USC-SIPI REPORT #313

A Precision Receiver for CDMA
Communications Using Neural-Based
Array Processors

by
Mithat C. Dogan and Jerry M. Mendel

January 1994

Signal and Image Processing Institute
UNIVERSITY OF SOUTHERN CALIFORNIA
Department of Electrical Engineering-Systems
3740 McClintock Avenue, Room 400
Los Angeles, CA 90089-2564 U.S.A.



Acknowledgment

I would like to express my sincerest gratitude to my research advisor, Professor
Bing J. Sheu, Department of Electrical Engineering and Department of Biomedical
Engineering, for his giudance and support throughout my Ph.D research work. I
wish to extend my appreciation to Professor Theodore W. Berger, Department
of Biological Engineering, Professor Murray Gershenzon, Department of Material
Science, and Dr. Wai-Chi Fang, Jet Propulsion Laboratory for serving as my
dissertation committee members. I would also like to thank Professor Edward K.
Blum for also serving on my Qualifying Examination Committee.

[ am very grateful to Professor Leonard M. Silverman, Dean of the Engineer-
ing School; Professor Hans H. Kuehl, Chairman of the Electrical Engineering -
Electrophysics Department; Professor Robert A. Scholtz, Chairman of the Electri-
cal Engineering - Systems Department; Professor Chrysostomos (Max) L. Nikias,
Director of Integrated Media Systems Center, which is an Engineering Research
Center of National Science Foundation; Ms. Ramona Gordon, Ms. Anna Fong,
and Ms. Gloria Halfacre in the Electrical Engineering Program, for providing such
a great research environment for my Ph.D. study at the University of Southern
California. This research work conducted through connections with several re-
search organizations including Integrated Media Systems Center (IMSC), Center
for Neural Engineering (CNE) and Signal and Image Processing Institute (SIPI).
Information exchange with Professor Leon O. Chua of Electrical Engineering and
Computer Sciences Department at University of California, Berkeley, and Pro-
fessor Tamas Roska of Computer and Automation Institute of the Hungarian

Academy of Sciences, is very beneficial.

i



[ would like to express my special appreciation for the 3-year fellowship support
and encouragement from Ministry of Education, Taiwan. With these support and
encouragement, I have the chance to come to USC for Ph.D study and obtain
many precious experience and knowledge which change my life entirely.

Valuable discussions with graduate doctoral colleagues from VLSI Multimedia
Laboratory were truly stimulating, including Dr. Sa Hyun Bang (now President of
Standard Telecom Inc. in Santa Clara, CA), Dr. Robert C. Chang (now Associate
Professor at National Chung Hsing University, Taiwan), Dr. Tony H. Wu (now
project leader at Cirrus Logic Inc. Milpitas, CA), and Dr. Eric Y. Chou (now
research scientist at HP ULSI Labs., Palo Alto, CA). Many Thanks to Steve H.
Jen, Richard H. Tsai, Michelle Y. Wang, Wayne C. Young, Austin K. Cho. Alex
Y. Park, Suat U. Ay, Vicky L. Zhang, and Andy C. Chu for friendly interaction.

Finally, [ would like to express special thanks and appreciation to my parents,
Guey-Chuen Chen and Yuh-Mei Her. I would like to thank my sisters Le-Lim
Chan and Le-Chin Chen. I deeply appreciate my wife, Jessica Ming-Chieh Wu,
for devoted support, encouragement, and love during my Ph.D. study, and my

daughter, Angela I-Huey Chen, for her understanding and patience.

iii



Contents

List Of Tables v
List Of Figures vi
1 Introduction 1
1.1 Personal Communication System (PCS) ... ........... 1
1.2 The'CDMA ReVOIUbION « « 5 v v v wivn i v v 6 v 0 6 5 50 6 0 % % 0 5
1.3 Detection Problems in Communication Receivers . . . . .. . .. 10
1.3.1 Near-Far Problem . . . . . .. ... ... ... ....... 11
1.3.2 Intersymbol Interference (ISI) . ... ... ......... 12
1.4 Biologically Inspired Compact Neural Networks . . ... .. ... 13
2 Cellular and Compact Neural Networks 20
2.1 Basic Theory and Computation Paradigm . .. ... .. ... .. 22
2.1.1 Genaral Architecture . . . . . . ... ... ... ... ... 22
212 BBtV ;s osn e e mIn s EF R IR TE S § 5w 28
2.2 Discrete-Time Compact Neural Networks . . . . . .. .. .. ... 30
3 MLSE and VLSI Architecture for Viterbi Algorithm 35
3.1 Receivers with Equalization Function . . .. ... ... ... ... 35
3.2 Maximum-Likelihood Sequence Estimation . . . . .. .. ... .. 37
3.3 Viterbi Algorithm and VLSI Implementation . . . . . . ... ... 39
4 1-D Compact Neural Network Based Deector 44
4.1 Digital Communication and Compact Neural Networks . . . . . . 46
4.2 The Compact Neural Network . . . . ... ... ... ....... 48
4.3 System Mapping and Optimization . .. .. .. ... ....... 50
4.3.1 Hardware Annealing . . « v ¢ v v v o v o oo viaw i w v 52
44 BimGlatioi ReSults « v v o v masmon wv o vumes o s i 53
4.5 DISCUSSION . .« v v v e e e e e e e e e 55

5 Another Application: 1-D Compact Neural Network Detector for
Hard Disk Drive 63
5.1 Application and Advantages in Hard Disk Drive . . . . . .. ... 63
5.2 Magnetic Recording Channel . . . . . .. .. ... .......... 64



5.3 PRML System for Digital Magnetic Recording . . . .. ... ... 67
5.4 Circuit Block Diagram for PRML System . . . . ... .. ... .. 70
5.5 Discussion . . . ... 73

Compact Neural Network Based CDMA Detector with Robust

Near-Far Resistance 76
6.1 Traditional Multiple Access Communication . . ... .... ... 78
6.2 CDMA Communication . . ..................... 80
6.2.1 Pseudorandom Sequence . ... ... .. iu e 80
6.22 Short Code . .. .. ... ... .. ... . .. . ..... . 82
623 LongCode........................... 83
. 6.24 Basic Principles of CDMA Communication . . . . .. . . . 84
6.25 Reverse CDMA Chanmel . . . o cv o5 cvwin ssm 2 85
6.2.6 Forward CDMA Channel . . . ... ... .......... 86
6.2.7 The Importance of Power Control . . . . .......... 87
6.2.8 Near-Far Problem . . . . . .. .. ... ........... 89
6.3 Decision Rules of CDMA Detectors . . . .............. 90
0:3.1 ‘Conventional Deteetor: . . «.v voem s mosiws ws s @ s 91
6.3.2 Optimal Multimuser Detector (OMD) . . . . ... .. ... 93
6.3.3 Suboptimal Detectors for Multiuser Detection . . .. . . . 94

6.4 Implementation of Optimal Multiple-Access Detector by Biologi-
cally Inspired Compact Neural Network . . . . ... ... ... .. 98
6.5 Simulation Results . .. ....................... 101
6.5.1 Summary . . .. .. ... 103



List Of Tables

1 Race II mobile project . . . . .« « « « « « + + 4 4 . . . 3
2 PCS air interface standard . . . . . . . .+ .+ .+ o . . . . 6
3 Low Earth orbit (LEO) mobile satellite communication sys-

tems proposed to the Telecomm. Union World Administrative
Radio Conference [1] . . . « « « v o o« o o+ 4 e e e s 9

vi



List Of Figures

1.3

1.4
1.5

2.1

2.2

2.3

3.1
3.2

3.3
4.1

4.2
4.3

4.4

4.5

4.6
4.7

1 Future digital battlefield communication elements. . . . . . . . . .

Global personal communications system-based mobile communi-
cation vision by a constellation of medium attitude orbit (MEQ)
satellites of TRW Inc. known as ODYSSEY [11].. ... ... ...
ACTS broadband aeronautical experiment setup. (From Abbe et
Bl TOOF TLLY 5. 665 5 55 565 55 4 5 0 cts siots w8 4= 20 o5 3 10 ¢ o m
Example of intersymbol intereference. . . . . ... ... ... ...
Examples of three neural network architectures. . . ... ... ..

Cellular neural network. (a) An n-by-m cellular neural network on
rectangular grid (shaded boxed are the neighborhood cells of C(i,j).
(b) Functional block diagram of neuron cell. . .. ... ... ...
1-dimensional compact neural most suitable for communication sys-

Example of multipath effect on missile control. . . . . . . ... ..
Recursive determination of shortest length path for four-state
treliss diagram. . .. . ... ... ... ... ... .. .......
Chip architecture of Viterbi decoder [8). . ... ... .. .. ...

Compact neural network. (a) An 2—by—m compact neural network
on rectangular grid (shaded boxes are the neighborhood cells of
C(t,7)). (b) Functional block diagram of neuron cell. . . . . . . .
Block diagram of neural network MLSE receiver.. . . . . .. ...
Variable-gain piecewise-linear neuron cell. (a) Transfer curves for
several gain values. (b) Block diagram of variable-gain cell with
two-quadrant analog multiplier. . . . .. ... ... ... .....
Error performance of different methods. (a) Two-ray minimum-
phase channel. (b) Two-ray nominimum-phase channel. . . . . . .
Performance of different annealing gains. .

Error bits comparison between VA and 1-D receiver: case 1

Error bits comparison between VA and 1-D receiver: case 2.

10

11
16
17

23

23
25

36

40
41

49

51

33

56
a7
58
59

vii



4.8

5.1
5.2
5.3
5.4

3.5
5.6
5.7
3.8,

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

6.10
6.11

6.12

6.13

6.14

Plot of percentage of same position error bits vs. signal-to-noise

Tatio. . o . L e e e e e e e e 60
Read channel block diagram. . . . . . ................ 64
Read/Write waveforms for digital magnetic recording [7]. . . . . . 65
Equivalent model of PR signal system [8]. . .. ....... ... 67
Discrete-time system and channel spectrum of PR IV recording
SEHERE Bl s s s s wm s S REE EH B YRR ES A S a 68
PR IV sequence includes two independent dicode sequences [8]. . 69
Circuit block diagram of hard disk drive. . . . . . ... ... ... 7
Block diagram of AGC. . . . ... .................. 71
An exampleof flash ADC [10]. . . . . ... ... ... ....... 72
Frequency reuse map. . « « v vov v v s v v u ww e dw e b 65 ¢ E 79
A example of pseudo-noise generator. . . . ... ... . ... ... 80
Autocorrelation of pseudorandom sequence. . . ... .... ... 81
Modem of CDMA communication system. . ... .... ... .. 85
Modulation waveforms. . . . . .. ... .. ... ..., 86
Reverse CDMA trafficchannel [2]. . . . ... .. .......... 87
Forward CDMA traffic channel [2]. . . ... .. ... ....... 3838
Block diagram of a conventional detector.. . . . . .. ... . ... 92
Block diagram of the first stage of subtractive interference cancel-
lation detector. . s w s wss s wimes vy 80 85 @S 97
Function block diagram of compact neural network based CDMA
TECEIVET. . © v v v vt e e et e e e e e e e e e 99
Structure of the neural network core in CDMA detector for K=5

CHEEL. « v s i i S S B S D B8 SR M B EA G EF BN 48 @ 4w m s 100

Distribution of failure points. Constraint energy function is not
used. The logarithmic function is with base 10. (a) Conventional
detector. (b) Optimal multiuser detector. (c) Compact NN based
CDMA receiver with sigmoid function. (d) Compact NN based
CDMA receiver with sigmoid function and hardware annealing. (e)
Compact NN based CDMA receiver with piecewise linear function.
(f) Compact NN based CDMA receiver with piecewise linear func-

tion and hardware annealing. . . .................. 102
Distribution of failure points. Constraint energy function is added.
Conditions (a) to (f) are the same as in Fig. 6.12. . . .. .. ... 103

Error probability of conventional detector, compact NN based
CDMA detector with or without hardware annealing function, and
optimal multiuser detector. Signal-to-noise ratio for user 1 is fixed

aEl0dB. cmvsssmsmrsmsmErm e S E G W 104

viii



6.15 Error probability of compact NN based CDMA detector with hard-
ware annealing function, optimal multiuser detector, and conven-
tional detector. Maximum near-far ratio is 2 dB. A 3-user case is
considered. . . . . . . . . ... e

ix



Abstract

With rapid advances of deep-submicron semiconductor technology and
progress in communication systems, our lives enter a new Multimedia Era: com-
municating in any place and at any time as evidenced by the availability personal
communication systems. Among all possible technologies, Code Division Multiple
Access (CDMA) has been receiving more and more attention and the market of
wireless communication with CDMA is booming since the year 1990.

CDMA is a spread spectrum technology. All of the CDMA users share the
same bandwidth and their communication channels are separated by means of
pseudorandom codes. The universal frequency reuse is crucial to the high spec-
tral efficiency. To maintain high quality and high spectral efficiency in CDMA
systems, the power difference of received signals should be as small as possible. In
satellite communication, the high-power and low-power transmitters co-exist. In
land communication, some users may be near the base-station and some may be
far away. A 60 dB or more signal power difference is quite possible. This is called
near-far problem. In 1986, S. Verdu illustrated in the theoretical derivation that
the optimal near-far resistance detector could be achieved. However, no electronic
implementation has been developed so far.

