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Abstract

Page-oriented optical data storage (PODS) technology has great potential benefit
for future computer applications that require tremendous data storage capacity and very
high data transfer rates. As with any conventional data storage technology, PODS
systems operating near their maximum capabilities need modulation coding to facilitate
their recording and retrieving processes and, consequently, to improve their overall
system performance. However, the modulation coding scheme designed for a specific
data storage technology is generally inappropriate for others. This dissertation contains
a comprehensive analysis of suitable modulation coding schemes and corresponding
modulation codes for PODS systems that use two-photon absorption technology.

We present several two-dimensional (2-D) mathematical models for various two-
photon PODS systems. Using these 2-D models, we describe the nature of intersymbol
interference (ISI) in two-photon PODS systems and find that its characteristics are
different from ISI in conventional data storage systems. To overcome the inherent ISI in
two-photon PODS systems, we present a novel 2-D modulation coding scheme. We also
present a number of fixed-length and variable-length 2-D modulation codes with diverse
properties based on our 2-D modulation coding scheme. The bit-error-rate (BER)
performance of these 2-D modulation codes is investigated and compared.

In addition to the ISI, the interpage interference (IPI) may also be significant in

two-photon PODS systems. We present many three-dimensional (3-D) mathematical

xil



models for a variety of two-photon PODS systems to examine IPI and its effects. In
order to overcome the effects of ISI and the effects of IPI in two-photon PODS systems
simultaneously, we present a new 3-D modulation coding scheme that is an extension of
our 2-D modulation coding scheme. Examples of 3-D modulation codes derived from
our 3-D modulation coding scheme are also presented. Finally, we discuss techniques to

encode and extract clock information in two-photon PODS systems.
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Chapter 1

Introduction

1.1 Motivation and Objective

New multimedia and Internet services such as high-definition television (HDTV), real-
time archival digital video/audio, and future haptics (touch-related) applications
increasingly demand enormous amounts of data storage capacity and massive data
transfer rates. Improvements in conventional data storage technologies — magnetic hard
disk, compact disc (CD), and digital versatile disc (DVD) — have managed to keep pace
with such requirements. However, strong evidence indicates that these planar or quasi-
planar data storage technologies are approaching fundamental limits that may be difficult
to overcome [52]. An alternative candidate for next-generation data storage systems is
page-oriented optical data storage (PODS) technology. By using this volumetric data
storage technology, a system with very large data storage capacity (> 1 Thbits/cm®) and
very high data transfer rate (> 1 Gbits/s) is theoretically achievable [15,64]. Yet, before
PODS systems can become commercial products, a large number of technical issues
need to be solved.

One challenging issue is the reliability, in terms of bit-error-rate (BER), of PODS
systems. Ideally, PODS systems are expected to have BERs to the users of 107'% or

lower before they can be released to the market [20,22]; unfortunately, real-world



systems operating near their maximum capabilities are generally subject to numerous
sources of noise and interference. As with any other conventional data storage system,
there are two basic types of data coding used in PODS systems to ensure the required
user-end BERs. One is the modulation coding, whose main purpose is to facilitate the
recording and retrieving processes. The other is the channel coding, which is used for
error detection and error correction. Unlike conventional data storage systems, where
the recording and retrieving processes are performed serially, the recording and
retrieving processes of PODS systems are performed in parallel, implying that
conventional modulation codes may be inappropriate for PODS systems.

Even though there exist many different error-correcting codes for channel
coding, of particular interest to PODS systems is the Reed-Solomon codes and their
extensions, which are also widely used in conventional data storage systems, because of
their powerful abilities to correct both random and burst errors [55,68]. Nevertheless, in
order to achieve the acceptable user-end BERs, Reed-Solomon coding schemes, or their
extensions, need input BERs to satisfy specific upper bounds [20]. To maintain the
input BERs of Reed-Solomon coding schemes under these specific constraints, suitable
modulation coding schemes are necessary.

The goal of this research, therefore, is to explore possible modulation coding
schemes that can be efficiently applied to PODS systems. To do so, the PODS systems
must be properly modeled; the intrinsic noise and interference that occurs during the
recording and retrieving processes must also be well examined. After developing such

modulation coding schemes, we discuss the details and properties of corresponding



modulation codes. In addition, we analyze the performance of each modulation code in

terms of BER.

1.2 Organization of the Dissertation

This dissertation is organized as follows. In chapter 2, the background relevant to this
research is provided. It not only includes a brief overview of typical data storage
systems, conventional modulation codes, and PODS systems, but also includes other
significant related work. In the remaining chapters, we focus particularly on PODS
systems that use two-photon absorption technology. Chapter 3 is a comprehensive
discussion about the mathematical models and the inherent intersymbol interference
(ISI) of two-photon PODS systems. We present a variety of models for two-photon
PODS systems. Chapter 4 intuitively describes the appropriate modulation coding
scheme for two-photon PODS systems and clearly illustrates its benefits. A number of
fixed-length modulation codes based upon such modulation coding scheme and their
general form are also described. In chapter 5, we roughly verify restrictions of fixed-
length modulation codes. To surmount the shortcomings of fixed-length modulation
codes, variable-length modulation codes for two-photon PODS systems are introduced.
Chapter 6 presents numerous BER performance comparisons among various modulation
codes. We also show how the optimal BER of a two-photon PODS system can be
determined under specific conditions. In chapter 7, interpage interference (IPI) is taken

into consideration, and more complicated models of two-photon PODS systems are



presented. To lessen the effects of IPI, we describe an extended modulation coding
scheme and many examples of the corresponding modulation codes. Chapter 8 gives

conclusions and discusses the possible future research work.

1.3 Contributions of the Research

The original research contributions contained in this dissertation can be summarized by
the following:

(1) Two-Dimensional Mathematical Models of Two-Photon PODS Systems. We
present several two-dimensional (2-D) models for different two-photon PODS
systems, assuming that the distance between any two successive recorded data
pages is large enough so that there is no IPI. Using these 2-D models, one can
easily understand and study the nature of IST and its effects in two-photon PODS
systems.

(2) Two-Dimensional Modulation Coding Scheme for Two-Photon PODS Systems.
We propose a novel 2-D modulation coding scheme that eliminates or relaxes the
effects of ISI in two-photon PODS systems. A general form of 2-D modulation
codes derived from the proposed 2-D modulation coding scheme is also
presented. With this general form, one can distinguish and compare 2-D
modulation codes.

(3) Fixed-Length Two-Dimensional Modulation Codes for Two-Photon PODS

Systems. We present diverse examples of 2-D modulation codes for two-photon



PODS systems based on our 2-D modulation coding scheme. These 2-D
modulation codes are classified as fixed-length 2-D modulation codes because
their block sizes are fixed. Moreover, the pros and cons of each fixed-length 2-D
modulation code are explained so that the most suitable 2-D modulation code for
a particular PODS system can be selected.

(4) Variable-Length Two-Dimensional Modulation Codes for Two-Photon PODS
Systems. By observing that fixed-length 2-D modulation codes normally have
mediocre code rates due to their fixed block sizes, we propose new 2-D
modulation codes that can overcome such obstacles. These alternative 2-D
modulation codes are classified as variable-length 2-D modulation codes. Since
the block sizes of variable-length 2-D modulation codes are not fixed, we gain
additional degrees of freedom, leading to higher code rates. An example of a
variable-length 2-D modulation code and its decoding procedure are presented.
Additionally, many issues of a variable-length 2-D modulation code, such as the
proper decoding procedure and the error propagation, are discussed.

(5) BER Performance Analysis of Two-Dimensional Modulation Codes for Two-
Photon PODS Systems. We present a numerical procedure that is used to find the
optimal threshold value for a binary threshold decision scheme applied at the
detector array and the corresponding minimum BER of a noisy two-photon
PODS system. We theoretically derive this procedure by assuming that the noise
in a two-photon PODS system can be modeled as additive white Gaussian noise

(AWGN). We also compare BER performance among 2-D modulation codes.



(6) Three-Dimensional Mathematical Models of Two-Photon PODS Systems. We
present several three-dimensional (3-D) models for two-photon PODS systems,
in which the distance between any two adjacent recorded data pages is small
enough that the effects of IPI must be considered. Following these 3-D models,
one can thoroughly investigate the characteristics of ISI and IPI in two-photon
PODS systems.

(7) Three-Dimensional Modulation Coding Scheme for Two-Photon PODS Systems.
In order to remove (or at least relieve) the effects of ISI and the effects of IPI
simultaneously, we develop a novel 3-D modulation coding scheme that is an
extension of our 2-D modulation coding scheme.

(8) Three-Dimensional Modulation Codes for Two-Photon PODS Systems. We
present some examples of 3-D modulation codes based on our 3-D modulation
coding scheme. All of them are derived directly from the examples of fixed-

length 2-D modulation codes.



Chapter 2

Preliminaries

This chapter provides a brief overview of typical data storage systems, conventional
modulation codes, and other background work related to page-oriented optical data

storage (PODS) systems.

2.1 Data Storage Systems

A typical data storage system may be represented by the block diagram shown in Figure
2.1 [32,50]. In general, the input information to be stored in the data storage is in digital
form. In the case of analog input information, an analog-to-digital (A/D) converter is
required. For recording, the digital input information is first passed to the channel
encoder (at point A). The purpose of the channel encoder is to add some redundancy to
the digital input information in order to combat the noisy environment. Thus, the added
redundancy is used to increase the reliability of the data storage system; in detail, this
added redundancy is used for error detection and error correction. It should be noted
that the output of the channel encoder is also in digital form.

The digital data at the output of the channel encoder is, then, passed to the
modulation encoder (at point B). The primary purpose of the modulation encoder is to

map the output data from the channel encoder into the data with more suitable properties



Digital input
information

Digital output
data

Figure 2.1 Block diagram of a typical data storage system.

for both recording and retrieval. In fact, the mapping of modulation encoder is used to
facilitate the recording and retrieving processes in such a way that the characteristics of
the stored data match the characteristics of the data storage system. The output of the
modulation encoder is recorded in the storage medium (at point C) by the writing unit
(not shown in Figure 2.1).

For data retrieval, the stored data is extracted from the storage medium by the
reading unit (not shown in Figure 2.1), and is passed to the modulation decoder (at point
C’"). The stored data is subject to various sources of noise and interference, such as
physical defects in the storage medium and thermal noise generated by electronic
devices, and can be corrupted in a random or a deterministic manner. By taking

advantage of the modulation coding properties, the digital data at the output of the



modulation decoder is expected to be a good estimate of the digital data originally input
to the modulation encoder. The digital data at the output of the modulation decoder is,
finally, passed to the channel decoder (at point B'). The channel decoder attempts to
reconstruct the original input information by using the redundancy added at the channel
encoder. Ideally, the output of the channel decoder (at point A') should be a replica of
the original input information, even though noise and interference may cause some
decoding errors. If the original input information is in analog form, the digital-to-analog
(D/A) converter is required after the channel decoder.

To measure the performance of a data storage system, several criteria can be
used. One of them is the average probability of a bit-error, which is the frequency that
errors occur at the output of the data storage system. Indeed, this probability of error is
called bit-error-rate (BER). It should be emphasized that the BER of the data storage
system, which is the BER that users see, i.e., the user-end BER, is generally not the same
as the BER of the storage medium, i.e., the raw BER. Typically, the BER of the storage
medium, measured between points C and C’, is very high, while the BER of the data
storage system, measured between points A and A’, can be extremely low by utilizing
the appropriate modulation coding and channel coding schemes. Other performance
criteria include data transfer rate and useful data storage capacity. The data transfer rate
often relies on the technology of the data storage system. Data storage systems having
parallel access usually produce higher data transfer rate than those having serial access.
The useful data storage capacity, on the other hand, depends on the code rates of both

modulation code and channel code, where the code rate is defined as a fraction of the



useful information bits after modulation or channel coding. Apparently, the useful data
storage capacity is different from the actual data storage capacity.

One familiar example of a data storage system is the Compact Disc (CD) system.
In CD systems, the eight-to-fourteen modulation (EFM) code is used in modulation
coding whereas the cross-interleaved Reed-Solomon code (CIRC) is used in channel
coding [48]. Another example of a data storage system is the rotary-head digital audio
tape (RDAT) system. The RDAT system uses the 8/10 group code for modulation
coding and the Reed-Solomon product code, together with interleaving, for channel

coding [67].

2.2 Modulation Codes in Conventional Data Storage Systems

Most conventional data storage systems need suitable modulation codes to enhance the
system performance in a number of aspects [25,65]. For instance, modulation codes are
employed in magnetic recording systems not only to reduce the temporal intersymbol
interference (ISI) that arises during the retrieving process, but also to eliminate or
minimize the DC content in the stored data [50]. Of particular importance to consider,
however, is the fact that different data storage technologies may require different
modulation codes, or even different modulation coding schemes.

Some well-known examples of modulation codes used in today’s commercial
data storage systems are: the (2,7) runlength-limited variable-length code used in many

IBM disk storage systems [1,12], the EFM code in CD systems [48,66], and the
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EFMPlus code in Digital Versatile Disc (DVD) systems [24]. Basically, these
conventional modulation codes can be classified as runlength-limited codes [23,25]. A
runlength-limited code is a binary sequence with a restriction on the number of 1s and
0s. Runlength-limited codes are normally described by two parameters, d and &, where
d denotes the minimum number of consecutive Os that separate any two Is in a
sequence and k& denotes the maximum number of consecutive Os that separate any two
Is in a sequence. The minimum constraint, d , is used to reduce the temporal ISI, while
the maximum constraint, &, is used to ensure that the timing or clock information can be
recovered. Note that runlength-limited codes can have either fixed-length or variable-

length.

Input data Output data

00000000 01001000100000
00000001 10000100000000
00000010 10010000100000
00000011 10001000100000
00000100 01000100000000
00000101 00000100010000
00000110 00010000100000
00000111 00100100000000
00001000 01001001000000
00001001 10000001000000
00001010 10010001000000

Table 2.1 Partial lookup table of the EFM code.

EFM and EFMPlus are two examples of runlength-limited fixed-length codes.

Table 2.1 illustrates part of the lookup table for EFM code, which maps eight input bits
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into fourteen output bits [48]. Using the EFM code and three merging bits, the
runlength-limited fixed-length code with d =2 and k£ =10 can be obtained [23]. Since
the EFM code totally maps eight input bits into seventeen output bits (including three
merging bits), its code rate is, hence, equal to 8/17 (= 0.4706). Similarly, EFMPlus is a
runlength-limited fixed-length code with the same runlength parameters as EFM, but has

a slightly higher code rate of 8/16 (= 0.5) [24,25].

