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Abstract

This report summarizes our research about the binary classification of ground vehicles based on the acoustic
data, which was carried out from July 2001 to July 2002.

Because the acoustic data corresponding to each run are time-variant, we segmented each run into one-
second data blocks, and used the data blocks, which we called prototypes, for classification. The magnitudes
of the second through 12th harmonics of each prototype were used as features. We found, by analyzing the
features within each run and across runs, that the run-means and run-standard-deviations of the features
vary from run to run for all kinds of vehicles. We therefore used type-2 fuzzy sets to model the uncertainties
contained in these features, and then constructed type-2 fuzzy logic rule-based classifiers (FL-RBC) for
three binary classification problems: tracked vs. wheeled vehicle, heavy-tracked vs. light-tracked vehicle,
and heavy-wheeled vs. light-wheeled vehicle. To evaluate the performance of the type-2 FL-RBCs in a
fair way, we also constructed the Bayesian classifiers and type-1 FL-RBCs and compared their performance
through many experiments. The parameters of the Bayesian classifiers were estimated using the training
prototypes; whereas, the parameters of both the type-1 and type-2 FL-RBCs were optimized using a steepest
descent algorithm that minimized an objective function which depended upon the training prototypes. All
classifiers had two working modes—non-adaptive and adaptive. When the false alarm rate (FAR) of a
classifier in its non-adaptive mode is less than 0.5 then this classifier has a better performance in its adaptive
mode than in its non-adaptive mode after a certain time.

We carried out the leave-one-out and leave- M-out experiments to evaluate the performance of all classi-
fiers. In the leave-one-out experiments, only one run was used for testing, and all the other runs were used
for training. In the leave-M-out experiments, one run of each kind of vehicle was used for testing, and all the
other runs were used for training. Our experiments showed that for each binary classification problem, both
the type-1 and type-2 FL-RBCs had significantly better performance than the Bayesian classifier, whereas
the type-1 and type-2 FL-RBCs had similar performance, although most of the time, the type-2 FL-RBC
had slightly better performance than the type-1 FL-RBC.

Both the type-1 and type-2 FL-RBC designs were tested for blind runs of the normal terrain. The blind
test results of the type-2 FL-RBC designs were scored by our sponsor at the Army Research Laboratory.
The scores were very high, which demonstrates that our type-2 FL-RBC designs for the binary classification

of ground vehicles based on their acoustic emissions are successful.



Chapter 1

Introduction

This report describes research about the classification of tracked and wheeled ground vehicles
based only on their acoustic signatures. More specifically, we present results on the design and

performance for three binary classification problems:
e tracked versus wheeled vehicles
o heavy-tracked versus light-tracked vehicles
o heavy-wheeled versus light-wheeled vehicles

The acoustic emission of a ground vehicle contains a wealth of information, which can be used for
vehicle classification, e.g. in the battlefield. The model of the acoustic emission can be simplified
as an addition of periodic components and random noise. The periodic components in the low
frequency band are related to the periodic movements in the engine. For example, the engine firing
rate of a cylinder-based engine is usually the most predominant peak in the spectrum; whereas,
the acoustic energy of a turbine engine-based vehicle is distributed relatively evenly in the low
frequency band because there is not an obvious fundamental frequency for it, such as the firing rate
in the cylinder-based engine. Some tracked vehicles may also have periodic components in the high
frequency band that are related to the sprocket and track system. The random noise is due to the
propulsion process in the engine, and the interaction between the tires (or tracks) and roads [8].

Compared to other sensor systems (e.g., radar and optical) in the battlefield, acoustic sensors
are less expensive and have fewer restrictions. The acoustic emission of a ground vehicle is easy to
detect and hard to disguise; furthermore, a high signal-to-noise ratio (SNR) can be obtained for

the acoustic data under some circumstances [8].



Although it is attractive to classify ground vehicles based on their acoustic emissions in the
battlefield, it is still very challenging to accomplish this because the acoustic emissions of a ground
vehicle are subject to variations of the environmental conditions (e.g., terrain and wind) and vehicle-
traveling speed, their measurements are subject to the variation of the distance between the vehicle
and the sensor system, and features obtained from these measurements may also be subject to
the partitioning (windowing) of the measurements during the feature-extraction process. Hence,
features that are extracted from the acoustic measurements of ground vehicles will be time-varying
and will contain a lot of uncertainties. Any classifier that makes use of the acoustic measurements of
ground vehicles for classification must therefore account for these time-variations and uncertainties.

Note that it is impossible to establish precise mathematical models to describe these variations
and uncertainties. Type-2 fuzzy sets, whose membership functions (MF) have a so-called footprint
of uncertainty (FOU), provide a novel way to model the unknown time-variations and uncertainties.
Type-2 fuzzy logic systems (FLSs), which use type-2 fuzzy sets to model inputs, antecedents or
consequents of rules, have already demonstrated excellent performance in non-stationary or un-
certain environments [5]. This has motivated us to apply type-2 FLS theories to the designs of
fuzzy-logic-rule-based classifiers (FL-RBC) for ground vehicle classification.

This report summarizes our study on binary classification of ground vehicles using FL-RBCs
based on the acoustic data that were collected in the normal environmental conditions. Our FL-
RBC results are base-lined against those obtained from a Bayesian classifier. Some preliminary
results have been presented in [10] and [11], and these are incorporated into this report for com-
pleteness.

The rest of this report is organized as follows. In Chapter 2, we analyze the data, and specify
the FOUs for features. In Chapter 3, we construct classifiers, and introduce two different working
modes. In Chapter 4, we present experiment results. In Chapter 5, we describe the blind test and

results. Finally in Chapter 6, we draw conclusions.



Chapter 2

Footprints of Uncertainties of the

Features

The starting point for designing a type-2 FL-RBC is to specify the FOU of each feature. This
is the fuzzy logic counterpart to the starting point for designing a Bayesian classifier, which is to
specify an appropriate (joint) probability density function (pdf) for the features. In order to specify
an appropriate FOU for each feature, we must understand the acoustic measurements of ground
vehicles and the variations of the features that are extracted from them. The main purpose of this

chapter is to establish such FOUs for all features that are used in our type-2 FL-RBC.

2.1 Data Collection

We used the “Acoustic-Seismic Classification/Identification Data Set” (ACIDS) for training and
testing classifiers. ACIDS consists of more than 230 records of acoustic data that were collected
by two sensor systems for nine kinds of ground vehicles in four environmental conditions. In our
study, we have focused on three binary classification problems—tracked vs. wheeled vehicles, heavy-
tracked vs. light-tracked vehicles, and heavy-wheeled vs. light-wheeled vehicles—for the normal
environmental condition for which 115 records are available.

Each sensor system is a three-element equilateral triangular microphone array with a length
of 38.1 cm between each microphone. When collecting the acoustic data, each sensor system was
situated so that the triangle was pointing to, and one side of the triangle was parallel to a vehicle’s
traveling direction. All the three microphones of a sensor system were working so that one collected

record has three channels of acoustic data. The acoustic data were low-pass filtered at 400 Hz to



prevent spectral aliasing, high-pass filtered at 25 Hz to reduce wind noise, and then digitized by an
11-bit A/D converter at the sampling rate (F}) of 1025.641 Hz.

In this work, we distinguish between a run and a record. A run corresponds to a ground vehicle
traveling at a constant speed toward the sensor system, passing the closest point of approach
(CPA), and then moving away from the sensor system. The duration of a run varies from 56
seconds to 420 seconds, for which the CPA to a sensor system varies from 25 m to 100 m, and,
a vehicle’s speed varies from 5 km/hr to 40 km/hr. Sometimes, there are two records (collected
by the two sensor systems respectively) for the same run. In such a situation, we only used the
record collected by sensor system 1. The numbers of runs and records for each kind of vehicle in
the normal environmental condition are summarized in Table 2.1. An important fact from Table

2.1 is that there are only 89 runs in total for the normal environmental condition.

2.2 Prototype Generation

To fulfill the real-time requirements imposed by battlefield applications, a classifier needs to make
decisions using short intervals of acoustic data; hence, we segmented the runs into one-second
blocks, and treated one block (rather than an entire run) as one prototype.

Figure 2.1 shows the measurements of the first channel of one complete run. In the beginning
and ending parts of the run, the magnitude of the acoustic data is low and flat, which corresponds
to the moving vehicle being very far away from the sensor system. In the middle part of the record,
the magnitude of the acoustic data rapidly increases and then decreases; this corresponds to the
moving vehicle being closer to and then farther away from the sensor system. Clearly, the middle
part of the run has higher SNR, and contains more information about the vehicle than its beginning
and ending parts; hence, we should use this part to generate prototypes.

There are two ways to locate the middle part of a run. One is to first locate the CPA, and then
truncate a fixed interval of data about it. The other is not based on CPA information; instead,
we first estimate the background noise level from the beginning part of a run and then use an
energy test to determine which part of the run has high SNR. We call the prototypes generated
from the former method CPA-based prototypes, and those from the latter method non-CPA-based
prototypes. We use the CPA-based prototypes for training and testing classifiers, and the non-CPA-

based prototypes only for testing, because:

e CPA information is available during the design period of a classifier since each run is com-



pletely available to us. On the other hand, CPA information is not available during the
implementation period of a classifier if this classifier must make decisions before a ground

vehicle reaches its CPA.

e We can easily control the number of CPA-based prototypes for each run by adjusting the
length of the interval about the CPA.

e Non-CPA-based prototypes are more vulnerable to noise than are the CPA-based prototypes.

2.2.1 CPA-Based Prototype Generation

When we design our classifiers we want to use the same number of CPA-based prototypes for both
tracked and wheeled vehicles. However, in the ACIDS (see Table 2.1) the number of runs for the
tracked vehicles is approximately twice that for the wheeled vehicles. Consequently, if we used both
the same interval length and percentage of window overlap for both kinds of vehicles, then the total
number of CPA-based prototypes would not be the same for the tracked and wheeled vehicles. We
therefore used different percentages of window overlap so that for the same interval length about
the CPA the number of CPA-based prototypes would be the same for both tracked and wheeled
vehicles.

The method that we used to generate the CPA-based prototypes is:

1. The time, tg, where the acoustic data has its maximum magnitude was considered as the time

that a vehicle reaches its CPA.

2. Data blocks (prototypes), which have three channels, were generated from [to-25 sec, {0425
sec] by sliding a 1024-point (about 1 sec.) rectangular window (initially centered at tp), to
the right and to the left of to. For a tracked vehicle, the adjacent blocks had 50% overlap, and
only the middle 80 blocks were used for classifier designs. For a wheeled vehicle, the adjacent

blocks had 75% overlap, and only the middle 160 blocks were used for classifier designs.

In this way, the length of the interval to generate CPA-based prototypes is approximately the
same for the tracked and wheeled vehicles. The length of the data! used for a tracked run is:

1024+ (80 — 1) X (1 —50%) x 1024 = 41,472 data; and, the length of the interval used for a wheeled

'Let L be the window length, and L = 1024 for our acoustic data blocks. We used the first L data to generate
the first block; and, for the Q@ (0 < @ < 1) window overlap, we could then generate a new block whenever we had
(1 — Q) x L new data. So n adjacent data blocks corresponded to L + (n — 1) x (1 — Q) x L data.



run is 1024 + (160 — 1) x (1 — 75%) x 1024 = 41,728 data. The total number of tracked CPA-based
prototypes is (80 blocks/run)x (61 runs)=4,880 blocks, and the total number of wheeled CPA-based
prototypes is (160 blocks/run)x (28 runs)=4,480 blocks.

Because only the CPA-based prototypes were used for training classifiers, it is very important
that using different percentages of window overlap for the tracked and wheeled vehicles does not
affect our analysis about the FOUs of the features. We have demonstrated (in Appendix A) that
for the wheeled vehicles, the means and standard deviations of the features for the 75%-overlapped
CPA-based prototypes are approximately the same as those for the 50%-overlapped CPA-based
prototypes.

2.2.2 Non-CPA-Based Prototype Generation

The method used to generate the non-CPA-based prototypes is:

1. We calculated the energy of the first data block of a run, and used it as the background noise

level of this run.

2. If the energy of a succeeding data block is greater than the background noise level for a certain
threshold, then this data block was called a non-CPA-based prototype, and the classifier made

a decision on it; otherwise, the classifier was not activated by that data block.
The threshold that is used during the energy test was determined as follows:

1. We calculated the difference (i.e., energy difference) between the maximum data-block energy

and the minimum data-block energy in dB for all runs.

2. We calculated the average and standard deviation of the energy difference over all runs,
and then set the threshold? as (average energy difference—one standard deviation)/3, which

turned out to be approximately 8 dB.

The number of non-CPA-based prototypes varied from run-to-run. The average number is 93.6,

the minimum number is 13 for a W-a run, and the maximum number is 273 for a T-a run.

2The threshold was set after examining the energy distribution of all runs; hence, it depended on the whole data
set. The threshold cannot be too large, otherwise some runs may not have any non-CPA-based prototypes, nor can

it be too small, otherwise some runs may generate non-CPA-based prototypes from low SNR data.