The one-dimensional compact neural network is very suitable for communica-
tion receivers in CDMA systems. Its architecture is based on a combination of the
locally connected cellular neural network and the fully-connected Hopfield neural
network. The compact neural network is a very efficient architecture for electronic
implementation. It exhibits high degree of fault tolerance, high data throughput

rate, and even low power consumption. By properly mapping the cost function of



optimal near-far resistance detector onto the energy function of the compact neu-
ral network and applying the innovative hardware annealing technique, multiuser
detector with optimized solution is achieved. Extensive computer simulation using
MATLAB codes has been conducted. Satisfactory results are obtained. The neu-
ral network-based CDMA receiver design is a very convincing solution in future

personal communication systems.
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Chapter 1

Introduction

1.1 Personal Communication Ssytem (PCS)

With rapid advances in the technological development of wireless communica-
tions, the increasing significance of data and message communication and the
regulatory and political climates over the past decade, wireless personal commu-
nication has become the fatest growing segemnt of telecommunication. From the
viewpoints of portability and mobility, the communication coverage can be clas-
sified as: within a house or a building by using cordless phone or wireless local
area networks (WLANSs); within a small community or a city by extented cordles
phone, WLANs and cellular phones; within a country or state by pagers, cellu-
lar phones, pagings, satellite-based wireless communication; and throughout the
world by satellite-based wireless communication. Two-way voices, data transmis-
sion, messaging, paging, etc., are most popular applications in nowadays wireless
personal communication. Two-way voice communication is real time. Wired tele-
phones, cordless phones, and cellular mobile telephones are used. Paging alerts
the paged party and transmits the number of a calling party or some alpha-

numeric messages. It only provides only one-way communication. Messaging is



not real time but can be used to transmit, store or retrieve messages. It includes
electronic mail, voice mail, and facsimile. In general, technologies and systems
providing wireless communications services can be categorized into seven distinct
groups [1]: cordless telephones, cellular mobile radio systems, wide area wireless
data systems, high-speed wireless local-area networks, paging/ messaging systems,
and satellite-based mobile systems and personal communication system (PCS).
Though the current technologies will develop continuously for enhancing their
services, there are strong demands and factors for much more advanced technolo-

gies:
e rapid advances in semiconductor components;

e advanced developments in intelligent networks, network management, and

service types;
o explosive growth of the number of wireless telephone subscribers;
e data privacy;
e requirement for hand-held communicators with multiple applications:

e pressure to integrate different technologies including messaging, paging,

cordless phones, cellular phones, wired phones; and

demand for wider scope and sophistication of multimedia sevices.

A vision of the ubiquitous telecommunication services known as the PCS
emerged. In Europe, the Research into Advanced Communications in Europe
(RACE) program was launched in 1988 to develop the third-generation mobile

communication systems, Universal Mobile Communication System (UMTS) and
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Mobile Broadband System (MBS). CDMA and TDMA are developed in RACE.
The RACE program has two phases [2]. RACE I concentrated on system engi-
neering, outline specifications, and key technologies. RACE Il is concentrating on
system integration and the prototyping of new services and applications. Table 1
lists the RACE II mobile projects [3].

Table 1 Race II mobile projects

Main Study Topic Project
Radio access - TDMA ATDMA
Radio access - CDMA CODIT
Network principless MONET
Low bit rate video coding MAVT
Satellite integration SAINT
Smart antennas TSUNAMI
Broadband mobile MBS

In USA, Department of Defense is making all out efforts to establish new com-
munication systems for the 21th century battlefields. Robust information systems
and rapid delopyment will be crucial factors for successful military operation in the
highly mobile environment. Current systems have their limitations in supporting
mobile operation in the presence of sporadic connectivity and variable bandwidth.
Current commercial and military systems are primarily to provide voice commu-
nication in mobile environment. Most of the networks are with large immobile

infrastructure. They are not suitable for rapid delopyment. The generic object of
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Figure 1.1: Future digital battlefield communication elements.

the efforts is to progress toward secure, seamless, theater-wide, multimedia com-
munication for tactical users. Satellite-based PCS, directed broadcast systems
(DBSs), terrestrial PCS, etc, are major systems. Future digital battlefield will
have a mix of terrestrial and space-based communication to handle voice. data.,
and imagery. Fig. 1.1 shows the digital battlefield communication architecture
elements [4]. Therefore, Defense Advanced Research Projects Agency (DARPA)
launched a program called Global Mobile Information Systems (GloMo) to satisfy
these requirements. Apparently, PCS plays a very important role.

PCS has become one of the hottest topics in the telecommunication indus-

try since 1991. As stated above, PCS is not restricted to one technology. one



system and/or one service; rather, it includes many different kinds of technolo-
gies, systems, and services. According to FCC’s description, PCS encompasses a
broad range of new radio communication service that will free individuals from
the limitations of the wireline public switched telephone network and will enable
individuals to communicate when they are from their home or office telephone
lines [5]. Thus, FCC defined PCS as “radio communications that encompaes mo-
bile and ancillary fixed communications that provide services to individuals and
businesses and can be integrated with a variety of competing networks [6]. Table
2 lists the PCS air interface standards [7].

No matter for defense purposes or commercial applications, we are pushed to
reach the new frontier of telecommunication: location-independent communica-
tion during the last decade of the twentieth century and the first decade of the
twenty-first century. The wireless personal communicator is as common as the
wireline telephone used to be. By using just one telephone number, a person can
receive many formats of information: telephone, fax, and data. It provides reli-
able and affordable communication, anywhere and anytime; in the aircraft, carrier,
submarine, office, car, or on the mountains. To bring this vision to fruition, two
major improvements should be made: deploying enough satellites in the Earth

orbits and improving the current state of wireless technology.

1.2 The CDMA Revolution

In PCS, two major techniques are applied: Code Division Multiple Access
(CDMA) and Time Division Multiple Access (TDMA). In USA, digital cellu-
lar communication system IS-54 deployed in 1993 is based on TDMA; another
system [S-95 deployed in 1995 is based on CDMA. In Europe, Global System for



Table 2 PCS air interface standard

Parameter TAG-1 | TAG-2 TAG-3 | TAG4 | TAG-5 | TAG-6 TAG-7
Heritage New IS-95 PACS IS-136- DCS- | DCT New
based based based based
Access CDMA/ | DS- TDM/ TDM/ TDMA | TDMA | D-CDMA|
method TDMA/ |CDMA | TDMA | TDMA
FDMA
Duplex TDD FDD FDD FDD FDD TDD FDD
method
Bandwidth | 5 MHz |[1.25 MHz|300 KHz | 30 KHz | 200 KHz | 1.25 MHZ 5 MHz
Bit rate 8 kbits/s |8 and 1.3 32 7.95 13 32 32
( kbit/s)
Voice channelj 32 20 8 3 8 12 64
per carrier
Modulation | QCPM | OQPSK/ | %/4 D- 4 D- | GMSK |4 D- QPSK
QPSK | QPSK QPSK QPSK
Error controﬂ None FEC None FEC FEC None FEC
(voice)
Frequency 3 1 16x1 7x3 |7x1and 9 1
reuse (N) 3x3
Max avg 10mW | 200mW | 25mW | 200 mW | 125 mW | 20.8 mW| 200 mW
subscriber
power
Time frame | 20 ms 20 ms 25ms | 40ms | 4.615ms| 10ms -
length
Time slot 625 us - 3125us| 6.7 us 577us | 417us -
length
End-to-end 80 ms 50 ms 9 ms 110 ms 90 ms 10 ms 9 ms
speech delay]
Equalizer No No No Yes Yes No No
Vocoder .EE]L‘SM rg{qgmble- ADPCM | VSELP | RPE-LTP| ADPCM | ADPCM
QCLP




Mobile Telecommunications (GSM) is based on TDMA. GSM was first deployed
in Germany in 1992. IS-54 and GSM can be catorized as the second generation of
cellular communication systems. Though TDMA plays an important role in the
second generation of digital cellular systems, CDMA is receiving more and more
attention and the development commercial market is booming.

During the late 1980’s and the early 1990’s, rapid growth of the mobile sub-
scribers made strong demand on system capacity and cost-effective systems for
cellular and PCS. It encouraged engineers to consider the CDMA spread spec-
trum technology for commercial applications. CDMA changes the nature of the
subscriber station from a predominately analog device to a predominately digital
device. Old-fashioned radio receivers separate stations or channels by filtering in
the frequency domain. CDMA receivers do not eliminate analog processing en-
tirely, but they separate communication channels by means of a pseudo-random
modulation that is applied and removed in the digital domain, not on the basis
of frequency. Multiple users occupy the same frequency band. This universal
frequency reuse is crucial to the very high spectral efficiency that is the hallmark

of CDMA. CDMA is altering the face of cellular and PCS communication by:

¢ Dramatically improving the telephone traffic (Erlang) capacity due to uni-

versal frequency reuse;

¢ Dramatically improving the voice quality and eliminating the audible effects

of multipath fading;
¢ Reducing the incidence of dropped calls due to handoff failures;

e Providing reliable transport mechanism for data communication, such as

facsimile and internet traffic;



¢ Reducing the number of sites needed to support any given amount of traffic;

Simplifying site selection;

Reducing deployment and operating costs because fewer cell sites are needed;

Reducing average transmitted power;

Reducing interference to other electronic devices; and

Reducing potential health risk.

Chief among these advantages stated above is universal frequency reuse. In
TDMA or FDMA, frequency planning has become a key issue in the current sce-
nario, with exceedingly high growth rates in many countries which compel opera-
tors to re-configure networks virtually on a monthly basis. Therefore, the search
for smart techniques, which may considerably alleviate planning efforts becomes
extremely important for operators in a competitive market [8]. In CDMA, all
users occupy a common frequency sprctrum allocation. It not only increases the
efficiency of spectrum usage, but also eliminate the complex work of planning for
different frequencies. The key factor for such a novel performance is the use of
noise-like carrier waves, as was first suggested decades ago by Claude Shannon [9].

The CDMA system has been adopted by the Telecommunication Industry
Association TR-45 committee as TIA/EIA IS-95 standard for cellular and by the
Alliance for Telecommunications Industry Solutions committee T1P1 and TIA-
TR46 joint standard J-STD-008 for PCS. Today, several equipment manufacturs
offer CDMA systems for PCS applications [10].

In USA, Pentagon’s GPS, IRIDIUM from Motorola Inc., Odessey from TRW'’s
inc., ELLIPSAT from Ellipsat Inc., GLOBAL STAR from Qualcomm Inc., etc,

8



all make use of CDMA for efficient and high quality communication. Table 3 lists

some low Earth orbit (LEO) mobile satellite communication systems proposed

to the 1992 International Telecommunication Union World Administrative Radio

Conference [11].

Table 3 Low Earth orbit (LEO) mobile satellite communication
systems proposed to the Telecomm. Union World Administrative
Radio Conference

Characteristics | IRIDIUM | ODYSSEY | ELLIPSAT | GLOBAL ARIES (CCI
of proposed (Motorola) (TRW) (Ellipsat) | (Loral and (Constellation
systems Qualcomm)| Comm,)
Satellite no. 77 12 6 24 48
Class LEO MEO LEO LEO LEO
Lifetime (yr.) 5 10 3 7.5 5
Orbit attitude 755 10,6000 2903/426 1390 1000
(km)
Orientation Circular Circular Elliptical Elliptical Circular
Initial geogra- Global CONUS, off-| CONUS, off-| CONUS | CONUS, off-
phical coverage shore United| shore United shore United
States, States States
Europe,
Asia-Pacific
region
CDMA CDMA CDMA CDMA CDMA CDMA

Fig. 1.2 shows the global personal communication system (PCS) mobile com-

munication vision by TRW’s ODESSEY. Fig. 1.3 shows NASA’s Advanced Com-

munications Technology Satellite (ACTS) broadband aeronautical experiment

setup [11]. The development of CDMA is booming.




K-band data

(19.914 GHz +/- 150 MHz) . Ka-band data
and pilot ~a (29.634 GHz +/- 150 MHz)
(19.194 GHz +/- 150 MHz) % and pilot

é (29.634 GHz +/- 150 MHz)

L ety

Ka-band data
(29.634 GHz +/- 150 MHz)

( % K-band data
(19.194 GHz +/- 150 MHz)

Figure 1.2: Global personal communications system-based mobile communication
vision by a constellation of medium attitude orbit (MEO) satellites of TRW Inc.
known as ODYSSEY [11].

1.3 Detection Problems in Communication

Receivers

No matter in CDMA system or other systems, it is very important to have excel-
lent detection techniques for high performance communication. In CDMA, one

important detection issue is near-far problem. In other communication systems,

10



T

Figure 1.3: ACTS broadband aeronautical experiment setup. (From Abbe et al.,
1993 [11].)

intersymbol interference (ISI) is also an important problem. These two problems

will be briefly reviewed below.

1.3.1 Near-Far Problem

To maintain high quality and high spectral efficiency in CDMA systems, control-
ling signal power of users is very important. In an environment where propogation

law for the intensity decay of signals is R, the total dynamic range of path loss

11



is on the order of 80 dB. Here, R is the distance. With a typical link budget for
an IS-95A system, this means that the mobile transmitter must vary its power
from about 2.5 nW to 0.25 W. In addition to the gross path loss dependence on
distance, the loss may also vary rapidly due to multipath induced Rayleigh fading.
In satellite communication, the high-power and low-power transmitters co-exist.
In ground communication, some users may be near the base-station and some may
be far away. A 60 dB or more signal power difference at the base-station for two
mobiles is quite possible. When an unwanted user’s received signal is much larger
than the received signal power contributed by the desired user, the perfromance
of CDMA is seriously impaired in the radio environment. This is called near-far
problem and is a major technical problem in CDMA. In 1986, S. Verdu [12] showed
that the optimal near-far resistant detector could be achieved by minimizing an
integer quadratic object function. It means multiuser detection in CDMA can be

converted into an optimization problem.

1.3.2 Intersymbol Interference (ISI)

Intersymbol interference is mainly caused by the suppression of interchannel in-
terference and multipath propagation. The function to reduce or remove ISI
is called equalization. For clear explanation, biphase shift keying (BPSK) with
non-return-to-zero (NRZ) pulse is used. In frequency domain, BPSK with NRZ
pulse has tails extending through out the frequency range, i.e., from f = —oo
to f = +oo. The tails will interfere with the neighboring channels. It is called
interchannel interference. Since efficient spectrum utilization is extremely impor-

tant, the Federal Communication Committee (FCC) and CCITT require that the



side-lobes produced in BPSK be reduced below certain specific levels. To accom-
plish this requirement, a filter is employed to restrict the bandwidth allowed to
the NRZ baseband signal. Thus the signal is distorted and there is a partial over-
lap of a bit (symbol) and its adjacent bits in a single channel. This overlap is
called intersymbol interference (ISI). Any unfiltered baseband signal may cause
interchannel interference. If it is band-limited by passing through a filter, the
interchannel interference can be reduced at the expense of ISI. Fig. 1.4 shows the

example of intersymbol intereference.