Input data Output data

11 0100

10 1000

011 000100
010 001000
000 100100
0011 00100100
0010 00001000

Table 2.2 Lookup table of the (2,7) runlength-limited variable-length code.

Table 2.2 shows the lookup table of the (2,7) runlength-limited variable-length
code [12]. With the mapping in Table 2.2, any two s in a sequence are separated by a
run of at least two, but no more than seven, 0s. The code rate of the (2,7) runlength-
limited variable-length code is equal to 0.5 because it maps two, three, or four input bits
into four, six, or eight output bits, respectively. It is also worth pointing out that the
error propagation of the (2,7) runlength-limited variable-length code due to a single

erroneous bit can be limited if the proper decoding procedure is applied [23].
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2.3 Page-Oriented Optical Data Storage (PODS) Systems and Other Related Work

In general, PODS systems are distinguishable from conventional data storage systems
because the former systems fully utilize three-dimensional (3-D) volumetric storage
media together with parallel recording/retrieving processes, whereas the latter systems
only utilize two-dimensional (2-D) planar storage media, such as CDs, or the quasi-
planar storage media (i.e., the 3-D volumetric storage media whose third dimension is
used with coarse resolution), such as DVDs, together with serial recording/retrieving
processes.

For PODS systems, several technologies exist including holography
[15,18,31,51-54], spectral-hole burning [10,30,33,56,59], and two-photon absorption
[11,21,35,47,64]. However, regardless of the technology, PODS systems generally
suffer from a variety of noise and interference, when operated near their maximum
capabilities. Many research groups have modeled and studied the effects of ISI in
holographic PODS systems [2,19,61]. Instead of using a simple binary threshold
decision scheme to digitize the retrieved data, a number of detection and equalization
techniques have been proposed and investigated in order to mitigate the effects of ISI
[7,9,17,27,28]. Various modulation coding schemes and partial response precoding
approaches have also been discussed to further improve the performance, especially in
terms of BER and data storage capacity, of holographic PODS systems
[3,5,16,29,38,39,62,63]. One common goal of these detection/equalization techniques

and modulation coding schemes is to guarantee that the BERs of holographic PODS
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systems are at least on the order of 10°-10*. In addition, to reduce the BERs of
holographic systems so that they satisfy the industrial requirement of 10" or lower,
numerous error-correction, i.e., channel coding, schemes have been considered
[8,13,22,36,37].

While there has been considerable study of holographic PODS systems, only a
handful of researchers have concentrated on how to increase the reliability of the PODS
systems that use spectral-hole burning and two-photon absorption technologies [26,69].
Nevertheless, it has been shown that the detection and equalization techniques described
in Refs. 7, 9, and 28 can be applied not only to coherent imaging systems such as
holographic PODS systems, but also to incoherent imaging systems such as two-photon
PODS systems. Similarly, since the error-correction scheme is typically designed based
on the format or layout of the recorded data, not on the technology of the data storage
system, the error-correction schemes developed for holographic PODS systems may be
applied directly, or with minor modifications, to PODS systems using other technologies
that have the same recorded data format or layout. In contrast, the modulation coding
scheme designed for a particular PODS technology is usually not appropriate for other
PODS technologies, owing to the fact that the main purpose of modulation coding is to
facilitate the technology-dependent recording/retrieving processes of each data storage

system.

14



Chapter 3

Two-Dimensional Models and Intersymbol Interference

of Two-Photon PODS Systems

While conventional data storage systems, such as the magnetic tape and Compact Disc
(CD) systems, have been well modeled and widely studied by many groups of
researchers for decades, page-oriented optical data storage (PODS) systems using two-
photon absorption technology have not been investigated much. We describe in this
chapter the detailed models and intersymbol interference (ISI) of two-photon PODS
systems. The image formation process in two-photon PODS systems is described in the
first section, leading to various two-dimensional (2-D) mathematical models. The

second section discusses the performance deterioration due to ISI in these systems.

3.1 Two-Dimensional Models of Two-Photon PODS Systems

In two-photon PODS systems, data recording is performed using two propagating light
beams. One beam, carrying the information to be stored, is imaged onto a desired plane
in the volumetric medium while a second beam, specifying the location, is
simultaneously focused throughout the same plane. The former is called the information

beam whereas the latter is called the addressing beam. With sufficient photon energies,
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Figure 3.1 The recording of information in a two-photon PODS system.

a 2-D array of data marks (or spots) can be recorded on a plane (or page) where two
beams intersect [11,35]. The typical number of data marks per page is 10* or more,
perhaps as many as 10, and, generally, a very large number of data pages are stored in
the medium. To retrieve the recorded data, the proper data page is illuminated by one

readout beam, which is identical to the addressing beam used to record that page. This

Readout beam
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Figure 3.2 The retrieval of information from a two-photon PODS system.
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illumination results in a fluorescence pattern that is imaged onto a charge-coupled device
(CCD) camera or a 2-D integrated optoelectronic detector array. Figures 3.1 and 3.2
show the recording and retrieval of information in a two-photon PODS system,
respectively.

Assuming that the recording process is perfect and that the distance between any
two successive recorded data pages is large enough that there is no interaction between
the data pages, then the mathematical model of a typical two-photon PODS system can

be derived from the retrieving process as shown in Figure 3.3. In this mathematical

model, [i, J ] and (x,y) denote an index of a 2-D discrete signal and an index of a 2-D
continuous signal, respectively. Let a[i, j], whose value is assumed to be either zero for

a “0” bit or one for a “1” bit, represent the existence of a digital information bit (or data

mark) recorded on a data page.

[ €:)dxdy v b, o  F—»dliJ]

afj] —> )

A

hfi, ] wh /]

Figure 3.3 The 2-D mathematical model of a two-photon PODS system.

Since the readout intensity level of each data mark is composed of the
superposition of light from a large number of statistically independent fluorescence
elements, each radiating with a slightly different temporal frequency and a random
phase, it is clear that the output of each data mark during the retrieving process is

spatially incoherent. Therefore, ideally, the point-spread function (PSF), or the impulse
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response, of this imaging system can be modeled mathematically as one of the following

functions [14]:

#,
b J, (3.1)

sin(7zx) sin(zy) or
m oy

where sinc(x, y)=

h(x,y)=

1 Jl(z"f\/xz*yz/bc)z (3.2)
i ey, |

where J, is a Bessel function of the first kind, order 1.

Equation (3.1) arises from a diffraction-limited imaging system containing a
square aperture, where b_, which is inversely proportional to the width of the aperture,
represents the location of the first zero of the sinc® PSF. Similarly, Eq. (3.2) is obtained
from a diffraction-limited imaging system containing a circular aperture, rather than a

square, where b, is a parameter inversely proportional to the radius of the aperture.
Note that the J7 PSF is circularly symmetric, but its zeroes are not equally spaced in

radius. It should also be emphasized that the leading terms 1/ b} in Eq. (3.1) and 1/ b}

in Eq. (3.2) are the factors, simply derived using the Parseval’s theorem, that normalize
the volumes of the corresponding PSFs to one.
If an imaging system has a great amount of small independent aberrations, then,

from the central limit theorem, the PSF can be described by a Gaussian function

27b? 2b

g

WG, = exp[— X"ty 2], (3.3)

2
o
&
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where b, denotes the standard deviation [28,46]. Moreover, we note that other PSF

models can also be used to describe the imaging optics of a particular system.

In our mathematical model, for simplicity, the magnification of the imaging
system in the retrieving process is assumed to be one. Furthermore, the pitch between
two nearest data marks, equivalently the pitch between two nearest detectors or the pixel
pitch of the CCD camera, is set to one so that all other distances can be relatively
expressed in units of this pitch. We also note that the size of the data mark is assumed to
be very small compared to the extent of the PSF, implying that the data mark is
effectively a delta function. From the assumptions, the received intensity at each
detector, or each CCD pixel, of a noiseless retrieval system can be modeled by

rli, /1= ali, /1® Ali, j] (3.4)
where ® represents a 2-D discrete convolution operator and h[i, j] is the effective
discrete PSF. Because the retrieved photons are integrated over the active area, assumed

to be a square, of each detector or CCD pixel, the effective discrete PSF h[i, j] in Eq.

(3.4) is defined as

JH612 i+812
Wijl= | [ y)axdy, (3.5)
Jj-0612i-6/2
where & is a linear fill factor of a detector or a CCD pixel, whose value is between zero
and one, and h(x, y) is one of the continuous PSFs in Egs. (3.1), (3.2), and (3.3).
However, in general, a retrieval system is not noiseless. It is assumed here that

the retrieval system is noisy, mainly due to the electronics at the detector plane. Since

the noise from electronic circuits, often called thermal noise, is typically modeled as
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additive white Gaussian noise (AWGN) [4,57], the received intensity of a noisy retrieval

system can be described by
rli, 1= ali, /1@ Ali, 7]+ wli, j1 (3.6)
where w[i, J ] is an AWGN, whose mean and variance are zero and O'f, , respectively.

Finally, we assume that a simple binary threshold decision scheme is applied at
the CCD or detector array, with a priori knowledge of a threshold value, T, in order to
digitize the received intensities. Therefore, the detected data, i.e., the output of the

retrieval system, can be modeled mathematically as

r o 1,ifr[i,j]>T
d.jl= { 0,if rfi, j]< T’ 7

It should also be noted that, for the purpose of analysis, it is often helpful to
regard the 2-D discrete signals as matrices. For example, Eq. (3.6) can be expressed in

matrix form by

R=A®H+W, (3.8)
where R is an M x N received intensity matrix whose entry in the pth row and ¢th
column, R, , describes the real-valued intensity at the [p,q]-th detector or the h},q]-th
CCD pixel, A denotes the recorded M x N digital information data page in which each

entry, qu, is either zero or one, H is the effective PSF matrix derived from h[i, j] in

Eq. (3.5) with minor modifications of indices so that 4[0,0] is the entry at the center of

matrix H, and W represents an M x N AWGN matrix whose entries are independent,

identically distributed with mean and variance defined in Eq. (3.6).
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3.2 Two-Dimensional Intersymbol Interference in Two-Photon PODS systems

From our mathematical model, a PSF defines the image intensity of each data mark at
the detector plane. Figures 3.4, 3.5, and 3.6 illustrate the continuous PSFs in Eq. (3.1)

with b, =1.5, Eq. (3.2) with b, =2.5, and Eq. (3.3) with b, =0.6, respectively. The x
and y axes, as mentioned in the previous section, are in units of the data mark pitch or,
equivalently, the detector or CCD pixel pitch. It is assumed in Figures 3.4, 3.5, and 3.6
that only one data mark, i.e., only one “1” bit, is recorded at (x, y)= (0,0) (of the data
plane) and, hence, the corresponding detector or CCD pixel is located at the same
coordinate (of the detector plane). Suppose the linear fill factor & is one, the active area
of a detector or a CCD pixel is, then, a square, whose width is equal to one, centered at

(x,)=(0,0) as shown in Figures 3.4, 3.5, and 3.6.

Note that the light originating from a data mark in Figures 3.4, 3.5, or 3.6 is not
completely imaged onto the corresponding detector or CCD pixel. Some of the light is
incident onto the local neighbor detectors or CCD pixels. This phenomenon is referred
to as ISI or, more specifically, the 2-D ISI in which light from a data mark interferes
spatially with its local neighbors. In fact, the 2-D ISI results from the inherent /lowpass
nature of the imaging system. Additionally, of particular importance to consider is the
fact that the 2-D, or spatial, ISI in two-photon PODS systems is somewhat different
from the one-dimensional (1-D), or temporal, 1SI in today’s commercial data storage

systems, such as CD and Digital Versatile Disc (DVD).
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It should be clear from the mathematical model that the amount of light from a
data mark that is incident onto the neighbor detectors or CCD pixels, i.e., the 2-D ISI,
depends on both the PSF and the linear fill factor, &, of the retrieval system. Indeed, for
a given value of &, the relative degree of the effects of 2-D ISI can be simply indicated

by the value of b, b,, or b,. Figures 3.7, 3.8, and 3.9 show the 1-D slices through the
x-axis of the sinc?, J,Z, and Gaussian PSFs at various values of b, b,, and b,,

respectively. As b, b, or b, increases, the amount of light from a data mark that is

imaged onto the corresponding detector or CCD pixel decreases. Consequently, with the
fact that the volume of each PSF is normalized to one, the remaining light from the same
data mark that is incident onto the neighbor detectors or CCD pixels, i.e., the 2-D ISI,

increases.
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Figure 3.7 The sinc® PSF along the x-axis, h(x,O), at various values of b, .
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Figures 3.10, 3.11, and 3.12 depict more convenient ways to visualize the 2-D
ISI. Assuming that a retrieval system is noiseless and its imaging system contains a
square aperture, Figure 3.10(a) shows a 1-D slice through the x-axis of the image

intensity that originates from two data marks recorded at (x,y)=(-~1,0) and
(x,y)=1(1,0). In other words, Figure 3.10(a) shows the sum of A(x +1,0) and A(x -1,0)
at the detector plane, where h(x, y) is from Eq. (3.1) with b, =1.5. Clearly, the tails of
the image intensity from each data mark (each “1” bit) interfere with others (other “0”
and “1” bits). In addition, Figure 3.10(b) shows the corresponding received intensity,
which is determined from Egs. (3.4) and (3.5) with & =1, of each detector or CCD pixel
that lies on the x-axis, i.e., r[i,O]. Since only two data marks or two “1” bits are
recorded, the digitized outputs of all detectors or CCD pixels, except the ones located at
[i, /]=[-1.0] and [i, j]= [1,0], are ideally expected to be “0” bits. However, in Figure
3.10(b), the output of the detector or CCD pixel at [i, j] = [0,0] is ambiguous because its
intensity level is about half of the (“1” bit) intensity levels at [i, j] = [— 1,0] and
[i, j]= [1,0]. Depending on a predetermined threshold value T, the detector or CCD
pixel at [i, j] = [0,0] may improperly make a decision leading to an incorrect output. It is
important to emphasize that if the total number of data marks or “1” bits around the “0”
bit at (x, y) = (0,0) is more than two, then the effects of 2-D ISI on that “0” bit is even
worse. Figures 3.11 and 3.12 illustrate the similar results for the cases of J? PSF with

b, =2.5 and Gaussian PSF with b, = 0.6, respectively.
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To further support the fact that the relative degree of 2-D ISI depends on the value
of b, b, or bg , Figures 3.13, 3.14, and 3.15 show the 1-D slices through the x-axis of
the image intensities, which originate from two data marks recorded at (x,y)=(~1,0)
and (x, y) = (1,0) , of the imaging systems with sinc?, J ,2 , and Gaussian PSFs at various
values of b,, b,, and b,, respectively.

