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Chapter 1

INTRODUCTION

Widespread deployment of multimedia applications is continuing to create
a need for low cost chip designs that can be incorporated into all sorts
of consumer devices, such as portable communicators or home appliances.
This surge in the use of digital multimedia information has been enabled to
a large extent by the emergence of standard algorithms for compression of
speech, audio, images and video.

In this work, we will focus on digital video systems, as they are the most
challenging in terms of both computation and memory requirements, but
many of the results of our work will be easily applicable to other types of
media (including emerging ones such as stereo and multiview video), as well
as to future compression standards.

For the video compression systems, video encoder is much more compli-
cated, and expensive than video decoder. In the past, there were few ap-
plications where customers should have video encoder, therefore, reducing
the cost of video encoder did not draw much attention. However, recently,
many applications like TiVo service, and mobile video telephony which re-
quire both video encoder and decoder have emerged. Therefore, it is very
important to reduce the cost of video encoder. One of the main reason of
expensive video encoder is that the yield rate of video encoder is very low
due to the complex algorithm of video encoding. By employing fault toler-
ance technique, the yield rate can be increased, and the manufacturing cost
can be reduced.

To overcome the effect of faults, algorithm-based fault tolerance scheme
has been proposed in many literatures like [1], [2], [3], and [4]. [1] and [2] are
based on the algorithmic level computations on redundant data. In [3] and
(4], fault location and correction for the multiprocessor system have been



suggested. In this algorithm-based fault tolerance technique, the algorithm
itself is modified to detect and correct faults.

For video compression systems, not all the faults in the implementation
of a video encoder are intolerable from the view point of the system level.
Some faults can induce catastrophic errors, but some faults have tolerable
errors. A block diagram of video encoding stages is shown in Figure 2.1. If
there are faults in the motion compensation circuit, the effect is not catas-
trophic. Even if there are faults in the motion compensation stage, the
video encoding can be done, however resulting in the increased bit rate for
the output compressed video stream. In this work, we will analyze the effect
of faults in the motion compensation stage of video encoding process, and
propose the fault concealment technique which can compensate for the effect
of some faults. Also, in this work, we will propose a testing algorithm which
requires small number of test vectors.

This work is organized as follows. In Chapter 2, we introduce motion
estimation implementation issues briefly. In Chapter 3, we propose the fault
concealment technique and the novel testing algorithm. In Chapter 4, we
describe future works.



Chapter 2

MOTION ESTIMATION

Motion compensation is the process which reduces the temporal redundancy
during video encoding. Motion estimation is the process to estimate motion
vectors which are used to reduce temporal redundancy in motion compensa-
tion. In this chapter, we will explain basics of motion estimation, and also,
we will cover some implementation issues for motion estimation.

2.1 Motion Estimation and Motion Compensation

To reduce the temporal redundancy between frames, current frame is divided
into non-overlapping N x N (usually N = 16) blocks (macro-blocks), then
the best matches for these blocks are searched in the previous frame. A
motion vector indicates the best matching block for the given macro-block.
Then these motion vector information and block differences are encoded
and transmitted to the decoder. The efficiency of the motion compensation
depends on the accuracy (integer pel, half pel), the motion vector, and levels
of search (16 x 16, 8 x 8). In Figure 2.1, the schematic diagram of a generic
MPEG encoding algorithm is shown. The motion compensation and the
motion estimation process is located in the feedback loop of the encoding
algorithm. As one can see, a frame that is available at the decoder side
is fed through the feedback loop, therefore the motion compensation uses
this decoded frame as reference frame rather than the original frame. The
purpose of this feedback loop is to maintain the synchronization between the
encoder side and the decoder side that is required to reduce the temporal
redundancy.

The motion estimation is the process to find motion vectors which corre-
spond to the best matches. For block matching motion estimation algorithm
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Figure 2.1: Schematic diagram of MPEG encoder

with an exhaustive search, a block of size N x N (reference macro block X) of
the current image is matched with all the blocks(candidate blocks Y) in the
search window of size (2w + 1)2. The motion estimation can be described

as,

D(m,n)= Y F(z(i,5) —y(i +m,j+n)) (2.1)
(ig)eA
v =arg min D(m,n), (2.2)
(m,n)es
where,
A=[0,N—-1]x[0,N —1],
S = [~w,w] X [~w,w].