1.4 Biologically Inspired Compact Neural
Networks

During the past several years, quite a few computing paradigms and architectures
based on artificial neural networks were reported. Research results demonstrate
that neural networks are very promising due to their capabilities in modeling and
solving many complex scientific and engineering problems hardly approachable
by traditional methods such as statistical pattern recognition, and conventional
artificial intelligence. With the superior performance, neural networks are widely
adopted for use in a variety of industrial, scientific, and commercial applications
which range from signal processing, communication, economic tendency predic-
tion, to resource scheduling [13].

One of most attractive advantages of neural networks is the efficient architec-
tures for hardware implementation of these novel algorithms by microelectronic
technology. When implemented in microelectronic hardware, neural networks ex-

hibit high degree of fault tolerance to system damage, high data throughput rate

13



due to their ability of parallel data processing, and even low power consumption.
Therefore, development of advanced communication receivers by employing the
neural network paradigm is one important research topic.

Generally speaking, the architectures of artificial neural networks can be clas-

sified into three categories:
o feedforward (multilayer) network,
e feedback & recurrent networks, and
e cellular & compact networks.

Fig. 1.5 shows the block diagrams of basic schemes of three kinds of neural net-
works.

In the feedforward neural network, each neuron may receive an input from
the external environment and/or from neurons in the preceeding layer, but no
feedback loop exists; while feeaback neural networks contain the feedback loop(s).
The 2-dimensional cellular or the 1-dimensional compact neural networks [14] [15]
are similar to the cellular automata and made of a massive aggregate of regularly
spaced circuit cells, which interact with each other through the nearest neighbors.
The cellular neural networks are suitable for the high-speed parallel image pro-
cessing, especially for pattern recognition. Their compact characteristic is also
very attractive for application-specific integrated circuit (ASIC) design. In com-
munication systems, equalization or detection function in receivers can be viewed
as operation of pattern recognition. Therefore, the 1-dimensional compact neural
networks are well suited to implement high-speed communication receivers. The

1-dimensional compact neural network was biologically inspired. It was developed

14



by Sheu, et al. [16] [17] and is a recurrent network. It is different from Hopfield
neural network but very similar to the celular neural network.

In this dissertation, result on the biologically inspired compact neural network
for implementation of the optimal multiuser detector [17] for CDMA system is
described. A detailed analysis of employing this neural network to build the
maximum likelihood sequence estimation (MLSE) detector for GSM system [16]

1s also addressed.
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Chapter 2

Cellular and Compact Neural Networks

Many complex scientific problems can be formulated with a regular 1-D, 2-D and
3-D grid. Direct interaction between the signals on various grid points is allowed
within a finite local neighborhood, which is sometimes called the receptive field.
The original cellular neural network (CNN) paradigm was first proposed by Chua
and Yang in 1988 [1] [2]. Later, Sheu et al. developed the 1-dimensional compact
neural networks for communication receivers [7] [4]. The two most fundamental
ingredients of the cellular/compact neural network paradigms are: the use of ana-
log processing cells with continuous signal values, and local interaction within a
finite radius. Many results on the algorithm development, VLSI implementation
of cellular neural network systems were reported in the first four IEEE Interna-
tional Workshops on Cellular Neural Networks and Their Applications (Budapest,
Hungary, 1990; Munich, Germany, 1992; Rome, Italy, 1994, Seville, Spain, 1996).

Due to its regular structure and parallelism, a 10 x 10 mm? cellular neural
network microchip in a 0.5 pm CMOS technology can achieve the equivalence
of about 1 tera operations per second. The cellular neural network architecture

matches well with the paradigm that biologists have been seeking for many years
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[5]. It provides a unifying model of many complex neural network architecture,
especially for various forms of sensory modality.
The extented cellular neural networks can be viewed as cellular nonlinear net-

works. A cellular neural network has many important features [5):

e 2-, 3-, or n-dimensional array of

e mainly indicated dynamic cells, which satisfies two properties:
(1) interactions are local within a finite radius r, and

(2) all state variables are continuous valued signals.

A weighting template specifies the interaction between each cell and its neighbor-
hood cells in terms of their input, state, and output variables.

Each cell is identified by 2, 3, or n integers, (7,7,--+,n). The time variable
t may be continuous or discrete. The weighting template may be a linear or a
nonlinear function of the state, input, and output variables of each cell. It could
contain time-delay or time-varying coefficients. The dynamic systems may be
perturbed by some noise sources of known statistics.

The heat equation, which is a typical partial differential equation, can be
mapped onto a cellular neural network as reported in [1]. If a capacitor is added
to the output node, wave-type equations can also be processed by a cellular neural
network [6]. At equilibrium, the Laplace equation can be effectively handled [5].
Hence, the cellular neural network can be used to solve all three basic types of

PDEs: the diffusion equation, the Laplace equation, and the wave equation.
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2.1 Basic Theory and Computation Paradigm

2.1.1 Genaral Architecture

A cellular neural network is a continuous- or discrete-time artificial neural network
that features a multi-dimensional array of neuron cells and local interconnections
among the cells. The basic cellular neural network proposed by Chua and Yang
[1] in 1988 is a continuous-time network in the form of an n-by-m rectangular-grid
array where n and m are the numbers of rows and columns, respectively. Each
cell in a cellular neural network corresponds to an element of the array. However,
the geometry of the array needs not to be rectangular and can be such shapes as
triangle or hexagon.

A multiple of arrays can be cascaded with an appropriate interconnect struc-
ture to construct a multi-layered cellular neural network. The r-th neighborghood
cells consists of C'(k,!),1 <k <n,1 <l < m,for which |k—i|<rand|l—j| <r.
The cell C(z,J) has the direct interconnections with V,(z, j) through two kinds
of weights, i.e., the feedback weights A(k,;1,7) and A(7,7; k,!) and feedforward
weights B(k,l;i,7) and B(i,j; k,l), where the index pair (k,l;i,j) represents the
direction of signal from C(i,7) to C(k,[). The cell C(i, ) communicates directly
with its neighborhood cells C(k,!) € N,.(i,7). Since the cells C(k,!) have their
own neighborhood cells too, they also communicate with all other cells indirectly.
Fig. 2.1(a) shows an n-by-m cellular neural network with r = 1. The cells filled
with dashed lines represent the neighborhood cells N,(z, ) of C(i,j), including
C(z,7) itself.

The block diagram of a cell C(z, 7) is shown in Fig. 2.1(b). The external input

to the cell is denoted by v,;;(t), and typically assumed to be constant v,;(t) = vy;



over an operation interval 0 <t < 7. The input is connected to N,(i, 7) through
the feedforward weights B(i, j; k,l)s. The output of the cell, denoted by vyij, is
coupled to the neighborhood cells C(k, ) € N.(i, ) through the feedback weights
A(1, 75 k,l)s. Therefore, the input signals consist of the weighted sum of feedfor-
ward inputs and weighted sum of feedback inputs. In addition, a constant bias
term is added to the cell. Fig. 2.2 shows the biologically inspired 1-dimensional
compact neural network most suitable for the communication systems including

the GSM and CDMA sysyems. If the weights represent the transconductance

Cim

V(i) Iy
If(f.fu’.f)
— -l non-linear
vkl ¢ amplifier
+ Idf _II_ V(i)
vy(k,l) . f f(v)
J velif)
F(fd'ulf)

C(k 1) e N.(i}))

(®

Figure 2.1: Cellular neural network. (a) An n-by-m cellular neural network on
rectangular grid (shaded boxed are the neighborhood cells of C(i,j). (b) Functional
block diagram of neuron cell.
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Figure 2.2: 1-dimensional compact neural most suitable for communication sys-
tems.
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values among the cells, the total input current iz to the cell is given by

wit) = X AGGkDowmt)+ Y BG,jik Dvwa(t) + Iy, (2.1)
C(k,1)EN,(i.5) C(k,J)EN:(i,])

where I is the bias current. R, and C are the equivalent resistanace and capac-
itance of the cell, respectively. For simplicity of illustration purpose, Iy, R., and
C are represented by dependent current sources and summed at the state node.
Due to the capacitance C, and resistance R, the state voltage v,;; is established

at the summing node and satisfies a set of differential equations

dU:;' t 1 v
Cr———d;() = —Zv;;;(t)ﬂrij(f) (2:2)

1 -
= —zvni()+ Y AG ik, Dogul?)
T C(k1)EN.(i,j

+ Y. Bk Dow(t)+L;.1<i<n1<j<m.
C(kJI)ENF(i,5)

The cell contains a nonlinearity between the state node and the output; and
its input-output relationship is represented by v,;(t) = f(vzi5(¢)). The nonlin-
ear function used in a cellular neural network can be any differentiable, non-
decreasing, function y = f(z), provided that f(0) = 0,df(x)/dz > 0, f(4+00) —
+1 and f(—oco) —+ —1. Two widely used nonlinearities are the piecewise-linear

and sigmoid functions as given by

y(z) = f(z)
e+ 1] =z =1 iecewise-linea
ffl,-u b=t precetisenear (2.3)
Te—2= SlngId.

Here, the parameter A is proportional to the gain of the sigmoid function. For a

unity neuron gain at z = 0, A = 2 may be used for the sigmoid function. The gain
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of neurons in a Hopfield neural network is very large so that the steady-state out-
puts are all binary-valued. However, the positive feedback in the cellular neural
network cell is so strong that the gain of the cell needs not to be large for guaran-
teed binary output in the steady state. Typically, a unity gain df(z)/dz|.=0 = 1
is used in cellular neural networks. The transfer characteristics of the piecewise-

linear function is shown in Fig. 2.3.

| fix)
1 [
¥ |
1 1
_/ d
<l

Figure 2.3: Piecewise-linear function.

I m

The piecewise-linear function provides a mathematical tractability in the anal-
ysis, while the sigmoid-like nonlinearity can be easily obtained as a by-product of
electronic circuits such as operational amplifier. The shift-invariant cellular neural
networks have the interconnections that do not depend on the position of cells in
the array except at the edges. The shift-invariant property of a cellular neural
network is the most desirable feature when implementing a large-size electronic
network such as a very large-scale integration (VLSI) chip. The weights of a shift-
invariant cellular neural network can be represented by the (2r + 1) x (2r + 1)

feedforward and feedback weighting templates

TA = [ap,qa_r < P9 < ‘P],

TB _ [bp,gs - p,q < T]. (24)
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Let N = n x m be the number of cells in a compact neural network. By using

the vector and matrix notations, (2.3) can be re-written as

dx 1 "
C;E = —H—Ix+Ay+Bu+ Lyw, (2.5)

where

x = 2122 - an]" = [vaa () [vsa(t)] - - - vea(t)),

Y = [ny2- - yn]" = [ ()lvs2(t)] - vga (D)),

u = [wuz- - un]” = [V |va| - Jvun]”,

A = toeplitz((Ao|Aq|---[Ac[0]---), (Ao|Aq| -+ |A[0] )
B = toeplitz((Bo|By|- - |Be]0] - ), (Bo|B-1| - [B_¢[0]:-))

w=[l,1,---,1]%,

(2.6)
where,
Vxk = [Urkl(t)vzﬂ(t) S Urkm(t)]e
Vyk = [Vyr1(t)vyka(t) - - - vyrm (2)],
Vuk = ['Uuklvuk2 T Uukm];
Ay = toeplitz((aroak -+ ar,0: ), (aro0ak,—1 - ar,—0-+)),
By = toeplitz((brobr,1 -+ bk, 0+ +), (brobe,—1 + bk, —0--+)),
(2.7)

and toeplitz(a,b) is defined as the Toeplitz matrix with a in the first row and

b in the first column. Note that the submatrices Ay and By are Toeplitz, but
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A and B are not. The elements of Ty, and Tg are often normalized to the
scale of Ty, e.g., 107°. The notation of voltage v.(t)/v,(t) and the state vari-
ables x/y will be used interchangeably hereafter. Because —1 < yi < +1,Vk,
the output variable y is confined within the N-dimensional hyeprcube so that
yeEDVN=yeRV: 1<y <1;k=1,2,---,N. The weighting templates are
called symmetricif A(z, j; k.l) = A(k,l;1,7) and B(i, j; k,1) = B(k,l;,1,7). In this
case, A and B are symmetric matrices and the stability of the network is guaran-
teed. In fact, the symmetry of A is a sufficient condition for stability. Under the
constraint conditions |vy:;(0)] < 1 and |vy;;| < 1,Vi,j, the shift-invariant cellular
neural network always produces a stable output in the steady state. Moreover, if
A(t, 73 k,1) > 1/R., then the saturated binary outputs are guaranteed.

In any cellular neural networks, all states v,;;(¢),¥ > 0, are bounded and the

bound v; .- can be determined by [1]

Uzmazr = 1+R..~:|Ib[

+ Roomaz( Y (|AG, 5k 0|+ BG,j;k,0))).  (2.8)
C(k1)ENF(1,5)

The terms in (2.8) account for the initial value, bias, feedback, and feedforward
interactions, respectively. Therefore, the operating range of the circuits for sum-

ming and integration in Fig. 2.1(b) must be at least —v, .; < Veiilt) S Vosnas



2.1.2 Stability

The stability of a nonlinear dynamic system including cellular neural networks is
described by Lyapunov (7] or generalized energy function. For a cellular neural

network with the piecewise-linear function, the energy function is given by [1]

- ——Z Yo AG Gk Dvyi(t)vgu(t) + 9}12 > (vyis(2))?