2.3 Feature Extraction

In previous works [9], three feature spaces have been examined—spectral lines, harmonic line associ-
ation (HLA), and principal components. Spectral lines and HLA use the elements in the magnitude
spectrum of a data block. A spectral line vector consists of the magnitudes of all the frequency
components below 200 Hz, whereas an HLA vector is a subset of a spectral line vector, and consists
of the magnitudes of the 2nd through 12th harmonic frequency components3. Principal components
are obtained through a linear transformation of a data block, where the transformation function is
determined by principal component analysis [2].

The spectral line feature vector seems to preserve the most information contained in an entire
data block, but its high dimensionality is not suitable for FL-RBCs. The principal component
feature vector, although promising, does not directly correspond to any physical quantities, and
is more appropriate for representing a data block than for discriminating a data block [2]. In our
study, we only used the HLA feature vector (i.e., the magnitudes of the 2nd through 12th harmonic
frequency components) for vehicle classification.

Determining the fundamental frequency, fo, is crucial to extracting the features from a data
block. Only after fy is estimated can the harmonic frequency components be located and their
magnitudes be taken as features. The maximum-likelihood method was used in [4] to estimate fo.
This method is based on the assumptions that the acoustic emission of a ground vehicle can be well
modeled by a coupled harmonic signal model, and that fo for each run is initially known to within
a certain accuracy (e.g., roughly 0.5 Hz). The HLA algorithm was developed in [7] to estimate fo.
Compared to the maximum-likelihood method, the HLA method does not rely very strongly on
a mathematical model for the acoustic emission of a ground vehicle, and it requires less a priori
knowledge about fp.

The HLA algorithm, which we have used in our study for fy estimation and feature extraction,

is briefly reviewed as follows (note that there are three channels):
1. Take one data block, and set the channel index ¢ = 1.

2. The i-th channel of the data block is normalized so that the total energy of this channel is

unity.

3Exactly why this range of harmonics is used is unclear. Perhaps more of them, or fewer of them, are needed by

a FL-RBC to give acceptable performance. In this study, we did not address this interesting issue.



. The discrete Fourier transformation (DFT) is performed on the i-th channel, and only the

magnitude spectrum of the DFT is used for feature extraction.

. The real fy is assumed to be in the range (9 Hz, 18 Hz]. From the magnitude spectrum
of the i-th channel, we determined the frequency component associated with the maximum

magnitude, fi . This fi__is considered to be the k-th harmonic line so that fi, ./k can

be in the range (9 Hz, 18 Hz]. Clearly, ¥ may take multiple integer values. For example, if
fi . = 100 Hz, then k can be {6,...,10}. For each possible value of k, we have a potential

fundamental frequency fi(k) = fi../k-

. For each fi(k), the magnitudes of its 2nd through 12th harmonic lines are summed. We
compare the summed-magnitudes for all potential fundamental frequencies, and then deter-
mine one particular potential fundamental frequency f§(ki,..) = f& that is associated with the
maximum summed-magnitude. This f} is considered to be the fundamental frequency for the

i-th channel, and its summed-magnitude is saved.
. If ¢ is not the last channel, set i = ¢+ 1 and go to Step 2; otherwise go to Step 7.

. Among f} and their associated summed-magnitudes for all channels, the fj associated with
the maximum summed-magnitude is determined as the estimated fy for the specific data

block.

. After fg is determined, the magnitudes of the 2nd through 12th harmonic lines are averaged

over all three channels to get the feature vector for one data block.

Note that the initial range, (9 Hz, 18 Hz] was adapted from [9] where the range [8 Hz, 20 Hz]

was used. We chose (9 Hz, 18 Hz] to avoid one frequency in the range being an integer multiple

of another frequency in the range. Suppose, for example, that 9 Hz is the actual fundamental

frequency of a given data block, and from the magnitude spectrum of the i-th channel of this

data block we have located fi_ to be 90 Hz. If the range [8 Hz, 20 Hz] was used, then fi,,

could correspond to many potential fundamental frequencies, including 9 Hz and 18 Hz. Because

9 Hz is the actual fundamental frequency, the sum of the magnitudes, 3 ;2,Magnitude(9k), at the

second through 12th hamonics of 9 Hz is expected to be larger than the sum of the magnitudes

at the second through 12th hamonics of any other potential fundamental frequency. However,

because the harmonics of 18 Hz are simultaneously the harmonics of 9 Hz, it is very possible

that 342, Magnitude(9k) < S°i2,Magnitude(18k). This means that 18 Hz might be incorrectly

8



considered to be the fundamental frequency. Such errors can be avoided by using the range (9 Hz,

18 Hz).

2.4 Footprints of Uncertainties of the Features

The footprint of uncertainty is associated with a type-2 fuzzy set. A type-2 fuzzy set, A, is charac-

terized by a three dimensional MF, p+(z,u), as:
A ={((z,v), n5(2,v)) V= € X,Yu € J; C[0,1]} (2.1)

where z is a point in the universe of discourse X, u is a primary membership grade of z, (2, %)
is the secondary membership grade of (z,u), and J; is the union of all the primary membership
grades of z. The union of J, over all z € X corresponds to a bounded region in the z-u plane, and
is called the footprint of uncertainty (FOU) of A. The FOU provides a convenient way to describe
the uncertainties inherent in a type-2 fuzzy set. In practical applications of type-2 fuzzy sets, it is
very important to specify an appropriate FOU for it before specifying its specific MF [5].

Because only the CPA-based prototypes are used to train classifiers, our analysis about the
FOQOUs of the features focuses on the CPA-based prototypes. After feature extraction for each CPA-
based prototype, we calculated the run-means and run-standard-deviations of the features for each
run. Tables 2.2 and 2.3 summarize these statistics for one representative tracked and wheeled run.
We then plotted the distributions of the features, and calculated statistics of the features across
runs for each kind of vehicle. Figure 2.2 shows the distributions of the features for a representative
tracked and wheeled vehicle, and Tables 2.4 and 2.5 summarize the statistics across runs for these

two representative vehicles. Observe from Fig. 2.2 and Tables 2.4 and 2.5, that for each feature:

e The standard deviation of the run-means is not negligible when compared to the mean of the

run-means.

e The standard deviation of the run-standard-deviations is also not negligible when compared

to the mean of the run-standard-deviations.

e The standard deviation of the run-standard-deviations is of the same order of magnitude as

the standard deviation of the run-means.

These results establish that when we construate a FL-RBC, the MFs must be properly chosen

so as to account for the simultaneous variations in the run-means and run-standard-deviations of



the features. This led us to choose the MF for each antecedent to be a Gaussian primary MF
with an uncertain mean and an uncertain standard deviation, and the MF for each input to be a
Gaussian primary MF whose mean is located at the measured feature and whose standard deviation

is uncertain. Figure 2.3 shows the FOU of such type-2 fuzzy sets.

10



Table 2.1: Numbers of runs and records for each kind of vehicle in the normal environmental

condition.
Tracked Vehicle ‘Wheeled Vehicle
No. of No. of No. of No. of
Runs Records Runs Records
T-a (Vehicle 1) 15 22 W-a (Vehicle 3) 8 9
T-b (Vehicle 2) 8 12 W-b (Vehicle 5) 8 12
T-c (Vehicle 4) 15 15 W-c (Vehicle 6) 8 12
T-d (Vehicle 8) 15 17 W-d (Vehicle 7) 4 4
T-e (Vehicle 9) 8 12
Total 61 78 Total 28 37
Total No. of runs 89

Table 2.2: Means and standard deviations of the features (z;) for a representative tracked (T-c)

run.
Ty To Z3 T4 Ts Zg
mean 1.1268 1.1806 3.0424 1.3921 16.0297 1.6044
standard deviation | 0.3774 0.4922 1.7033 0.4068 3.1944 0.5201
Z7 T8 T9 10 T11
mean 1.5764 2.4929 0.8605 0.7485 1.0897
standard deviation | 1.0043 1.0172 0.2743 0.4269 0.4567

Table 2.3: Means and standard deviations of the features (z;) for a representative wheeled (W-b)

run.
Xy T2 Z3 T4 Ts Zg
mean 0.3191 3.4738 1.5670 2.7815 16.7137 0.9684
standard deviation | 0.2247 1.4316 0.7136 1.3797 2.6064 0.7316
T7 g 9 10 11
mean 0.5049 1.4842 0.5240 0.8240 2.2348
standard deviation | 1.3374 1.0310 0.3468 0.6037 2.0614
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Table 2.4: Statistics of the features (z;) for a representative tracked (T-c) vehicle (SD represents
standard deviation).
Statistics T 9 z3 T4 Ts T
mean of run-means | 0.4063 1.0699 3.8050 1.2316 11.0492 1.2041
mean of run-SDs 0.2054 0.5817 2.1879 1.4539 3.7128 0.5020
SD for run-means | 0.2714 0.7422 3.2831 0.5084 5.1150 0.2470
SD for run-SDs 0.1411 0.6966 2.1495 1.4467 1.3279 0.3111
Statistics 7 Zg To Z10 z11
mean of run-means | 2.6432 3.2985 1.1897 1.0100 2.8322
mean of run-SDs 1.4490 1.6748 0.7514 0.4725 1.8120
SD of run-means 1.5600 1.8537 0.2787 0.2551 1.1158
SD of run-SDs 1.1254 1.7061 0.4456 0.2763 1.3357

Table 2.5: Statistics of the features (z;) for a representative wheeled (W-b) vehicle (SD represents
standard deviation).
Statistics z1 Z9 Z3 T4 Ts Tg
mean of run-means | 0.3909 4.3311 1.0387 2.7465 15.0241 1.4667
mean of run-SDs 0.2587 2.0478 0.5006 1.4653 3.6137 1.0226
SD of run-means 0.0868 1.5129 0.3697 1.2053 3.5494 0.4948
SD of run-SDs 0.1050 0.7662 0.1382 0.6048 1.5683 0.3927
Statistics T7 g Tg Z10 11
mean of run-means | 0.5399 2.8427 0.5376 0.8914 1.2883
mean of run-SDs 0.5455 2.1736 0.6445 0.7047 1.2246
SD for run-means | 0.1495 1.3634 0.1115 0.5275 0.7647
SD for run-SDs 0.5144 0.8806 0.5531 0.4198 0.8272
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Figure 2.1: One channel of acoustic data from one run in the normal environmental condition. The
horizontal axis is the sample index.
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Figure 2.2: Feature distributions for a representative (a) tracked (T-c) and (b) wheeled (W-b)
vehicle. Each curve represents a feature distribution within one run, which is assumed to be
normal, and is plotted based on the run-mean and run-standard-deviation.
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Figure 2.3: FOU of type-2 fuzzy sets: (a) Gaussian primary MF with an uncertain mean and an
uncertain standard deviation; and (b) Gaussian primary MF with an uncertain standard deviation.
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Chapter 3

Classifier Designs

To evaluate the type-2 FL-RBC in a fair way, we compared its performance to two other classifiers,
namely a Bayesian classifier and a type-1 FL-RBC. In this chapter we provide the details about all

these classifiers.

3.1 Classifier Structures

3.1.1 Bayesian Classifier

For the Bayesian classifier, the features are considered to be random vectors that are assumed
to comply to some probability distribution models. Our Bayesian classifiers consisted of nine
probability models for the tracked vs. wheeled vehicle classification problem, five probability models
for the heavy-tracked vs. light-tracked vehicle classification problem, and four probability models
for the heavy-wheeled vs. light-wheeled vehicle classification problem. Each probability model

corresponds to one kind of vehicle, and is assumed to be described by a Gaussian pdf:

p(x|V) = exp [-(x - m) T (x - m)|, 1=1,...,M (3.1)

1
(2m) 1 det (X))
where V; represents the I-th kind of vehicle, x is an 11 x 1 feature vector, m; and X; are the mean
and covariance matrix for V}, and M is the number of probability models.
Given an unknown feature vector x/, the Bayesian classifier [2] first computes the log-likelihood

for each model, as:

11

5 log(27) — %log [det(Z)] — (x' — m)’E7(x’ —my), 1=1,...,M

(3.2)

L(x'|V}) = log p(x'|V}) =
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It then compares L(x'|V}) for all M models to determine Vi» = Vinax that is associated with the
maximum log-likelihood. Finally the unknown feature vector x’ is classified as the same kind of
vehicle as Vpay, i.e., for the tracked vs. wheeled vehicle classification problem, x’ is classified as
a tracked (or wheeled) vehicle if and only if Viax is for a tracked (or wheeled) vehicle; for the
heavy-tracked vs. light-tracked vehicle classification problem, x’ is classified as a heavy-tracked (or
light-tracked) vehicle if and only if Vj,ay is for a heavy-tracked (or light-tracked) vehicle; and, for the
heavy-wheeled and light-wheeled vehilce classification problem, x’ is classified as a heavy-wheeled

(or light wheeled) if and only if Vi  is for a heavy-wheeled (or light-wheeled) vehicle.