Figure 2.2: Dependence graph of a motion estimation algorithm[5].

A motion estimation algorithm is composed of a searching stage and a
matching stage. The searching stage is corresponding to (2.2), and the
matching stage is corresponding to (2.1). In the matching stage, if F( - )
is the absolute function, then the matching metric is called as SAD (Sum of
Absolute Difference), and if F( - ) is the square function, then the matching
metric is called as SSD (Sum of Square Difference).

2.2 Hardware Implementation of Motion Estima-
tion stage

2.2.1 Search and matching for motion estimation

The motion estimation stage consists of matching and search processes. The
matching process computes the metric between the given macro-block and
candidate blocks, and keeps the minimum metric values and the correspond-
ing position of the best match. The search process selects a subset of can-
didate blocks for motion estimation, and determines the order of candidate
blocks in the subset of candidate blocks.

The search process supply pixel values of the candidate blocks to the
matching process. Therefore search process is implemented using data
busses and registers. For the given macro-block and a candidate block, a
matching process calculates N x N difference values for each pixel, and then
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Figure 2.3: Internal Architecture of AD-PE and M-PE [5].

sums these values to find the distortion. For a practical implementation of
a matching process, a metric value between the pixel of a macro-block and
the pixel of a candidate block is calculated, added to the partial sum value,
and then the partial sum is fed to the next PE.

The computations and data flow can be depicted using dependence graph
(DG). A possible dependence graph by directly mapping the motion esti-
mation is shown in Figure 2.2. In this figure, left side DG represents the
searching process, and right side DG represents the matching process. In
this figure, AD represents a processing element (PE) which contains an ab-
solute difference and an addition, and M represents a PE for minimum value
computation. A schematic diagram of AD-PE and M-PE is shown in Fig-
ure 2.3, and more detailed version of AD-PE, M-PE, and motion estimation
implementation is shown in Figure 2.4.

2.2.2 Various structures to implement the matching process

Due to the computational nature of a matching process, a matching process
can be implemented using various computational architectures as can be
seen from Figure 2.5. In this figure, architecture type-1 is implemented using
sequential computation. For architecture type-2 and type-3 more parallel
computation is used than type-1. For architecture type-4, a 1-D sequential
circuit is used to calculate the partial distortion for each column of data.
Due to the degree of parallelism in each architecture, the required time to
complete a metric computation also varies. Let us assume that each PE
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Figure 2.4: Detailed version of AD-PE, M-PE, and ME implementation[5].
R represents registers used to access pixel values.

can produce output in a cycle time. Then, architecture type-1 and type-4
requires N2 cycles to complete a metric computation for a given macro-block
and a candidate block. However, architecture type-2 requires 2N —1 cycles,
and architecture type-3 requires [2logy N| cycles. As one can see from this
figure, to implement a matching process adders are required in addition
to AD-PE components, and the number of adders required are different
depending on the architecture type used. To implement architecture type-1,
no additional adders are required. However, to implement architecture type-
3, N? — 1 additional adders are required. Likewise, type-2 requires N — 1
adders, and type-4 requires 1 adder. The number of PE and adders, and
required number of cycles to complete the metric computation is shown in
Table 2.1.

We also can see the difference between these architectures by introducing
a worst case fault, and then see the different effects for each architecture.
Let’s assume that there exist a single fault in the matching stage of a motion
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Table 2.1: Number of processing elements and required cycles for each ar-
chitecture type of matching process.

[ [ type-1 | type-2 | type-3 [ type-4 |

AD-PE N? N? NZ N
M-PE 1 1 1 1
Adder 0 N-1 N? -1 1
# of cycles N2 [2N-1][2log,N]| N?

estimation algorithm, and the defective adder produces fixed output for all
the input combinations. Then the effect of the single fault in the motion
estimation stage can be interpreted as the dimensional reduction for the
matching stage of the motion estimation algorithm. In other words, due to
a single fault, (2.1) and (2.2) can be modified as follows, if F/( - ) =] - |,

D(m,n) = »_ |o(i,j) —y(E +m,j +n)| (2.3)
(i.)eA!
v =arg (mrf}:)rés D(m,n), (2.4)
where,
A’ C A,
S = [~w,w] x [~w, w)].