4,J C(k1)EN(i,7) i

Z Z B(I ik, f w(t)vuk; Zfbva f.) (29}

i C(kI)EN(i,j)
For the sigmoid nonlinearity, the second term of (2.9) is replaced by

vyi,(t)

— z / dv. (2.10)

:: ij
The expression (2.10) can be used for arbitrary nonlinearity y = f(z) if its inverse
function z = f~1(y) can be well-defined over the range of x. It can be interpreted
as the area of the function z = f~'(y) when integrated from y = 0 to y = v,;; <
1. The piecewise-linear function used in (2.9) is a special case of this general

expression (2.10). For the piecewise-linear function, z = f~!(y) =y. -1 <y < 1,

and
J 05 @)y = [ Oudy = 505007, (21)
0 0

which is consistent with the one in (2.9). In the vector and matrix forms, (2.9) is

a scalar-calued quadratic function of output vector y,

1
E = —== = IyT
2y SR, u-—ly'w
1
= ~g¥ yT™™My — yTb, (2.12)
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where M = A — (1/R;)I and b = Bu + I,w. The stability of the network can
be tested by checking the behavior of the energy function after the network is
activated at time ¢ = . By using the chain rule, the time derivative of E can be

given by a scalar product of the two vectors

dE 0Edy Y. 0Ed
G o T o N OO (2.13)
dt dy dt = Jyi dt

where E /0y = Vy E is the gradient of E with respect to y. From (2.12), we have

a, 1 1
Yy = 'a—y(_ﬁyTMy —yTb) = -5(My + M"y) - b. (2.14)

If A is symmetric, so is M and M = MT. Therefore,
1
VyE=—-(My+b)=—-(Ay - -E-y+b). (2.15)

Assumed that the network is activated at { = ¢y and the constraint condition
lvzij(to)] < 1 is satisfied. Then, it begins to operate in the linear region because
vyij(to) = vzij(to) and as time increases, some of the cells become saturated such
that |y,| = 1 for some p. Note that if |z,| > 1, then dy,/dt = 0 and the cor-
responding terms in (2.12) vanish. If we consider only nonzero terms, then for

k # p,yr = Tk, dyx/dt = dz;/dt, and OE /Oy, = —C.(dzi/dt). Therefore,

dE dzy dys dz \?
—_— T — — — T — —_ l)
dt C’; dt dt C,é ( dt ) ' (2-16)

Since C; > 0, the energy E decreases as time elapses such that dE/dt < 0,Yt > t,.
When all the cells become saturated, dE/dt = 0 and the network results in a stable
binary output for which the energy function (2.12) is locally minimized. Note that

the state x is stablized after the stable equilibrium is reached because dE/dt = 0.
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If we use other neuron transfer characteristics y = f(z), for which the inverse

function £ = f~!(y) is well defined in the range of x, (2.12) can be written as

E= ——yTAy + — /f v)dv — yTb (2.17)

where the second term is simply an N —by — 1 vector with the integral expression

in each element. In this case, f~!(y) = x and

1 dx

1
= — it —_ = e e = — _— 9
VyE Ay + sz (y)—b Ay + sz b a. e (2.18)
from which it follows that
dE dy dzdy Y. Bf da:k
S T e < ¢
di = qa = Z * Oz =0 (=19)

The information to be processed can be passed into the network in a form of the in-
put v,;;(0), or the initial values of the state variable. In any cases, the initialization
of the state voltage v;;;(t) is required at the beginning of each operation, such that
lvzi;(0)| < 1,4, . Otherwise, the undesirable situation E(t = 0) < E(t = +0o0)
may occur. Local interconnection and simple synaptic weights are the most attrca-
tive features of the cellular neural network for VLSI implementation in high-speed,

real-time applications.

2.2 Discrete-Time Compact Neural Networks

Discrete-time cellular neural networks are a special type of feedback threshold net-
work where the local interconnections and the shift-invariant weights are trans-

ferred from the continuous-time cellular neural networks. They are completely
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described by a recursive algorithm. The dynamic behavior is based on the feed-
back of clocked, binary outputs and a single cell is influenced by the inputs and
outputs of neighboring cells. The architecture is closely related to the cellular au-
tomata, but different from them in having continuous-valued inputs and weights.

The discrete-time cellular neural network is the discrete-time version of (2.3)

and defined by the state equation

o
[ ]
o
e

wii(k) = Z A(h.}; k: !)yk!(k) + Z: B(ta.}'! k: ”ukl + Ib} ( i
and the output equation

vij(k) = sgn(zij(k —1))

+1 if :C,'j(k - l) <0,
= , (2.21)
-1 ifzi5(k—1)20
for a cell C(7,7), ¢ = 1,2,---,n,7 = 1,2,---,m, in an n X m rectangular-grid

array. Here, y;;(k) € +1,—1,u;; € D, A(4,5; k,1) € R, and B(i,j;k,l) € R, is the
description of the next output through a set of linear inequalities in the discrete-
time fashion. The fact that it does not include a sophisticated integration algo-
rithm, allows simple implementation of the algorithm on a general-purpose digital
computer. In a hardware-design viewpoint, the operation is quite insensitive to
noise and parameter variations caused by fabrication tolerances and environmen-
tal effects. Thus, the interconnections among cells in a network or among several

microchips in a large scale, multi-chip system, can be simplified.

31



The energy function of a discrete-time cellular neural network can be defined

by the use of the Lyapunov theory for discrete-time systems (8] [9]

E(k) = =33 A, jik Dyu(k — 1)ys;(k)

i ki
= L3281k D) (us (k) + ik = 1)
1,] ]
= 2 I(yii(R) + yii(k — 1)) (2.22)

By assuming the symmetric feedback weights A(z, j; k,1) = A(k,[;1, ), the differ-
ential energy AE = E(k + 1) — E(k) is given by

leu (% (k+1) = (wij(k — Dyij(k + 1)) (2.23)

Therefore, AE = 0 if y;;(k — 1) = yij(k +1),V1,j, and AE # 0 otherwise [10].
The energy function E decreases as k increases and the condition AE = 0 for a
stable state can be reached. However, for the condition AE = 0 there exist two
possible cases, i.e., Vi, 7,y ;(k) = yij(k — 1) and y;j(k — 1) = y;;(k + 1). The first
case obviously corresponds to a stable state, while the second case represents a
two-cycle oscillation between two different outputs. Thus, the stable operation is
not guaranteed in a discrete-time cellular neural network with symmetric feedback
templates. For some other classes of templates, the discrete-time cellular neural

network is shown to be always stable [11] [12].
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Chapter 3

MLSE and VLSI Architecture for Viterbi
Algorithm

3.1 Receivers with Equalization Function

In high-speed digital transmission, unintentionally introduced intersymbol inter-
ference (ISI) and noise are the major impediments for the data detection. The
performance of digital communication system can be severely degraded. When
a digital pulse stream is transmitted, if one transmitted pulse is not allowed to
decay away completely befor the transmission of the next one, ISI arises. The
ISI is caused not only by channel distortion but also by multipath effects. Fig-
ure 3.1 shows one example of multipath effect on missile control. It is critical to
design an optimum receiver which takes into account both the existence of ISI
and additive noise. In 1972, G. D. Forney, Jr. proposed a recursive structure [1]
to detect the received digital data symbols in the presence of ISI and additive
white Gaussian noise (AWGN). This structure is a maximum-likelihood estimator
of the entire transmitted sequence and known as Maximum-Likelihood Sequence
Estimate (MLSE), which is an efficient decision rule on the received sequence

rather than symbol-by-symbol detection [2]. In the presence of AWGN alone, the
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Figure 3.1: Example of multipath effect on missile control.

MLSE has the performance approaching that of an optimum symbol-by-symbol
counterpart.

From the optimization point of view, the MLSE is a combinatorial maxi-
mization or minimization of the cost function over all possible sequences of a
certain length. The signaling alphabet @ = ax,k = 1,2,---, M, and sequence
Sa = {si},1 = 0,1,---,n — 1, corresponding to a finite set of numbers and the
degree of freedom, respectively. There are M™ possible combinations over which

MLSE computes the cost function.
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3.2 Maximum-Likelihood Sequence Estimation

A complex data sequence {a,} is sent over a band-limited channel whch is cor-
rupted by Gaussian noise. The MLSE determines the best estimate of a,, i.e.
@n = @, that maximizes the likelihood function [3]. Let the channel be character-

ized by h(t). The received signal r(t) can be represented as:
= > anh(t — nT) + w(t|an), (3.1)

where w(t|a,) is the stationary Gaussian noise. Let the transmitted sequence
have N data symbols and the channel memory be L - T'. The received signal will
be observed during the time period I = [0, F],F > (N + L)T. Owing to the

assumption of Gaussian noise, the likelihood function becomes

plr(t),t € Ilan] = plw(t|an)]

~ eap{s— / f w(ti|om) K1ty — ta) X w(ts]an)dtrdts}  (3.2)
where K~!(7) is the inverse of K(7), and

K(r)* K7'(1) = (7). (3.3)

Here * represents convolution operation. By substituing (3.1) into (3.2) and dis-

carding the terms independent of a,, (3.2) becomes

plr(t),t € Ilan] ~ exp{ [Z 2Re(an"zn) — Y Y. ai"si—pa]} (3.4)

nTel iTel kTel
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where

. /: f; h*(t, — nT)K = (ty — ta)r(ts)dtydt
& = j} /1 h*(ty —iT)K~"(ts — t2)h(ts — kT)dtrdt; = 57, (3.5)

Thus (3.4) can be further expressed as

p(w(t|an)) ~ emp{zgﬂ zi — Z Za Si-kQtk }. (3.6)

i=1 1=1

Under maximum-likelihood criteria, the estimated sequence is that for which (3.6)
is maximized. Since (3.6) is a monotonically increasing function of the term in

brace, given by
M M

Ju({am}) = Z 204z — Y Zl Q;Si—kQ, (3.7)
i=1i=
maximizing (3.6) is equivalent to maximizing (3.7). The notation Jys(ays) indi-
cates that the cost function for the sequence ay, az, -+, aps. (3.7) will be referred
to as the MLSE cost function.

The estimation procedure using direct evaluation of the MLSE cost function
requires that (3.7) be evaluated for all possible sequences of length M that can be
formed from data symbol +1 and —1. Thus, (3.7) must be evaluated 2 times to
obtain an estimate of the sequence {a,}. To perform the estimate in real time,
which is required by most communication links, the 2¥ computations of (3.7)
must be performed within MT time span. In most cases, direct evaluation of
MLSE cost function is too computation intensive to be of practical use.

The number of computations required can be greatly reduced by the use of the

Viterbi algorithm (VA), which requires on the order of 2! comparison-and-add
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operations during each signaling interval T. Generally, M is about 40 to 60 and L

is about 1 to 3.

3.3 Viterbi Algorithm and VLSI

Implementation

The Viterbi algorithm (VA) was originally invented to decode convolution codes.
G.D. Forney found it could be used to implement the MLSE efficiently. Almost
at the same time, VA’s applicability to partial-response systems was noticed by

Omura and Kobayashi at UCLA independently [4] [5]. VA has the following

properties [6] [7].

o Implementability: Like the best of the earlier “optimum” nonlinear proces-
sors, the VA is a recursive structure that does not grow with the length of
the message sequence, and that has the complexity to be proportional to
mP, where m is the size of the input alphabet and L is the length of the
impulse response h(t). It is superior in not requiring any multiplications,

L=1 m-ary comparisons per received symbol,

but only m* additions and m
which greatly simplifies hardware implementation; It also requires only m%-!

words of memory (of the order of 10-30 bits per word).

o Analyzability: The ease with which performance can be analyzed is in sig-
nificant contrast to all earlier work with nonlinear processors. At moderate-
to-high signal noise ratios, the symbol-error probability is accurately upper-

bounded and estimated by
P.(e) < K1Q(dmin/20) (3.8)
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where dZ;. is the minimum energy of any nonzero signal, o is the spectral
density of the noise, and Q is the probability of error function
_ -1/2 [ 212
Qz) = (2m) ™2 [ e 2ay, (3.9)
e Optimality: This structure is optimum for maximum likelihood estimation
of the entire transmitted sequence provided unbounded delay is allowed at
the output, and effectively optimum in the same sense for reasonable finite

delays.

In VA, every possible sequence is represented as a path in the treliss structure.
VA is to find the shortest path, which is equivalent to find the maximum-likelihood
sequence estimate. Figure 3.2 shows the diagram for the recursive evaluation of

the shortest path in the treliss diagram. For more understanding about the VLSI

Figure 3.2: Recursive determination of shortest length path for four-state treliss
diagram.

implementation of the VA, Figure 3.3 shows the block diagram of a Viterbi decoder
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Figure 3.3: Chip architecture of Viterbi decoder [8].

chip [1]. As mentioned in the previous paragraph, the VA finds the most likely
sequence of state transitions (a path through the treliss) through a finite state
trellis by assigning in a first step a transition metric to all possible state transitions.
These state transition metrics are computed from the received input samples in the
so-called Transition Metric Unit (TMU) [9]. Subsequently, from two paths which
end in the same state, the path with the smallest sum of the transition mertic is
selected as the most likely. This decisions are required for each possible states.
They are taken in the Add Compare Select Unit (ACSU), which accumulates
the transition metrics recursively and outputs a decision bit accordingly for each
state and each trellis cycle. These decisions are then processed in the Survivor
Memory Unit (SMU) of the decoder, which keeps track of the history of decisions.
Consequently, the content of the SMU allows the reconstruction of the paths that
areassociated with the states. The problem of finding the most likely path through
the trellis can then be solved by tracing all paths back in time unit they have all

merged into one path. This path is called the final survivor path.
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Chapter 4

1-D Compact Neural Network Based Deector

In the previous chapter, we review the most widely used maximum likelihood
sequence estimation (MLSE) and its implementation, Viterbi algorithm (VA),
for communication receivers. In a particular digital chip example reported in the
literature [1], metric calculation for every signal path, metric comparison for every
possible state and tracking of the decisions from the output are needed. These
units will 1) comsume a lot of power, 2) need significant amount of memory for
storage and, 3) take considerable CPU time for the calculation and comparison.
With the increase of channel memory, i.e. the increase of the ISI length, the power
comsumption, calculation time and storage memory will incresae. To develop high
speed and low power communication systems as stated in Chapter 1, we need to
explore new algorithms or techniques to provide better or alternative solutions to
these problems.