It is also important to note that another parameter that can affect the degree of 2-D
ISI is the linear fill factor of the detector or CCD pixel. Although the amount of light
from a data mark that is integrated by the corresponding detector or CCD pixel increases
with increasing the linear fill factor, the amount of the remaining light from the same

data mark that is integrated by the neighbor detectors or CCD pixels, i.e., the 2-D ISI,

also increases.
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Figure 3.13 Sum of A(x +1,0) and /4(x —1,0) at various values of b, (sinc* PSF).
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Figure 3.16 illustrates the received intensity of each detector that lies on the x-

axis, i.e., r[i,O], at many values of the linear fill factor &, assuming that a retrieval

system is noiseless and its imaging system can be represented by a sinc’ PSF with

b, =1.5 and that only two data marks are recorded at (x,y)=(~1,0) and (x,y)=(1,0).

It is clear that as & increases from 0.8 to 1.0 the integrated intensities of every detector

increase, implying that the effects of 2-D ISI also increase with ¢ . Similarly, Figures

3.17 and 3.18 show the results for the cases of the J;? PSF with b, =2.5 and Gaussian
PSF with b, =0.6, respectively. Again, if the total number of data marks or “1” bits

around the “0” bit at (x,y)=(0,0) is more than two, then the effects of 2-D ISI on that

“0” bit is expected to be even worse.
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Figure 3.16 r[i,0] at various values of § (sinc® PSF with b, =1.5).
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Chapter 4

Two-Dimensional Modulation Coding for Two-Photon

PODS Systems: Principles and Fixed-Length Codes

Modulation coding plays a significant role in most data storage systems. It is needed to
reduce system errors, especially the effects of intersymbol interference (ISI), and also
may increase the useful data storage capacity. Although existing modulation coding
schemes are very much robust for today’s state-of-the-art data storage systems,
prospective data storage systems, such as two-photon page-oriented optical data storage
(PODS) systems, require new modulation coding schemes to fulfill future system needs.
This chapter is a comprehensive discussion about modulation coding for two-photon
PODS systems. We propose in the first section a novel two-dimensional (2-D)
modulation coding scheme to mitigate the effects of ISI in two-photon PODS systems.
In the second section, we present an example of a 2-D modulation code, derived from
the proposed 2-D modulation coding scheme, and its performance improvement. A
general form of typical 2-D modulation codes is then described in the third section.
With this general form, it is possible to categorize roughly the performance among 2-D
modulation codes. Generally, 2-D modulation codes can have either fixed-length or

variable-length. The last section of this chapter shows several fixed-length 2-D
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modulation codes, while an example of variable-length 2-D modulation codes is

presented in the next chapter.

4.1 Basic Principles of Two-Dimensional Modulation Coding Scheme

Obviously, from chapter 3, the simplest way to avoid 2-D ISI due to the imaging system
in any two-photon PODS system is to separate the data marks and, consequently, the
active areas of the detectors or charge-coupled device (CCD) pixels as far as needed.
However, since the data mark pitch is increased, the utilization of the medium decreases.
Moreover, since the detector pitch or the CCD pixel pitch is increased while the size of
the active area is fixed, the linear fill factor decreases.

Instead of increasing the data mark pitch or detector pitch, it is suggested that
modulation coding be applied to reduce the effects of 2-D ISI and, perhaps, increase the
useful data storage capacity of a two-photon PODS system. As discussed in the previous
chapter, 2-D ISI is regarded as the light from a data mark or a “1” bit that spatially
interferes with other local neighbors, especially the “0” bits. Hence, intuitively, it is
desirable to record the data in a two-photon PODS system such that any “0” bit is not

“1!,

surrounded by foo many “1” bits. In contrast, any bit is preferred to be surrounded
by many “0” bits, although “1” bits can be recorded closely. As an example, with the
same total number of “1” bits, Eq. (4.1) is the pattern of data that can relax the effects of

2-D ISI more than the one in Eq. (4.2).
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0 00O0O0O0
00 0O0T10PO0
011000
(4.1)
011000
011001
0 00O0O0TO
000 0O00O0
0 00O0O00O0
011100
(4.2)
01 01 00
01 1100
0000 OO0

While the maximum number of “1” bits around any single “0” bit in Eq. (4.2) is
eight, there are, at most, three “1” bits surrounding any single “0” bit in Eq. (4.1). The
maximum value of the total amount of light from every “1” bits that interferes with any
specific “0” bit in Eq. (4.1) thus should be less than that in Eq. (4.2). Note that the light
from a “1” bit does not degrade the intensity signals of other neighbor “1” bits; in fact, it
adds to the intensity signals of those “1” bits.

Alternatively, because the 2-D ISI can be viewed as a phenomenon that arises
from the lowpass nature of the imaging system, the recorded data is expected to have
low spatial frequency components as much as possible. In other words, it is preferable
that the recorded data has a minimum of high spatial frequency components so that the
lowpass characteristics of the imaging system do not significantly affect the recorded
information [42]. In general, since it is known that any “1” bit locally interferes with

other “0” bits in two-photon PODS systems, a 3x3 data block with high spatial
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frequency content is defined as one having a “0” bit in the middle surrounded by many
“1” bits. Similarly, a 3x3 data block with lower spatial frequency content is defined as
one having a “0” bit in the middle surrounded by fewer “1” bits. For instance, the
patterns of data in Eq. (4.3) are considered to have higher spatial frequency content

compared with the ones in Eq. (4.4).

1110 1000 0010 0111 0101
10100011110001011010(43)
1101 01017 1001 0111 0101
0010 0011 1110 0000 10710
0000 0000 0O0O1O0 O0O0O0CO 1111
00000000000001101111(4‘4)
00000 0010 0100 0110 1111
0000 00O0ODO 0O0OO0OO OO0OO0OO 1111

In conclusion, to reduce the effects of 2-D ISI in two-photon PODS systems, we
propose a novel 2-D modulation coding scheme. Its main principle is to map a one-
dimensional (1-D) input sequence of information into a 2-D output data in such a way
that the spatial frequency content of the output pattem, i.e., the number of “1” bits
around a “0” bit in any 3x3 block of data, satisfies the necessary low spatial frequency

constraints in order to achieve the required system performance.

38



4.2 An Example of a Two-Dimensional Modulation Code and Its Performance

Improvement

This section describes a particular example of a 2-D modulation code, derived from our
2-D modulation coding scheme, to illustrate possible performance improvements. This

2-D modulation code performs the simple, but non-trivial, input-output mapping [40,43]

0 a 0 0
a, X a, a
[ao a, a, a, a, a a6]—> OD 2 03 05 (4.5)

0 a, 0 a
Suppose that there is a lengthy sequence of information bits so that each 1-D
block of seven information bits is mapped into a 2-D block of 4x4 bits. If the total

number of “1” bits in [ao a, a, a3] is greater than two, then X is “1”; otherwise

X is “0”. In later sections, this mapping is called a (4,4;7;2,4) 2-D modulation code
according to a general form that we will describe in the next section.

Figure 4.1 shows histograms of the received intensities at the detector array or
CCD camera when “0” bits and “1” bits are randomly page-wise recorded in the
medium. It is assumed that each data page contains 120x120 bits, 100 pages of data are
recorded, each detector or CCD pixel has a unit linear fill factor, and the retrieval
system, containing a square aperture with b, =1.5, is noiseless, i.e., no additive white
Gaussian noise (AWGN) is considered. Clearly, the histogram of the received

intensities that originate from “0” bits overlaps with that from “1” bits; this, indeed, is a
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consequence of the effects of 2-D ISI. Therefore, it is not possible to find an explicit

threshold value for a binary threshold decision scheme that always gives correct results.
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Figure 4.1 Histograms of the received intensities that originate from randomly page-
wise recorded “0” and “1” bits, assuming that 100 data pages of 120x120
bits are recorded and that a noiseless retrieval system is characterized by
the sinc® PSF with b, =1.5 and & =1.

However, if the proposed 2-D modulation coding scheme is applied, the effects
of 2-D ISI are expected to be reduced. Figure 4.2 shows the histograms of the received
intensities at the detector array or CCD camera after the mapping in Eq. (4.5) is applied.
As before, we assume that each data page contains 120x120 bits, 100 pages of data are

recorded, each detector or CCD pixel has a unit linear fill factor, and the retrieval
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Figure 4.2 Histograms of the received intensities that originate from “0” and “1” bits
after applying the mapping in Eq. (4.5), assuming that 100 data pages of
120x120 bits are recorded and that a noiseless retrieval system is

characterized by the sinc® PSF with b, =1.5 and § =1.

system, containing a square aperture with b, =1.5, is noiseless, i.e., the AWGN is not

considered. It is apparent that, after applying the mapping, there is no overlap between
6‘1}!

the histogram of the received intensities that originate from “0” bits and that from

bits. Hence, it is ideally possible to find a threshold value for a binary threshold decision

scheme such that the decisions are always correct.
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There are several important aspects of Figure 4.2 that are worth discussing. First,
note that the mapping in Eq. (4.5) must be applied to a randomly generated input
sequence of 630,000 information bits to obtain 100 data pages of 120x120 bits to be
recorded. Thus, the amount of the useful information is 43.75% of the total amount of
the recorded data. On the other hand, since the mapping in Eq. (4.5) maps seven input
bits into sixteen output bits, the fraction of useful information is 7/16 (= 0.4375). The
overhead is the cost of lessening the effects of 2-D ISI.

In addition, it should be noted that the total number of counts in the histogram of
the received intensities that originate from *“0” bits, as expected from Eq. (4.5), is much
higher than that in the histogram of the received intensities that originate from “1” bits.
The extra “0” bits in Eq. (4.5) are used to mitigate the effects of 2-D ISI; to be more
precise, they are padded in such a way that, in any block of 3x3 bits of each recorded
data page, the maximum number of “1” bits around any single “0” bit is six. Two
examples of such extreme cases are illustrated in Figure 4.3. The squares locate the
3x3 blocks of recorded data with the highest spatial frequency content, i.e., the
maximum number of “1” bits around any single “0” bit. From Figure 4.3, the highest
spatial frequency content may be contained in any 2-D block of 4x4 bits, i.e., any
output block of the mapping, itself, or it may arise after any 2-D block of 4x4 bits is

recorded with a specific set of neighbor 2-D blocks of 4 x 4 bits.
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00000100000 0
1 01 1000000 1 0
0000010 00T100
0 o o [EEHEH 0 0lo L 0 0
01 o0foio 10000 0 0
1 1 0 |[BiL W 1 oi1 e
01000 10001 00
000000000l 011

Figure 4.3 The examples of a 3x3 block of recorded data with the highest spatial
frequency content after mapping by Eq. (4.5).

In practice, when the retrieval system is noisy, i.e., when the random effects of
AWGN are included, the tails of the histograms always overlap, no matter whether the
2-D modulation coding scheme is applied or not, leading to an inexplicit threshold value.
Nevertheless, the proposed 2-D modulation coding scheme is believed to significantly
improve the system performance with the idea of lowering the deierministic-like effects
of 2-D ISL

Furthermore, we show in Figures 4.4 and 4.5 the histograms of the received

intensities at the detector array or CCD camera before and after the mapping in Eq. (4.5)
is applied, when the retrieval system is assumed to be characterized by the J; point-
spread function (PSF) with b, =2.5, and other assumptions still remain the same as in

Figures 4.1 and 4.2. The results in Figures 4.4 and 4.5 are similar to those in Figures 4.1
and 4.2, respectively. Figures 4.6 and 4.7, then, show the histograms of the received

intensities before and after applying the mapping in Eq. (4.5), when the retrieval system

43



2.5 T T T J 1
: : i — "Q" bits
ﬁ : L : === "]" bits
] i in :
: i F & | :
3 i I 2 :
: i A | 5
FI R | i
I :
I | H
I :
F 5
AR .
oo e
8 11BN
2 Vo
Q t :
8 IR
HIRREE
§ | e SR b PR :III: b .
11 T T
ST T B
(8 ] I h [
[ 11
LK ) H |
(3] i H |
it [ i i
1 R
11 1] .
X I L Al 4
i i A
A
Y A
5 : \
0 i i L AN
0 0.2 0.6 0.8 1
Received intensity

Figure 4.4 Histograms of the received intensities that originate from randomly page-
wise recorded “0” and “1” bits, assuming that 100 data pages of 120x120
bits are recorded and that a noiseless retrieval system is characterized by
the J® PSF with b, =2.5 and & =1.

is assumed to be characterized by the Gaussian PSF with b, =0.6, and other

assumptions remain the same as in Figures 4.1, 4.2, 4.4, and 4.5. In this particular
example, the overlapping area of the histograms of the received intensities that originate

from randomly page-wise recorded “0” and “1” bits in Figure 4.6 is very large,

intuitively, because of a relatively large value of b, , which implies a very high degree of

2-D ISI; hence, as shown in Figure 4.7, the mapping in Eq. (4.5) cannot overcome the

effects of very high degree 2-D ISI, yet results in smaller overlapping area, i.e., less 2-D
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after applying the mapping in Eq. (4.5), assuming that 100 data pages of
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ISI effects. Based on our 2-D modulation coding scheme principles, in order to move
the histograms in Figure 4.7 further apart, i.e., to further relieve the effects of 2-D ISI,
the highest spatial frequency content allowed, i.e., the maximum number of “1” bits
allowed around any single “0” bit in any 3x3 data block, in the recorded data pages,

therefore, must be reduced; instead of Eq. (4.5), a new mapping is required.
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Figure 4.6 Histograms of the received intensities that originate from randomly page-
wise recorded “0” and “1” bits, assuming that 100 data pages of 120x120
bits are recorded and that a noiseless retrieval system is characterized by
the Gaussian PSF with b, =0.6 and § =1.