The number of the reduced dimension will be analyzed in the following.
For the following analysis, it is assumed that the single fault is uniformly
distributed in the given architecture.

Architecture type-1

Architecture type-1 is for the direct implementation of the 2D block match-
ing motion estimation algorithm. The pixel difference at the current position
is added to the partial sum of the differences, and then is fed into the follow-
ing AD-PE. For architecture type-1, the number of adder used is N 2, when
the macro-block size is N x N. The average number of the dimensional

11



Figure 2.5: Dependence graphs for motion estimation implementation(upper
left: type-1, upper right: type-2, lower left: type-3, lower right: type-4)[5]

reduction when a single fault occurs is,

E{# of dimensional reduction|single fault occurs} (2.5)
1

_N?+1

s
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Therefore,

E{# of resulting dimension|single fault occurs} (2.6)
N2 +1
2

= N?—

NZ—1
o

Architecture type-2

Architecture type-2 is a slight modification of the architecture type-1. Ar-
chitecture type-2 employs row-wise(or column-wise) partial summation and
then calculates the total sum of the differences(D(m,n)). Therefore by
modifying Architecture type-2, it is possible to implement deterministic fast
matching(DTFM) criterion. For architecture type-2, the number of adder
used is N2 + N. The average number of the dimensional reduction when a
single fault occurs is,

E{# of dimensional reduction|single fault occurs} (2.7)
1
P e 4 NN
N2+N(1+2+3+ + )
1
= ceo 4+ N2
+ N2+N(N+2N+ <)
= N.
Therefore,
E{# of resulting dimension|single fault occurs} (2.8)
=N?-N.

Architecture type-3

Architecture type-3 is similar to architecture type-2 from the view point
of row-wise(or column-wise) summation of the partial differences, but for
architecture type-3, additions are done hierarchically, that is, an adder sums
up only two results from the previous addition stage, and AD-PE does not
need to contain addition operation. For architecture type-3, the number of
adder used is N2 —1, and N = 2P, The average number of the dimensional

13



reduction when a single fault occurs is,

E{# of dimensional reduction|single fault occurs} (2.9)
1
= p=1l .9y 9p=2 .92 1 . 4 90 9py.
NI 1(2 +2 oot ) N
1
=1, 9p—2 92 ce. 490 9P
+N2_1(2 2N + N+4---+2°-2PN)
_ 2N%logs N
- N?2-1
= 2loga N.
Therefore,
E{# of resulting dimension|single fault occurs} (2.10)
2N21092N
- N2 _
=4 N2—1
=~ N? — 2logyN.

Architecture type-4

Architecture type-4 is an 1D implementation of the block matching mo-
tion estimation algorithm. Every row-wise(or column wise) summation is
calculated using the same computational structure, and after N cycles, min-
imization operation is performed to find the best motion vector V. For ar-
chitecture type-4, the number of adder used is N + 1. The average number
of the dimensional reduction when a single fault occurs is,

E{# of dimensional reduction|single fault occurs} (2.11)
O (N+2N+--+N?) + L

T N+1 N+1

N‘2 N2

=2 tNTI

=5 + N.

Therefore,
E{# of resulting dimension|single fault occurs} (2.12)
_ N2 N?
2 N+1
N2
= 7 - N.

14



From the above analysis, one can see that the dimensional reduction effect
due to a single fault is lesser for architecture type-2, and architecture type-3
than for architecture type-1, and architecture type-4. From the view point
of semiconductor processing, the required silicon area for implementing ar-
chitecture type-4 is smallest, but because the severe dimensional reduction
is possible to occur, architecture type-4 is not recommended for implemen-
tation.