3.1.2 Type-1 FL-RBC

A type-1 FL-RBC is a type-1 FLS that is used for classification. Its rule base consisted of nine
rules for the tracked vs. wheeled vehicle classification problem, five rules for the heavy-tracked vs.
light-tracked vehicle classification problem, and four rules for the heavy-wheeled vs. light-wheeled
vehicle classification problem. Each rule corresponds to one kind of vehicle, and has the following

form:
Rl:Ifz,is F! and ... and zq; is F!,, then y is ¢
1 1 11

where R’l denotes the type-1 FL rule for the I-th kind of vehicle, x = [z,,... ,:vll]t are the features,
their corresponding antecedents F} (k = 1,...,11) are type-1 fuzzy sets with MFs KEL (zk), and
the consequent ¢’ is a crisp number that in the tracked vs. wheeled vehicle classification problem is
positive for tracked vehicles and negative for wheeled vehicles, in the heavy-tracked vs. light-tracked
vehicle classification problem is positive for heavy-tracked vehicles and negative for light-tracked
vehicles, and in the heavy-wheeled vs. light-wheeled vehicle classification problem is positive for
heavy-wheeled vehicles and negative for light-wheeled vehicles.

Given an unknown feature vector x’ = [z},...,z{;]}, the type-1 FL-RBC first encodes each z},
(k = 1,...,11) as a type-1 fuzzy set X; with MF px, (zx). It then computes the firing degree,

f1(x"), for each rule [5], as:

T

fl(xl) = [Slllpﬂxl (zl)ﬂp‘l(fb‘l)] XX [S;i?llxu (xll)#p{l(wll)] (33)

and combines the rules through defuzzification to obtain the output y(x’) as:

n_ Z{‘/:[I fl(xl)gl
YY) = ey @4
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where M represents the number of rules. The decision on the unknown feature vector x’ depends
on the sign? of y(x'), i.e. for the tracked vs. wheeled vehicle classification problem, x’ is classified
as a tracked (or wheeled) vehicle if and only if y(x’) is positive (or negative); for the heavy-tracked
vs. light-tracked vehicle classification problem, x’ is classified as a heavy-tracked (or light-tracked)
vehicle if and only if y(x) is positive (or negative); and, in the heavy-wheeled and light-wheeled
vehicle classification problem, x’ is classified as a heavy-wheeled (or light-wheeled) vehicle if and
only if y(x’) is positive (or negative).

We chose each antecedent MF, u F! (zx), as a Gaussian with mean m!, and standard deviation
o!, and each measurement MF, ux, (zx), as a Gaussian centered at the measured feature z/, with a
standard deviation o;. Hence, our type-1 FL-RBC is characterized by the following design param-
eters: m} (11 antecedents/rulexM rules = 11M parameters), o} (11 antecedents/rulexM rules
= 11M parameters), g’ (1 consequent/rulex M rules = M parameters), and o) (11 measurement

parameters), for a total of (23M + 11) parameters.

3.1.3 Type-2 FL-RBC

The type-2 FL-RBC we chose to use is an interval type-2 FLS that is used for classification. This
is a type-2 FLS whose type-2 fuzzy sets are interval sets. As in the case of a type-1 FL-RBC,
its rule base consisted of nine rules for the tracked vs. wheeled vehicle classification problem, five
rules for the heavy-tracked vs. light-tracked vehicle classification problem, and four rules for the
heavy-wheeled vs. light-wheeled vehicle classification problem. Each rule corresponds to one kind

of vehicle, and has the following form:
Rh: Iz is F and ... and F}}, then y is ¢'

where R} denotes the interval type-2 FL rule for the i-th kind of vehicle, x = [zy,... ,z11)" are
the features, their corresponding antecedents F‘,’c (k=1,...,11) are interval type-2 fuzzy sets with
lower and upper MF's L (zx) and 'E?,ﬁ (zx) respectively, and the consequent ¢! is a crisp number
that in the tracked vs. wheeled vehicle classification problem is positive for tracked vehicles and
negative for wheeled vehicles, in the heavy-tracked vs. light-tracked vehicle classification problem is
positive for heavy-tracked vehicles and negative for light-tracked vehicles, and in the heavy-wheeled

vs. light-wheeled vehicle classification problem is positive for heavy-wheeled vehicles and negative

4We could also use the unnormalized output of the FLS for the decision, because E,’: , F1(x") does not affect the

sign of y(x').
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for light-wheeled vehicles. Note that the structure of a rule is the same for type-1 and type-2
FL-RBCs. It is the way in which the antecedents and measurements are modeled that is different.

Given an unknown feature vector x’ = [z],...,2},]}, the type-2 FL-RBC first encodes each
z; (k =1,...,11) as an interval type-2 fuzzy set X with lower and upper MFs Lz, (zk) and
A%, (zk), respectively. It then computes the lower and upper firing degrees, f(x’) and Tl(x'), for
each rule [5], as:

il(xl) = [s;.llpﬁix (ml)gﬁ{ (:cl)] X .. X [supﬂfu(x“)&ﬁ,l (:1:11)] (3.5)

Ti1

“f’(x’) = [supﬁ}'(«1 (a:l)ﬁf;,, (2:1)] X ... X [i‘i?ﬁfu(zu)ﬁfh (mu)] (3.6)

T

and combines the rules through type-reduction [5] to obtain a type-reduced set [y;(x'), y(x')], where

LT+ M fx)g

wn(x) = = (3.7)
T () + Tl ()
—l
y () = SR g + T py T (X)d! (3.8)
r - _1 .
Z{il il(x') + Z{ZRH fx)
in which M represents the number of rules, R, (I = 1,..., M) are re-ordered such that g! <

...< gM, and, L and R are each determined using the Karnik-Mendel iterative procedures® [5].
Finally, the type-2 FL-RBC defuzzifies the type-reduced set to get an output [y(x’) + y-(x')]/ 2.
The decision of the type-2 FL-RBC about the unknown feature vector x’ depends on the sign of
[w(x") + yr(x')]/ 2, i.e. for the tracked vs. wheeled vehicle classification problem, x’ is classified
as a tracked (or wheeled) vehicle if and only if [y(x") + y-(x)]/ 2 is positive (or negative); for the
heavy-tracked vs. light-tracked vehicle classification problem, x’ is classified as a heavy-tracked
(or light-tracked) vehicle if and only if [yi(x’) + y-(x')]/2 is positive (or negative); and for the
heavy-wheeled vs. light-wheeled vehicle classification problem, x’ is classified as a heavy-tracked
(or light-tracked) vehicle if and only if [y (x’) + y-(x")]/ 2 is positive (or negative).

As we stated in Section 2.4, the MF's for the type-2 FL-RBC must be properly chosen so as to
capture the variations in the run-means and run-standard-deviations of the features. Consequently,
we chose the MF for each ﬁ,ﬂ to be a Gaussian primary MF with an uncertain mean, mfc €
[mi,k, mé,k], and an uncertain standard deviation, a,’c € [ai,k, ag’k], and the MF for each X to be
a Gaussian primary MF where the mean is located at the measured feature zj, but the standard

deviation is uncertain, i.e. ox € [01k,024). Hence, our type-2 FL-RBC is characterized by the

5These procedures require at most M iterations.
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following design parameters: m’llk and m’z'k (2x11 antecedents/rulex M rules = 22M parameters),
a{,k and aé'k (2x11 antecedents/rulex M rules = 22M parameters), g’ (1 consequent/rulex M rules
= M parameters), and 0, and 034 (2x11 measurement parameters = 22 parameters), for a total

of (45M+22) parameters.

3.2 Classifier Initializations and Optimizations

3.2.1 Bayesian Classifier

The parameters m; and £,/ = 1,..., M (M is the number of vehicles in each classification problem,
i.e. M =9 for tracked vs. wheeled vehicle classification, M = 5 for heavy-tracked vs. light-tracked
vehicle classification, and M = 4 for heavy-wheeled vs. light-wheeled vehicle classification) for each

probability model of the Bayesian classifier are estimated from the training prototypes as [2):

m = % X; (3.9)
liev
1 ¢
Y = x; — my) (X; — m 3.10
! N1 162‘;‘ ( ) ( ) (3.10)

where V; denotes the I-th kind of vehicle, N; represents the number of training prototypes for V;
(e.g., in the leave-one-out experiment, if all runs of the tracked vehicle T-a are used for training, then
the N, associated with T-a is 80 prototypes/runx15 runs = 1200 prototypes; or if all runs of the
wheeled vehicle W-a are used for training, then the N; associated with W-a is 160 prototypes/runx8
runs = 1280 prototypes), and x; is the feature vector of a training prototype.

Note that each m; is an 11 x 1 vector, each ¥; is an 11 X 11 matrix, and these quantities
vary because the training prototypes are different from design to design. So, we do not show their
values. Those who are interested can repeat our experiments and obtain these values by following
our methodology.

Once the parameters of the Bayesian classifier are estimated, they are fixed and are not further

optimized using the training prototypes.
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3.2.2 Type-1 FL-RBC

The MF parameters of the type-1 FL-RBC are initialized as (I =1,...,M):

l = L X s
m(0) = Nuez;, ki (3.11)
[Ullc(o)]z = Wl—_l [xk.i - 7715;(0)]2 (3.12)
i€V,
1 ¥,
ok(0) = 77 > 9k(0) (3.13)
=1

where V] denotes the [-th kind of vehicle, N; is the number of training prototypes for V, and xi; is
the k-th element of the feature vector x;. For the tracked vs. wheeled vehicle classification problem,
the consequent parameters are initialized as g'(0) = 1 if V} is a tracked vehicle, or as ¢g'(0) = —1 if
Vi is a wheeled vehicle; for the heavy-tracked vs. light-tracked vehicle classification problem, the
consequent parameters are initialized as g/(0) = 1if V} is a heavy-tracked vehicle, or as g'(0) = —1if
V, is a light-tracked vehicle; and, for the heavy-wheeled vs. light-wheeled classification problem, the
consequent parameters are initialized as g'(0) = 1if V] is a heavy-wheeled vehicle, or as ¢'(0) = -1
if V; is a light-wheeled vehicle.

The classifier’s (23M + 11) design parameters are optimized using a steepest-descent algorithm
to minimize the following objective function:

N
J1(61) = Y [va(é) — y (xil61))? (3.14)

i=1

where 6; represents the parameters of the type-1 FL-RBC to be tuned, N is the total number of
training prototypes®, y4(¢) is the desired classification result for the i-th training prototype (in the
tracked vs. wheeled vehicle classification problem, y4(¢) is +1 for a tracked prototype and —1 for
a wheeled prototype; in the heavy-tracked vs. light-tracked vehicle classification problem, it is +1
for a heavy-tracked prototype and —1 for a light-tracked prototype; and, in the heavy-wheeled vs.
light-wheeled vehicle classifiction problem, it is +1 for a heavy-wheeled prototype and —1 for a
light-wheeled prototype), and y(x;|6;) is the output given by the type-1 FL-RBC. Let 6;(j) be
the parameters in the j-th epoch (one epoch corresponds to a single presentation of all training

protototypes [2]), then 6,(j + 1) is determined as:

0 +1) = 0,) - lap()) ) (3.19)

01(5)

SN = Ny +...+ Nu, where N; is the number of training prototypes for Vi. If V} is a tracked vehicle, then N; = 80

prototypes/runx number of training runs of Vi; if V; is a wheeled vehicle, then N; = 160 prototypes/runx number

of training runs of V;. See Table 2.1 for the number of training runs for each kind of vehicle.
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where

) number of incorrectly classified testing prototypes
p(4) = (3.16)
total number of testing prototypes

is the false alarm rate (FAR) calculated using both 8;(j) and the testing prototypes,0 < a < lisa
constant so that [ap(f)] is the step-size for tuning. The specific formulas for the partial derivative

dJ1(6,)/ 86, are given in (6-30)-(6-33) of [5].
3.2.3 Partially Dependent Initialization and Optimization for the Type-2 FL-
RBC

The (45M +22) design parameters of the type-2 FL-RBC are not directly initialized on the training
prototypes. Instead, they are initialized using the type-1 FL-RBC that has just been optimized, as

follows:
ok1(0) = (1 = 7)ok ok2(0) = (1 + 7)ok (3.17)
751(0) = (1 = 7)o}, 012(0) = (1 + 7)o} (3.18)
mky (0) = mj, — yol, mi(0) = m}, + yo} (3.19)
g'(0) =g (3.20)

where v € [0,1] (we chose v = 0.25 in our experiments). The parameters on the left-hand sides of
these equations are the initial values for the type-2 FL-RBC, whereas those on the right-hand sides
are the parameters of the type-1 FL-RBC that has just been optimized.

By this kind of initialization, we are using our optimized type-1 FL-RBC parameters to start off
the designs of our type-2 FL-RBC parameters, which is why we refer to it as a partially-dependent
initialization.

The design parameters of the type-2 FL-RBC are then optimized using a steepest descent
algorithm to minimize the following objective function:

N

1 2
12(62) = Y- {waC) = 5 i) + v i) (3.21)

i=1
where 0, represents all the parameters of the type-2 FL-RBC that are tuned, y;(x;|02) and y,(x|02)
are the left and right end-points of the type-reduced set so that [y;(x;|02) +y-(xi|62)]/2 is the output
given by the type-2 FL-RBC, and, N and yg(x;) are the same as in (3.14). The tuning procedure
used for the type-2 FL-RBC is the same as the one used for the type-1 FL-RBC in (3.15), except
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that p(j) now represents the FAR of the type-2 FL-RBC calculated using 82(j) and the testing
prototypes, and J;(#;) and 6, are replaced by J2(62) and 6;, respectively (a general method to
determine 8J,(62)/ 88, is given on p.p. 406-408 of [5]).