Artificial neural networks provide us the opportunity to develop new design
techniques. Artificial neural networks have shown great promise in solving many
complex signal processing and optimization problems that can not be satisfactorily
addressed with conventional approaches. The surpervised or unsupervised learn-

ing methods [2] [3] and massively parallel architectures of artificial neural networks
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provide attractive properties of optimization and fast problem solving. The neural
networks in communication have been motivated by the adaptive learning capabil-
ity and the collective computational properties to process real world signals. Well
designed neural networks have the ability to perform the error correction of error-
control codes, equallization of transmission channels, crossbar switch control, and
wireless /networking control.

Therefore, some other architectures of receivers with blind equalization by ap-
plying feedforward neural networks, radial basis function (RBF) networks map-
ping of the optimal Bayesian equalizer solution, or multilayer perceptron neural
networks with high-order cumulants were reported in the literature [4] [5] [6].
However, these architectures require time-comsuming training algorithm and cor-
responding VLSI implementations are complicated. Besides, the stencouragin-
gructures of the entire receiver system are very complex. Hence, they are not
attractive for the high speed and lower power communication systems.

Due to the inconvenience stated above, we are motivated to find new scheme
for high speed and lower power equalizers. There are two encouraging facts that
make us explore the possibility of implementation of MLSE by compact neural

networks as described below.

e In estimation theory, MLSE is the estimate method with best performance.
The only issue of MLSE is the deferring decision-making, i.e., the output is
with latency delay. With the advances of VLSI technology, it is possible to
implement the MLSE algorithm by very high speed circuits and the delay

is greatly shortened.

o Compact neural networks use analog processing cells and local interaction

within a finite radius. Performimg maximum likelihood decoding of linear
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block error-correcting codes is shown to be equivalent to finding a global
minimum of the energy function associated with a compact neural network.
Given a code, a neural network can be constructed in such a way that there
exists one-to-one correspondence between every codeword and every local

minimum of the energy function.

In this chapter, parallel architecture of the compact neural network for the MLSE
implementation is described. This algorithm was first developed by Bang and
Sheu [7]. The compact neural network has collective computational properties
and can be used to solve difficult optimization problem with signals represented
in 1-dimensional array format. The cost function to be minimized in the MLSE has
the same quadrratic form as the Lyapunov function associated with the compact
neural network. If the cost function is properly mapped onto the network, then
the desired estimate is obtained at the output. Optimal or optimized solutions
can be obtained by applying the paralleled hardware annealing method which is
a deterministic process for searching a globally minimum energy state in a short
period of time.

For convenient discussion and study, algorithm described in [7] is briefly re-
viewed in this chapter. Further analysis about the constraint functions and error

analysis were shown.

4.1 Digital Communication and Compact

Neural Networks

The actual ISI channel together with baseband Nyquist filters in the transmitter

and receiver can be modeled as a finite impulse response (FIR) filter of length L+1
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whose impulse response is given by h(k) = hx with the corresponding z-transform
H(z). Here, L is the number of symbol intervals over which the ISI spans and
hence h(k) = 0 for k < 0 and k > L. The received signal r(t) is produced by the
convolution of u(k) = ¥, u;§(k — i) with h(k) where &(k) is the Kronecker delta

function, plus white Gaussian noise n(k) of zero-mean and finite variance o2,

L
re = (k) = > wih(k — i) + n(k). (4.1)

i=0
Here ry = {ro,ri,---,rn_1} and u, = {uo,uy,++,up_,} are the received and
transmitted sequences of length n, respectively. For a sufficiently large n, the
MLSE algorithm is to choose a sequence that maximizes a scalar cost function

2 2

n—-1 L n—1 n—1
J=-— z T — Zh;uk_; = - Z e — Z: hk_{u,- (4.2)
k=0 1=0 k=0 1=0

for all possible combinations of sequences of length n. We define some variables

for easy use:

r = nz:lh;hw = i hihkst, (4.3)
k=0 k=0
yi = HZI rihy_;, (4.4)
k=0
u = [ypu- --un_l]T = uj + juq, (4.5)
Y = Moyt =y1+iyq (4.6)
|- o T_1 ' Topy2 Topp) —
I Lo ' Top43 Topny2
X = ; o : : =X1+3Xq, Xe(Cm™n
Tn-2 Tn-3 To T_1
| Tn-1 Tn-2 - I Zo J
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By keeping the items related to the original signals, we can obtain

. 1
I = E(u'{xlul + QuEXqu; + UgXIuQ) — (ufyr + ugyaq)
= lfhgl|————| |-~ | - [ g] [
XQ|X1 uq Yaq
T
= ;i"Ka-a"y (4.7)

4.2 The Compact Neural Network

A compact neural network is a continuous-time artificial neural network that
features a one-dimensional array of neuron cells and local interconnections among
the cells. The cellular neural network proposed by Chua and Yang [8, 9] in 1988
is a 2- and 3-dimensional network in the form of an N-by-M rectangular-grid
array where N and M are the numbers of rows and columns, respectively. The
compact neural network study is focused on the one-dimensional structures. Each
cell in a nonlinear network corresponds to an element of the array. Fig. 4.1 shows
an example of the block diagram of a typical nonlinear network and the circuit
diagram of a neuron cell. With N, (i,j) being the r-th neighborhood cells of cell
C(1,7), the dynamics of a nonlinear network can be described by a set of nonlinear

differential equations

d s [ 1 ..
C Ud.i'( ) — —'_Urij(t) + Z A(asj; k'.' J)UFH(t)
t R C(k1)ENY(,4)
+ Y Bk Do) + Iy 1Si<n,1< < m,  (48)
C(k,)EN:(4,))

where v.;;(t), vyij(t), and vy (t) are the state, output, and input voltage of the

cell C(s,7), A(t, j; k, 1) and B(3, j; k,!) are the feedback and feedforward synaptic
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weights between cells C(i,7) and C(k,l) € N.(¢,7). Here C and R, are the
equivalent capacitance and resistanceat the state node, and I, is the bias current
to the cell. The magnitude of neuron output voltage is often normalized to the

unity so that —1 < vy < +1,Vk. The cell includes a nonlinearity between the

b
va(id)
Ia(uud)
- 1 non-linear
| [ valk) i =
) [ [T i ¢ L Jar [l 2o
XI (&) '\J vy(i) (V)
G L Crn AGiiD
C(.l) NALj)
(a) (b)

Figure 4.1: Compact neural network. (a) An 2 — by — m compact neural network
on rectangular grid (shaded boxes are the neighborhood cells of C(z,5)). (b)
Functional block diagram of neuron cell.

state variable and the output result and its transfer function can be represented
by vyij(t) = f(vzi;(t)). The transfer function used in a nonlinear network [8] is

the piecewise-linear function and can be described by
1
y=f@)= 5+ 11~z - 1) (4.9)

The shift-invariant nonlinear networks have the interconnections that do not
depend on the position of cells in the array except at the edges. The shift-invariant
property of a nonlinear network is a very attractive feature when implementing a

large-size electronic network on a VLSI chip.
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For the nonlinear network with the piecewise-linear function, the Lyapunov or
generalized energy function is given by [§]

BO) = 5% ¥ AG5kDusOua) + 50 3 (o)

1. C(kJ)ENF(i,]) Toig

> X B(, ik Dyi(t)vun — Zfb”w (4.10)

ij C(kJ)ENH(i,f)
Let n be the number of cells in a nonlinear network. In vector and matrix forms,

(4.10) is a scalar-valued quadratic function of the output vector y,

1 1
1
= —5vfMvy —vib, (4.11)

where M = A — (1/R;)I and b = Bvy + Iyw for an n-by-1 unity vector w.

4.3 System Mapping and Optimization

Fig. 4.2 shows the block diagram of the neural network MLSE receiver. The
received signal r(t¢) is first separated into two baseband signals, i.e., in-phase
signal r;(t) and quadra-phase signal rq(t). The signals are then sampled at ¢t = ;T
where T' is the duration of a symbol, and the resulting discrete-time signal r;(k)
and rg(t) are correlated with the channel impulse response h(k). The correlation
filter matched to channel impulse response h(k) is approximated by an FIR filter,

whose tab coefficients are updated sequence by sequence.
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Figure 4.2: Block diagram of neural network MLSE receiver.

A compact neural network can be used as the core of nonlinear signal process-
ing for the MLSE as shown in the figure. The desired estimate 1, can be obtained

at the output of a nonlinear network if

M=-X=—-|-———| and b=y=| —— |. (4.12)
Xq| X1 yQ

In other words, the cost function J, is mapped onto a neural network constructed
by the transconductance matrix A = —X +T.I and input vector b = ¥. Here. the
constant term 7.1 represents a positive unity feedback in each cell. If the neural
network produces saturated binary or multi-level values in the steady state. the
output represents the MLSE of received sequence, i.e., Gy = {o 43 - ti,-1}.

After n symbols are shifted into the delay lines, the network performs the MLSE
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of an n-symbol sequence through an autonomous evolution of its internal state for

0 <t < T¢ where T¢ is the convergence speed of the network.

4.3.1 Hardware Annealing

Even with a correct mapping of the MLSE function onto a neural network, the
desired optimal or optimized solutions are not guaranteed because a combinato-
rial optimization problem always involves a large number of local minima [12]-[13].
Therefore, in addition to the basic structure of the network, the annealing capabil-
ity is provided to obtain the global minimum of the cost function over all possible
combinations of sequence. The hardware annealing [10] [11] is a dynamic process
for finding the optimum solutions in the recurrent associative neural networks
such as Hopfield networks and nonlinear networks. The optimized solutions can
be obtained by applying the hardware annealing technique to avoid local minima
problems which are inherent in combinational optimizations.

The hardware annealing is performed by controlling the gain of the neuron,
which is assumed to be the same for all neurons throughout the network. After
the state is initialized to v, = v:(0), the initial gain at time ¢ = 0 can be set to
an arbitrarily small, positive value such that 0 < g(0) < 1.

It then increases continuously for 0 < t < T4 to the nominal gain of 1. The
maximum gain gme: = 1 is maintained T4 < t < T¢, during which the network
is stabilized. When the hardware annealing is applied to a nonlinear network by

increasing the neuron gain g(t), the transfer function can be described by

+1 19(t)vzij(t) 2 1
vyii(t) = f(9(t)vzi(1)) = ¢ g()vaij(t) 5 —1 < g(t)vais(t) < 1 (4.13)
-1 19(t)vzij(t) < -1
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or simply y = f(gz). Note that the saturation level is still y = +1or —1 and only
the slope of f(z) around z = 0 varies.
(&%) 1

g
g max B { f, J'.k. .f)

f@x)

Vn}{f ) v)'ii(‘}

UIC R,

(a) )

Figure 4.3: Variable-gain piecewise-linear neuron cell. (a) Transfer curves for
several gain values. (b) Block diagram of variable-gain cell with two-quadrant
analog multiplier.

4.4 Simulation Results

The simulation of a simple binary communication system with several ISI channels
is performed by solving the differential equations. Random data sequence u, =
{ur},k=0,1,--- ,n—1, is generated and convolved with a channel response h(k)
which is assumed to be known exactly. The simulation result were conducted on

a binary communication system with the ISI channel given by

1 -1
Hp(z) = —-\/1-_—5(1.0 +0.527%). (4.14)

In this case, 2o = 1.0,z; = z_, = 0.4,z = 0 for |k| > 2. Here, 100 simulation
runs were performed independently on the sequences of length 1000 (n = 100) for

each signal-to-noise (SNR) value.
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Next, the error rates of MLSE by unannealed and annealed networks are shown
in Fig. 4.4(a) for a two-ray minimum-phase channel (4.14) and in Fig. 4.4(b) for
a two-ray nonminimum-phase channel H,(z) = (0.5 + z~!)/\/1.25, respectively.
Errors were accumulated and then divided by 10,000. Thus, probability of error
is obtained. For comparison, the results of Viterbi algorithm (VA) are also shown
in the figures. In the simulations of the channel H,(z), it is assumed that the
decisions are made in reference to direct received samples which are half of the
magnitude of delayed versions. It might be worthwhile mentioning that the NN-
MLSE for a minimum-phase channel H,,(z) is less efficient than the VA at the
moderate values of SNR, but does not suffer much from the nonminimum-phase
characteristics of the channel. Fig. 4.5 show the performance of three different
annealed gains: g(t) = (¢/2), (¢/2)"", (t/2)* applied to the neural network equal-
izer. It means the annealed gain changed linearly with time has the best chance to
find the global minimum in digital computation. Fig. 4.6 and Fig. 4.7 show that
the error bit positions in VA and neural network receiver with piecewise linear
function are almost the same at low signal to noise ratio. In Fig. 4.6, the logic 1
index of the original signal is 3, 4, 7, 12, 13, 14, 15, 16, 17, 20, 22, 23, 24, 25, 29,
30, 32, 35, 41, 43, 44, 46, 50, 51, 53, 57, 63, 64, 65, 66, 67, 68, 69, 72, 73, 74, 77,
83, 85, 86, 88, 89, 93. The error index for compact neural network is 76, 88 and
that for VA is 71, 76, 88. In Fig. 4.7, the logic 1 index of the original signal is 7,
8, 10, 12, 13, 17, 18, 23, 24, 30, 31, 34, 35, 39, 40, 41, 42, 43, 52, 56, 58, 59, 62,
65, 68, 69, 70, 71, 74, 75, 76, 77, 80, 81, 82, 85, 86, 89, 91, 93, 94, 95, 97. The
error index for compact neural is 11, 20, 74, 97 and that for VA is 20, 74, 81. The
errors are obtained by taking the difference of original signals and the estimates.