2.3 Conclusion

In this chapter, the basics of motion compensation and motion estimation
are explained, and various hardware implementation architectures for mo-
tion estimation are shown and analyzed. In this work, our work will be
focused on the hardware implementation issues of matching process for mo-
tion estimation. As one can see from this chapter, depending on the type
of architecture used, the number of processing elements and the required
number of cycles are different. Also, by using the worst case scenario, the
effect of faults for each architecture is analyzed and compared with.

In the next chapter, fault effect for matching process implementation
will be analyzed in more detail. Also, in the next chapter, a technique to
compensate some of fault effects will be proposed.

15



Chapter 3

FAULTS IN MATCHING
PROCESS

In the previous chapter, we showed some implementation architectures for
the matching process of motion estimation. In this chapter, we will analyze
the faults effect in the matching process implementation, and propose a
technique to compensate for some effects of these faults. In this chapter, we
will use architecture type-2 which is introduced in the previous chapter, and
SAD as a matching metric to derive a technique to compensate for some
effects of faults. However, the proposed technique can be easily applied
to the matching process implementation which uses the other architecture
types and the other metrics.

3.1 Assumptions and Basic Ideas

3.1.1 Assumptions

For the analysis, let us assume the followings. First, the pixel value is in-
teger, and the range of the value is from 0 to 255, therefore each pixel is
represented by 8 bit data. This assumption is reasonable because usually
luminance component for each pixel is represented by 8 bit data, and the mo-
tion estimation is done for luminance components. Second, all the outputs
of AD-PEs and adders are 16 bit wide, therefore all the adders are 16 bit
adders. The adders and the corresponding input and output data lines are
specified in Figure 3.4. In this figure, the width of each data line is specified.
This assumption is reasonable because maximum difference input for each
AD-PE can be represented by 8 bit data, therefore maximum distortion at

16



the output of a matching process is 16 bit wide (because usually N = 16).
That is, to implement the architecture type-2, same N? AD-PEs and same
N —1 adders which have same architectural structure are used. Third, there
is no fault in the absolute difference operation. This assumption is needed,
because our work will be focused on adders. Fourth, the fault dealt with in
this work is permanent fault like the 1-stuck fault and the 0-stuck fault.

3.1.2 Basic ideas

The purpose of the matching process is to find the best matching block for
the given macro-block. In a matching stage, a metric (distortion) compu-
tation is done for N2 macro-block pixels and N? candidate block pixels.
Therefore if X is the set of possible pixel values, and Y is the set of possible
distortion values when there is no fault, then a metric computation is the
mapping D such that,

O: ¥ xx¥M 57 (3.1)

After the metric computation, a matching process compares the current
distortion with the minimum distortion found so far. If the current block
results in the smaller distortion, then a matching process updates the mini-
mum distortion. Therefore the output of a matching process is the motion
vector which corresponds to the minimum distortion value. Let us assume
that there are some faults in a matching process hardware, but despite of
these faults, this faulty hardware produces the motion vector which corre-
sponds to the minimum distortion for all the combinations of inputs. Then,
if we use this matching process for a video encoder, then we cannot see the
effects of these faults. Now the question is “Is it possible to conceal the
effects of hardware faults for a matching process implementation?”. The
answer is “It is possible.”. Then, the remaining question is "How?". Let us
define ¢ as a nonlinear mapping which accounts for the effects of the faults
in a matching process implementation, roughly speaking, if there exists a
nonlinear mapping ¢ which satisfies

$(E(D(p,q))) < ¢(6(D(p,q"))) ifand only if D(p,q) < D(p',q') (3.2)
V pg,p,q € XV

then we can conceal the effects of the faults. To explain the basic idea
clearly, let us take a simple example. In Figure 3.1, the architecture type-2
matching process is shown. In this figure, output data range of each AD-
PE is shown. Let us assume that the 9th bit output data line from LSB is

17
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Figure 3.1: Architecture type-2 matching process. Output data range of
each AD-PE is specified. Blank square is AD-PE, and shaded square is an
adder. I and J are the indices for AD-PEs, and L is the index for the adders.
(1<I,J<16, 1<L<15)

stuck to 1 for the AD-PE which corresponds to I = 1 and J = 1. Then,
every distortion values for all the combinations of inputs will be increased
by 28. However, this faulty matching process will satisfy the condition (3.2).
Therefore, there exists a way to conceal the effect of the fault for this case.