3.3 Non-Adaptive and Adaptive Working Modes

So far, the working modes of all three classifiers are non-adaptive, i.e., the decision of one prototype
is independent of the decisions of other prototypes. The objective functions (3.14) and (3.21), and
the FAR p(j) used in (3.15) are all for this non-adaptive working mode, which means that the
type-1 and type-2 FL-RBCs are tuned to optimize their non-adaptive performance.

The classifiers can also operate in a real-time adaptive mode, i.e., make decisions based on all
data as it becomes available. The adaptive working mode can be implemented in different ways.
The implementation method we have chosen involves voting. The classifier first makes a non-
adaptive decision for the present prototype, and then votes using the non-adaptive decisions that
are available for the present and all previous prototypes. For instance, in the tracked vs. wheeled
vehicle classification problem, if the number of non-adaptive decisions for the tracked vehicle is
greater (or smaller) than that for the wheeled vehicle, then the present prototype is classified as a
tracked (or wheeled) vehicle; if the number of non-adaptive decisions for the tracked and wheeled
vehicles are equal, then the classifier does not make a final decision until the next prototype is
presented. Block diagrams for both the non-adaptive and adaptive working modes are shown in
Figure 3.1.

The basic idea behind the adaptive working mode of a classifier is the same as in decision
fusion [3], namely to combine multiple decisions in order to achieve a more accurate decision.
Because a fusion process may produce worse results in some cases, it is only under certain conditions

that the adaptive performance of a classifier is superior to its non-adaptive performance.

Theorem 1 Let p be the FAR of a classifier for its non-adaptive mode, i.e., the probability that
a prototype is incorrectly classified is p. If p < 0.5, then the FAR of the classifier for its adaptive

mode will be smaller than p after ng(p), which is determined from Figure B.2.

The proof is presented in Appendix B.
According to Theorem 1, a sufficient condition for a classifier to have good performance for its

adaptive mode is good performance for its non-adaptive mode. So, the type-1 and type-2 FL-RBCs
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are tuned during the design period to optimize their performance for the non-adaptive mode, and
are then tested for both the non-adaptive and adaptive modes. We examine this kind of processing

in Chapter 4.
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Figure 3.1: Working modes of classifiers: (a) non-adaptive and (b) adaptive.
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Chapter 4

Experiments and Results

We evaluated the three classifiers using two groups of experiments, which we call leave-one-out [2]
and leave-M-out (M is the number of vehicles, i.e., M = 9 for the tracked vs. wheeled vehicle
classification, M = 5 for the heavy-tracked vs. light-tracked vehicle classification, and M = 4 for
the heavy-wheeled vs. light-wheeled vehicle classification) experiments. These experiments were

different in the way that the runs were divided into the training and testing runs.

4.1 Leave-One-Out Experiment

The leave-one-out experiment consisted of as many designs as the number of runs (see Table 2.1,
from which it is clear that there can be 89 designs for the tracked vs. wheeled vehicle classification,
61 designs for the heavy-tracked vs. light-tracked vehicle classification, and 28 designs for the
heavy-wheeled vs. light-wheeled vehicle classification). In the i-th design, the i-th run was the
testing run, and all the other runs were the training runs. How the training and testing runs were

used and how the classifier operated are summarized in Table 4.1. Note that:

e The experiments corresponding to the CN-CN configuration were completely separate from

those corresponding to the CN-NN-NA configuration.

e For both configurations, each classifier was designed in its non-adaptive mode, and the design
procedure consisted of the training and testing periods. The training runs were used to
estimate or optimize parameters of classifiers; whereas, the testing runs were used for cross-

validation [2], and to determine when to stop training.
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e The additional adaptive testing in the CN-NN-NA configuration was not performed during
the design procedure, but was carried out after the design procedure. The additional testing
was performed in order to examine the adaptive mode of a classifier that had just been

designed.

For the CN-CN configuration, the performance of a classifier in the i-th design was characterized
by its FAR, p;, for the testing; whereas, for the CN-NN-NA configuration, the performance of a
classifier in the i-th design was characterized by its FARs, p; and p?, for both the testing and

additional testing. In each design:

e The parameters of the Bayesian classifier were estimated based on the training prototypes,
using (3.9) and (3.10). For the CN-CN configuration, this classifier was then tested for its
non-adaptive mode (p;). For the CN-NN-NA configuration, this classifier was tested for both

its non-adaptive (p;) and adaptive (p?) modes.

e The parameters of the type-1 FL-RBC were first initialized based on the training prototypes,
using (3.11)-(3.13). For the CN-CN configuration, this classifier was tuned and tested for
150 epochs to achieve its best performance (p;) on the testing prototypes. For the CN-NN-
NA configuration, this classifier was also tuned and tested for 150 epochs to achieve its best

performance (p;) on the testing prototypes, and an additional test (pf) was then performed.

e The parameters of the type-2 FL-RBC were first initialized based on its just-optimized corre-
sponding type-1 design, using (3.17)-(3.20). For the CN-CN configuration, this classifier was
tuned and tested for 150 epochs to achieve its best performance (p;) on the testing prototypes.
For the CN-NN-NA configuration, this classifier was also tuned and tested for 150 epochs to
achieve its best performance (p;) on the testing prototypes, and an additional test (p¢) was

then performed.

After all designs were completed, the average and standard deviation of p; (and of p{ when the
testing prototypes are non-CPA-based) were calculated. These results are shown in Tables 4.2

and 4.3. Observe that for all three binary classification problems:

e For both the CPA-based and non-CPA-based testing prototypes (Table 4.2 and the first part
of Table 4.3), the non-adaptive performance of the type-1 and type-2 FL-RBCs are much

better than that of the Bayesian classifier; and the non-adaptive performance of the type-2
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FL-RBC is better than that of the type-1 FL-RBC. This means that the type-2 FL-RBC is

the best of the three classifiers for the non-adaptive working mode.

e For the non-CPA-based testing prototypes (Table 4.3), the adaptive performance of each

classifier is better than its non-adaptive performance. This is consistent with Theorem 1.

o For the non-CPA-based testing prototypes (the second part of Table 4.3), the adaptive per-
formances of the type-1 and type-2 FL-RBCs are much better than that of the Bayesian
classifier; and the adaptive performance of the type-2 FL-RBC is better than that of the
type-1 FL-RBC. This means that the type-2 FL-RBC is the best of the three classifiers for

the adaptive working mode.

e In most cases the performance of the type-2 FL-RBC is more than 50% better than that of
the type-1 FL-RBC, but the performance of the latter is already so good that the greater

than 50% improvement may not be so significant.

4.2 Leave-M-Out Experiment and Bootstrap Estimation

In each design of the leave-M-out experiment, one run of each kind of vehicle was left out as a
testing run (see Table 2.1, from which it is clear that there were nine kinds of vehicles in the
tracked vs. wheeled classification, five kinds of vehicles in the heavy-tracked vs. light-tracked
classification, and four kinds of vehicles in the heavy-wheeled vs. light-wheeled classification), and
all the other runs were the training runs. How the training and testing runs were used and how the
classifier operated are summarized in Table 4.1. For the CN-CN configuration, the performance
of a classifier in each design was characterized by its FAR, p;, for the testing; whereas, for the
CN-NN-NA configuration, the performance of a classifier in each design was characterized by its
FARs, p; and p?, for both the testing and additional testing.

There should be as many designs as the total number of different combinations of testing runs,
which, according to Table 2.1, is 153 x 8% x 4 = 442, 368, 000 designs for the tracked vs. wheeled
vehicle classification, 15° x 82 = 216,000 designs for the heavy-tracked vs. light-tracked vehicle
classification, and 8% x 4 = 2,048 for the heavy-wheeled vs. light-wheeled classification. For
each classification problem, we only experimented on 100 such combinations of testing runs (i.e.,
performed 100 designs). We then computed the average FARs of these 100 combinations, pave Of

{p1,-..,p100} and P2, of {p%,...,Ple0}, 5O as to estimate the mean FARs of each classifier (for
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both the non-adaptive and adaptive working modes), and finally used the bootstrap method [6][12]
to calculate the 95% confidence intervals for psve and p3,..

In each design,

e The parameters of the Bayesian classifier were estimated based on the training prototypes,
using (3.9) and (3.10). For the CN-CN configuration, this classifier was then tested for its
non-adaptive mode (p;). For the CN-CN-NA configuration, this classifier was tested for both

its non-adaptive (p;) and adaptive (pf) modes.

e The parameters of the type-1 FL-RBC were first initialized based on the training prototypes,
using (3.11)-(3.13). For the CN-CN configuration, this classifier was tuned and tested for 500
epochs, so as to achieve its best performance (p;) on the testing prototypes. For the CN-NN-
NA configuration, this classifier was tuned and tested for 500 epochs, so as to achieve its best

performance (p;) on the testing prototypes, and an additional test (p?) was then performed.

e The parameters of the type-2 FL-RBC were first initialized based on its just-optimized cor-
responding type-1 design, using (3.17)-(3.20). For the CN-CN configuration, this classifier
was tuned and tested for 500 epochs, so as to achieve its best performance (p;) on the testing
prototypes. For the CN-NN-NA configuration, this classifier was tuned and tested for 500
epochs, so as to achieve its best performance (p;) on the testing prototypes, and an additional

test (pf) was then performed.

The bootstrap method is now widely used to calculate confidence intervals for estimates of
unknown parameters of a random process when standard methods cannot be applied, e.g., when the
number of observations is small. When the estimator for a parameter is a linear (or almost linear)
statistic, then it is well-known that the confidence interval provided by the bootstrap method is
reliable if this statistic is asymptotically normal [6][12]. In our case, the non-adaptive and adaptive
FARs corresponding to different combinations of testing runs, {p1,p,...} and {p,p3,...} can
each be considered to be independent and identically distributed random variables with finite
means and standard deviations (within the interval [0,1]), respectively. According to the Central
Limit Theorem [1], the linear statistics psve and p%,, are asymptotically normal, which means that
the bootstrap method can therefore provide reliable confidence intervals for pgye and p3,.-

The bootstrap method that we used to estimate the 95% confidence intervals for pgye and p5,.
was adapted from Table 2 of [12]). For illustrative purposes, we only describe this procedure for

Pave as follows (for p2,. all p; should be replaced by the corresponding pf):
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1. Calculate the average Pave of {p1,--+> D100} -

2. Estimate the standard deviation &p of {P1,--+» proo} USING another bootstrap procedure that

is described below.
3. Draw a random sample of size 100, {p},. - ,Dloo}s With replacement from {p1,.-- , P100}-

4. For the resampled set {pt,--- ,Ploo}, calculate the sample average, Paves and estimate its

standard deviation (using the bootstrap procedure described below), 5. Then calculate

ilx — ﬁ;ve - ﬁave (41)

r Ak
Op

5. Repeat steps 3 and 4 2000 times, to obtain gy, .. y b 2000°

6. Sort ff .-+ ftr 2000 tO obtain A7 ;) < ... £ 7 (2000) where fif (1) is the k-th smallest value

o .
of {l‘r,n v ’Nr,zooo}-

7. Let ¢y =50and g2 = 1951, then [ﬁa,,e - 6,,;1‘;’((11), Pave — &pﬂ:’(m] is a 95% confidence interval
for Pave (note that 92.5% of 2000 is 50).

The following bootstrap procedure to estimate &, and &, is separate from the procedure used to
compute the 95% confidence interval of Pave, and is adapted from Table 5 of [12] (for Pgre all p;
should be replaced by the corresponding p; ¢):

1. Draw a random sample of size 100, {p}, ..., Pioo}, with replacement from {p1,- .-, P00} (or

from {p},... ,Pioo} for 63)-

2. Calculate the sample average, P}, for the resampled set {p,..., Ploot-

3. Repeat ste i P .
p ps 1 and 2 200 times, to obtain fieq,--- Phve.200-

4. 6, (or }) is calculated as

. 1 200 200 2
Op = _
200 -1 ; ( oves ~ 309 Z mﬂ) 43

Our b
ootstrap results are shown in Tables 4.4 and 4.5.
classification problems: Obsene t

hat for a] three bjﬂd[)'
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e For the CPA-based testing prototypes (Table 4.4}, the non-adaptive performance of the type-2
FL-RBC is always close to and slightly better than that of the type-1 FL-RBC, and is better

than that of the Bayesian classifier.

e For the non-CPA-based testing prototypes (the first part of Table 4.5), the non-adaptive
performance of the type-2 FL-RBC is always close to that of the type-1 FL-RBC, and is
better than that of the Bayesian classifier (the type-2 FL-RBC is slightly better than the
type-1 FL-RBC for the tracked vs. wheeled vehicle and heavy-wheeled vs. light-wheeled
vehicle classification problems, but is slightly worse than the type-1 FL-RBC for the heavy-

tracked vs. light-tracked vehicle classification problem).

o For the non-CPA-based testing prototypes (Table 4.5), the adaptive performance of each
classifier is always better than its non-adaptive performance. This is consistent with our

analysis in Section 3.3, in Theorem 1.

e For the non-CPA-based testing prototypes (the second part of Table 4.5), the adaptive perfor-
mance of the type-2 FL-RBC is always close to that of the type-1 FL-RBC, and is better than
that of the Bayesian classifier (the type-2 FL-RBC is slightly better than the type-1 FL-RBC
for the tracked vs. wheeled vehicle and heavy-tracked vs. light-tracked vehicle classification
problems, but slightly worse than the type-1 FL-RBC for the heavy-wheeled vs. light-wheeled

vehicle classification problem).