Therefore the error amount is either +2 or —2.
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Fig. 4.8 shows statistical comparison results of the error bit positions between
the outputs of four neural networks and the VA. Suppose there are E1 errors in
one NN receiver and E2 errors in the VA. And there are S3 errors have the same
index in the NN receiver and VA. Then percentage of same error bits P is
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P_E'

(4.15)

The numbers of same error bit position for annealed neural networks and VA are
larger than that for unannealed neural networks and VA. In addition, the numbers
of same error bit positions for annealed neural networks and VA are larger than
that for the unannealed neural networks and VA. From the above simulation data,
we find a compact neural network with piece-wise linear function and annealing
ability has best performance and most similar error behavior of the VA over the

others.

4.5 Discussion

The collective computational behavior of a compact neural network is used to solve
the maximum-likelihood estimation of signals in the presence of inter-symbol in-
terference and white Gaussian noise. It is demonstrated that compact neural
network is an efficient way of realizing the MLSE receiver. Therefore, the com-
pact neural network MLSE (NN-MLSE) presented here can be thought of as an
alternative to the VA. Unlike VA implementation, the NN-MLSE does not re-
qiure a vast amount of memory for storage and the computation time does not
incresae with the increasing channel memory. In summary, it complies with the

requirements of high speed and low power.
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Chapter 5

Another Application: 1-D Compact Neural
Network Detector for Hard Disk Drive

5.1 Application and Advantages in Hard Disk

Drive

In this chapter we will apply our detector built by compact neural network to
the hard disk driver for personal computers. Continuous advances of personal
computers, including the desktop, laptop, or notebook computers, have created
the need to reduce the size and weight of the products. According to statisics
in hard disk drivers, technology advances have made the annual increase of data
storage capacity and data rate up to 60% and 40% respectively during 1990-1996,
while the annual decrease of cost per mega-byte storage is 40%. To maintain
such an improvement, it is desirable to explore new design techniques to improve
hard disk driver electronics with high performance, low cost and low power dis-
sipation. Presently, most systems use run-length limited (RLL) coding and peak
detection (PD) [3] to achieve high reliability and high storage densities on the
order of 100,000 bits/mm? in rigid-disk drivers. The application of the more

advanced technique consisting of partial-response (PR) signaling in combination
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with maximum-likelihood sequence detection (MLSD) makes much more progress.
This technique is called PRML and was first introduced by H. Kobayashi at IBM
Corp. in 1971 [4]. PR signaling allows the data rate to be increased for a given
bandwidth channel, but the signal-to-noise ratio (SNR) is degraded. The MLSE
allows part of the lost SNR to be regained. PRML was utilized in an experi-
mental system and achieved a density of 1.8 million bits/mm? [1]. In 1994, IBM
Corp. employed PRML detection in 5.25-inch disk drive in the new RISC 6000
workstations to become the first company to use the technique for commercially
available disc drive [1]. High cost of digital implementations was the primary rea-
son that this technique was delayed for the commercial use for such a long time.
This provides good motivation for the analog implementation of PRML. Analog

implemenations may prove to be cheaper, lower and faster.

5.2 Magnetic Recording Channel

Fig. 5.1 shows the read channel block diagram of magnetic recording. Saturation

recording is used to record the binary data. At the receiver, the signal is first

Magnetic
head
Digital
AGC ADC »| FIR »| Detector | go
output

Figure 5.1: Read channel block diagram.

passed through an automatic gain control (AGC) amplifier, an analog-to-digital
converter (A/D), a finite-impluse-response (FIR) filter to shape the spectrum,

then a detector [5, 6]. To understand the analog detector for the read channel
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block diagram shown in Fig. 5.1, we have to study the behavior of the magnetic
recording system first.

Fig. 5.2 shows the read/write waveforms for saturation magnetic recording.
In the magnetic storage, the binary data are recorded by changing the direction
of magnetization of the media, which is fully saturated for all disc drivers [7].
As the read head passes over a transition in the direction of magnetization, it
responds to the rate-of-change of the magnectic flux. According to the Lentz’s
law, the flux change will produce a voltage. This means the data information is

contained in the orientation of transitions in the magnetization [2]. The readback
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Figure 5.2: Read/Write waveforms for digital magnetic recording [7].

voltage can be viewed as the convolution operation between the channel step
response and the derivative of magnetization pattern. In Fig. 5.2, the width of
the channel step response is narrow compared to the transition spacing so that it
does not cause significant ISI. Because the output of the channel at time k is the

weighted sum of the present channel input and the previous channel input, i.e.,
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T = by — bgy = (1 — D)by, where D is a unit delay operator, a digital magnetic
recording system is inherently partial response. The channel 1 — D is called dicode
response.

The transition spacing determines the storage density. Generally, the transi-
tion spacing is about two to three times of the width of the channel step response
in a practical system, and ISI appears. Therefore, the partial response is not so
simple as 1—D. When the rest part of frequncy response of a magnectic recording
system is considered, a good choice for the PR polynomial is either PR IV, rep-
resented by 1 — D?, or one of the class of extended PR IV (EPR IV), represented
by 1 + D — D* — D®. Both polynomials exhibit spectral nulls at dc and at the
Niquist frequency. These characteristics are appropriate for the type of band-pass
channels encountered in the magnetic recoding system. PR IV is more attractive
than EPR IV due to its simplicity to implement and good representation to the
actual system. From the circuit perspective, the output of a PR IV channel in-
cluded two independent interleaved sequences, each with a dicode response having
a two-baud delay. The detector can be implemented as two parallel dicode detec-
tors operating at half the symbol rate. From the system perspective, PR IV has
two major advantages: reasonably matching to the unequalized channel so the
required equalizer has acceptable SNR degradation and shown to be much more
robust than some other polynomials in the presence of off-track interference, gain

errors, and misequalization.
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5.3 PRML System for Digital Magnetic
Recording

Fig. 5.3 shows the PRML systems for digital magnetic recording. The combined
channel includes the magnetic recording channel Q(t); the analog filter F(t) and
the finite impulse response filter C(t) [8]. For detailed understaning, two differ-

FILTERED
NOISE:w(t)

COMBINED
DATA y(O=g[x(O+w()]
SYMBOLS | CHANNEL ANI f_/ EQUALIZED
(& — 1 . FLERS; 7 SAMPLES
HO=QOFOCH iy

nT+1:

N x{t)—):a‘h(t -iT)
y h(t)

h(-T+t
h(3T+1)
ATl TN,

Tt

h(T+1)

| \/h@T+1)

Figure 5.3: Equivalent model of PR signal system [8].

ent representations with the same function are considered. Fig. 5.4 shows the
discrete-time system without error in gain and sampling time. The spectrum of
the combined channel H is also shown. This spectrum can be viewed as the pro-
duction of 14+ D and 1—D. Fig. 5.5 represents the PR IV sequence which includes
two independent sub-sequences which can be represented as the dicode sequences.

In Fig. 5.3, h(t) can be written as

h(t) = d(t) — d(t — 2T) (5.1)
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Figure 5.4: Discrete-time system and channel spectrum of PR IV recording scheme

[8].
where d(t) is any Nyquist signal element. At the sampling time nT,

1 for n=0
0 for n<0.

—
o
o

S

p(nT) = {

Therefore, {h(nT)} = {---,0,h(0) = +1,h(2T) = —1,0,---}. x(t) is the output

of the combined channel and y(t) is the signal corrupted by Gaussian noise w(t).
y(t) = g(z(t) + w(t)) = g(3_ arh(t — kT) + w(t)). (5.3)
3

At time nT + 7, (5.3) becomes

1l

y(nT + 1)

= g(Z(ak — ak_3)d((n — k)T + 7) + w(nT)). (5.4)
k

Yn(g,7)
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Figure 5.5: PR IV sequence includes two independent dicode sequences [8].

For the correct overall gain and at the ideal sampling time nT, g =1 and 7 = 0,

the equalized sample can be represented as

o
n
e

yn(g =1,7=0) = z, + w,. (5.

From (5.2) and (5.4), the sampled output of the combined channel and filters, x,,,

1s equal to

Tp=0an—an-2, € {-2,0,+2}. (5.6)

The block diagrams of (5.5) and (5.6) are shown in Fig. 5.4. The samples r, are
the outputs of a discrete channel characterized by the PR IV polynomial 1 — D?,
where D is the unit delay T operator. The frequency response of this discrete

channel is given by

—i=

A(f) = 5 S H( ~m/T) =1 - =, (5.

o
-1
o —

The spectrum of H as shown in Fig. 5.4 has nulls at the dc and Nyquist fre-

quency 5—’1: This characteristic meets the requirement described in the previous
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section and therefore is well-suited for the type of band-pass channel encountered
in magnetic recording system.

From (5.6), it is clear that see the data sequence z, is only dependent on the
input symbol {a,, n odd(even)} for n odd(even). The PR IV sequence can be
viewed as two. independent and interleaved dicode PR sequences with polynomial
1-D’. Here, D' represents the operator with 2T delay. Fig. 5.5 shows the block
diagram of this characteristic and the output sequence {z,} will be fed to the

Viterbi detector which implements the MLSE decision rule.

5.4 Circuit Block Diagram for PRML System

The circuit block diagram for PRML Hard-Disk Drive (HDD) is shown in Fig. 5.6
[9]. There are three main parts: analog front-end signal processor, companion
digital ASIC and Viterbi detector. The basic operation principle is described

here. The analog read signal first goes through an automatic gain control (AGC)

Analog Digital

— AGC [™| LPF [T™] ADC ™ FIR Viterbi ——»

Read Detector| Read

Signal Data
FWR |g ] |PLLs : ¢

Timing Gain
DAC I

Analog Front-End Signal Processor | Digital ASIC

Figure 5.6: Circuit block diagram of hard disk drive.
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Figure 5.7: Block diagram of AGC.

circuit and a low-pass filter which generally is of 5th or 7th order. Then the signal
is synchronously sampled by an A/D converter (ADC) whose clock is provided by
the synchronizer (SNC) phased-looked loop (PLL). The output samples of ADC
is fed to a finite impulse response (FIR) filter to equalize these samples to a PR
[V spectrum shape. Finally, the signal is passed through a Viterbi detector which
implements the MLSE decision rule. The output of the Viterbi detector is the
final data.

The AGC can be implemented as a variable gain amplifier (VGA) whose gain
is controlled by the feedback loop from the output of the FIR filter to the VGA
through a digital-to-analog converter (DAC) block. More delicate design approach
using three separate Gilbert multipliers was also used [10]. Fig. 5.7 shows the block
diagram of AGC, which consists of 3 fully-differential gain stages that amplify the
low-amplitude signals from the read head preamplifier to a signal level suitable
for the rest of the read channel circuitry. The gain of AGC can be independently
set by two separate loops: analog loop and digital loop. The analog loop controls
the gain through the full-wave rectifier. The digital loop closes the AGC via a

digital-to-analog converter (DAC) from the digital block.
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The synchronizer phase-locked loops (SNC PLL) are used to generate the
READ clock for hard disk drive. The SNC PLL block will generate a low-gitter
clock to sample the signal retrieved from the hard disk. In the READ mode
the SNC-CLK is used to synchronize the ADC which samples and converts the
amplified and filtered signal. The READ clock phase is established by phase-
locking the SNC-CLK to a synchronization preamble field written at the start of
each data sector.

The ADC is a key block for the magnetic recording process. To reach the high
speed requirement, flash ADC is employed. In addition to the speed concern, a
flash ADC can help to avoid the stability problem caused by the excess delay

from the time recovery loop. Fig. 5.8 shows an example of flash ADC [10]. A fully
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Figure 5.8: An example of flash ADC [10].

differential 6 bit 72 MHz flash converter is appropriate. It consists of a differen-
tial sample and hold, a difference reference, a comparator array, a CMOS ROM

encoder and output buffers. An ADC without sample-and-hold (S/H) circuitry
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at their input node has strict requirements placed on their comparators and clock
generation circuitry in order to insure that each comparator senses the same input
voltage at the same time. Placing the S/H circuitry at the input node helps to
relax the requirements on the comparators and clock generation. Because of the
severe requirements imposed on the input slew rate and sampling jitter of ADC,

the S/H circuitry is placed at the input node to the ADC.

5.5 Discussion

From the previous subsections, the magnetic recoding channel 1 — D? is usually
implemented by two circuit modules: analog front-end processor and digital ASIC.
The Viterbi detector is included in the digital ASIC module. To achieve low cost
and low power operation, research interest on using analog circuits to replace the
digital ASIC including the use of analog Viterbi detector, has been very high. Our

1-D compact neural network design is a very promising solution.
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Chapter 6

Compact Neural Network Based CDMA

Detector with Robust Near-Far Resistance

The use of the spread spectrum communication technology originated in the
unique needs of military communication. This technology grew out of research
efforts during World War II for the purpose of providing secure means of commu-
nication in hostile environments, i.e., hidding the transmitted signal from eaves-
dropper and overcoming the intentionally strong interference [1]. By spreading
the spectrum of the transmitted signal, this goal can be achieved. With the fast
development of electronic technology and highly worldwide commercial demand
in the quality and quantity of mobil cellular communication systems and personal
communications service (PCS), spread spectrum digital technology becomes more
popular and important. There are two most important schemes of spread spec-
trum technology: direct sequence spread spectrum (DSSS) and frequency hopping
spread spectrum (HPSS) [2] [3]. Most spread spectrum communication systems
have been developed based upon the two schemes. Among the various systems for
the spread spectrum technology, Code Division Multiple Access (CDMA), which is
a DSSS method, has received significant attention and become the most booming

approach. Accroding to Management Consultants International, in Washington,
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D.C., CDMA carriers have the potential to generate annual revenues of $10 billion
by the year 2000 [4].

In CDMA communication, each user is given a unique and distinctive code.
These codes are almost uncorrelated with one another and used to spread the
transmitted signals to the full availble bandwidth. It means signal collisions are
not destructive and each of the signals involved in a collision only results in a
slight increase in error rate. Many more subscribers are allowed to share the same
frequency band and the efficiency is increased. Besides, the issues of allocating
different frequencies to different users or cells are eliminated.