In this chapter, we will analyze the effect of faults in a matching process
implementation in detail, and propose the technique to conceal the effects
of the faults. To analyze the effect of faults, we will use SAD as a match-
ing metric, and architecture type-2 as an implementation architecture, but
the results can be easily applied to the other metrics and implementation
architectures.

18
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Figure 3.2: (a)Error due to the 1-stuck fault in a data line (n = p). (b)Error
due to the 0-stuck fault in a data line (n = p).

3.2 Fault Effect for I/O of Adders

For an adder, faults can affect the input data lines, output data lines, and
carry generation processes. The faults in the input (output) data part of
an adder can be mapped to the faults in the input (output) data lines.
Therefore, in this work, we will not deal with input (output) data part and
input (output) data lines separately. In addition, because the adders in this
problem are cascaded, the input data lines of an adder are the output data
lines of the previous stage adder, therefore, we do not need to consider the
input data lines and the output data lines separately. Also, because we will
focus on the faults in the input and output data parts of adders, we will
assume that the carry generation processes do not contain any fault.

19
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(a) (b)

Figure 3.3: (a)Input vs. output when there is the 1-stuck fault in a data
line (n = p). (b)Input vs. output when there is the 0-stuck fault in a data
line (n = p).

For a bunch of m bit data lines, let us define n = 0 as the LSB data line,
and n = m — 1 as the MSB data line. Also, let us define = as the input to
the data lines, & as the output of the data lines. Then, the error e between
2 and £ is e = & — x. If there is a single 1-stuck fault in the n = p data line,
then the relationship between x and e is as follows.

P, %P <T< (k1) P -1
={ ' =ws @) (3.3)

0, (2k+1)-2?<z<(2k+2)-27-1
where, k=0,1,...,2m P~ 1
Likewise, if the single fault is O-stuck fault, then the relationship between z
and e is as follows.
B {0, W W<z < (2k+1)-2° —1
=2 (2k+1)- 2 <x<(2k+2)-2P -1

where, k=0,1,...,2" P71 _1

(3.4)

The relationship between e and z is shown in Figure 3.2, and the relationship
between & and z is shown in Figure 3.3.

If there are more than one fault in a bunch of data lines, then the error
will be additive, that is, if e; and ey are the error due to a single fault in a
single bunch of data lines, then the total error e due to these faults is

e=e+ez. (3.5)

20
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The fault effect of an adder can be described using the data line concept
discussed above. However, we can not explain the effect of multiple faults lo-
cated in different adders using above analysis. The main difference between
multiple faults in a single adder and multiple faults in different adders is
that the error due to multiple faults located in the different adders is not
additive. Therefore, to analyze the effect of the error due to multiple faults
in multiple adders, we should use different analysis approach. For this, we
will use the dynamic range concept. Let us define the dynamic range in
this work as follows. The dynamic range is a set of all the possible values
of a signal for that part of a hardware implementation. Because the adders
are cascaded for the architectures of a matching process, we can simplify a
matching process implementation as a cascaded array of adders. Also, be-
cause we assumed that there are no faults in the absolute difference process,
we can simplify the input parts of AD-PE as a difference input. For analysis,
we will model the AD-PE and the adder as a node of a directed tree graph.

21
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Figure 3.5: Architecture type-2 (top left) and type-3 (top right) for the
matching process are shown with corresponding the tree structured flow
graphs (type-2: bottom left, type-3: bottom right).

This is shown in Figure 3.4.

By this node concept, we can represent the architectures of the match-
ing process implementation as the tree structured flow graph. The tree
structured flow graph is a directed tree graph whose nodes represent AD-
PEs or adders. This tree structured flow graph is useful for the analysis
of multiple faults in the output of different adders. also, by using this tree
structured flow graph, we can design a test vector generation algorithm for a
generic matching process implementation. In Figure 3.5, architecture type-2
and type-3 for the matching process are shown with the corresponding tree
structured flow graphs. Each node in the tree structured flow graph has two
inputs. The inputs can be the outputs from the previous nodes or the differ-
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Figure 3.6: Dynamic range transform.

ence inputs for each AD-PE. The depth of tree structured flow graph varies
depending on the degree of parallelism of the implementation architecture
used.