4.3 Performance Evaluation

Comparing Tables 4.2 and 4.4, and 4.3 and 4.5, we observe that the performance estimated for
each classifier from the leave-one-out and leave-M-out experiments are quite different. Because
the adaptive working mode is related to the non-adaptive working mode, and it is very difficult to
establish a probability model for the adaptive working mode, we only explain the difference for the
non-adaptive working mode. The performance differences can be explained from two viewpoints,

the number of testing prototypes and the number of training prototypes.

4.3.1 The Number of Testing Prototypes and the Upper Bound of FAR

In both the leave-one-out and leave-M-out experiments, the non-adaptive performance of each

classifier is characterized by its FAR, which is the ratio of the number of incorrectly classified
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testing prototypes to the total number of testing prototypes. Note that the FAR calculated in this
way is only a statistic of the testing prototypes and is therefore random, and is related to (but not
equal to) the real FAR of a classifier.

Let p be the real but unknown FAR of a classifier in the non-adaptive working mode, and
assume that it is uniformly distributed over [0,1]. Assume, also, that the testing prototypes are
independently and identically distributed, with probability p to be incorrectly classified, and prob-
ability 1 — p to be correctly classified. Let n be the total number of testing prototypes, and k be
the number of incorrectly classified testing prototypes. Then the probability that k out of n testing

prototypes are incorrectly classified complies to the Binomial distribution, i.e.
ook (n—k)
Pr(k|p) = L (1-p) (4.3)

We obtained n and k from experiments, and wanted to estimate p from them. It is well-known

that the maximum-likelihood estimate, p, of p is [1]:

k

p=_ (4.4)

and that this maximum-likelihood estimate is consistent, which means that p is more reliable as
n becomes larger. Since the number of testing prototypes is different” for the leave-one-out and
leave-M-out experiment, the estimate of p from these two experiments should be different. It is
unfair to just compare p of these two experiments to see whether they are consistent, and which
estimate to use. We need also consider the effect of n on p. So, we used the 95%-confidence upper
bound of p, which is a function of both n and p, to compare the results of the leave-one-out and
leave-M-out experiments.

Our goal is to find a small amount, 8, which is a function of n and p, so that p + ¢ is an upper

bound of the real p with 95% confidence, i.e.
Pr(p<p+6|k) >0.95 (4.5)

where 0.95 represents the 95% confidence. The method that we used to derive the upper bound

"For example, for the tracked vs. wheeled vehicle classification problem, for the CN-CN configuration where
the testing prototypes are CPA-based (see Section 2.2.1), the number of testing prototypes for the leave-one-out
experiment is either 80 (when a tracked run is left out) or 160 (when a wheeled run is left-out), and the number of
testing prototypes for the leave- M-out experiment is 80 X 5 + 160 x 4 = 1040 (80 for each left-out tracked run and
160 for each left-out wheeled run)
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P+ 6 is adapted from p.p. 484-485 of [2].

Pr(p < p+6Jk) > 0.95

4+
= / Pr (p|k) dp > 0.95
0

#+5 Pr (k|p) Pr(p)
Pr(klp) Pr(p) , o
./0 Pr(k) dp 2 0.95

w5 [ n .

= pr(1L- P)(n_k)dp 2 0.95/ (1 - p)(n—k)dp
0 k o k

p+s

= /0 P(1—p)" *dp > 0.95B(k +1,n — k + 1) (46)

where B(-,-) is the beta function [1], and we have assumed p is uniformly distributed so that the
probability density function of p is 1 in the interval [0,1]. We need to solve (4.6) for d, but there
is no closed-form solution of (4.6) for §. Numerical solutions of p + é are shown in Fig. 4.1 as a
function of p, for n = 80, 160, 1040 and ¢ = 0.05. Observe that for a given j the upper bound p 44
decreases as n increases, which means that the upper bound for the real FAR is tighter when the
number of testing prototypes is larger.

The upper bounds of the non-adaptive FARs for the leave-one-out and leave- M-out experiments
(which are determined from Fig. 4.1), based on § and the number of testing prototypes for the CN-
CN configuration (or the average number of testing prototypes for the CN-NN-NA configuration),
are shown in Tables 4.6 and 4.7. For each configuration, we compared the two p of a classifier (one
from the leave-one-out expriment, and the other from the leave-M-out experiment), and also its
two p+ 8. For example, in Table 4.6, focusing on the tracked vs. wheeled vehicle classification, the
two p of the type-1 FL-RBC are 0.7614% and 9.8596%, which means that the p of the leave-M-
out experiment is approximately 13 times the p of the leave-one-out experiment; whereas, the two
P+ & of this type-1 FL-RBC are 5.1845% (or 3.2536%) and 11.5904% which means that the p+ 4
of the leave-M-out experiment is approximately three (or four) times the p + & of the leave-one-
out experiment. We find, therefore, that for each configuration and each classifier, the difference
between the upper bounds, p+ &, of the leave-one-out and leave-M-out experiments is smaller than
the difference between their two $. This means that it is better to use the upper bound of the FAR

to estimate the performance of a classifier.

33



4.3.2 The Number of Training Prototypes

In order to tune the parameters of a classifier well, we always require that the number of training
prototypes be larger than the number of tuned classifier parameters. For both the leave-one-out
and leave-M-out experiments, when the prototypes generated from different runs are assumed to be
independent and identically distributed, the number of training prototypes is always much larger
than the number of classifier parameters, and it is always an over-determined problem to specify the
parameters of a classifier. Consequently, the classifiers obtained from these two experiments should
have similar performances. However, the prototypes generated from one run cannot be assumed to
comply exactly to the same distribution of the prototypes generated from another run (see Section
2.4 that the run-mean and run-standard-deviation vary from run to run, even for the same kind of
vehicle). Given two training prototypes, if they are generated from the same run, then their impact
on the classifier parameters are similar; whereas, if they are generated from different runs, then
their impact on the classifier parameters can be quite different, so that the generalization property
of the classifier for the latter case may be better than for the former case. This means that it is the
number of training runs, rather than the number of training prototypes, that has the greater impact
on the training of classifiers. The percentage of runs used for training is shown in Table 4.8, where,
for instance, for the tracked vs. wheeled classification, 88 runs of 89 runs were used for training
in the leave-one-out experiment, and 80 runs of 89 runs were used for training in the leave-M-out
experiment. Observe that the difference between the two percentages is about 10%. When the total
number of runs is not large, each training run has great influence on the parameter optimization,
and the difference between training runs may affect our evaluation of classifiers greatly.

We therefore advocate the leave-one-out method in our study about the binary classification
of ground vehicles, because in this way we can make use of most of the data for optimizing the

classifier parameters, as well as have data for cross-validation.
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Table 4.1: Summary of training, testing and

M-out experiments.
Configuration® | Training

working modes used in the leave-one-out and leave-

Testing Additional Testing

CN-CN CPA-based &
non-adaptive

CPA-based &
non-adaptive (p;)

CN-NN-NA CPA-based &
non-adaptive

non-CPA-based &  non-CPA-based &
non-adaptive (p;) adaptive (p?)

8The first two letters represent the prototypes (C for CPA-based, and N for non-CPA-based) and the working
mode (N for non-adaptive, and A for adaptive) used during training, the second two letters represent the
prototypes and the working mode used during testing, and the last two letters (if they exist) represent the
prototypes and the working mode during the additional testing.

Table 4.2: The average and standard deviation (SD) of p; for the CN-CN configuration of the

leave-one-out experiment.

Classification Bayesian Type-1 Type-2
Problem Measure | Classifier FL-RBC FL-RBC
tracked vs. Average | 12.5421% 0.7614%  0.3252%

wheeled SD 0.184408  0.020574  0.011420
heavy-tracked vs. | Average | 6.8648%  1.2008%  0.2725%
light-tracked SD 0.132967  0.056824  0.019903
heavy-wheeled vs. | Average | 7.4554%  0.4018%  0.0759%
light-wheeled SD 0.138181 0.009659  0.005359
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Table 4.3: The average and standard deviation (SD) of p; and p¢ for the CN-NN-NA configuration

of the leave-one-out experiment.

Non-Adaptive Working Mode (p;)

Classification Bayesian Type-1 Type-2
Problem Measure | Classifier FL-RBC FL-RBC
tracked vs. Average | 23.1104% 1.0721%  0.6961%

wheeled SD 0.128409  0.023463  0.019730

heavy-tracked vs. | Average | 15.0932%  0.8056%  0.3757%

light-tracked SD 0.185691 0.028269 0.016577

heavy-wheeled vs. | Average | 22.8095% 1.6276%  0.2782%

light-wheeled SD 0.187344  0.033729  0.015892
Adaptive Working Mode (p?)

Classification Bayesian Type-1 Type-2
Problem Measure | Classifier FL-RBC FL-RBC
tracked vs. Average | 9.1027%  0.0645%  0.0586%

wheeled SD 0.165858  0.005090  0.004513
heavy-tracked vs. | Average | 7.9063%  0.2727%  0.0671%
light-tracked SD 0.250965  0.021967  0.010300
heavy-wheeled vs. | Average | 14.1777%  0.5617%  0.1322%
light-wheeled SD 0.311986  0.036715  0.017290
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Table 4.4: The estimated mean FAR, paye, and its 95% confidence interval for the CN-CN config-
uration of the leave-M-out experiment.

Classification Bayesian Type-1 Type-2
Problem Measure | Classifier FL-RBC FL-RBC
tracked Pave 13.0567%  9.8596% 9.8308%
vs. Confidence | [12.0707%, [9.3165%, [9.2789%,
wheeled Interval | 14.1358%] 10.4797%)] 10.4212%)]
heavy-tracked Dave 7.8450% 3.8550%  3.8125%
vs. Confidence | [6.7277%, [3.2142%, [3.1797%,
light-tracked Interval 8.9307%] 4.6167%] 4.7113%)
heavy-wheeled Dave 8.8654% 7.4609%  7.3297%
vs. Confidence | [7.4589%, [6.9012%, [6.7675%
light-wheeled Interval | 10.0333%)] 8.0447%] 7.8947%]

Table 4.5: The estimated mean FARs, $qye and p2,., and their 95%

CN-NN-NA configurations of the leave-M-out experiment.

Non-Adaptive Working Mode (pgye)

confidence intervals for the

Classification Bayesian Type-1 Type-2
Problem Measure | Classifier FL-RBC FL-RBC
tracked Pave 22.8399% 11.6147% 11.5752%
vs. Confidence | [22.1030%, [11.0081%, [10.9096%,
wheeled Interval | 23.5663%] 12.2232%] 12.2198%)]
heavy-tracked Pave 15.4553%  6.3250% 6.3713%
vs. Confidence | [14.5454%, [5.7580%, [5.6901%,
light-tracked | Interval | 16.4035%] 6.9621%]  7.1727%]
heavy-wheeled Pave 18.9737%  7.7949% 7.6813%
vs. Confidence | [17.4422%, [7.2152%,  [7.0500%
light-wheeled Interval | 20.6121%) 8.3878%)]  8.2714%)]
Adaptive Working Mode (p2,.)
Classification Bayesian Type-1 Type-2
Problem Measure | Classifier FL-RBC FL-RBC
tracked Dave 9.3122%  3.9645%  3.7425%
vs. Confidence | [8.3335%, [3.1659%, [2.8513%
wheeled Interval | 10.3089%)] 4.7350%] 4.5861%)]
heavy-tracked P2 e 7.5659%  1.8770%  1.8588%
vs. Confidence | [6.1229%, [1.3294%, [1.1669%,
light-tracked Interval 8.6986%) 2.2792%] 2.6834%]
heavy-wheeled Plre 11.4211% 1.5687%  1.7216%
vs. Confidence | [9.0436%, [1.2293%, [1.2756%,
light-wheeled Interval | 14.0484%)] 1.8174%) 2.1166%)]
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Tracked vs. Wheeled Vehicle Classification

Table 4.6: The upper bound of the FAR for the CN-CN configuration of each classifier.