To ensure high transmission quality, it is very important to control the sig-
nal power rapidly and accurately. However, it is not an easy task. In satellite
communication, there may be high-power and low-power transmitters. In ground
communication, one user may be closer to the receiver while the other user may
be far from the receiver. When an unwanted user’s received signal power is much
larger than the received signal power presented by the desired user, the perfor-
mance of CDMA system is largely degraded. This problem is referred to as the
near-far problem and is one major technical issue in CDMA systems. To upgrade
the system quality, it is necessary to develop a technology to reduce or overcome
the effects of the near-far problem.

Recently, B. Aazhang et al. [5] and U. Mitra [6] proposed feedforward neural
networks based detectors for multiuser accessing. They achieved good perfor-
mance when the number of users were small. However, the hardware complexity
appeared to increase exponentially as the number of users incresed. In 1986, Sergio
Verdu [7] showed that an optimized detector for near-far resistant multiuser de-

modulation was possible by minimizing a quadratic objective function, assuming
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that users’ signals were uncorrelated and their spreading codes (i.e. pseudoran-
dom codes) were known. This was a very encouraging result because our proposed
compact neural network with the hardware annealing function will be a powerful
tool to find the optimized solution by minimizing a quadratic objective function.
In this chapter, a compact neural network for CDMA detector with robut resis-

tance to the near-far effect and the optimized solution is described.

6.1 Traditional Multiple Access Communication

Traditionally radio communication systems have separated users by either fre-
quency channels, time slots, or both. These concepts date from the earliest days
of radio technology. Even spark transmitters used resonant circuits to narrow
the spectrum of their radiation. Scheduled net operation was probably the first
manifestation of time slotting. Modern cellular systems began with the use of
channelized analog FM. More recently several hybrid FDM-TDM digital systems
have been developed for service quality and capacity. In all these systems, each
user is assigned a particular time-frequency slot.

In large systems the assignments to the time-frequency slots cannot be unique.
Slots must be reused in multiple cells in order to cover large service areas. Satis-
factory performance in these systems depends critically on control of the mutual
interference arising from the reuse. The reuse concept is familiar even in television
broadcasting, where channels are not reused in adjacent cities.

The cellular telephone system used in North America allocates approximately
AMPS 416 channels to each operator (30kHz spacing, with a total allocation of
12.5 MHz in each direction). The same frequency obviously cannot be reused

in any adjacent pair of cells because a user on the boundary between those cells
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would receive both signals with equal amplitude, leading to an unacceptably high
interference level. A plane can be tiled with hexagonal cells, labeled in accordance

with the seven-way pattern shown in Fig. 6.1. Therefore, if a unique set of channels

Figure 6.1: Frequency reuse map.

is assigned to each of the seven cells, then the pattern can be repeated without
violating the adjacent requirement. Although this idealized pattern is not strictly
applicable in all real systems, the seven-way reuse pattern is very desirable. The
capacity of systems built in this way is determined by the bandwidth per channel
and the seven-way reuse pattern. In an AMPS, therefore, the maximum capacity
per cell is approximately 416/7 = 59. For three-way sectored cells, the same
K = T reuse applies over all three sectors, that is, only about 59/3 = 19 channels
are available in each sector. In an ideal geometry the reuse pattern looks like
Fig. 6.1, representing channel sets by distinct numbers.

It should be noted that achievement of the K = 7 reuse, rather than an
even larger number, depends on the fact that the effective propagation decay law

is faster than free space. In a vacuum space, electromagnetic radiation decays
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in intensity like R~2. However measurements have consistently shown that the
effective propagation law exponent is typically between —3.5 and —5 in the ground
mobile environment.

CDMA offers an answer to the capacity problem. The key to its high ca-
pacity is the use of noise-like sequences, i.e., pseudorandom sequences, as first
suggested decades ago by Claude Shanon [1]. Instead of partitioning either the
frequency spectrum or time into disjoint “slots”, each user is assigned a different

pseudorandom sequence,

6.2 CDMA Communication

6.2.1 Pseudorandom Sequence

Pseudorandom sequence (or pseudonoise code, PN code) is one of the ”standard
components” in the CDMA system [8]. Let’s review the generation of pseudoran-
dom sequences and some interesting and useful properties of these sequences.

A pseudo-random sequence generator is shown in Fig. 6.2. S5, 85,,--+, S, are
the symbols for the shift registers. Not all of the shift registers should be con-

nected to the parity generator as indicated by the dashed lines in the figure. The

Initiating sequence |

________ rd Panty

| Generator]

Ll Syl Sz Ll -~ — - Sy ‘ SnJ—.O"IPm'

A A i

clock

Figure 6.2: A example of pseudo-noise generator.
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initialization sequence and the outputs of the shift registers are sent to the parity
generator. If the inputs of the parity generator are even number of logic 1, the
output of the parity generator is logic 0. Otherwise, it is logic 1.

The output is also called linear feedback shift register (LFSR) sequence. The
period of the output is dependent on the initialization sequence. Every LFSR
sequence is periodic with period P < 2" — 1. There exist initialization sequences
which result in an LFSR sequence with period P = N = 2" — 1. LFSR sequence
whose period being equal to N is called maximum length (linear) shift register
(MLSR) sequence. MLSR sequences have some interesting and useful properties

for the spread spectrum communication applications:

1

e The number of one’s in an MLSR sequence is 3(N + 1), which is one more

than the number of zero's.

e The binary sum of an MLSR sequence and its phase-shift version is another

phase-shift version of the original MLSR sequence.

e The autocorrelation function Rpy(7) has only two values: 1 or j—\l-

Fig. 6.3 shows the plot of autocorrelation of pseudorandom sequence. When N
becomes very large, the autocorrelation function of a pseudorandom sequence is
very much similar to that of white noise. That’s the reason why pseudorandom
noise is also called PN codes.

Suppose 4; = [0,1,1,1,0,0,1] is an MLSR sequence and A, is the circularly
phase-shift version of A, i.e., A2 =[1,0,1,1,1,0,0]. Therefore, A; and A, are all
MLSR sequences. Now let’s check the properties of MLSR sequences described

above.
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Figure 6.3: Autocorrelation of pseudorandom sequence.

e The number of one’s in each sequence is 4, which is one more than the

number of zero’s.

e The binary sum of A; and Az is A3 = [1,1,0,0,1,0,1], which is another

phase-shift version of A;.

o Here, conversion from unipolar representation to bipolar representation is
made first. In the new representation, let A; = [-1,1,1,1,—1,—1.1] and
A; = [1,-1,1,1,1,—1,-1] first. The correlation of A; and A, is ((—1) -
(=1)4+1-141-141-14(-1)-(=1)4+(=1)-(=1)+1-1)/7 = 1. The correlation of
Ay and Az is ((=1)-141-(=1)+1-141-14(=1)-1+(=1)-(=1)+1-(=1))/7 =
-1/7.



6.2.2 Short Code

The short code is a pair of period 2'° sequences that are used for spreading the
CDMA Forward Channel. They are also used in conjuction with the Long Code
for spreading the CDMA Reverse Channel. They are both derived from period
215 —1 Linear Feedback Shift Register (LFSR) shown in the subsection 6.2.1. The

short code LFSR tap polynomials are, for the I-sequence
Priz) = e+ B 4948427+ 25+ 1, (6.1)
and for the Q-sequence
Po(z) =z + 2%+ 2 + 20+ 28+ + 2 + 2% + 1. (6.2)

The extra zero bit is inserted in each sequence immediately after the occurence of

14 consecutive zeros from the generator register. This occurs once per period.

6.2.3 Long Code

A long code is a period 242 —1 LFSR sequence that is used for spreading the reverse
link. There is only one long code sequence. Diffreent stations are distinguished
not by the sequence itself but by its relative phase. The long code is added to
each of the two (I and Q) short code sequences to ensure that cross correlations
between the signals from distinct stations are always small.

The long code LFSR tap polynomial is

G(I) — x42+I35+$33+I31 +32?+$26+$25+.’222+$21 +$19

+ 2B T2 1 b2 4SS P2l 2 1. (6.3)
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The different phases of the long code are generated by use of one of the well-known
properties of LFSR sequences. Any modulo-2 sum of two different phases of LFSR
sequences results in a new phase-shift version of the two sequences. A corollary
of this property is the fact that all internal nodes of any LFSR generator also run
through the same sequences at the generator output, but with different phases.
The additional property of LFSR sequences is exploited in the long code gen-
eration process for the reverse link spreading. A 42-bit number, the Long Code
Mask, is used to select particular bits of the 42-bit long code generator register.
The selected nodes are processed by the summation and modulo 2 operation. The
resultant of the sum, that is, the modulo-2 inner product of the generator state

with the mask, is the generator output corresponding to that mask.

6.2.4 Basic Principles of CDMA Communication

Fig. 6.4 shows the diagram of a modem of the CDMA communication system for
the kth user. CDMA system is of the DSSS shceme. At the transmitted end, the
input data are first multiplied by the PN code. Each user is assigned a different
code. The bit rate of the PN code should be much higher than the information bit
rate. After being multiplied by the PN code, the input data are again modulated
by the sinusoidal carrier with frequency f, and then sent out by the tramsmitter.
Thus, the signals are modulated twice. At the receiving end, the received data is
first demodulated by the sinusoidal carrier coherently and then multiplied by the
same PN code synchronously. Fig. 6.5 shows the diagram of modulation of the
input signal waveform by the PN code. The information bit rate is smaller than
the bit rate of PN code. Therefore, the spectrum of the modulated signal b(t)s(t)

is much wider than that of the data signal.
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Figure 6.4: Modem of CDMA communication system.

6.2.5 Reverse CDMA Channel

The reverse CDMA channel handles the mobile-to-base direction of communica-
tion. The mobile device communicates with the base station over access channel
or the reverse traffic channel. The access channel is for origination, process orders,
and responding to paging. After voice or data communication is established, the
traffic channel is used. Any particular reverse channel is active only for calls to
the associated mobile station, or when access channel signaling is taking place to
the associated base station.

In the IS-95A cellular service, the transmit frequency of mobile station is 45
MHz below that of base station. In the ANSI J-STD-008 PCS, the transmit
frequency of mobile station is 80 MHz below that of base station. Permissible
frequency assignments are in 30 KHz increments in cellular and 50 kHz in PCS.

There are 2*2 — 1 reverse CDMA channels [3]. Every mobile station is assigned
uniquely and permanently to one of these logical channels. When transmitting

traffic, every mobile station uses one logical channel. That channel is used by
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Figure 6.5: Modulation waveforms.

the mobile device whenever it transmitts traffic. The channel does not change
upon handoff. Other logical channels are associated with base stations for system
access. This reverse link addressing is accomplished through manipulation of
period 22 — 1 Long Code, which is part of the spreading process. Fig. 6.6 shows
the block diagram of the core processing that generates one Reverse CDMA traffic

channel.

6.2.6 Forward CDMA Channel

The CDMA forward channel is for base-to-mobile communication. It includes a
pilot channel, an operational sync channel, optional paging channels, and several

forward traffic channels. The pilot is a spread, but otherwise unmodulated direct
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Figure 6.6: Reverse CDMA traffic channel [2].

sequence spread spectrum (DSSS) signal. These channels are orthogonalized,
spread, added together and then sent to the modulator. The pilot and overhead
channels establish the system timing and station identity. The pilot channel is also
used in the mobile-assisted handoff (MAHO) process. Processes of constructing

the forward channels are very similar to those of the reverse channels. Fig. 6.7

shows the forward CDMA traffic channel.

6.2.7 The Importance of Power Control

The key to the high capacity of commercial CDMA is extremely simple. If, rather
than using constant power, the transmitters can be controlled in such a way that
the received powers from all users are roughly equal, then the benefits of spreading
are realized. For controlled received power, then the subscrbers can occupy the

same spectrum, and the benefits of interference averaging accrue.
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Figure 6.7: Forward CDMA traffic channel [2].

By assuming perfect power control, the noise plus interference can be expressed

as
No+Io=no+ (N =1)P, (6.4)

where N is the total number of users and N, is the thermal noise. The Signal-to-
noise ratio (SNR) is

Ey P,/R

Not+lo Not+(N-1)P,/W° (8:8)

Maximum capacity is achieved if the power control is adjusted so that the SNR is
exactly what it needs to be for an acceptable error rate. If we set the left handside
of (6.5) to the targeted SNR value and solve for N, then basic capacity equation
for CDMA becomes

- W/R No
N =Gt B (6.6)
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Using the numbers for IS-95A CDMA with the 9.6 kbps rate operation, the N
value approximates 15.1 dB or 10**' = 32 users. The targeted 6 dB SNR value
is a nominal estimate. Once power control is available, the system designer and
operator have the freedom to trade quality of service for capacity by adjusting the
SNR value. Note that capacity and SNR are reciprocal. A three dB improvement
in SNR incurs a factor of two loss in capacity, and vice-versa.

According to (6.6), a capacity in the neighborhood of 16-64 users corresponds
to the E,/Ng being in the 3-9 dB range. In the same bandwidth and the targeted

SNR value, a single sector of a signle AMPS cell has only 2 channels available.

6.2.8 Near-Far Problem

CDMA was always dismissed as unworkable in the mobile radio environment be-
casue of what was called the “near-far problem.” Suppose at time t, k users
transmit data at the same carrier frequency fy. Then the received signal is

k
Z \[2P, 8t )cos(wot + 6;). (6.7)

=1

Each user’s signal power P, is the same. The bit rate of the PN code s,(t) is f.
and the data rate of b;(t) is f;. 0; is an independent random phase. For detector
one, the received signal r(t) is multiplied by s,(¢) and by cos(wot + ;) to generate
the signal rp;. If the items which will not pass through the decision device are

dropped, then (6.7) becomes

k
roy = Zﬁs,(t)s;(t)b;(t)cos(ﬂ;—91)

= /Phi(t +Z\/_sl )si(t)bi(t)cos(6; — 6)
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k
= \/Ebl(t) +> \/Es“(t)cosﬂli (6.8)
=2

where cos(f);) = cos(0; — 6;) and s1;(t) = s1(t)si(t). In (6.8), the first item is the
desired signal and the second item is the k-1 independent interfering signals. The

error probability at the output is
P. = —erfc Lé (6.9)

To achieve low probability of error, the following condition is important

y o k=1
%» —. (6.10)

In (6.9), every user is assumed to have has the same signal power. If the unwanted
user’s signal power is much larger than the desired user’s signal power, the prob-
ability of error will increase. This issue is referred to as the near-far problem [9].
Our proposed compact neural network based detector has robust resistance to this

problem.