Finally, to simulate the received intensities at the detector array or CCD camera,
it should be emphasized that although the continuous PSFs, h(x, y), in Egs. (3.1), (3.2),
and (3.3) spread infinitely, the effective PSF matrix, H, in Eq. (3.8) is truncated to a
finite-size matrix in the actual implementation to reduce the computational complexity in
the simulation procedure. This truncation does not strongly affect the simulation results
because it is known from chapter 3 that most of the light from a data mark is incident

onto the corresponding detector or CCD pixel and its local neighborhood.
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Figure 4.7 Histograms of the received intensities that originate from “0” and “1” bits
after applying the mapping in Eq. (4.5), assuming that 100 data pages of
120x120 bits are recorded and that a noiseless retrieval system is
characterized by the Gaussian PSF with 5, =0.6 and 6 =1.

In detail, we define the effective PSF matrix, H, in a way such that it is the
smallest possible K x K matrix, where K is an odd number, that contains at least 90%

of the total light originating from a data mark. For instances, if a retrieval system is
characterized by the sinc® PSF with b, =1.5 and & =1, the corresponding effective PSF

matrix is
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[0.0000 0.0001 0.0008 0.0031 0.0008 0.0001 0.0000]
0.0001 0.0004 0.0032 0.0120 0.0032 0.0004 0.0001
0.0008 0.0032 0.0241 0.0920 0.0241 0.0032 0.0008
0.0031 0.0120 0.0920 0.3507 0.0920 0.0120 0.0031], (4.6)
0.0008 0.0032 0.0241 0.0920 0.0241 0.0032 0.0008
0.0001 0.0004 0.0032 0.0120 0.0032 0.0004 0.0001
10.0000 0.0001 0.0008 0.0031 0.0008 0.0001 0.0000 |

in which it contains 90.99% of the total light originating from a data mark. Noticeably,
about 35.07% of the light is imaged onto the corresponding detector or CCD pixel (at the

center of the matrix).
If a retrieval system is characterized by the J;? PSF with b, =2.5 and & =1, the

effective PSF matrix is

[0.0014 0.0051 0.0054 0.0051 0.0014]
0.0051 0.0194 0.0942 0.0194 0.0051
0.0054 0.0942 0.3888 0.0942 0.0054 |, 4.7)
0.0051 0.0194 0.0942 0.0194 0.0051
0.0014 0.0051 0.0054 0.0051 0.0014

where it contains 91.11% of the total light originating from a data mark and the
corresponding detector or CCD pixel receives about 38.88% of the total. Similarly, if a

retrieval system is characterized by the Gaussian PSF with b, =0.6 and 6 =1, the

effective PSF matrix is

0.0385 0.1168 0.0385
0.1168 0.3544 0.1168], (4.8)
0.0385 0.1168 0.0385

48



in which it contains 97.53% of the total light originating from a data mark and the
corresponding detector or CCD pixel receives about 35.44% of the total. Notice that the
sizes of the effective PSF matrices are varied depending on the characteristics of the

interested retrieval systems.

4.3 General Form of Two-Dimensional Modulation Codes

As discussed in sections 4.1 and 4.2, the recorded data pages in a two-photon PODS
system should satisfy certain spatial frequency constraints in order to achieve the
required system performance. Since, for a given two-photon PODS system, the highest
spatial frequency content, i.e., the maximum number of “1” bits around a “0” bit in any
data block of 3x3 bits in the recorded data page implies the degree of 2-D ISI effects,
the general form of the 2-D modulation codes, derived from our 2-D modulation coding
scheme, should include information about the highest spatial frequency content that is
allowed in any recorded data page.

We also know from the properties of the PSFs in Egs. (3.1), (3.2), and (3.3) that
the amount of interference light originating from a data mark incident onto each of the
corresponding four nearest neighbor detectors or CCD pixels is always greater than the
amount of interference light originating from the same data mark incident onto each of
the other neighbor detectors or CCD pixels (the effective PSF matrices in Egs. (4.6),
(4.7), and (4.8) also support this fact). Moreover, since the effects of 2-D ISI are

considered to be local, we suggest that the general form of typical 2-D modulation codes
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contain information about the maximum number of “1” bits in the four nearest neighbor
positions around any “0” bit in the recorded data page and the maximum number of “1”
bits in the next four nearest neighbor positions around the same “0” bit.

Let us label the neighbor positions around a “0” bit in a data block of 3x3 bits
by the compass directions: north (N), northeast (NE), east (E), southeast (SE), south (S),
southwest (SW), west (W), and northwest (NW), as shown in Eq. (4.9), where, similar to
the terminology in morphological image processing, the four nearest neighbor positions,
i.e,, N, E, S, and W, are referred to as the four-connected neighbor positions, and the NE,

SE, SW, and NW positions are referred to as the eight-connected neighbor positions

[49].
NW N NE
W 0 E (4.9)
SW S SE

An arbitrary 2-D modulation code for two-photon PODS system that maps & bits

of 1-D input information into a 2-D output block of mxn bits (shown in Figure 4.8),
therefore, can be described by

(m,n;k;a:,ﬁ), (4.10)

where « is the maximum number of “1” bits in the four-connected neighbor positions of

any “0” bit and £ is the maximum number of “1” bits in the eight-connected neighbor
positions of the same “0” bit. It is necessary to note that ¢ and £ are not only the

constraints in each 2-D mx n output block itself, but they are also the constraints after
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the 2-D output blocks are placed side-by-side in a 2-D array that forms a tiling of the

recorded data page.

0100 00o0|%4
01 0 0 eee 0 1 0
0001 000
01 1eee 1 0| — . * . m
° L ®
< k > 001 0 11 1
1 00 0 eee 0 1 1
010 000y
< n >

Figure 4.8 An (m,n;k;a, ﬂ) 2-D modulation code.

We also emphasize that since the effects from “1” bits in the four-connected
neighbor positions of a “0” bit are stronger than those from “1” bits in the eight-
connected neighbor positions, then the (a, ﬂ) in Eq. (4.10) is defined such that, after
applying the (m,n;k;a, B ) 2-D modulation code, it is possible for the recorded data page
to contain a “0” bit that has more than f “1” bits in the eight-connected neighbor
positions as long as the number of “1” bits in the four-connected neighbor positions is
less than «. For instance, if the (m,n; k;3,l) 2-D modulation code is applied, then a

recorded data page that contains two “1” bits in the four-connected neighbor positions of
a “0” bit and four “1” bits in the eight-connected neighbor positions of the same “0” bit

still satisfies the given constraints: & =3 and f =1.
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Mathematically, the (a’,ﬁ) of the (m,n;k;a, ﬁ) 2-D modulation code can be

described as the following. Let @ and [3’ be the number of “1” bits in the four-
connected and eight-connected neighbor positions of any particular “0” bit, respectively.

The (a, ) allowed in the recorded data page must satisfy

s @.11)
p<(B-4)a+la-ap+p)y '
where c'c,B € {0,1,2,3,4}.

As an example, Figure 4.9 graphically depicts all possible combinations of

(c‘s, [5'), represented by the circles, and all combinations of (c?t, [;’) that satisfy the

constraints of the (m,n;ic;?a,l) 2-D modulation code, represented by the squares.

Explicitly, any valid (c%, B ) agrees with

@=3 4.12
B<-36+10 i)

We note that many essential issues of Eq. (4.10) should be discussed. First, the
code rate of 2-D modulation code, which is defined as the fraction of the useful input
information in the output, is equal to k/(mn). The code rate is one of the criteria used to
compare the performance of 2-D modulation codes. Second, in general, the size of each
data page recorded in a two-photon PODS system, M x N, is a positive integer multiple
of m and n, ie, M =um and N =vn, where u,ve {1,2,3,...}, although this is not a

necessary condition. Third, the block size of a 2-D modulation code, specified by the

general form in Eq. (4.10), is fixed. In other words, every 2-D output block of the
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Figure 4.9 The points marked by a small square box are the possible combinations of

(c%, ,5’ ) that satisfy the constraints of the (m,n;k;3,1) 2-D modulation code.

(m, mk;a, /9) 2-D modulation code has equal size, mxn. Thus, 2-D modulation codes

that can be described by Eq. (4.10) are generally called the fixed-length 2-D modulation
codes. On the other hand, it is also possible to have 2-D modulation codes with variable

block sizes. In such situation, the general form in Eq. (4.10) requires modifications.
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4.4 Examples of Fixed-Length Two-Dimensional Modulation Codes

We present in this section many fixed-length 2-D modulation codes with different block
sizes, code rates, and (a, 4 ) constraints. Table 4.1 at the end of this chapter lists all the

2-D modulation codes described in this section.

44.1 (4,4;7;2,4) Two-Dimensional Modulation Code
In section 4.2, a 2-D modulation code that maps a 1-D block of seven information bits
into a 2-D block of 4x4 bits is presented; it is indeed a fixed-length 2-D modulation

code. Using the general form described in the previous section, it can be called the

(4,4;7;2,4) 2-D modulation code. We note that the code rate of this 2-D modulation

code is equal to 7/16 (= 0.4375) and that a few examples of its highest spatial frequency

content, which is @ =2 and £ =4, are shown in section 4.2.

4.4.2 (3,3;4;2,3) Two-Dimensional Modulation Code

0 a O
[gzo a, a, a3]—> Gy X Wy (4.13)
0 a O

The (3,3;4;2,3) 2-D modulation code in Eq. (4.13) maps a 1-D block of four information
bits into a 2-D block of 3x3 bits [42]. If the total number of “1” bits in

[ao & a3] is greater than two, then X is “1”; otherwise X is “0”. The entire

lookup table of this 2-D modulation code is shown in Figure 4.10.
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00 0>0 0 1 00 01
0 0 0 0
000 0
0 01—->001 1 0 01->1
0 0 O 0
0 0 0
01 0—>00 1 01 01
0 1 0
000 0
011001 1 011->1
010 0
010 0
1 00—>000 110 01
0 00 0
0 0 0
1 01->20 1 1101=>1
0 0 0
1 0 0
110> 0 0 111 0->1
010 0
010 0
111 —>011 1111->1
010 0

Figure 4.10 Lookup table of the (3,3;4;2,3) 2-D modulation code.
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Obviously, the code rate of the (3,3;4;2,3) 2-D modulation code is 4/9
(= 0.4444). The values of & and £, i.e., the maximum numbers of “1” bits allowed in

the four-connected and eight-connected neighbor positions of any specific “0” bit, are

two and three, respectively. Figure 4.11 illustrates some examples of the possible

highest spatial frequency content after applying the (3,3;4;2,3) 2-D modulation code.

01 0i0 0O0O:0 0 O0i0O 1O
1|1 1i{1/0 0:i0 0 1:0 0 1
011 0:0]1 0:0 (1 0:0[0 O
0@ 0:00]0 0:0 (1 0:0[1 O
0 00:0 O O:1 (1 1:1]1 0
01 0:0 O 0:0 O0 O0i0 1 O

Figure 4.11 The examples of a 3x3 block of recorded data with the highest spatial
frequency content after applying the (3,3;4;2,3) 2-D modulation code.

Note that the (3,3;4;2,3) 2-D modulation code should outperform the (4,4;7;2,4)

2-D modulation code because the former has lower highest spatial frequency content and
a higher code rate. Nevertheless, the latter might be preferred when the size of the
recorded data page is restricted to a power of two, which is usually the case for typical

PODS systems.
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443 (1,2;1;2,4) Two-Dimensional Modulation Code

a > [0 a o a—[a 0] (4.14)
The (1,2;1;2,4) 2-D modulation code in Eq. (4.14) maps one information bit into two bits
by padding the extra “0” bit before or after the information bit. The code rate of this 2-D
modulation code is, hence, equal to 0.5. Examples of the possible highest spatial
frequency content, which is two “1” bits and four “1” bits in the four-connected and
eight-connected neighbor positions of a *“0” bit, respectively, after applying the
(1,2;1;2,4) 2-D modulation code are illustrated in Figure 4.12. Evidently, since the
(1,2;1;2,4) 2-D modulation code has higher code rate than the (4,4;7;2,4) 2-D
modulation code and their highest spatial frequency contents allowed are the same, the

(1,2;1;2,4) 2-D modulation code, thus, is expected to result in better overall performance.

oftio 10 0:0 1
of1io 1o f1io 1
oliio 1flo|1lo 1
0 0i0 0:0[1:0 1

Figure 4.12 The examples of a 3x3 block of recorded data with the highest spatial
frequency content after applying the (1,2;1;2,4) 2-D modulation.
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4.4.4 (4,4;8;2,2) Two-Dimensional Modulation Code

a, a, 0 0

a a 0 0

[ao @ @y By G G G a,]—> (4.15)
0 0 a, a
0 0 a a,

The (4,4;8;2,2) 2-D modulation code in Eq. (4.15) maps a 1-D block of eight
information bits into a 2-D block of 4x4 bits [44]. This 2-D modulation code has a
code rate of 0.5 and its highest spatial frequency content contains two “1” bits in the
four-connected neighbor positions of a “0” bit and the other two “1” bits in the eight-

connected neighbor positions of the same “0” bit. Figure 4.13 shows several examples
of the possible highest spatial frequency content after applying the (4,4;8;2,2) 2-D

modulation code.

0|1 0 00O O O Oi1 0 O O
01 0 00O 1 0 00 1 0 O
00 1 10 0 0 0:i0 0 O 1
001 0:0 0 O0|1:0 0 01
000 0i0O 1 0|0:0 1] 0 O
0 00O0i01 O00:i1 10O
000 1i0 0 0 00 0 0 O
000 0i0OO0T1T1Ti0 001

Figure 4.13 The examples of a 3x3 block of recorded data with the highest spatial
frequency content after applying the (4,4;8;2,2) 2-D modulation code.
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Despite the fact that the (4,4;8;2,2) 2-D modulation code may give better
performance, compared with the (4,4;7;2,4), (3,3;4;2,3), and (1,2;1;2,4) 2-D modulation
codes, in terms of code rate and highest spatial frequency content, another important
criterion that should be taken into account for the overall performance is the complexity
of the decoder, which is related to the size of the buffer needed to rearrange the 2-D
detected data into the original 1-D information and the total delay (latency) during the

decoding process.

