jr,.] (sim-
ilarly define Z ). This linear combination yields the principal vector #; = Ay,, which is maxi-
mally correlated with B when B is linearly combined as v, = BEl . In other words, there is no

other y (excepting a scale factor of y, ) for which a corresponding best fitting z will yield a better

correlation between u and v.
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Fig. 1: In this simulation (described in more detail in the sequel), two sources arrive at 25
and 30 degrees at a uniform linear array. The MUSIC correlation is scanned on a fine grid
over all putative angles of arrival. The two peaks are not readily discernible, as shown in
the inset enlargement of the overall peak. An algorithm must be “trained” to “peak-pick”
the second source, here shown at 30 degrees. Such algorithms must also distinguish
between the two best peaks and all other “local” peaks, as illustrated in this figure. The pro-
jected forms of MUSIC presented in this paper make detection of the second peak more
obvious, as well as improve the statistical performance in locating the sources.
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Table 1: Comparison of the forms of MUSIC examined in this paper, for estimation of the

~ A -~ H
second source 0, = arg ma.\'{ Tr{na{e-é }CDSW(D, }}, given the first source 6, has been
|

estimated using MUSIC. Each technique varies in its modification of the array manifold
vector a(0;0,) and its selection of a weighting matrix W.

a(9:0)) w where
MUSIC a(®) I 020,
m. =
S-MUSIC (I-1I1 4,)a(0) I Y Ha « 2
(a@a " (81))/(a"(01)a(61))
IEs-Music | (I —PII, 4 )a(6) I p from (42)
A =2 ~H 1 om o & ~ H
RAP-Music | (=TI q )a®) | ¢ .30 V. s Moy ®Ps = Va@nZadn Yoy
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Table 2: Comparison of Analytic Std. Devs. and RMS error. The number of time samples
remains constant at 1000, and the correlation y between the two sources is varied. For each
of the 500 Monte Carlo realizations, source 1 (either 25 or 30 degrees) was selected as the
source with the highest MUSIC peak. The theoretical and root mean squared (RMS) error

of the second source is tabulated. IES-MUSIC is shown both with its scalar p set using the
true parameters and with its scalar estimated. MUSIC was unreliable in locating the second
peak for y = 0.975, as illustrated in Fig. 1.

n 1000 1000 1000 1000 1000 1000

¥ 0.975 0.950 0.925 0.900 0.800 0.700

05 (deg) 25 | 30 | 25 | 30 | 25 | 30 | 25 | 30 | 25 | 30 | 25 | 30

Runs 254 | 246 | 236 | 264 | 270 | 230 | 242 | 258 | 241 | 259 | 231 | 269

Theoretical | 0.5310.555 | 0.294 | 0.308 | 0.215 | 0.224 | 0.174 | 0.182 | 0.110| 0.116 | 0.088 | 0.092
MUSIC (deg)

RMS err == -- 10.494|0.3890.214(0.232 | 0.165]0.171 | 0.105 | 0.115 ] 0.087 | 0.088

Theoretical | 0.534 | 0.559 | 0.297 | 0.310|0.216 | 0.226 | 0.175(0.183|0.111 | 0.116 | 0.089 | 0.093
S-MUSIC

RMS err (0.834|0.818(0.2780.2830.184 ( 0.202 | 0.146 | 0.160 | 0.101 | 0.112] 0.082 | 0.086

Theoretical | 0.083 | 0.087 | 0.065 | 0.068 | 0.062 | 0.064 | 0.060 | 0.063 | 0.058 | 0.062 | 0.059 | 0.061

IES-MUSIC | RMS err, p | 0.461 | 0.484 | 0.074 [ 0.077 | 0.070 | 0.069 | 0.066 | 0.065 | 0.066 | 0.071 | 0.062 | 0.067

RMS err,ﬁ 0.946|0.919(0.189(0.184 | 0.110| 0.116 | 0.084 | 0.084 | 0.071 | 0.075 | 0.063 | 0.068

RAP-MUSIC [ RMSerr |[0.879|0.863|0.150(0.153 |0.083|0.093 | 0.070 [ 0.070 | 0.067 | 0.069 | 0.061 | 0.065
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Table 3: The number of time samples is now varied, while the correlation y between the two
sources is held constant at 0.9. As in Table 2, for each of the 500 Monte Carlo realizations,
source 1 (either 25 or 30 degrees) was selected as the source with the highest MUSIC peak.
The theoretical root mean squared error of the second source is tabulated. MUSIC was
unreliable in locating the second peak for N = 100. We observe RAP-MUSIC yielding
consistently superior RMS error.

n 100 200 400 1000
Y 0.9 0.9 0.9 0.9
8, (deg) 25 30 25 30 25 30 25 30
Runs 262 | 238 | 240 | 260 | 250 250 253 247
Theoretical | 0.550 | 0.575 | 0.389 | 0.407 | 0.275 | 0.288 | 0.174 | 0.182
MUSIC (deg)
RMS err - s 1.247 | 1.174 | 0.446 | 0.464 | 0.163 | 0.165
Theoretical | 0.554 | 0.579 | 0.391 | 0.410 | 0.277 | 0.290 | 0.175 | 0.183
S-MUSIC
RMS err 0.889 | 0932 | 0522 | 0515 | 0267 | 0.301 | 0.148 | 0.161
Theoretical | 0.190 | 0.199 | 0.134 | 0.141 | 0.095 | 0.100 | 0.060 | 0.063
IES-MUSIC RMSerm, p | 0.358 | 0.404 | 0.158 | 0.176 | 0.096 | 0.097 | 0.061 | 0.068
RMSer, p | 0.966 | 1.056 | 0.516 | 0495 | 0211 | 0.245 | 0.081 | 0.084
RAP-MUSIC RMS err 0.785 | 0.870 | 0.370 | 0.397 | 0.146 | 0.187 | 0.071 | 0.073
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