Let us assume that there is a fault at the output of an adder, then the
effect of the fault can be thought of as the dynamic range transform as
can be seen from Figure 3.6. As one can see from this figure, the output
dynamic range of this example is the shifted and shrunken version of the
given input dynamic range. The output dynamic range due to this dynamic
range transform is one of the followings.

Type-1 transform: Shifted version of the input dynamic range.

Type-2 transform: Nonlinearly transformed version of the input dynamic
range. There exists one-to-one correspondence between the elements
of the input dynamic range and that of the output dynamic range.

Type-3 transform: Shifted and shrunken version of the input dynamic
range.

23
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Figure 3.7: Interpretation of each node as the cascaded operations on input
dynamic ranges.

Type-4 transform: Nonlinearly transformed version of the input dynamic
range. There is no one-to-one correspondence between the elements of
the input dynamic range and that of the output dynamic range.

For type-1 transform, we will say that the input dynamic range is preserved,
and for type-3 and type-4 transforms, we will say that the input dynamic
range is distorted. Type-2 transform is a special case, so, we will explain
type-2 transform later. If the output dynamic range is preserved, then there
exists the one-to-one mapping between the sum of the input values and
the output values. Therefore, if the output dynamic range is preserved,
then we can retrieve the true value of the output because there is one-to-
one correspondence between the real metric values and the distorted metric
values. However, if the output dynamic range is distorted, then we can not
retrieve the true output value from the distorted one.

Now, let us think of the operation of an adder. An adder has two inputs,
and produces the sum of these two inputs. Each of the input has its own
dynamic range. The addition of two inputs has the effect of expanding the
dynamic range. Therefore, each node can be thought of as the cascaded
operations on input dynamic ranges. This can be seen from Figure 3.7.
From the view point of the effect of faults, faults in the carry generation
processes have the effects on the dynamic range expansion, and the faults
in the output data part of an adder have the effects of the dynamic range
transform. Therefore, from the leaf nodes to a root node of the tree struc-
tured flow graph, the input dynamic ranges of the leaf nodes are expanded
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Figure 3.8: Input & output relationship due to the finite bit width of an
output.

and transformed.

To use the dynamic range concept introduced above for our problem, we
should consider the finite bit width of each output. Because the bit width
of each output is finite, we can model each output as the data lines whose
high bit data lines (n > m, where m is the bit width of the output, and n
is the bit position index) are fixed to zero. The effect of the finite bit width
is shown in Figure 3.8. This transform corresponds to Type-2 or Type-4
dynamic range transform.

In this section, we analyzed the effect of multiple faults for a matching
process implementation by employing the dynamic range concept. In the
next section, we will propose a method to conceal the fault effects by using
the dynamic range concept.

3.3 Fault Concealment Technique

Fault effect concealment technique can be thought of as a lossless scheme in
the sense that even if there are faults in the hardware implementation, by
using the concealment technique, the faulty matching process always finds
the best matching block for a given macro-block. The other scheme is a lossy
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Figure 3.9: Block diagram for the proposed fault concealment technique.

scheme. In the lossy scheme, it is likely that the faulty matching process does
not match all the macro-blocks with the best matching blocks. Therefore,
the required bit rate is increased. However, the bit rate increase is in the
acceptable range. In this work, we will deal with the lossless scheme, and
we will deal with the lossy scheme in the future work.

A block diagram for the proposed fault concealment technique is shown
in the Figure 3.9. Theoretically, if 4(-) in (3.2) is an one-to-one mapping,
then we can always find ¢(-) in (3.2), therefore, we can always conceal the
effect of faults. However, to store ¢(-) in a hardware implementation, a huge
storage space is needed, therefore it is practically impossible. In this work,
we propose a practical fault concealment technique to conceal the effect of
some faults, not all the faults whose effect can be concealed.

For the proposed fault concealment technique, the following conditions
should be satisfied.