4.4.5 (3,3;6;3,2) Two-Dimensional Modulation Code

a, 0 a,
[ao @ @ B B, 615]—> a 0 a, (4.16)
a, 0 a

The (3,3;6;3,2) 2-D modulation code in Eq. (4.16) maps a 1-D block of six information
bits into a 2-D block of 3x3 bits. The code rate of this 2-D modulation code is 2/3
(= 0.6667). The maximum numbers of “1” bits allowed in the four-connected and eight-
connected neighbor positions of a “0” bit are three and two, respectively. Examples of
the possible highest spatial frequency content after applying the (3,3;6;3,2) 2-D
modulation code are shown in Figure 4.14.

It is clear that the (3,3;6;3,2) 2-D modulation code should not be able to relax the
effects of 2-D ISI as much as the (4,4;7;2,4), (3,3;4;2,3), (1,2;1;2,4), or (4,4;8;2,2) 2-D
modulation code because of the higher spatial frequency content allowed. However, the

(3,3;6;3,2) 2-D modulation code has a higher code rate, i.e., a higher fraction of useful
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information, therefore, implying that there exists a trade-off between the highest spatial

frequency content allowed and the code rate.

ofo 1710 1:i0 0 1
110 010100 0
0lo 1:1/o0f1i1 0o
001101000
0000 0[L 1 01
100000000

Figure 4.14 The examples of a 3x3 block of recorded data with the highest spatial
frequency content after applying the (3,3;6;3,2) 2-D modulation code.

Fixed-length code | Output block size | Number of input bits | Constraints | Code rate
(m,m ks, B) (m.) k (@.p) | k/(mn)
(4,4,7;2,4) (4,4) 7 (2,4) 0.4375
(3,3:4:2,3) (3,3) 4 2,3) 0.4444
(1,2;1;2,4) (1,2) 1 (2,4) 0.5
(4,4:8:2,2) (4.4) 8 (2,2) 0.5
(3,3;6;3,2) (3,3) 6 (3,2) 0.6667

Table 4.1 List of various fixed-length 2-D modulation codes.

60



Chapter 5

Two-Dimensional Modulation Coding for Two-Photon

PODS Systems: Variable-Length Codes

It is obvious that the higher the code rate of a two-dimensional (2-D) modulation code,
the higher the overall useful data storage capacity of a two-photon page-oriented optical
data storage (PODS) system. We, however, observe that the fixed-length 2-D
modulation codes presented in chapter 4 have rather moderate code rates. This is indeed
due to the fact that they have fixed output block sizes, mx n, which confine the total
number of possible 2-D data blocks of mxn bits that satisfy the required constraints
(i.e., the required highest spatial frequency contents) and, consequently, limit the code
rates [45]. In this chapter, we first discuss in detail about the limitation of fixed-length
2-D modulation codes, in terms of code rate, by giving an example of the code rate
upper bounds (at all possible values of spatial frequency constraints) of fixed-length
codes with certain output block sizes. Also included in the first section is the procedure
used to determine such empirical upper bounds. We later describe the alternative set of
2-D modulation codes, called the variable-length codes. Typically, variable-length
codes can have higher code rates compared to fixed-length codes having the same spatial
frequency constraints. An example of a variable-length 2-D modulation code, including

its decoding procedure, is then presented.

61



5.1 An Example of the Code Rate Upper Bounds of Fixed-Length Two-Dimensional

Modulation Codes

Ideally, the code rate limitation of a modulation code should be described by its
maximum code rate, and the exhaustive search method, which search for all possible
binary patterns that satisfy the required constraints, is the optimal way to determine such
value. Following the generalized notation and basic principles of our 2-D modulation
coding scheme discussed in chapter 4, the result of the exhaustive search, for any given
m and n, is a collection of 2-D mxn binary patterns (output blocks) that satisfy the
desired spatial frequency constraints & and £ (not only within themselves, but also
after they are placed side-by-side at all possible combinations in a 2-D array that forms a
tiling of the recorded data page). Suppose the total number of such patterns is L. The

maximum code rate is, thus, equal to

(code rate),, = % , (5.1)

where | 1| represents the greatest integer not larger than 1.

We note, however, that the exhaustive search method is not practical for 2-D
modulation codes because of its computational complexity (even when both m and »
are as small as 3). To illustrate the code rate limitation of fixed-length 2-D modulation
codes, instead of globally searching for the optimal solution, i.e., the maximum code

rate, at any particular ¢ and £, we simplify the problem by following the three steps
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described below to reduce the size of the search space and, then, determining only the
code rate upper bound.

Step 1: From the original search space, which contains all possible combinations
of 2-D mx n binary patterns (for a total of 2™ patterns), select only patterns that satisfy
the desired spatial frequency constraints (& and £ ) within themselves, i.e., consider
one pattern at a time and select only the patterns that satisfy the desired constraints.

Step 2: From the reduced search space obtained in Step 1, by considering one
pattern at a time, select any pattern ( X ) that still satisfies the desired constraints (& and

£ ) when four of them are placed as

XX
X|IX

Step 3: From the reduced search space obtained in Step 2, consider two patterns

(X and Y) at a time and check whether they satisfy the desired constraints (& and £)

if they are placed as
Y(Y]|Y XXX
Y(X[Y]| and |X|Y|X
Y(IY|Y XXX

Let L' be the total number of patterns in the reduced search space obtained from
Step 2. The upper bound of the code rate of any fixed-length 2-D modulation code, then,
can be calculated using the pseudocode in Figure 5.1. It is also necessary to note that

although the upper bounds derived empirically from the above three steps are quite
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loose, they are still useful enough to represent the significance of the code rate limitation
of fixed-length 2-D modulation codes.

Furthermore, we show in Table 5.1 an example of the code rate upper bounds of
the 2-D modulation codes with certain output block sizes of 3x3 (for all possible values
of a and f£). It should be emphasized that the code rates of the (3,3;4;2,3) and
(3,3;6;3,2) 2-D modulation codes described in Egs. (4.13) and (4.16), respectively, are
very close to their corresponding upper bounds shown in Table 5.1. While the
(3,3;4;2,3) 2-D modulation code has a code rate of 0.4444 (= 4/9), its code rate upper
bound is 0.5556 (= 5/9). On the other hand, the (3,3;6;3,2) 2-D modulation code has a

code rate of 0.6667 (= 6/9) whereas its code rate upper bound is 0.7778 (= 7/9).

begin initialize £’ is the greatest integer not larger than logz(L’)
do
k-1
until {the total number of patterns satisfying the conditions in Step 3 with at least 2% other patterns

(pair-wise) is greater than or equal to 2* }
code rate upper bound = k'/(mn)
end

Figure 5.1 Pseudocode used to determine the code rate upper bound following three
steps of search space reduction.
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(a’ ﬁ) 0 1 A 3 4
1 0.1111 0.2222 0.2222 0.2222 0.2222
0.3333 0.4444 0.5556 0.5556 0.5556

0.6667 0.6667 0.7778 0.7778 0.8889
0.8889 0.8889 0.8889 0.8889 1

B W N

Table 5.1 The code rate upper bounds of the (3,3;!«:;0:,,6’) 2-D modulation codes at all
possible combinations of (e, ).

5.2 An Example of a Variable-Length Two-Dimensional Modulation Code and Its

Decoding Procedure

As mentioned in the previous section, the code rates of fixed-length 2-D modulation
codes are somewhat restricted. Thus, to have 2-D modulation codes with higher code
rates at certain spatial frequency constraints, we propose that the sizes of 2-D output
blocks be variable. In this discussion, we assume that only one of two dimensions of the
2-D output blocks is variable, i.e., either m or » is variable, while the other is fixed; the
2-D modulation codes with this property are classified as variable-length 2-D
modulation codes. Indeed, our motivation for variable-length codes intuitively comes
from the fact that the degrees of freedom to obtain 2-D data blocks, satisfying specific
highest spatial frequency constraints, can be increased if the sizes of those data blocks
are not fixed, i.e., the data block sizes are variable [45]. We also note that 2-D

modulation codes with much higher code rates might be obtained by varying both
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dimensions; however, the overhead needed for the coding and the complexity of the
decoder might be excessive.

Remember that the general form in Eq. (4.10) is defined only for fixed-length
2-D modulation codes. For variable-length 2-D modulation codes, minor modifications
are needed. One example of a variable-length 2-D modulation code is illustrated in
Figure 5.2 [45]. It is called the (4,[1,2,3]; [2,4,6];2,3) variable-length 2-D modulation
code because it maps a one-dimensional (1-D) block of two, four, or six information bits
into a 2-D block of 4x1, 4x2, or 4x3 bits, respectively. The highest spatial
frequency content allowed after applying the (4,[1,2,3]; [2,4,6];2,3) variable-length 2-D
modulation code is @ =2 and f =3, meaning that in any recorded data page the
maximum number of “1” bits in the four-connected neighbor positions of any “0” bit is
two and the maximum number of “1” bits in the eight-connected neighbor positions of

the same “0” bit is three.

0 0
0 0
[ol-|, L]-, 2-bit level
0 0
0 0 1 0 N
1 0 00
[0100]-»00 [0101]->IO
00 00
> 4-bit level
10 00
10 1 0
[0110]->00 [0111]_>10
0 0 0 0
_/
Figure 5.2 Lookup table of the (4,[1,2,3];[2,4,6];2,3) variable-length 2-D modulation
code.
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110 100
000 000
00000 0 - 000001 >
! ] 010 [ ) 010
000 0 0 0]
(1 0 0] (1 0 0]
010 1 0
0o oo0o01 0 > [000011]—>0
000 010
0 0 0] 0 0 0]
(1 1 0] [0 0 0]
000 110
o o010 0 > boo1o1->
000 000
0 0 0] 0 0 0]
100 (1 1 0]
110 010
o oo110 > Lboo111 >
000 010
000 0 0 0]
6-bit level
110 1 0 0]
010 000
o o100 0 - 0 o1o0o01->
000 110
000 0 0 0]
1 1 0] [0 0 0]
1 00 100
0 o101 0 > Lbor1or11-
000 110
0 0 0] 0 0 0]
1 1 0] [0 0 0]
000 110
0 o1100 - obo1101]>
1 00 100
0 0 0 0 0 0
000 1 1 0]
110 110
bo1110 > Lbo1111]>
110 000
000 0 0 0

Figure 5.2(continued) Lookup table of the (4,[1,2,3]; [2,4,6];2,3) variable-length 2-D
modulation code.
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0i1 1l 0000
0.0 1000 0
1.0 10111
0:0 0 01000
1000 10
1010110
0010000
0 0/0 0i0 00

Figure 5.3 The examples of a 3x3 block of recorded data with the highest spatial
frequency content after applying the (4,[1,2,3];[2,4,6];2,3) variable-
length 2-D modulation code.

Figure 5.3 depicts two examples of the possible highest spatial frequency content
after applying the (4,[1,2,3]; [2,4,6];2,3) variable-length 2-D modulation code. There are
several significant aspects of the (4,[1,2,3];[2,4,6];2,3) variable-length 2-D modulation
code that are worth discussing. First, the lookup table in Figure 5.2 is neither unique nor
trivial. Second, observing that this variable-length 2-D modulation code maps two, four,
or six bits into four, eight, or twelve bits, respectively, the code rate is then equal to 0.5.
Hence, it is apparent that the (4,[1,2,3];[2,4,6];2,3) variable-length 2-D modulation code
should give better performance, in terms of the useful data storage capacity, than the
(3,3;4;2,3) fixed-length 2-D modulation code in section 4.4.2 because of the higher code
rate at the same constraints of the highest spatial frequency content (« and ).

Furthermore, one of the most important issues about the variable-length codes is

how to decode the information with least effects of the error propagation. Unlike the
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simple decoding procedures for typical fixed-length 2-D modulation codes, the decoding
procedures for variable-length 2-D modulation codes are usually more complicated. It is
necessary to note that the error propagation due to an erroneous bit in a recorded data
page of the (4,[1,2,3];[2,4,6];2,3) variable-length 2-D modulation code is limited when
the appropriate decoding procedure is applied. We show in Figure 5.4 the pseudocode
of one such decoding procedure. Although the size of each recorded data page is
MxN (as defined in chapter 3), we assume, without loss of generality, in the
pseudocode that the size of 2-D array of data to be decoded is 4x (MN/4). With this
decoding procedure, one erroneous bit would affect at most a 2-D data block of 4x5
bits, which is less than or equal to ten bits in the sequence of 1-D decoded output. One
example of the worst scenarios is shown in Figure 5.5, where the decoding procedure
proceeds from left to right and the square, with a “1” bit inside, locates the position of an
erroneous bit. Nevertheless, it should be noted that it might be feasible to obtain a
decoding procedure with higher efficiency for the (4,[1,2,3]; [2,4,6];2,3) variable-length

2-D modulation code.
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begin initialize /=1, [cj, d, Q’szm] = 4><(MN/4) array of data to be decoded
do

if d, matches one in the 2-bit level of the lookup table

Iseif d,,,=[0 0 0 of
n

4,
then obtain the corresponding 2-bit output, / </ +1
then if [cj, .Cim] matches one in the 4-bit level of the lookup table

then obtain the corresponding 4-bit output, / «/+2
else the output is [0 0 0 0], I «1+2, set the error flag

d,=[0 0 0 0]
if [c_!, dr gm] matches one in the 6-bit level of the lookup table

then obtain the corresponding 6-bit output, / «/+3
else the output is [0 0 000 0], I « [ +3, set the error flag

else the output is [0 0 0 00 0],1«—1+3,settheerrorﬂag

else if
n

14
the

until /> (MN /4)-2
do
Tif 1=(MN/4)-1 )
then if d, matches one in the 2-bit level of the lookup table
then obtain the corresponding 2-bit output, 7 </ +1
elseif d,,, =[0 0 0 0]
then if [cj, d rJ{,] matches one in the 4-bit level of the lookup table termi'n‘ating
; . ; conditions at
then obtain the corresponding 4-bit output, / «/+2 the end of
else the output is [0 00 0], I «[+2, set the error flag > cachrecopde
else the output is [0 00 0], [ 1 +2, set the error flag data page
else
then if d, matches one in the 2-bit level of the lookup table
then obtain the corresponding 2-bit output, / </ +1
else the output is [O 0], ! « [ +1, set the error flag
until /> (MN /4) P
end

Figure 5.4 Pseudocode of the decoding procedure for the (4,[1,2,3];[2,4,6];2,3)
variable-length 2-D modulation code.
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2-D coded data to be stored

2-D retrieved data

1-D decoded data

Figure 5.5 An example of the worst scenarios for the error propagation due to an
erroneous bit after applying the decoding procedure in Figure 5.4, which
proceeds from left to right.
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Chapter 6

Bit-Error-Rate Performance Analysis of
Two-Dimensional Modulation Codes for

Two-photon PODS Systems

We recall from chapter 2 that a typical data storage system can be represented by the
block diagram shown in Figure 2.1, in which there are two levels of coding: modulation
coding and channel coding. To measure only the bit-error-rate (BER) performance of a
modulation code, we must analyze the average probability of a bit-error between points
B and B', rather than between points A and A'. In this chapter, we illustrate the BER
performance of two-dimensional (2-D) modulation codes described in chapters 4 and 5.
The first section presents the theoretical derivation of the minimum BER for a noisy
two-photon page-oriented optical data storage (PODS) system. In this section, we model
the noise as additive white Gaussian noise (AWGN) as discussed in chapter 3, and find
the corresponding optimal threshold for a binary threshold decision scheme that is
applied at the charge-coupled device (CCD) or detector array. However, in practice, it is
often not possible to obtain such an optimal threshold, or a minimum BER, due to the
fact that the exact probability density functions of noise in the system are usually
unknown. We describe in the second section an alternative procedure that is used to

determine a reliable BER of the practical two-photon PODS system. Based on this
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practical procedure, the simulation results show that our proposed 2-D modulation
codes, both fixed-length and variable-length codes, can significantly improve the system

performance in terms of BER.