6.3 Decision Rules of CDMA Detectors

Suppose there are K active users sharing the same Gaussian channel at a given
time t. The kth user is assigned a signature waveform si(t) (PN code), t € [0, T],
and a string of bits {bx(i) € {—1,+1}} is transmitted. In a CDMA system, the
signal at the detector is the superposition of K transmitted signals and the noise
n(t) citemp,

K

r(t) =Y b(i)sk(t —iT) +n(t), te[iT,(i+1)7T). (6.11)
k=1
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If we focus on one symbol interval in (6.11), the function of a receiver is to rec-
ognize every active user’s symbol at the specified interval. There are three kinds
of detectors used in a receiver. One is called the conventional detector which is
widely used, another is called suboptimal multiuser detectors and the other is the

optimal multisuer detector (OMD) with optimized solution in detection.

6.3.1 Conventional Detector

A conventional detector consists of a bank of filters matched to the signature
waveforms of K users. Simple decision devices following the matched filters provide
every user’s symbol estimates based upon the signs of the output of the matched

filters at the specific time interval,

0 (i+1)T _
g = fT r(t)se(t — iT)dt

bl = sign(y?) (6.12)
where b(c% = [bg)b(li) e b}{-’_l]T and y() = [yt(,i]ygi) e yk;}_l]T. The block diagram
of a conventional detector is shown in Fig. 6.8.

The error probability of the kth user for the conventional detector is

Pf = Plye>0lbe = —1]

= Y Ply > 0b]Pblb = —1]

be{-1.+1}%
K
. — Yi<k biH;
=27 3 5 gl e, (6.13)
be{-1,+1} be{-1,+1}¥ 5\/wk
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Figure 6.8: Block diagram of a conventional detector.

The asymptotic efficiency of the conventional detector in the low noise region

becomes

m = sup{0<r < Lilim PE/Q(Y) < +oo)

a

= max{U,l—ZlH‘.kl}
izk Wk
W/ Wy .
= 1 Ri|— 6.14
maz{ 1;&Zk| k| _wk} (6.14)

where R is the matrix of normalized cross correlation, i.e.,
H = W!/?RW!/? (6.15)

where W = diag{w;,---,wg}. It follows from (6.14) that the conventional kth
user detector is near-far resistant (i.e., its asymptotic efficiency is bounded away

from zero as a function of the interfering users’ energies) only if R; = 0 for all
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i # k, i.e., only if the kth user’s signal is orthogonal to the subsapce spanned by

the other signals [11].

6.3.2 Optimal Multimuser Detector (OMD)

An OMD produces an estimate based on the maximization of the logarithm of
the likelihood function. In the synchronous case, the matrix representation of y

1S
y=Hb+n (6.16)

where n = [n{ ) ( . -n{}?_l]r and H € RE*K is a cross correlation matrix of the

signature waveforms,
T
h,-j=f0 si(t) - s;(t)dt. (6.17)

H is nonnegative definite. Given the observation r(t), the OMD is to generate an

estimate b = (o, by, -, bx_1) to minimize the cost function [7],
K 2
bohp = t . |
wyg =arg, o 1+1}K [ (1) gbks:c(t)] dt (6.18)

After manipulation, (6.18) can be written in a matrix form,

NQ i Ty

The square of the difference between the received signal and the original signal is

(11]

K
|Z:bs,(t Zdisi(t) 2

be{ 11}Kde{ 11}K =
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=2 min_ e He (6.20)

e€{-1,0,1}X],, =,
Therefore the asymptotic efficiency of the optimum multiuser detector is equal to

1

e = — min
W e€{-1,0,1} K|, =4

eTHe. (6.21)

When o — 0, the optimum multiuser detector achieve the minimum probability

of error for each user. The highest asymptotic efficiency is

1 . -
i o5 He. 22
el G T e (6.22)

In the two-user case, (6.22) becomes

- Y2 _ g, V%2
m—1rvf-*fw-t{1,1+w1 2Iplm}, (6.23)

where p = R, is the cross-correlation of s;(¢) and s3(¢) . There isn’t any explicit
expression for (6.22). This combinational optimization problem is an NP-complete

prblem [11] [16].

6.3.3 Suboptimal Detectors for Multiuser Detection

Many multiuser detectors with suboptimal solutions were proposed [6] [10] [11].
Suboptimal detectors are not as complex as the optimal detector but its perfor-
mance is inferior. It is still very challenging to implement the suboptimal detectors
by compact microelectronic circuits. Here, some suboptimal detectors and their
characteristics are briefly reviewed. In general, these detectors can be classified

into two categories: subtractive interference cancellation detectors and linear mul-

tiuser detectors [10].
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(A) Linear Detectors

In linear multiuser detectors, linear mapping technique to the soft output of the
conventional detectors to reduce the Multiple Access Interference (MAI) is em-
ployed.

(A-1) Decorrelating Detector

Suppose H is the K x K correlation matrix. The decorrelating detector is the

inversion of the correlation matrix,

sgn(H™'y)

= sgn(W_”?R"IW‘lny)

4
Il

= sgn(W™?Ry)

= sgn(R7y). (6.24)

Numerical example is taken in section 6.5. This detector does not require knowl-
edge of the energies of any of the active users. In the absence of noise, the output
vector y of the matched filters is equal to Hx and the solution is optimum. In the
noisy environment, the noise component in the H™! are correlated and X is not
the optimium decision. But this detector completely eliminates the multiple ac-
cess interference (MAI). It is very similar to the zero-forcing equalization which is
used to completely eliminate Intersymbol Interference (ISI). Though it has better
performance than a conventional detector, some significant disadvantages exist.
One disadvantange of this detector is that it causes noise enhancement (similar
to the zero-forcing equalizer) [11]. The power associated with the noise term at
the output of the decorrelating detector is always greater than or equal to the

power associated with the noise term at the output of the conventional detector
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for every bit. The second disadvantage is the complexity of the inversion of matrix

R. It is very difficult to perform the inversion by compact electronic circuits.

(A-2) Minimum Mean-Squared Error (MMSE) Detector

Based upon the knowledge of the received signal powers and background noise,
mean-squared error E[|d — Ly|?] between the real data and the soft output of the
conventional is minimized. An MMSE detector is to implement this minimization

by linear mapping. As reported in [12] [13], it can be expressed as
Lymse = [R+ (No/2)A2)7L (6.25)
Therefore, the estimate of this detector is
Xmmse = Lymse - y. (6.26)

Because this detector takes into account the background noise, its performance
is better than that of the decorrelating detector. When the backgorund noise
becomes zero, decorrelating detector and MMSE detector have the same perfor-
mance.

The MMSE detector needs the estimation of the amplitudes of the received
signals. Its performance also depends upon the powers of the interference users
[12]. Its near-far resistance is worse than that of the decorrelating detector. Like
the decorrelating detector, it also needs the operation of matrix inversion.

(B) Substractive Interference Cancellation

In substractive interference cancellation detectors, interference was estimated and
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then substracted out. Here, the Substractive Interference Cancellation (SIC) op-
eration is briefly described. SIC cancels the interference step by step. At each
stage of this detector, one additional user’s direct-sequence is decided, regenerated
and then canceled out from the received signal. Therefore, the remaining users
can have less MAI for their transmission in the next stage [14] [15]. Fig. 6.9 shows

the block diagram of the first stage. At the first stage, the received signals are

d;
>
gl(t-T},)
Matched ¢
—s= filter for B ..
— Decision ’ (:) s 6 ) »
Al1(t-Ty4-T,
1(t) T Ve Te o)
» Ampliude
estiation s1(L-Ty)
+ r(t)
» Ty -G;——b

Figure 6.9: Block diagram of the first stage of subtractive interference cancellation
detector.

ranked in descending order of received powers. Although the SIC detector has
the potential to provide significant improvement over the conventional detector,
it is not straight-forward to implement. First, the signals need to be reordered
whenever the power profiles changes. Second, if the initial data estimate is not
reliable enough, the intereference effect will become quite serious. Implementation

by compact microelectronic circuits is also very challenging.
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6.4 Implementation of Optimal Multiple-Access
Detector by Biologically Inspired Compact
Neural Network

In (6.19), the multiuser detection problem becomes a quadratic optimization prob-

lem. Let’s recall the expression of the energy function of a compact neural network,

1
E = -§v;vay - vib. (6.27)

Hence, the output of a compact neural network will be the desired estimate b if
M=-H and b=y. (6.28)

It means if the synapse weight matrix M is equal to —H and the output of the
matched filters feeds into the input of a compact neural network, the desired esti-
mate b will be obtained at the output of the compact neural network. According
to this mapping, every neuron has one self-feedback synapse and K — 1 synapses
connecting to the other X' — 1 neurons. It is a combined version from the cellular
neural network and the Hopfield neural network. This structure is very similar
to the structure of the real neuron systems. Therefore, it is a biologicaly inspired
neural network. Matrix H is symmetric and positive semidefinite. The symme-
tirc property of H is a sufficient condition for guaranteed stable operation of this
network.

Fig. 6.10 shows the functional block diagram of a compact neural network
based CDMA detector. Fig. 6.11 shows the structure of the compact neural net-

work core used in Fig. 6.10.
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6.5 Simulation Results

In this section, comparison of the performance of the conventional detector and
that of the biologically inspired compact neural network based CDMA detector is
presented. First, Consider a K = 2 synchronous and noiseless case. The original

transmitted signal is byent = [—1, —I]T at a given time. The near-far ratio r,y is

defined as
[ skdt 5
Tnf = f.s?dt (6...9)
and the normalized cross-correlation of signature waveforms h is defined as
is;dt
s o DB (6.30)

h \!fs?dtfsﬁdt.

Therefore, the synapse template H can be written as

1/2 1/2
ol[1 & 0
H=|™ Tnf : (6.31)
0 1||h1 0 1

The outputs of the matched filters y were sent to the neuron core for detection.
The failure points (FPs) were recorded. Fig. 6.12 and Fig. 6.13 show the distri-
bution of failure points. Each failure point is determined if bgetected 7 bsent- The
result of OMD is obtained by full search as the reference method. The simulation
range for the near-far ratio r,; is [1,10%1,10%%% ... 10] and the range for the
correlation function h is [—0.9,—0.89,—0.88,---,0].

The constraint energy function was not used in the simulation results as shown
in Fig. 6.12. Lots of failure points are produced by the conventional detector.
But only some failure points are generated by the simple compact neural network

based CDMA detector with or without hardware annealing. Simulation results
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which include the constraint energy function are shown in Fig. 6.13. There was
no failure point from the compact neural network based CDMA receiver with

piecewise linear function and the constraint energy function. Fig. 6.14 shows the

1 1
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Figure 6.12: Distribution of failure points. Constraint energy function is not
used. The logarithmic function is with base 10. (a) Conventional detector. (b)
Optimal multiuser detector. (c) Compact NN based CDMA receiver with sigmoid
function. (d) Compact NN based CDMA receiver with sigmoid function and
hardware annealing. (e) Compact NN based CDMA receiver with piecewise linear
function. (f) Compact NN based CDMA receiver with piecewise linear function
and hardware annealing.

results of signals corrupted by neighboring user’s interefrence and Gaussian noise.
The signal-to-noise ratio for user 1 is fixed at 10 dB. The compact neural network
based CDMA receiver with piecewise linear function was employed. Notice that a
compact neural network based CDMA receiver could have better performance than
optimal multiuser detector in the noise-corrupted cases. Data were obtained from
10,000 cases. Fig. 6.15 shows the results of three synchronous users transmitting

their signals spreading by the Gold codes [2]. The Gold codes for user 1, user 2
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Figure 6.13: Distribution of failure points. Constraint energy function is added.
Conditions (a) to (f) are the same as in Fig. 6.12.

and user 3 are 000110, 0011011 and 1010101, respectively. The power of the first
user is 2 dB stronger than that of the other two users. Phase difference is also
considered. Suppose the signal amplitudes of user 2 and user 3 are all equal to 1.
Then the signal amplitude of user 1 is 103/2%) = 1.259. With signal-to-noise ratio
of 6 dB, the output y of the matched filter bank can be [-0.1098, 1.0536, 0.0359],
(0.929, 0.5273, -0.4376], [0.1621, -0.0202, -0.9309],etc. Errors were cumulated and
divided by 10,000 to determine the probability of error. The biologically inspired
compact neural network detector performs almost as excellent as the optimal

multiuser detector.
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Figure 6.14: Error probability of conventional detector, compact NN based CDMA
detector with or without hardware annealing function, and optimal multiuser
detector. Signal-to-noise ratio for user 1 is fixed at 10 dB.

6.5.1 Summary

The collective computational behavior of a compact neural network is used to
implement the optimal multiuser detection (OMD) for CDMA system in the pres-
ence of multiple access interference (MAI) and Gaussian noise. It is demonstrated
that compact neural network is an efficient architecture for realizing the OMD. In
addition, the performance of the neural network based OMD can be enhanced by
paralleled hardware annealing technique which is suitable for high-speed operation

of neural networks. The important properties are emphasized as follows:

e No electronic implementation has been developed yet.
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Achieving optimized solution of near-far resistance performance and thus

providing better performance/capacity gains over the conventional detector.

Having good potential to recover signals corrupted by Gaussian noises.

Not requiring matrix inversion.

Parallel processing,.

The converged solution is obtained in one single cycle of the neural network
operation, which can be realized around a microsecond or less. The throughput
rate of NN-OMD supports the required speed of the peripheral circuitry such as

matched filters which have to run at a symbol rate.
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