Condition-1 : All the expanded dynamic ranges at every nodes (except
the root node) in the tree structured flow graph should be uniformly
shifted by the dynamic range transforms.

Condition-2 : At the root node, the dynamic range transform should be
the one-to-one mapping for the expanded dynamic range.

For the condition-1 to be satisfied, the expanded dynamic range should be
contained in the uniform offset interval of the dynamic range transform.
Because all the nodes except the root node should satisfy the condition-1,
every expanded intervals should be connected, therefore, if the minimum
and the maximum values of an expanded dynamic range are contained in
the same uniform offset interval, then the whole expanded dynamic range is
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contained in the same uniform offset interval. Due to this fact, the proposed
test vector generation is based on the minimum and the maximum difference
inputs not all the difference inputs for each node. Due to this fact, the
required number of test vectors can be greatly reduced comparing with the
number of test vectors generated by all the combinations of difference inputs.

If the expanded dynamic range for the root node is [a, ¢ +1,..., a0 +
216 _ 28], then the output dynamic range of the root node is [0,1,...,a —
28] U [a,a + 1,...,21% — 1]. This can be seen from Figure 3.8. For the
interval [0,1,...,0— 28], we can retrieve the true distortion value by adding
216 _ o, and for the interval [@, o +1,...,21% — 1], we can retrieve the true
distortion value by subtracting c. Therefore in the fault detection phase,
the test circuit should detect the value of a, and a should be stored in the
fault concealment circuit in Figure 3.9.

The maximum value of acceptable @ depends on the used metric (SAD,
SSD, etc.) and the used implementation architecture type. For the matching
process implementation which employs SAD, and type-2 architecture, the
maximum value of acceptable « is 212+28—~2*—1, but due to the condition-1,
the maximum value is 2'2.

In this section, we propose a technique to compensate for the effect
of some faults in the implementation of a matching process. In the next
section, we will propose a test vector generation algorithm for the proposed
fault concealment technique.

3.4 Testing Algorithm

In the precious section, we proposed the fault concealment technique. This
technique is based on the dynamic range concept. An output dynamic range
is determined by an expanded dynamic range and a dynamic range transform
of the given node. An expanded dynamic range is determined by the input
dynamic ranges and the faults in the addition operation, specifically the
faults in the carry generation operation. However, because we assumed that
there is no fault in the carry generation operation, the expanded dynamic
ranges are determined by the input dynamic ranges. These input dynamic
ranges are output dynamic ranges of the child nodes in the tree structured
flow graph. A dynamic range transform is determined by the faults in the
output of adders for the given node. Therefore, to test the effect of faults at
a node, we should find all the faults in the sub-tree of the given node. Let
us define the inside range faults and the outside range faults. The inside
faults are the faults which correspond to the dynamic range transform whose
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smallest uniform offset interval is smaller than the dynamic range for that
part, and the other faults are defined as the outside faults. In Figure 3.1, we
showed the number of bits required to represent each dynamic range. For
the lossless scheme, the inside faults should be avoided, because there is no
way to compensate for these faults. Therefore, the fault testing proposed in
this work is composed of two phases. The first phase is to check the inside
faults to ensure that at each node, the minimum uniform offset interval is
greater than the expanded dynamic range of the node, and the second phase
is to ensure that the minimum and the maximum elements of an expanded
dynamic range are contained in the same uniform offset interval.

The first testing phase is a top-down approach. Top represents the root
node, and the bottom represents the leaves in a tree structured flow graph.
To check if there is any fault in the output of a given node, we should know
that there are no faults in the path from the node to the root node, because
the distortion value is observed from the root node. The first testing phase
is composed of the lower 8 bit testing (for the case that SAD is used for
a metric) and the higher bit testing. This is because that the higher bit
positions are tested by using the maximum difference input (0xFF for the
case that SAD is used for a metric) combinations of nodes in the sub-tree.
For example, if z(I, J) is the difference input of the (I,J) node, and D is the
total distortion in Figure 3.1, to check the fault in the 9th bit from LSB,
we should check if the 9th bit of D is ‘0’ when z(I,J) =0z00, 1 < I,J <
16, and then we should check if the 9th bit of D is ‘1’ when z(I,J) =
0zFF, (I —1,J) = 0zFF, and «(i,j) = 0200 i,j # I,J . Using this way,
we can check the faults in the higher bit positions than lower 8bit.