Bayesian Type-1 Type-2
Experiment Measure Classifier FL-RBC FL-RBC
P 12.5421%  0.7614%  0.3252%

Leave-oneout | p+6,n=80 | 20.1383%  5.1845%  4.4966%
p+6,n=160 | 17.6383% 3.2536%  2.5735%

Leave-M-out P 13.0567%  9.8596%  9.8308%
p+ 6, n=1040 | 14.9596% 11.5904% 11.5616%

Heavy-tracked vs. Light-tracked Vehicle Classification

Bayesian Type-1 Type-2

Experiment Measure Classifier FL-RBC FL-RB
P 6.8648%  1.2008% 0.2725%

Leave-one-out | p+4d,n =80 | 13.4273% 5.7321% 4.4112%
Leave-M-out P 7.8450%  3.8550% 3.8125%
p+6,n=400| 10.5012% 5.8862% 5.8438%

Heavy-wheeled vs. Light-wheeled Vehicle Classification

Bayesian Type-1 Type-2
Experiment Measure Classifier FL-RBC FL-RBC
P 7.4554%  0.4018%  0.0759%

Leave-one-out | 48, n =160 | 11.8304%  2.7456%  2.1027%
Leave-M-out P 8.6547%  7.4600%  7.3297%
p+6,n==640 | 10.7469%  9.4921%  9.3609%
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Table 4.7: The upper bound of the FAR (non-adaptive) for the CN-NN-NA configuration of each
classifier ( n is the average number of testing prototypes).

Tracked vs. Wheeled Vehicle Classification

Bayesian Type-1 Type-2
Experiment Measure Classifier FL-RBC FL-RBC
P 23.1104% 1.0721% 0.6961%

Leave-one-out | p+48,n =94 | 31.1792% 4.9359%  4.5321%
Leave-M-out P 22.8399% 11.6147% 11.5752%
p+8,n=7156| 25.4854% 13.7311% 13.6916%

Heavy-tracked vs. Light-tracked Vehicle Classification

Bayesian Type-1 Type-2
Experiment Measure Classifier FL-RBC FL-RBC
P 15.0932%  0.8056% 0.3757%

Leave-one-out | p+6, n =108 | 21.8111% 4.2605%  3.6305%
Leave-M-out P 15.4553%  6.3250%  6.3713%
P46, n=>521| 18.3344%  8.4363%  8.4826%

Heavy-wheeled vs. Light-wheeled Vehicle Classification

Bayesian Type-1 Type-2
Experiment Measure Classifier FL-RBC FL-RBC
p 22.8095%  1.6276% 0.2782%

Leave-one-out | p+6,=63 | 33.0659% 7.6105%  5.5355%
Leave-M-out P 18.9737%  7.7949%  7.6813%
P+, n=234 | 23.6746% 11.6411% 11.5164%

Table 4.8: The percentage of runs that are used for training.
Classification
Problem

Leave-one-out Leave-M-out

tracked vs. wheeled

heavy-tracked vs. light-tracked
heavy-wheeled vs. light-wheeled

98.88% 89.89%
98.36% 91.80%
96.43% 85.71%

39



p+5
1

=== n=80
0.9 === n=160 7
seser N=1040

o>

00 0.2 04 0.6 0.8 1

Figure 4.1: 95% confidence upper bound of the real FAR, for three values of n, computed so that
the real FAR has 95% probability to be between 0 and its upper bound.
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Chapter 5

Blind Tests

Besides the acoustic data in ACIDS, we also had 51 blind (unlabeled) runs. The only information
that was provided to us about the blind data was that they were collected in the normal terrain.
The goal of our blind tests was to classify these blind runs as either tracked or wheeled vehicles.
In this chapter, we describe these blind tests, give the classification results for the blind runs, and

provide the evaluation results of the blind tests.

5.1 CPA-Based Prototypes and Non-CPA-Based Prototypes

For each blind run, we first located its CPA and then truncated a fixed number of data around
the CPA to generate 80 CPA-based prototypes. Each prototype contained one second of data, and
adjacent prototypes had 50% of overlap.

The non-CPA-based prototypes were generated by using an energy test®: the classifier was
activated once the energy of a data-block (one second) was 0.1dB above the background noise level

(the first data-block of each run was assumed to be full of noise).

® Again, the threshold of 0.1dB was chosen based on the energy distribution of all blind runs. The energy distribu-
tion of these blind runs was slightly different than that of the design runs in ACIDS. We observed that if we had used
an 8dB threshold, which was the threshold used for generating non-CPA-based prototypes from the ACIDS design
runs, then for some blind runs the classifier would never be activated; hence, we lowered the threshold for the blind

runs.
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5.2 Non-Adaptive and Adaptive Working Modes

The type-1 and type-2 FL-RBCs were designed using the design data (89 labeled runs of the normal
terrain in ACIDS) and the leave-one-out method; hence, each classifier was actually a classifier
cluster, and consisted of 89 designs. The classifier cluster made a decision for one blind prototype
by voting on the classification results given by its 89 component designs—if the number of designs
that classified this blind prototype as a tracked vehicle was larger (smaller) than the number of
designs that classified this blind prototype as a wheeled vehicle, then the classifier cluster classified
this blind prototype as a tracked (wheeled) vehicle.

In the non-adaptive working mode, the decision made for one blind prototype was independent
of the decisions made for the others, and for each blind run if the number of prototypes classified as
a tracked vehicle was larger (smaller) than the number of prototypes classified as a wheeled vehicle,
then this blind run was classified as a tracked (wheeled) vehicle; if these two numbers were the
same, then this run was undetermined.

In the adaptive working mode, the classifier cluster first made a non-adaptive decision on the
current prototype and then voted on the non-adaptive decisions of all the previous and current
prototypes to reach an adaptive decision for the current prototype. We applied the following two

voting strategies:

e The non-adaptive decisions of the previous and current prototypes were linearly combined
with equal weights. The sign of this combined result was the adaptive decision of the current

prototype.

e The non-adaptive decisions of the previous and current prototypes were linearly combined
with unequal weights. The weight for each non-adaptive decision was proportional to the

SNR of the corresponding prototype, i.e.,

th energy of the nt* prototype
= 101 1
SNR of the n** prototype 0log;q (energy of the 19 prototype (5.1)
w, = SNR of the nth prototype (5.2)

Y.; SNR of the jth prototype
i

where energy of the first data block (prototype) of each run is considered to be background
noise, wy, represents the weight of the n-th prototype, and the summation is over all previous
and current prototypes. The sign of this combined result was the adaptive decision of the

current prototype.
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Because the adaptive decision for the last prototype of each run combined the non-adaptive decisions
of all prototypes of this run, we used it as the decision for the entire run.

Note that the decision for each run in the CN experiment (CPA-based blind prototypes and
the non-adaptive working mode of classifiers) is the same as the decision of this run in the CAE
experiment (CPA-based blind prototypes and the adaptive working mode of classifiers with equal
weights), because in the CN experiment the decision for one run depends on the non-adaptive
decisions of all CPA-based prototypes in that run; in the CAE experiment, the adaptive decision
for the last prototype of each run also depends on the non-adaptive decisions of all CPA-based

prototypes in that run; and the dependency ways for the two experiments are the same.

5.3 Results

We carried out five experiments, where the prototypes of blind runs and the working modes of two

FL-RBC clusters are summarized in Table 5.1.

Table 5.1: Summary of blind tests.

Experiment!® | Prototype Working Mode
CN:  Table 5.2 CPA-based non-adaptive
CAE: Table 5.3 CPA-based adaptive with equal weights
CAU: Table 5.4 CPA-based adaptive with unequal weights
NAE: Table 5.5 non-CPA-based adaptive with equal weights
NAU: Table 5.6 non-CPA-based adaptive with unequal weights

Details of each experiment for both type-1 and type-2 FL-RBC clusters are summarized in
Tables 5.2-5.6. The final decisions for each blind run, provided by the type-2 FL-RBC cluster of
these five experiments, are summarized in Table 5.7 (note that the CN and CAE decisions for each
run are the same), where the vote decision of each run was obtained by voting on the four decisions
for this run provided by the CN/CAE, CAU, NAE and NAU experiments. These results associated
with the type-2 FL-RBC cluster were sent to our sponsor at the Army Research Laboratory, who

10The blind experiment is named according to the following rule: the first letter represents which kind of prototypes
(C for CPA-based and N for non-CPA-based) of blind runs are used; the second letter represents which working mode
(N for non-adaptive and A for adaptive) of the classifier is used; and the last letter (if it exists) represents which

voting strategy (E for equally weighted and U for unequally weighted) of the adaptive mode is used.
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then scored them. The scores are summarized in Table 5.8. Observe that the scores for the NAE
experiment is the highest, although the scores for all four experiments are close; and all scores are

quite high, which demonstrates that our type-2 FL-RBC is providing excellent results.
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Table 5.2: The percentage of prototypes that were classified as a tracked (T), a wheeled (W), or
an undetermined (O) vehicle, and the final decision for each blind run for the CN experiments.
Type-1 Type-2

Run Tracked Wheeled Decision | Tracked Wheeled Decision
run-f005 [ 100% 0% 100% 0%
run-f006 | 96.25% 3.75% 97.5% 2.5%
run-f007 | 98.75% 1.25% 98.75% 1.25%
run-f008 | 92.5% 7.5% 93.75% 6.25%
run-f010 { 97.5% 2.5% 98.75%  1.25%

run-f019 100% 0% 100% 0%
run-f020 | 93.75% 6.25% 95% 5%
run-f021 | 100% 0% 100% 0%
run-f022 | 93.75% 6.25% 96.25% 3.75%
run-f077 | 100% 0% 100% 0%
run-f078 | 100% 0% 100% 0%
run-f079 | 100% 0% 100% 0%
run-f080 | 100% 0% 100% 0%
run-f085 | 100% 0% 100% 0%
run-f086 100% 0% 100% 0%
run-fO87 | 100% 0% 100% 0%
run-f088 100% 0% 100% 0%
run-f093 | 1.25%  98.75% 1.25% 98.75 %
run-f094 17.5% 82.5% 15% 85%

33.75%  66.25%
41.25%  58.75%
41.25%  58.75%
68.75%  31.25%
52.5% 47.5%

run-f095 50% 50%
run-f096 | 42.5% 57.5%
run-f101 | 37.5% 62.5%
run-f102 60% 40%
run-f103 | 43.75% 56.25%

run-f104 70% 30% 80% 20%
run-f109 | 13.75%  86.256% 16.25%  83.75%
run-f110 | 58.75%  41.26% 50% 50%
run-f111 | 23.75%  76.25% 23.75%  76.25%
run-f112 | 8.76%  91.25% 20% 80%
run-f117 10% 90% 10% 90%
run-f118 | 6.25%  93.75% 10% 90%
run-f119 15% 85% 16.25%  83.75%

31.25%  68.75%
98.75%  1.25%
98.75%  1.25%

run-f120 25% 75%
run-f173 | 98.75% 1.25%
run-f174 | 96.25% 3.75%%

run-f175 | 98.75% 1.25% 100% 0%
run-f176 | 98.75% 1.25% 98.75% 1.25%
run-f181 | 88.75% 11.25% 97.5% 2.5%
run-f182 95% 5% 98.75% 1.25%
run-f183 | 91.25% 8.75% 97.5% 2.5%
run-f184 | 91.25% 8.75% 97.5% 2.5%
run-f185 100% 0% 100% 0%
run-f186 | 97.5% 2.5% 100% 0%
run-f187 | 100% 0% 100% 0%
run-f188 | 98.75% 1.25% 100% 0%
run-f189 | 98.75% 1.25% 100% 0%
run-f190 | 96.25% 3.75% 97.5% 2.5%

63.75%  36.25%
77.5% 22.5%
70% 30%
78.75%  21.25%

run-f197 | 53.75%  46.26%
run-f198 | 56.25%  43.75%
run-f199 | 68.75%  31.25%
run-f200 | 67.5% 32.5%
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Table 5.3: The percentage of prototypes that were classified as a tracked (T), a wheeled (W), or
an undertermined (Q) vehicle, and the final decision for each blind run for the CAE experiments.
Type-1 Type-2

Run Tracked Wheeled Decision | Tracked Wheeled Decision

run-f005 | 100% 0% 100% 0%
run-f006 | 100% 0% 100% 0%
run-f007 100% 0% 100% 0%
run-f008 | 100% 0% 100% 0%
run-f010 | 100% 0% 100% 0%
run-f019 100% 0% 100% 0%
run-f020 100% 0% 100% 0%
run-f021 | 100% 0% 100% 0%
run-f022 | 100% 0% 100% 0%
run-f077 100% 0% 100% 0%
run-f078 | 100% 0% 100% 0%
run-f079 | 100% 0% 100% 0%
run-f080 | 100% 0% 100% 0%
run-f085 100% 0% 100% 0%
run-f086 | 100% 0% 100% 0%
run-f087 | 100% 0% 100% 0%
run-f088 100% 0% 100% 0%
run-f093 0% 100% 0% 100 %
run-f094 7.5% 85% 0% 98.75%
run-f095 | 71.256% 10% 8.75%  86.25%
run-f096 1.25% 93.75% 0% 93.75%
run-f101 2.5% 95% 13.75% 80%
run-f102 100% 0% 100% 0%
run-f103 15% 78.75% 76.25% 20%
run-f104 | 96.25%  1.25% 100% 0%