6.1 The Optimal Threshold and the Minimum Bit-Error-Rate of an Additive White

Gaussian Noise Two-Photon PODS System

In chapter 4, we show many histograms of the received intensities, both before and after
applying a 2-D modulation code, at the detector array or CCD camera of several
noiseless two-photon PODS systems. Referring to Figures 4.2 and 4.5, a (4,4;7;2,4) 2-D
modulation code can totally overcome the effects of 2-D intersymbol interference (ISI),
i.e., in each case, there is no overlap between the histogram of the received intensities
that originate from “0” bits and that from “1” bits after applying such 2-D modulation
code. Since there is no overlap, any intensity value that lies in the gap between the
histograms can be used as a threshold value for the binary threshold decision scheme
that is applied at the CCD or detector array. In fact, any intensity value that lies in that
gap can be considered as an optimal threshold that always gives correct decisions and,
consequently, results in a zero BER, i.e., the probability that an error will occur is equal
to zero.

However, as discussed in chapter 3, a two-photon PODS system is generally not
noiseless. Suppose that it is noisy, primarily, because of the electronics at the detector

plane. In this case, the effects of AWGN are taken into account and, hence, the
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histogram of the received intensities that originate from “0” bits always overlaps with
that from “1” bits, regardless of any 2-D modulation coding. This, indeed, leads to a
nontrivial optimal threshold value for the binary threshold decision scheme and a non-
zero minimum BER. In this section, we describe analytically how to obtain such an
inexplicit optimal threshold in order to achieve a minimum BER for a noisy (AWGN)
two-photon PODS system.

Because the counts, i.e., the number of occurrences, of the received intensities in
any histogram shown in chapter 4 are accumulated in a finite number of equally
distributed intensity bins (in our simulations, the bin size is always set to 1/200 of the
normalized intensity), the effects of AWGN in a noisy two-photon PODS system, then,

can be simply included by convolving each intensity bin in the histogram with a

Gaussian distribution function, whose mean and variance are zero and o, respectively.
Let us define ¢,, as the number of counts in the /th bin, whose center is located at the
intensity value z,,, of the histogram of the received intensities that originate from “0”
bits. Analogously, ¢, , is defined as the number of counts in the /th bin, whose center is
located at the intensity value g,,, of the histogram of the received intensities that

originate from “1” bits. Assuming that the total number of counts in the histogram of the

received intensities that originate from “0” bits is C, and that the total number of counts

in the histogram of the received intensities that originate from “1” bits is C,, i.e.,
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C, = ZCO‘, and C, = ch,! , we can derive the BER of an AWGN two-photon PODS
! !

system with intensity threshold value T as following:

BER = Prob{error} = Prob{error|"0" bit is recorded}Prob{"O“ bit is recorded } +

Probf{error|"1" bit is recorded |Prob{"1" bit is recorded}.  (6.1)

It is straightforward from a binary threshold decision scheme, shown in Eq. (3.7),
that the conditional probability of error given that a “0” bit is recorded is equivalent to
the conditional probability that the received intensity, r, is greater than the threshold

value, T, given that a “0” bit is recorded. Therefore,

Prob{errorl“O“ bit is recorded} = Prob{r > T|"0” bit is recorded} (6.2)
E chw q]';exp _(r——yg,,)i dr (6.3)
CoT 7|72z, il
1 T_ﬂuz
=—— > ¢,,erfc = |, (6.4)
TR [ Voo,

where erfc is the complementary error function defined as [34]

erfe(s)= —\/2= c‘]exp (— t* )dt. (6.5)
ﬁ 5

Similarly, the conditional probability of error given that a “1” bit is recorded is
equivalent to the conditional probability that the received intensity, r, is less than the

threshold value, T, given that a “1” bit is recorded. Thus,
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Prob{error|" 1"bitis recorded} = Prob{r <T |"1 "bit is recorded} (6.6)

_ 1 T _(r"/uu )2
- Z::C”L[ B exp[ 207 Jdr} (6.7)

Z ¢, erfc( ;i}ia TJ (6.8)

Inserting Egs. (6.4) and (6.8) into Eq. (6.1), we have

T - py,

Voo,

BER = Prob {error}: Prob{'0" bit is recorded{ Z Cs; erfc(

- _ |
-+

-T
Prob{'1"bit is recorded Z ey erfe] 2 . (6.9)
I 20, )

Clearly, if the input information bits are recorded without applying any 2-D
modulation code, then
Prob{"0"bit is recorded} = Prob{"1" bit is recorded} = 0.5. (6.10)
However, if a 2-D modulation code is applied, then the probability that a “0” bit is
recorded is generally not equal to the probability that a “1” bit is recorded. Based on our
2-D modulation coding scheme described in chapter 4, the probability that a “0” bit is
recorded is often much higher than the probability that a “1” bit is recorded. Table 6.1
lists such probabilities for various 2-D modulation codes, both fixed-length and variable-
length codes.
Finally, we evaluate Eq. (6.9) repeatedly for each threshold value 7. A
threshold value that results in a minimum BER is, hence, an optimal threshold for the

binary threshold decision scheme of an AWGN two-photon PODS system.
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2-D modulation code Prob{"0" bit is recorded} Prob{'1" bit is recorded}
(4,4,7;2,4) 195/256 (= 0.7617) 61/256 (= 0.2383)
(3,3;4;2,3) 107/144 (= 0.7431) 37/144 (= 0.2569)
(1,2;1;2,4) 3/4 (=0.75) 1/4 (= 0.25)
(4,4:8:2,2) 3/4 (= 0.75) 1/4 (= 0.25)
(3,3;6;3,2) 2/3 (= 0.6667) 1/3 (=0.3333)

(4,[1,2,3];[2,4,6];2,3) 631/768 (= 0.8216) 137/768 (= 0.1784)

Table 6.1 List of the probabilities that a “0” bit is recorded and the probabilities that a
“1” bit is recorded for various 2-D modulation codes.

6.2 Bit-Error-Rate Performance of Two-Dimensional Modulation Codes

In section 6.1, we describe the numerical procedure that is used to find the optimal
threshold value for a binary threshold decision scheme and the corresponding minimum
BER of a noisy two-photon PODS system. It is necessary to emphasize that we
theoretically derive such procedure based on the AWGN assumption. In other words,
the optimal threshold and the minimum BER are derived by assuming that the
probability density function of noise in a two-photon PODS system can be simply

. . . 2
modeled as a Gaussian function, whose mean and variance are zero and o,

respectively. This simple assumption, however, is not valid for every practical two-
photon PODS system (typically, the exact probability density functions of noise in

practical two-photon PODS systems are very difficult to identify). Therefore, the
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numerical procedure discussed in section 6.1, in general, may need modifications for
practical two-photon PODS systems.

We present in this section an alternative procedure that is more practical and yet
gives reliable values of BER for typical two-photon PODS systems. This practical
procedure can be separated into two cases: the first assumes that no 2-D modulation
code is applied, i.e.,, the raw or uncoded case, and the other assumes that a 2-D
modulation code is applied, i.e., the coded case. For the former case, assuming that an
enormous number of data pages are recorded without applying any 2-D modulation
code, we retrieve as many recorded data pages as necessary to obtain at least 100 errors.
We note that the number of errors is defined as the number of bits in the recorded data
pages that are different from the corresponding bits in the detected data pages, which are
obtained by digitizing the received intensities with a priori knowledge of a threshold
value. We also note that the predetermined threshold value can be practically optimized,
in favor of minimum BER, by a variety of ways. For examples, it can be estimated
approximately from the histograms of the received intensities or we can use a trial-and-
error approach. The BER for the raw case, thus, can be calculated by dividing the total
number of errors, which is at least 100 errors, by the total number of detected data bits,
which is the total number of detected data page resulting in that total amount of errors
multiplied by the data page size.

For the latter case, suppose that a large number of data pages are recorded after
applying a 2-D modulation code to a lengthy sequence of input information bits. We,

again, retrieve the recorded data pages as many as necessary to obtain at least 100 errors.
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Unlike the previous case, the number of errors in this case is defined as the number of
bits decoded from the detected data pages, also obtained by digitizing the received
intensities with a priori knowledge of a threshold value, that are different from the
corresponding bits in the original input information sequence before applying a 2-D
modulation code. It should be emphasized that the optimal predetermined threshold
value in this case is generally different from that in the previous case, although it can be
determined in a similar way. The BER of the coded case is, then, calculated by dividing
the total number of errors, at least 100 errors, by the total number of original input
information bits (before applying a 2-D modulation code), which results in that total
amount of errors.

To illustrate the BER performance of our 2-D modulation codes, both fixed-
length and variable-length codes, we simulate the BERs of several noisy two-photon
PODS systems in this section. Our simulation procedure, basically, follows the practical
procedure described above, except that we repeat the whole procedure ten times and then
calculate the average BER in order to obtain a more reliable result. Figures 6.1 and 6.2
show pseudocodes of our simulation procedure for raw (uncoded) and coded cases,
respectively. We note that every two-photon PODS system considered in this section is

assumed to be noisy due to the electronics at the detector plane and can be modeled as
discussed in chapter 3 by the AWGN, whose mean and variance are zero and o,

respectively. We also assume, for simplicity, in every simulation that each recorded data
page always contains 120x120 bits; it is essential to emphasize that this assumption is

possible because 120x120 is divisible by the output block sizes of all 2-D modulation
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begin initialize {size of recorded data pages (M x N ), type of PSF and its parameter ( sinc> PSF and
b, J ,2 PSF and b, , or Gaussian PSF and &, ), linear fill factor of detectors (& ),

standard deviation of AWGN (o, ), predetermined intensity threshold (7'), / =1}
do
total number of errors = 0
number of data pages =0
do
randomly generate a digital data page
number of data pages < number of data pages + 1
compute the received intensities at the detector array using Eq. (3.6) or (3.8)
compute the detected data page using Eq. (3.7)
compare the detected data page with the original digital data page and count the number of errors
total number of errors « total number of errors + number of errors
until total number of errors > 100
BER, = total number of errors
(number of data pages Jx MN

l«1+1
until / >10

10
BER =iZBER,
104
end

Figure 6.1 Pseudocode of the BER simulation procedure for the raw (uncoded) case.

codes described in chapters 4 and 5. Additionally, in every simulation, the linear fill
factor, &, of each detector or CCD pixel is always set to one and, as defined in chapter
4, the effective point-spread function (PSF) matrix used in Eq. (3.6) or (3.8) contains at
least 90% of the total light originating from a data mark. We note further that based on
the AWGN assumption, all predetermined threshold values used in our simulations are
obtained from the numerical procedure described in section 6.1, provided that 100 pages

of data are recorded.
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begin initialize {(m, mk;a, ﬁ) 2-D modulation code, size of recorded data pages (M x N ), type of

PSF and its parameter (sinc® PSF and b,, J} PSF and b, , or Gaussian PSF and
b, ), linear fill factor of detectors (& ), standard deviation of AWGN (&, ),

predetermined intensity threshold (T'), / =1}
do
total number of errors = 0
total number of input information bits = 0
do
randomly generate a digital input information sequence containing (A/IN / mn)k bits

total number of input information bits <« total number of input information bits + (MN/mn)k
encode the digital input information sequence using the (m, nk;c, ﬁ) 2-D modulation code

compute the received intensities at the detector array using Eq. (3.6) or (3.8)
compute the detected data page using Eq. (3.7)
decode the detected data page with proper decoding procedure
compare the decoded sequence with the original input sequence and count the number of errors
total number of errors < total number of errors + number of errors
until total number of errors > 100

total number of errors

BER, =
"™ total number of input information bits

l«1+1
until />10

1 10
BER =— Y BER
10; :
end

Figure 6.2 Pseudocode of the BER simulation procedure for the coded case.

Figures 6.3, 6.4, and 6.5 show several plots of the BER as a function of the
standard deviation of the AWGN for many noisy two-photon PODS systems. First, the
(4,4;7;2,4), (4,4;8;2,2), and (3,3;6;3,2) 2-D modulation codes are of particular interest in
Figure 6.3. In Figure 6.3(a), we assume that the retrieval system contains a square

aperture and can be modeled by the sinc® PSF with b, =1.5. Apparently, if there is no

modulation code applied (i.e., the raw case), the values of the BER are always very high,

even with a very low value of the AWGN standard deviation. This, in fact, implies the
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strong effects of 2-D ISI in a two-photon PODS system. On the contrary, when a 2-D
modulation code is applied, it is clear that the values of the BER at the small values of
the AWGN standard deviation improve significantly.