The second testing phase is a bottom-up approach. This is because that
an expanded dynamic range at a node is determined by the output dynamic
ranges of nodes in the sub-tree of a tree structured flow graph. Because
only the nodes whose minimum uniform offset interval is larger than the
expanded dynamic range pass the first phase testing, in the second testing
phase, if the offset values of the minimum and maximum elements of an
expanded dynamic range are same, then the expanded dynamic range is
contained in the uniform offset interval of the dynamic range transform,
that is, every clements of the expanded dynamic range are shifted by the
same amount. Let us define Dy,i, as the distortion when all the difference
inputs of the sub-tree of the node are 0200, and Dy, as the distortion
when all the difference inputs of the sub-tree of the node are 0zFF. In the
second testing phase of a node, if Dymar — Dmin is the same as the size of the
expanded dynamic range of the node, then the expanded dynamic range is
contained in the uniform offset interval of the dynamic range transform for
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Figure 3.10: Schematic flow chart for the proposed testing algorithm.

that node. In this way, we can check the dynamic range distortions for all
nodes. Also, in the second testing phase, we need to check if all the offset
values are acceptable as discussed in the previous section. A schematic flow
chart for the proposed testing algorithm is shown in Figure 3.10.

One of the main advantage of the proposed testing algorithm is that
it can reduce the number of test vectors significantly. For example, for
the case when SAD is used as a matching metric, and the implementation
architecture is type-2, the proposed test algorithm requires approximately
1500 test vectors, however, the number of all the combinations of difference
inputs is 22048, Also, because the proposed testing algorithm is based on
the minimum (0200) and the maximum (0zFF) difference inputs, we can
represent a pair these difference inputs by single bit. Therefore, the proposed
testing algorithm requires small storage space needed to store all the test
vectors. For example, 96 kbit storage space is required for the example
above. This is important because usually test is performed using a testing
hardware, and the test vector should be generated by the testing hardware,
therefore if the required storage space for test vectors are huge, then the
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cost of the testing increases.

3.5 Conclusion

In this chapter, we analyzed the faults effect using the dynamic range con-
cept, and proposed the fault concealment technique and the testing algo-
rithm. The proposed algorithm is based on a lossless scheme in the sense
that the performance of fault compensated circuits are exactly same as that
of the faultless circuit. The proposed algorithm is a generic algorithm by
the help of the tree structured flow graph interpretation of matching process
implementations.

Because the proposed algorithm is based on the minimum and the maxi-
mum difference inputs for each node, the number of test vector is very small,
therefore small storage space is needed to implement a test circuit. Also,
because there exists a regularity in the test vectors, we can further reduce
the required storage space.
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Chapter 4

FUTURE WORK

In this work, we proposed the lossless fault concealment technique. By us-
ing this technique, we can increase the yield rate to manufacture a matching
process. However, if we accept some faults which slightly degrade the per-
formance in terms of frame residual energy, then we can increase the yield
rate more. This lossy scheme should be based on the statistics of the real
distortion values. For example, if the average difference between the smallest
distortion values and the second smallest distortion values is, for example,
50, then the effect of a fault in the LSB position of a node will be very small.
Using this kind of approach, we will do the research on the lossy scheme.

In this work, we assumed that the carry generation operations are cor-
rect, that is, there is no fault. If there are faults in the carry generation
operations, the dynamic range expansion operations are affected by using
the concept in Figure 3.7, and there will be some loss. In [6], Soft DSP
technique is proposed to compensate for the effect of faults in the carry
generation operations for digital filter implementations. In the future work,
we will modify the Soft DSP technique for our problem, and propose an
algorithm to compensate for the effect of faults in the carry generation op-
erations.

In this work, we assumed that there are no faults in the difference op-
erations in AD-PEs. In the future work, we will do the research on the
faults effect for this process. Also, in the future work, we will propose an
algorithm to further reduce the storage space to store the test vectors by
using the regularity of the proposed sequential test algorithm.
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