23.75% 75%
46.25%  46.25%

run-f109 | 21.25%  77.5%
run-f110 | 86.256% 3.75%

run-f111 30% 63.75% 20% 75%
run-f112 0% 100% 0% 100%
run-f117 3.75% 91.25% 3.75% 91.25%
run-f118 0% 98.75% 0% 98.75%
run-f119 0% 100% 0% 100%
run-f120 22.5% 75% 26.25% 72.5%
run-f173 100% 0% 100% 0%
run-f174 | 100% 0% 100% 0%
run-f175 | 100% 0% 100% 0%
run-f176 | 100% 0% 100% 0%
run-f181 | 100% 0% 100% 0%
run-f182 100% 0% 100% 0%
run-f183 | 100% 0% 100% 0%
run-f184 | 97.5% 1.25% 97.5% 1.25%
run-f185 | 100% 0% 100% 0%
run-f186 100% 0% 100% 0%
run-f187 100% 0% 100% 0%
run-f188 100% 0% 100% 0%
run-f189 100% 0% 100% 0%
run-f190 | 100% 0% 100% 0%

76.25% 17.5%
65% 31.25%
50% 48.75%

58.75%  36.25%

run-f197 | 58.75%  33.75%
run-f198 | 47.5% 50%

run-f199 50% 48.75%
run-f200 | 37.5% 61.25%
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Table 5.4: The percentage of prototypes that were classified as a tracked (T), a wheeled (W), or
an undetermined (O) vehicle, and the decision for each blind run for the CAU experiments.
Type-1 Type-2

Run Tracked Wheeled Decision | Tracked Wheeled Decision

run-f005 100% 0% 100% 0%
run-f006 100% 0% 100% 0%
run-f007 | 100% 0% 100% 0%
run-f008 100% 0% 100% 0%
run-f010 100% 0% 100% 0%
run-f019 | 100% 0% 100% 0%
run-f020 | 100% 0% 100% 0%
run-f021 | 100% 0% 100% 0%
run-f022 100% 0% 100% 0%
run-f077 | 100% 0% 100% 0%
run-f078 | 100% 0% 100% 0%
run-f079 | 100% 0% 100% 0%
run-f080 100% 0% 100% 0%
run-f085 | 100% 0% 100% 0%
run-f086 100% 0% 100% 0%
run-f087 100% 0% 100% 0%
run-f088 100% 0% 100% 0%
run-f093 0% 100% 0% 100 %
run-f094 | 18.75%  81.25% 6.25% 93.75%
run-f095 | 96.25% 3.7%% 70% 30%
run-f096 6.25% 93.75% 3.75% 96.25%
run-f101 2.5% 97.5% 12.5% 87.5%
run-f102 | 72.5% 27.5% 80% 20%
run-f103 | 23.75%  76.25% 45% 55%
run-f104 | 77.5% 22.5% 98.75% 1.25%
run-f109 22.5% 77.5% 23.75%  76.25%
run-f110 85% 15% 3.75% 96.25%
run-f111 | 36.25%  63.75% 20% 80%
run-f112 0% 100% 0% 100%

3.75%  96.25%
1.25%  98.75%

run-f117 | 3.75% 96.25%
run-f118 | 1.25% 98.75%

run-f119 2.5% 97.5% 2.5% 97.5%
run-f120 25% 75% 27.5% 72.5%
run-f173 | 100% 0% 100% 0%
run-f174 | 100% 0% 100% 0%
run-f175 100% 0% 100% 0%
run-f176 | 100% 0% 100% 0%
run-f181 | 100% 0% 100% 0%
run-f182 100% 0% 100% 0%
run-f183 | 100% 0% 100% 0%
run-f184 | 98.75% 1.25% 98.75% 1.25%
run-f185 | 100% 0% 100% 0%
run-f186 100% 0% 100% 0%
run-f187 | 100% 0% 100% 0%
run-f188 | 100% 0% 100% 0%
run-f189 100% 0% 100% 0%
run-f190 | 100% 0% 100% 0%

82.5% 17.5%
71.25%  28.75%
56.25%  43.75%
66.25%  33.75%

run-f197 70% 30%
run-f198 55% 45%
run-f199 | 56.25%  43.75%
run-f200 | 47.5% 52.5%
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Table 5.5: The percentage of prototypes that were classified as a tracked (T), a wheeled (W), or an
undetermined (O) vehicle, and the decision for each blind run (the number in the bracket represents
the number of non-CPA-based prototypes in that run) for the NAE experiments.

Type-1 Type-2
Run Tracked Wheeled  Decision | Tracked Wheeled  Decision
run-f005 (683) | 97.6574%  1.9034% 98.0966%  0.7321%
run-f006 (146) 100% 0% 100% 0%
run-f007 (356) 100% 0% 100% 0%

79.1489%  20.6383%
78.9474%  20.9273%
97.8261%  0.4348%

66.2393%  32.9060%
83.0325%  15.5235%
55.7823%  43.5374%

run-f008 (470) | 79.1489%  20.6383%
run-f010 (798) | 79.4486%  20.4261%
run-f019 (230) | 97.8261%  0.4348%
run-f020 (234) | 62.3932%  37.1795%
run-f021 (277) | 86.2816%  12.6354%
run-f022 (294) | 57.1429%  42.5170%

run-f077 (363) | 95.5923%  3.8567% 95.5923%  3.8567%
run-f078 (440) | 91.1364%  7.5% 01.1364%  7.5%
run-f079 (374) | 100% 0% 100% 0%
run-f080 (434) |  100% 0% 100% 0%
run-f085 (158) | 98.7342%  0.6329% 98.7342%  0.6329%
run-f086 (221) 100% 0% 100% 0%
run-f087 (252) | 98.4127%  0.3968% 98.4127%  0.3968%
run-f088 (250) |  92% 6.4% 92% 6.4%
run-f093 (408) | 0.2451%  99.5098% 0.9804%  97.7941%
run-f094 (396) 0% 100% 0% 100%

0.5714%  98.8571%
0.2179%  99.3464%
9.8485%  86.3636%
22.7273%  74.2424%
0.4464%  99.1071%
0.3704%  97.7778%

run-f095 (175) | 0.5714%  98.8571%
run-f096 (459) | 0.2179%  99.3464%
run-f101 (132) | 3.0303%  93.9394%
run-f102 (66) | 22.7273%  71.2121%
run-f103 (224) | 0.4464%  99.1071%
run-f104 (270) | 6.2063%  88.8889%

run-f109 (210) | 0% 100% 0% 100%
run-f110 (208) 4.3269%  94.7115% 4.3269%  94.7115%
run-f111 (170) 0%  99.4118% 0%  99.4118%
run-f112 (403) | 0.2481%  99.5037% 0.2481%  99.5037%
run-f117 (125) | 0.8% 98.4% 3.2% 02%
run-f118 (83) 0% 100% 0% 100%
run-f119 (32) 0% 100% 0% 100%
run-f120 (138) 0% 100% 0% 100%

84.7418%  12.6761%
81.3559%  18.4322%
99.3407%  0.2198%
74.4511%  25.3493%
100% 0%
91.5709%  5.7471%
88.9374%  9.8859%
88.9299%  8.8561%
100% 0%
86.3636%  13.3117%
98.4615%  0.7692%
99.4832%  0.2584%
82.6087%  16.7702%
50.6024%  49.1968%

run-f173 (426) | 84.2723%  13.3803%
run-f174 (472) | 76.2712%  23.5169%
run-f175 (455) | 99.3407%  0.2198%
run-f176 (501) | 73.6527%  26.1477%
run-f181 (113) 100% 0%

run-f182 (261) | 90.0383%  8.4291%
run-f183 (263) | 91.2548%  7.9848%
run-f184 (271) | 88.9200%  8.8561%
run-f185 (363) |  100% 0%

run-f186 (308) | 86.3636% 13.3117%
run-f187 (260) | 98.4615%  0.7692%
run-f188 (387) 100% 0%

run-f189 (483) | 83.8509%  15.5280%
run-f190 (498) | 50.6024%  49.1968%
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run-f197 (308) 0% 100% 0% 100%
run-f198 (231) | 33.3333%  66.2338% 25.9740%  73.1602%
run-f199 (262) 0% 99.6183% 0% 100%
run-f200 (234) | 39.3162%  60.2564% 30.7692%  68.8034%




Table 5.6: The percentage of prototypes that were classified as a tracked (T), a wheeled (W), or an
undetermined (O) vehicle, and the decision for each blind run (the number in the bracket represents
the number of non-CPA-based prototypes in that run) for the NAU experiments.

Type-1 Type-2
Run Tracked Wheeled  Decision | Tracked Wheeled  Decision
run-f005 (683) [ 55.9297%  44.0703% 46.4129% 53.5871%
run-f006 (146) 100% 0% 100% 0%
run-f007 (356) 100% 0% 100% 0%

80.2128 %  19.7872%
76.9424%  23.0576%
97.3913%  2.6087%
69.2308%  30.7692%
88.8087% 11.1913%
65.9864%  34.0136%
93.9394%  6.0606%
96.8182%  3.1818%
99.7326%  0.2674%
100% 0%
99.3671%  0.6329%
99.5475%  0.4525%
98.4127%  1.5873%

run-f008 (470) | 80.2128% 19.7872 %
run-f010 (798) | 76.9424%  23.0576%
run-f019 (230) | 97.3913%  2.6087%
run-020 (234) | 67.0040%  32.9060%
run-f021 (277) | 89.5307%  10.4693%
run-f022 (204) | 66.3265%  33.6735%
run-f077 (363) | 93.9394%  6.0606%
run-f078 (440) | 96.8182%  3.1818%
run-f079 (374) | 99.7326%  0.2674%
run-f080 (434) 100% 0%

run-f085 (158) | 99.3671%  0.6329%
run-086 (221) | 99.5475%  0.4525%
run-f087 (252) | 98.4127%  1.5873%

run-f088 (250) |  94.4% 5.6% 94.4% 5.6%
run-f093 (408) | 0.7353%  99.2647% 1.4706%  98.5294%
run-f094 (396) 0% 100% 0% 100%

0.5714%  99.4286%
0.4357%  99.5643%
65.1515%  34.8485%
56.0606%  43.9394%
53.5714% 46.4286%
43.3333%  56.6667%
0% 100%
4.3269%  95.6731%
1.1765%  98.8235%
0.2481%  99.7519%

(
run-f095 (175) | 0.5714%  99.4286%
run-f096 (459) | 0.4357%  99.5643%
run-f101 (132) | 65.1515%  34.8485%
run-f102 (66) 56.0606%  43.9394%
run-f103 (224) | 53.5714%  46.4286%
run-f104 (270) | 45.5556%  54.4444%
run-f109 (210) 0% 100%

run-f110 (208) | 6.7308%  93.2692%
run-f111 (170) 1.1765% 98.8235%
run-f112 (403) 0.2481%  99.7519%

run-f117 (125) | 0.8% 99.2% 2.4% 97.6%
run-f118 (83) 0% 100% 0% 100%
run-f119 (32) | 12.5% 87.5% 12.5% 87.5%
run-f120 (138) 0% 100% 0% 100%

88.7324%  11.2676%
76.6949%  23.3051%
99.3407%  0.6593%
75.6487%  24.3513%
97.3451%  2.6549%
80.0766%  19.9234%
93.9163%  6.0837%
92.6199%  7.3801%
100% 0%
88.3117%  11.6883%
90.3046%  9.6154%
98.1912%  1.8088%
87.7847% 12.2153%
52.4096%  47.5904%
37.3377%  62.6623%
42.4242%  57.5758%
58.0153%  41.9847%
46.1538%  53.8462%

(

run-f173 (426) | 88.0282% 11.9718%
run-f174 (472) | 73.0032%  26.9068%
run-f175 (455) | 99.3407%  0.6593%
run-f176 (501) | 75.0499%  24.9501%
run-f181 (113) 100% 0%
run-f182 (261) | 80.0766%  19.9234%
run-f183 (263) | 94.2066%  5.7034%
run-f184 (271) | 92.6199%  7.3801%
run-f185 (363) 100% 0%
run-f186 (308) | 88.3117%  11.6883%
run-f187 (260) | 92.3077% 7.6923%
run-f188 (387) | 98.9664%  1.0336%
run-f189 (483) | 91.0973% 8.9027%
run-f190 (498) | 52.0080%  47.9920%
run-f197 (308) | 38.63640% 61.3636%
run-f198 (231) | 45.0216% 54.9784%
run-f199 (262) | 73.2824%  26.7176%
run-f200 (234) | 54.2735%  45.7265%
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Table 5.7: Summary of classification results for each blind run provided by the type-2 FL-RBC
cluster, where T represents a tracked vehicle, W represents a wheeled vehicle, and O represents an
undetermined vehicle.