We note, however, that the BER performance improvement relies heavily on the
characteristic of each 2-D modulation code. As illustrated in Figure 6.3(a), the
(3,3;6;3,2) 2-D modulation code cannot improve the BER performance as much as the
(4,4;7;2,4) and (4,4;8;2,2) 2-D modulation codes can. It is, indeed, because the
(3,3;6;3,2) 2-D modulation code has higher spatial frequency constraints than the
(4,4;7;2,4) and (4,4;8;2,2) 2-D modulation codes; more specifically, the (3,3;6;3,2) 2-D
modulation code has higher value of a than the (4,4;7;2,4) and (4,4;8;2,2) 2-D
modulation codes. It should also be recalled from chapter 4 that the spatial frequency
constraints of the (4,4;8;2,2), (4,4;7;2,4), and (3,3;6;3,2) 2-D modulation codes are
(@.8)=(2.2), (a,8)=(24), and (2, B)=(3,2), respectively, where we define & as the
maximum number of “1” bits in the four-connected neighbor positions of any “0” bit in a
recorded data page and £ as the maximum number of “1” bits in the eight-connected

neighbor positions of the same “0” bit.

Likewise, when we assume in Figure 6.3(b) that the retrieval system contains a
circular aperture and can be represented by the J PSF with b, =2.5, we obtain the

similar results as in the case of Figure 6.3(a). In addition, in Figure 6.3(c), we consider

the retrieval system that can be modeled by the Gaussian PSF with 5, =0.6. It is shown

in chapter 4 that, with this particular two-photon PODS system, the degree of 2-D ISI is
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very high; thus, we expect the very low BER performance, if the effects of AWGN are
taken into account. From Figure 6.3(c), it is obvious that only the (4,4;8;2,2) 2-D
modulation code can substantially improve the BER performance. We emphasize that

this is because the (4,4;8;2,2) 2-D modulation code has relatively low spatial frequency
constraints, i.e., (&, 8)=(2,2), compared with (e, 8)=(2,4) and (e, 8)=(3,2) of the

(4,4;7;2,4) and (3,3;6;3,2) 2-D modulation codes, respectively.
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Figure 6.3 BER performance of (4,4;7;2,4), (4,4;8;2,2), and (3,3;6;3,2) 2-D

modulation codes in a noisy two-photon PODS system modeled by
(a) sinc® PSF with b, =1.5,

(b) J? PSF with b, =2.5, and

(c) Gaussian PSF with 5, =0.6.
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Secondly, we are interested in the (3,3;4;2,3) fixed-length 2-D modulation code
and the (4,[1,2,3];[2,4,6];2,3) variable-length 2-D modulation code. The intention of

Figure 6.4 is not only to examine the BER performance of a variable-length 2-D

modulation code, but also to compare it with that of a fixed-length 2-D modulation code

having the same spatial frequency constraints (a, p’). Suppose in Figure 6.4(a) that the
retrieval system is described by the sinc®> PSF with A =1.5. Noticeably, at the small
values of the AWGN standard deviation, both (3,3;4;2,3) fixed-length and
(4,[1,2,3];[2,4,6];2,3) variable-length 2-D modulation codes greatly improve the BER
performance. Note, however, that the (4,[1,2,3];[2,4,6];2,3) variable-length 2-D

modulation code degrades the BER performance when the value of the AWGN standard
deviation is excessively high. In other words, when the level of noise in a two-photon
PODS system is very high, the BER performance of the (4,[1,2,3]; [2,4,6];2,3) variable-
length 2-D modulation code is even worse than that of the raw case (i.e., when no 2-D
modulation code is applied). This is due to the error propagation during the decoding
process of the (4,[1,2,3]; [2,4,6];2,3) variable-length 2-D modulation code. Hence,
although variable-length 2-D modulation codes may offer higher code rates and, as a
result, higher overall useful data storage capacity, compared with fixed-length 2-D
modulation codes having the same spatial frequency constraints (a, ﬂ), there are serious
problems because of error propagation. Similar results are illustrated in Figure 6.4(b) for
the case of a retrieval system that contains a circular aperture and can be modeled by the

J? PSF with b, =2.5.
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Figure 6.4 BER performance of (3,3;4;2,3) fixed-length and (4,[1,2,3];[2,4,6];2,3)

variable-length 2-D modulation codes in a noisy two-photon PODS
system modeled by

(a) sinc® PSF with b, =1.5,
(b) J? PSF with b, =2.5, and
(c) Gaussian PSF with 5, =0.6.
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Moreover, it is evident from Figure 6.4(c), in which the retrieval system is
represented by the Gaussian PSF with b, =0.6, that when the degree of 2-D ISI is
extremely high, the (4,[1,2,3]; [2,4,6];2,3) variable-length 2-D modulation code can be
totally ineffective, regardless of the value of the AWGN standard deviation. Eventually,
the (4,[1,2,3]; [2,4,6];2,3) variable-length 2-D modulation code weakens the BER
performance of this specific two-photon PODS system, compared with the raw case. On
the other hand, the (3,3;4;2,3) fixed-length 2-D modulation code can slightly improve
the BER performance of the same two-photon PODS system, although its spatial
frequency constraints are identical to those of the (4,[1,2,3]; [2,4,6];2,3) variable-length
2-D modulation code. This example, again, supports the hurdles of error propagation in
the variable-length 2-D modulation codes.

Lastly, we compare the BER performance of the fixed-length 2-D modulation
codes that have the same spatial frequency constraints («, £). In particular, we consider
the (4,4;7;2,4) and (1,2;1;2,4) 2-D modulation codes in Figures 6.5(a), 6.5(b), and 6.5(c)
for the cases of sinc® PSF with b, =1.5, J; PSF with b, =2.5, and Gaussian PSF with

b, = 0.6, respectively. It is apparent that both 2-D modulation codes give similar results

for every case; however, to be more precise, the BER performance of the (1,2;1;2,4) 2-D
modulation code is somewhat better than that of the (4,4;7;2,4) 2-D modulation code.
Therefore, it should be noted that even though the 2-D modulation codes have the same
spatial frequency constraints ( ; ﬂ), their corresponding BER performance might be

different.
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Figure 6.5 BER performance of (4,4;7;2,4) and (1,2;1;2,4) 2-D modulation codes in a
noisy two-photon PODS system modeled by
(a) sinc® PSF with b, =1.5,
(b) J? PSF with b, =2.5, and
(¢) Gaussian PSF with b, =0.6.
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Chapter 7

An Extension to Three-Dimensional Modulation Coding

for Two-Photon PODS Systems

In previous chapters, we have assumed that the distance between any two consecutive
data pages recorded in a two-photon page-oriented optical data storage (PODS) system
is large enough that there is no interaction or interference between the data pages. It is
clear that the data storage capacity of the system can be increased if such distance can be
reduced. However, if we record the data pages closer to each other, the bit-error-rate
(BER) performance of the system may degrade due to the interference among closely
recorded data pages. While the interference among bits within each data page discussed
in earlier chapters is called the two-dimensional (2-D) intersymbol interference (ISI), the
interference among data pages, which we discuss in this chapter, is called the interpage
interference (IPI). The IPI, in fact, depends not only on the layout or format of the
recorded data pages in the medium, but also on the arrangement of the data marks, i.e.,
the pattern of the information, in each recorded data page. In this chapter, we discuss
three-dimensional (3-D) extensions of the 2-D system models described in chapter 3 and
the 2-D modulation coding scheme described in chapter 4 in order to include the effects

of IPI. The extended models of two-photon PODS systems are presented in the first
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section. In the second section, we describe the basic principles of the 3-D modulation

coding scheme and show a few examples of 3-D modulation codes.

7.1 Three-Dimensional Models and Interpage Interference of Two-Photon PODS

Systems

Assuming that the recording process is perfect and that the distance between any two
adjacent recorded data pages is small enough that they interfere with each other, then the
mathematical model of a two-photon PODS system that includes the effects of
interference among data pages, i.e., the effects of IPI, can be derived from the retrieving

process as shown in Figure 7.1.

7’710.-41[’.5 J] ]

3
Vol [i' J] ><

»
LAV ]
A

O QN iy SY ?"’["fk o e aki

Viam[i’j] — h[f,j] w[i’j]

Figure 7.1 The 3-D mathematical model of a two-photon PODS system.

Let [1', j] and (x,y) denote an index of a 2-D discrete signal and an index of a
2-D continuous signal, respectively. As described in chapter 3, the point-spread function
(PSF) of the imaging system in the retrieving process, h(x, y), can be modeled as either

one of the functions in Egs. (3.1), (3.2), and (3.3) or any other function depending on the
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imaging optics and the characteristics of the retrieval system. For simplicity, we assume
again that the magnification of the imaging system in the retrieving process is one.
Moreover, the pitch between two nearest data marks, equivalently the pitch between two
nearest detectors or the pixel pitch of the charge-coupled device (CCD) camera, is set to
one so that all other distances can be relatively expressed in units of this pitch. It should
also be noted that the size of the data mark is assumed to be very small compared to the
extent of the PSF; hence, the data mark is effectively a delta function.

We assume that a_[i, j] represents the existence of a digital information bit (or
data mark) recorded on the zth data page, where z € { -=-2,-10,1,2,-- } and that it
takes on value of either zero for a “0” bit or one for a “1” bit. We also assume that only
the (z—1)th and (z+1)th data pages can interfere with the zth data page. Thus, the

received intensity at each detector, or each CCD pixel, that arises from the z th data page

in a noiseless retrieval system, then, can be modeled mathematically by
r.li /1= (a [ /1@ i, D+ 7o (a [ 1@ Bl jD+ 7, (a0l @0 AL 7D (1)
=(ya.[i, /1® Hli, D+ (roa. [i, 1@ Ali jD+ (. i /1@ B D (72)
= (yaa.li, j1+ vea.li j1+ ma.a i iD® Ali, /1 (7.3)
where y_, 7,, and y, are nonnegative and 7, +7,+7, =1, ® is a 2-D discrete

convolution operator, and Ali, j| represents the effective discrete PSF defined in Eq.
(3.5).
Clearly, when the (z—l)th and (z+1)th data pages weakly interfere with the

z th data page, the values of y_ and y, should be much less than the value of y,. In
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the extreme case, when the values of y_, and y, are equal to zero and the value of y, is
one, i.e., when there is no IPI, Eq. (7.3) simply becomes Eq. (3.4). We note that because
¥_1» Yo, and ¥, indicate the relative degree of the effects of IPI, they are called the IPI
coefficients. Furthermore, it is possible that other data pages, such as the (z—2)th and
(z+2)th data pages, might interfere with the zth data page as well. For such an
unlikely event, the additional terms representing the IPI effects from the (z—2)th and
(z + 2)th data pages must be included, where the IPI coefficients, again, are nonnegative
and sum to one for normalization purposes.

If thermal noise effects from the electronic circuits at the detector plane are taken
into account, the received intensity at each detector, arising from the z th data page, of a
noisy retrieval system that also includes the effects of IPI can be described by

rli.jl=(aa i )+ vea i 1+ ria, i SD @ AL 1+ Wi, ] (7.4)

where w[i, j] is an additive white Gaussian noise (AWGN), whose mean and variance
are zero and o’ , respectively.

Applying a simple binary threshold decision scheme with a priori knowledge of
a threshold value, T, at the CCD or detector array to digitize the received intensities, the

detected data, i.e., the output of the retrieval system, can be modeled as

e l,ifr:[i,j]>T
dZE’J]_{O,ifrz[i,jkT' (71.5)
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As discussed in chapter 3, it is often helpful to consider the 2-D discrete signals
as matrices for the purpose of analysis. For example, Eq. (7.4) can be expressed in
matrix form by

R, =(7 A, +7,A, +7A,, )OH+W, (7.6)
where R, is an M x N received intensity matrix derived from the zth recorded data

page, whose entry in the pth row and gth column, R_, , describes the real-valued

g

intensity at the [p,¢]-th detector or the [p,q]-th CCD pixel, A, A,,and A, denote

-1
the (z—1)th, zth, and (z+1)th recorded M xN digital information data page,
respectively, in which each entry is either zero or one. Also, y_,, ,, and y, represent
the IPI coefficients that are always nonnegative and sum to one, H is the effective PSF
matrix derived from h[z', j] in Eq. (3.5) with minor modifications of indices so that

h[0,0] is the entry at the center of the matrix H, and W represents an M x N AWGN

matrix whose entries are independent, identically distributed with mean and variance
defined in Eq. (7.4).
We exemplify in Figure 7.2 a convenient way to visualize the effects of IPL

Suppose that the retrieval system of a two-photon PODS system is noiseless and its
imaging system can be modeled as a sinc® PSF with b, =1.5. We also assume that the
(z—1)th recorded data page contains a data mark at [7, j]=[0,0], the zth recorded data
page contains two data marks at [i, j] = [-1,0] and [i, /]=[1,0], and the (z +1)th recorded

data page contains a data mark at [z', j]= [0,0]. Assuming y_, =0.1, y,=0.8, and
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7, =0.1, the plots on the left side of Figure 7.2 from top to bottom show: a one-
dimensional (1-D) slice through the x-axis of the IPI that comes from a data mark
recorded in the (z - l)th data page; a 1-D slice through the x-axis of the image intensity
originating from two data marks recorded in the z th data page; a 1-D slice through the
x-axis of the IPI that arises from a data mark recorded in the (z+1)th data page; and a

1-D slice through the x-axis of the total image intensity, including the effects of IPI from
two nearest neighboring data pages, at the detector plane when the zth data page is
retrieved, respectively.

On the other hand, each plot shown on the right side of Figure 7.2 depicts the
received intensity, corresponding to the image intensity shown on the left side, of the

detectors or CCD pixels that lie on the x-axis, i.e., r[i,O]. Here, we assume that each
detector has a unit linear fill factor (6 =1). Ideally, for the z th recorded data page, the
digitized outputs of all detectors or CCD pixels should be “0” bits, except the ones at
[i, j] = [—1,0] and [i, 7]=[1,0]. From the second plot on the right side of Figure 7.2, the
effects of 2-D ISI from data marks at [, j]=[-1,0] and [i,7]=[1,0] lead to the
uncertainty of the output of the detector, or CCD pixel, at [i, j]=[0,0] because the
intensity level at [i, j]=[0,0] is about half of the intensity level of the actual “1” bit at
[i,/]1=[-1,0] or [i, j]=[1,0]. Indeed, the output of the detector, or CCD pixel, at
[i, j]= [0,0] in this particular case depends on the threshold value T of a simple binary

threshold decision scheme.
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Figure 7.2 An example of the effects of IPI, where y_, =0.1, y, =0.8,and y, =0.1,

in a noiseless two-photon PODS system modeled by the sinc® PSF with

b,=1.5and 6 =1.
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However, it is evident from the bottom-right plot in Figure 7.2 that, adding the
effects of IP1, the output of the detector or CCD pixel at [i, j]=[0,0] is very likely to be a
“1” bit, regardless of the value of a predetermined threshold, because the intensity level
at [i, /]=[0,0] is much more than half of the intensity level of the actual “1” bit at
[i, j]= [— 1,0] or [i, j]= [1,0]. This implies that, in addition to the 2-D ISI, the IPI also
further degrades the system performance. Figures 7.3 and 7.4 illustrate the similar

results for the cases of J® PSF with b, =25 and Gaussian PSF with b, =0.6,

respectively.

96



{z-1)-th data page (z-1)-th data page

04+ 0.4
o)
z 0.3 503
3 R
b=
802} T02
=01 e 0.1
o,
z N 0 .
-5 0 5 -5 0 5
7+th data page z-th dai.a page
0.4 Fan 0.4
z i 2z
G 0.3 it 03
5 i 2
£ [ -
602 i ! B o2
g i, [ g
ol i 4 e 0.1}
- L]
0 A LT 0
-5 0 5 -5 0 5
(z+1)-th )riala page (z+1)-th data page
0.4 0.4
)
2 £
% 0.3 £o03f
g &
‘e 0.2 Bo02
~o.1 £ 01
0 T - -\'-. 0 i l 1
-5 0 5 5 0 5
3 Sllxm
0.4 04}
g E
£ E
02| Bo2p
g 8
0l o 0.1
0 0
-5 5 -5 0 S

Figure 7.3 An example of the effects of IPI, where y_, = 0.1, 7, =0.8, and y, =0.1,
in a noiseless two-photon PODS system modeled by the J PSF with
b=25and §=1.
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Figure 7.4 An example of the effects of IPI, where y_, = 0.1, , =0.8,and y, =0.1,

in a noiseless two-photon PODS system modeled by the Gaussian PSF
with b, =0.6 and 6 =1.
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7.2 Basic Principles of Three-Dimensional Modulation Coding Scheme and

Examples of Three-Dimensional Modulation Codes

Apparently, from section 7.1, the simplest way to avoid IPI in a two-photon PODS
system is to separate the recorded data pages as far as needed. However, if the distances
among recorded data pages are increased, the utilization of the medium, then, decreases.
Therefore, rather than increasing the distances among recorded data pages, we propose a
new 3-D modulation coding scheme that not only can reduce the effects of 2-D ISI, but
also can reduce the effects of IPL.

As discussed in chapter 4, the 2-D ISI is regarded as the light from a “1” bit that
interferes with other local neighbor “0” bits (of the same data page). The effects of 2-D

651,’

IS1, thus, can be reduced by limiting the number of “1” bits around any “0” bit on each
data page. On the other hand, as discussed in the previous section, the IPI can be
regarded as the fraction of light from a “1” bit of the adjacent recorded data page that
interferes with “0” bits of the retrieved data page. Hence, in order to mitigate the effects
of 2-D ISI and the effects of IPI in a two-photon PODS system simultaneously, the main
principle of our 3-D modulation coding scheme, intuitively, is to map a 1-D sequence of
input information into a 3-D output data in such a way that any “0” bit recorded in the
medium is not surrounded, volumetrically, by too many “1” bits [44]. We also note that

any “1” bit in the medium is preferred to be volumetrically surrounded by many “0” bits,

although “1” bits can be recorded closely.
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Following the principles of the proposed 3-D modulation coding scheme, we
present two examples of 3-D modulation codes. The first 3-D modulation code can be

described mathematically as

[ao al] - {[0 a, ]22;[4:1i 0]2:+I }, (7.7)
where z e { ., —2,—-1,0,1, 2,---}. Assuming that there is a lengthy sequence of input
information bits, the 3-D modulation code in Eq. (7.7), then, maps each 1-D block of
two input information bits into a 3-D block of 1x2x 2 bits. In other words, one of the
two input information bits, «a,, is mapped into two bits, [0 au], on one data page, i.e.,
the (2z)th data page, while the other input information bit, a, , is mapped into other two
bits, [a, 0], on the following data page, i.e., the (22 + l)th data page. It is necessary to
note that since this 3-D modulation code, totally, maps two bits into four bits, its code
rate is equal to 0.5.

Notice that the 3-D modulation code in Eq. (7.7) can be derived from the
(1,2;1;2,4) 2-D modulation code described in chapter 4 and its mirror version; therefore,
the effects of 2-D ISI in the retrieved data page can be reduced. Moreover, it should be
emphasized that this 3-D modulation code ensures that there is always a “0” bit recorded
on each adjacent recorded data page before and after any input information bit; thus, the
effects of IPI among the recorded data pages can be reduced as well.

We note that the 3-D modulation code in Eq. (7.7) can also be described simply
as

{a — [0 a] evendatapage (7.8)

a — [a 0], odd data page’
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where a is an input information bit. Figure 7.5 depicts an example of the recorded data

pages in a two-photon PODS system after applying the 3-D modulation code in Eq. (7.7)

or Eq. (7.8).
0 1:0 000 001010 010000
0 1:0 1:0 0 1 0:0 0:1 O 0 0:0 0:0 1
0 0:0 0:0 1 1 0:0 0:0 O 0 1:0 10 O
0 0:0 1:0 O 0 0:1 0i1 O 0 0:0 0:0 0
0 1:0 1:0 O 0 0:1 0i0 O 0 1;0 0:0 1
0 0:0 1:0 1 0 0:0 O0:1 O 0 0;0 1;0 1
Even data page Odd data page Even data page

Figure 7.5 An example of the recorded data pages after applying a 3-D modulation
code based on the (1,2;1;2,4) 2-D modulation code.

Similarly, we can derive another example of a 3-D modulation code from a
(4,4;8;2,2) 2-D modulation code defined in chapter 4. This 3-D modulation code can be
described mathematically as [44]

[ao a a, a; a, a; d4g a; ag dy &, a;; @, Q3 dy als] ¥

ag a, 0 0 0 0 ay ay

ag 0 0] |0 0 a; a; (7.9

0 a, ag ag a, 0 0
0 0 as a-" 2z ag a” O 0 2z+1

where z e { -=-2,-1,0,1,2,-- } The 3-D modulation code in Eq. (7.9) maps each 1-D

block of sixteen input information bits into a 3-D block of 4x 4x 2 bits. In fact, eight of
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the sixteen input information bits are mapped into a 2-D block of 4 x 4 bits on one data
page, i.e., the (22)th data page, by using the (4,4;8;2,2) 2-D modulation code, while the
other eight input information bits are mapped into another 2-D block of 4x 4 bits on the

following data page, i.e., the (2z+ l)th data page, by using the mirror version of the
(4,4;8;2,2) 2-D modulation code. We note that because this 3-D modulation code maps

sixteen bits into thirty-two bits, its code rate 1s equal to 0.5.

Since the 3-D modulation code in Eq. (7.9) is derived from the (4,4;8;2,2) 2-D
modulation code and its mirror version, it can relax the effects of 2-D ISI in the retrieved
data page. Additionally, it is clear that, with this 3-D modulation code, there is always a
“0” bit recorded on each adjacent recorded data page before and after any input
information bit. Hence, the effects of IPI among the recorded data pages can also be
reduced.

Alternatively, the 3-D modulation code in Eq. (7.9) can be described as

a, a, 0
a, a, 0
[a0 8, @y Gy @ G 8 a7]—> , evendata page
) 0 0 a, a
0 0 a; a
] T % Hg , (7.10)
0 a, q,
0 a, aq
[a(J a a, a, a, a4 &, a7]—> , odd data page
i @ 0
| la, a; |

where [a, a, a, a, a, a, a, a?] is a 1-D block of eight input information
bits. We show in Figure 7.6 an example of the recorded data pages in a two-photon

PODS system after applying the 3-D modulation code in Eq. (7.9) or Eq. (7.10).
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Figure 7.6 An example of the recorded data pages after applying a 3-D modulation
code based on the (4,4;8;2,2) 2-D modulation code.
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Chapter 8

Conclusions, Discussions, and Future Extensions

8.1 Conclusions and Discussions

This dissertation discusses the appropriate modulation coding for page-oriented optical
data storage (PODS) systems that use two-photon absorption technology. In chapter 3,
we have presented a number of two-dimensional (2-D) mathematical models for various
two-photon PODS systems based on the assumption that the distance between any two
successive recorded data pages is large enough such that there is no interaction between
the data pages. With these 2-D mathematical models, we have examined the inherent
intersymbol interference (ISI) of two-photon PODS systems and its effects. It is obvious
that the ISI in two-photon PODS systems is different from the ISI in conventional data
storage systems. The former is 2-D and spreads over the spatial domain, whereas the
latter is one-dimensional (1-D) and spreads over the time domain.

We have proposed in chapter 4 a new 2-D modulation coding scheme that can
relieve, or even eliminate, the effects of 2-D ISI in two-photon PODS systems. Since
ISI in two-photon PODS systems is mainly due to the light from a data mark or a “1” bit
that spatially interferes with other local neighbors, especially the “0” bits, on the same
recorded data page, the fundamental principle of our 2-D modulation coding scheme is

to limit the number of “1” bits around any “0” bit on each recorded data page. We have
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also described a general form of 2-D modulation codes derived from the proposed 2-D
modulation coding scheme. Using this general form, we can differentiate the 2-D
modulation codes and approximately compare their performance. In addition, we have
presented a variety of fixed-length 2-D modulation codes for two-photon PODS systems,
including their advantages and disadvantages.

In chapter 5, we have discussed restrictions of fixed-length 2-D modulation
codes in terms of code rate. We have also presented an example of the code rate upper
bounds of fixed-length 2-D modulation codes to support this fact. To overcome the
moderate code rates of fixed-length 2-D modulation codes, we have proposed variable-
length 2-D modulation codes for two-photon PODS systems. Due to the higher degrees
of freedom, variable-length 2-D modulation codes typically have higher code rates than
fixed-length 2-D modulation codes (at the same constraints). However, one major
concern about variable-length 2-D modulation codes is how to decode them with a
minimum of error propagation. An example of a variable-length 2-D modulation code
and its proper decoding procedure has been presented. We have shown in chapter 6 the
bit-error-rate (BER) performance of these fixed-length and variable-length 2-D
modulation codes. A numerical procedure that is used to find the optimal threshold
value for a binary threshold decision scheme applied at the detector array of a noisy two-
photon PODS system has also been described.

If the distance between any two consecutive data pages recorded in a two-photon
PODS system is small enough that they interfere with each other, the interpage

interference (IPI) must be taken into account. To investigate the effects of both 2-D ISI
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and IPI, we have presented many three-dimensional (3-D) mathematical models for two-
photon PODS systems in chapter 7. We have also shown that the IPI further degrades
the system performance in addition to the 2-D ISI. Therefore, we have proposed a novel
3-D modulation coding scheme for two-photon PODS systems in order to mitigate the
effects of 2-D ISI and the effects of IPI simultaneously. Because the 2-D ISI can be
regarded as the light from a “1” bit of the retrieved data page that interferes with other
local neighbor “0” bits on the same data page and the IPI can be regarded as the fraction
of light from a “1” bit of the adjacent recorded data page that interferes with “0” bits of
the retrieved data page, the basic idea of our 3-D modulation coding scheme is to have
any “0” bit recorded in the storage medium surrounded, volumetrically, by a minimum
number of “1” bits. We have also developed several examples of 3-D modulation codes
based on examples of fixed-length 2-D modulation codes. With these 3-D modulation
codes, we expect significant improvements, in terms of BER performance, in two-
photon PODS systems.

Furthermore, it should be emphasized that while the primary objectives of
conventional modulation coding are to reduce the effects of 1-D ISI and to recover the
clock information from the recorded data, the main goals of our multi-dimensional
modulation coding are to reduce the effects of 2-D ISI and to reduce the effects of IPL
Unlike conventional data storage systems, the clock information in two-photon PODS
systems can be either embedded in the recorded data pages or supplied separately in the
clock channels [41]. Figure 8.1 shows an example of the recorded data page format or

layout in a two-photon PODS system with four clock channels (I, II, III, and IV). We
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Figure 8.1 An example of the recorded data page format or layout in a two-photon
PODS system with four clock channels at each comer of a data page (I, II,

111, and IV).

note that although only one clock channel is necessary, the extra clock channels provide
redundancy for error protection and are useful for data page tracking purposes. Figure
8.2 illustrates, for instance, how four clock channels can be used for data page tracking.
On the odd data pages, clock channels I and IV carry the “1” bits (filled circles) whereas
clock channels II and III carry the “0” bits. On the other hand, on the even data pages,
clock channels I and IV carry the “0” bits whereas clock channels II and III carry the “1”
bits (filled circles). It is clear that two “1” bits at a pair of clock channels across the
diagonal are used not only to track the position of each data page, but also for

redundancy of clock information.
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Figure 8.2 An example of the data page tracking in a two-photon PODS system with

8.2 Future Extensions

four clock channels at each corner of a data page (each filled circle
represents a data mark or a “1” bit).

The work described in this dissertation provides many opportunities for future research.

A number of interesting ideas can be outlined by the following:

e Further improve the 2-D and 3-D mathematical models of two-photon PODS

systems. For example, consider more practical noise models than the additive

white Gaussian noise (AWGN).

e Develop new fixed-length 2-D, variable-length 2-D, and nontrivial 3-D

modulation codes with diverse properties for two-photon PODS systems.

e Analyze and simulate the BER performance of 3-D modulation codes for two-

photon PODS systems.

e Study the optimization of the code rates of 2-D and 3-D modulation codes for

two-photon PODS systems.
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Evaluate the trade-offs between the useful data storage capacity and the BER in
two-photon PODS systems before and after applying our 2-D and 3-D
modulation codes. Similar work has been investigated in holographic PODS
systems [6].

Develop novel channel coding schemes for two-photon PODS systems. An
example of a 3-D interleaved error correcting coding scheme based on Reed-
Solomon codes has been described in Refs. 40 and 43.

Design a smart pixel array for retrieving (recording) process in two-photon
PODS system that converts optical (electronic) signals into electrical (optical)
signals, performs modulation decoding (encoding) based on our 2-D and 3-D
modulation codes, and provides parallel-to-serial (serial-to-parallel) formatting
[58].

Study the feasibility of adaptive multi-dimensional modulation coding for two-
photon PODS systems, in which the lookup table can be updated corresponding
to the incoming input information. This idea has been initiated by the work in

Ref. 60.
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