Run | CN/CAE CAU NAE NAU | Vote
run-f005 T T T w T
run-f006 T T T T T
run-f007 T T T T T
run-f008 T T T T T
run-f010 T T T T T
run-f019 T T T T T
run-f020 T T T T T
run-f021 T T T T T
run-f022 T T T T T
run-f077 T T T T T
run-f078 T T T T T
run-f079 T T T T T
run-f080 T T T T T
run-f085 T T T T T
run-f086 T T T T T
run-f087 T T T T T
run-f088 T T T T T
run-f093 W w W W W
run-f094 W W w W W
run-f095 w w W W W
run-f096 W W W W W
run-f101 A% W W T w
run-f102 T T W T T
run-f103 T W W T 0]
run-f104 T T W T T
run-f109 W \ W W A%
run-f110 0] W W w W
run-f111 W W W W W
run-f112 w w w A% w
run-f117 w w W A% w
run-f118 W W W w W
run-f119 A% T w w W
run-f120 W W W W W
run-f173 T T T T T
run-f174 T T T T T
run-f175 T T T T T
run-f176 T T T T T
run-f181 T T T T T
run-f182 T T T T T
run-f183 T T T T T
run-f184 T T T T T
run-f185 T T T T T
run-f186 T T T T T
run-f187 T T T T T
run-f188 T T T T T
run-f189 T T T T T
run-f190 T T T T T
run-f197 T T W T T
run-f198 T T T T T
run-f199 T T W T T
run-f200 T T T T T




Table 5.8: Score for the classification results of the type-2 FL-RBC cluster.
Experiment | CN/JCAE CAU NAE NAU Vote
Score 47/50  58/51 49/51 47/51 47/50
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Chapter 6

Conclusions

In this report we have summarized our extensive study into binary classification of ground vehicles
from acoustic data. We have described every aspect of our study, including: feature extraction,
FOUs of the features, classifier construction and experimental evaluation of the classifiers.

Because acoustic data are subject to variations of the environmental conditions, vehicle-traveling
speed, and the distance between the vehicle and the sensor system, the statistics of the features (the
magnitudes of the second through 12-th harmonic frequencies) for the same kind of vehicle varies
from run to run. We therefore used type-2 fuzzy sets to model the uncertainties contained in these
features, and then constructed type-2 FL-RBCs for three binary classification problems: tracked
vs. wheeled vehicle, heavy-tracked vs. light tracked vehicle, and heavy-wheeled vs. light-wheeled
vehicle. To evaluate the type-2 FL-RBC in a fair way, we also constructed a Bayesian classifier and
type-1 FL-RBC and compared their performance through many experiments. The parameters of
tl;e Bayesian classifier were estimated based on the training prototypes, whereas, the parameters
of both the type-1 and type-2 FL-RBCs were optimized using a steepest descent algorithm that
minimized an objective function which depended upon the training prototypes. Each classifier had
two working modes—non-adaptive and adaptive. We proved that when the non-adaptive FAR of a
classifier is less than 0.5, then after a certain time its adaptive performance is always better than
its non-adaptive performance, and we established exactly what that time is.

We carried out two groups of experiments to evaluate the performance of all classifiers. In the
first group of experiments (leave-one-out), only one run was used as the testing run, and all the
other runs were used as the training runs. In the second group of experiments (leave-M-out), one

run of each vehicle (M runs where there are M kinds of vehicles) was used for testing and all
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the other runs were used for training. In both groups of experiments, the CPA-based prototypes
of the training runs were used for training. For the CN-CN configuration (see Table 4.1 for the
meanings of these acronyms), the CPA-based prototypes of the testing runs were used to examine
the non-adaptive performance of each classifier; and, for the CN-NN-NA configuration, the non-
CPA-based prototypes of the testing runs were used to examine both the non-adaptive and adaptive
performances of each classifier.

Our experimental results showed that for each binary classification problem, both the type-1
and type-2 FL-RBCs had significantly better performance than the Bayesian classifier, whereas the
type-1 and type-2 FL-RBCs had similar performance, although most of time, the type-2 FL-RBC
had slightly better performance than the type-1 FL-RBC. Our experimental result also confirmed
our theoretical result that the adaptive performance is always better than the non-adaptive perfor-
mance.

We also carried out blind tests for both the type-1 and type-2 FL-RBC designs using blind runs
of the normal terrain. The classification results provided by the type-2 FL-RBC design were scored
by our sponsor at the Army Research Laboratory. The scores werve very high, which demonstrates
that our type-2 FL-RBC designs for the binary classification of ground vehicles are successful.

In the next phase of our study we shall examine the multiple-category classification problem

using FL-RBCs.
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Appendix A

Demonstration that the Vehicle

Features are Stationary

In this appendix, we demonstrate that for wheeled vehicles, the means and standard deviations of
the features for 75%-overlapped CPA-based prototypes are approximately the same as those for
50%-overlapped CPA-based prototypes.

Let b; (i = 1,...,160) be the 160 CPA-based prototypes from a wheeled run, which are
generated by sliding a rectangular window with 75% of window overlap, and f(b;) be one of the

features extracted from b;. The mean of f(b;), m, is

160
160 Zf( (80 Z f 25— 1) + 20 80 Z f b2])) modd + me'ue'n)

j=1

(A-1)
where mo4q and Meyen are the means of those f(b;) with odd and even indices, respectively. The

variance of f(b;), 02, is

) 1 160 160 2
g = ﬁ pa [f( 159 Z [f ) -5 modd + meuen)]
80 2
= 1;9 {[f(bZJ 1) modd] + é(modd - meuen)}
80 2
+ 1;9 {[f(b21) meven] + %(meven - madd)} (A-2)

If the features that are extracted from the interval about the CPA are stationary in the mean
square sense, then it is reasonable to assume that the statistics of f(b;) with odd indices are almost

the same as those with even indices, i.e., Modd X Meven and 02, = 02, , where o2, and 02, are
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defined as

Tadd = 9z:[f (bj—1) — Moad]’ (A-3)
=1
1 80

aguen = [f (b2j) - meuen]2 (A—4)
79 =

Hence, (A-1) and (A-2) can be rewritten as

m= —

(modd + mevem) R Modd = Meyen (A'5)
2

and (according to (A-2)-(A-5))

o’ = 159 Z [f(b2;-1) 'modd]2 + — 159 Z [f(b2;) — meven]2

7 5,19 158 , 158 52
159 Odd+ 159 evenz 159 Odd 159 euen

(A-6)

Because the blocks with odd (or even) indices have 50% overlap, Modd and Godd (Meven and
Oeven) are the statistics for those CPA-based prototypes that are generated by sliding a rectangular
window with 50% of window overlap. Hence, (A-5) and (A-6) demonstrate that the means and
standard deviations of the features for the 75%-overlapped CPA-based prototypes are approximately
the same as those for the 50%-overlapped CPA-based prototypes, if the features extracted from the
interval about the CPA are stationary in the mean square sense.

Table A.1 shows the means (m, m4q and Meven) and standard deviations (o, 0,44 and Oeven) Of
the features (feature extraction is described in Section 2.3) for one wheeled run (the statistics for

the other wheeled runs, although not shown, have similar results), where the CPA-based prototypes

are generated by using 75% window overlap. Observe that:
1. (Modd + Meven)/ 2 = m, which is consistent with our analysis in (A-1).

2. Mygq and Meyen are each close to m, and 1/158/1590,44 and \/158/1590 ¢y, are each close to

o, respectively, consistent with our analyses in (A-5) and (A-6).

3. \/ 79 (02, + 02,.,)/ 159 = o which is consistent with our analysis in (A-6).

These results support our assumption about the stationary property of the features for wheeled

vehicles.
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Table A.1: Means (m, modq and Meyen) and standard deviations (0, 0o4q and eyen) of the features
for one W-a run, where the CPA-based prototypes are generated by using the 75% window overlap

[fo represents the fundamental frequency, and z; (i = 1,...,11) represents the i-th feature].

Jo T T2 T3 T4 Zs

m 10.0893 0.4744 0.5360 0.4163 0.8993 0.5512

Modd 10.1054 0.4760 0.5375 0.4139 0.9085 0.5517

Meyen 10.0732 0.4729 0.5346 0.4186 0.8900 0.5508

(Modd + Meven/ 2 10.0893 0.4744 0.5360 0.4163 0.8993 0.5512

c 0.6439 0.2296 0.1950 0.1995 0.2229 0.2958

v/ 158/1590644 0.6376 0.2227 0.1911 0.1924 0.2117 0.2937

V/158/1590 ¢yen 0.6496 0.2364 0.1989 0.2062 0.2332 0.2981

V79 (02, + 02,,.,)/ 159 | 0.6437 0.2206 0.1950 0.1994 0.2227 0.2958
Ze T7 Ty Tg T10 11

m 0.2203 0.3359 0.1715 0.2820 0.1393 0.1261

Modd 0.2037 0.3413 0.1726 0.2904 0.1399 0.1195

Meven 0.2369 0.3305 0.1704 0.2736 0.1386 0.1327

(Modd + Meven)/2 | 0.2203  0.3359 0.1715 0.2820 0.1393 0.1261

o 0.2063 0.1747 0.0618 0.1395 0.0544 0.1001

\/158/1590 444 0.1727 0.1796 0.0645 0.1424 0.0555 0.0914

V/158/1590cyen 0.2340 0.1694 0.0590 0.1360 0.0532 0.1077

\/79 (02 + 02,.,)/ 159 | 0.2056 0.1746 0.0618 0.1393 0.0544 0.0999
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Appendix B

Proof of Theorem 1

When our binary classifier operates in its non-adaptive mode, the probability of the decision made
by this classifier for an arbitrary prototype x being incorrect is p, and the probability of this decision
being correct is 1 — p, where p represents the FAR of this classifier in its non-adaptive mode. Let
s be the decision for x made by a classifier in its non-adaptive working mode, where +1 represents
s being correct, and —1 represents s being incorrect. Then, s can be considered to be a Bernoulli

random variable with distribution:

Pr(s=-1)=p, Pr(s=+4+1)=1-p (B-1)
Let x1,X3,... be the prototypes generated from a run, and s, be the binary decision for x,
made by a classifier in its non-adaptive working mode. Because sy, S2,... are independently made,

each of them is a Bernoulli random variable as in (B-1). When the classifier operates in its adaptive

mode, the adaptive decision for x,, depends on the non-adaptive decisions sy, ..., s, as follows:
e When Y, s; > 0, the adaptive decision for x;, is correct
e When Y%, s; < 0, the adaptive decision for x, is incorrect
e When S, s; = 0, the adaptive decision for X, is unspecified (and is also counted as incorrect)

Note that Y-, s; can range from —n to n.

The procedure that we use to prove Theorem 1 is:

1. Calculate the probability Pr (3% s; = k) for general k values, and the probability

Pr (X, s; <0), i.e., the probability of the adaptive decision for x, being incorrect.

57



2. Prove the probability of the adaptive decision for x,4; being incorrect is larger than the
probability of the adaptive decision for x, being incorrect when = is odd; and, the probability
of the adaptive decision for x,4; being incorrect is smaller than the probability of the adaptive
decision for x,, being incorrect when n is even. This means that the probability of the adaptive

decision for x,, being incorrect is an oscillating function of n.

3. Prove the probability of the adaptive decision for x,45 being incorrect is smaller than the
probability of the adaptive decision of x, being incorrect for both n odd and » even. This
means that the probability that the adaptive decision for x, is incorrect has a decreasing

tendency.

1. Because Y., s; is the sum of n independently and identically distributed Bernoulli random

variables, it is a Binomial random variable [1]. Note! that "7, s; = k implies that (n + k)/2 of

{s1,.--,8,} are +1, and the remaining (n — k)/2 of {sy,...,5,} are —1; hence,
o (Z si = ’“) = " |a-pehrgn-bre (B-2)
i=1 (n+k)/2

where k can only take values as {—n,—n+2,...,n — 2,n} so that both (n+ k)/2 and (n - k)/2
are integers.

For an integer m € [—n, n], the probability of 3 7 ; s; being no greater than m is

Pr(is;ﬁm): ZPr(is;:k):Z

i=1 k<m i=1 k<m \ (n+k)/2

n (1 = p)(r+R)/2(n=H)/2

(B-3)
To simplify (B-3), we can let ¢t = (n + k)/2, so that k¥ < m implies 0 < ¢ < (n + m)/2.
Note that when m = 0, (B-3) is the probability that the adaptive decision for x, is incorrect,
n n n
Pr (Z s; < 0) = Z Pr ( 8 = k) - Z (1- p)(n+k)/2p(n—k)/2
1

i= = k 2
1 k<0 k<o \ (n+k)/ (B-4)

Next, we consider (B-4) for n odd and n even. When m = 0 and = is odd, ¥ < 0 means that ¢

(0 < t < n/2) takes values as {0,1,...,(n— 3)/2,(n — 1)/2}; hence, (B-4) becomes

n n (n—-1)/2
Pr (E 5; < 0) = Pr (Z 5; < —1) = Z 1: (1-p)'p™t, n odd (B-5)
=1

i=1 t=0

'Suppose k; of {s1,...,9n} are +1 and k; of {s1,... ,8n} are —1. Then k; —k; = k and k1 +k2 = n simultaneously
hold, from which we obtain that ky = (n + k)/2 and k2 = (n — k)/2. Because both k; and k2 must be integers, both

n + k = 2k; and n — k = 2k, must be even; hence, k is even when n is even, and k is odd when n is odd.
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When m = 0 and = is even, ¥ < 0 means that ¢t (0 < t < n/2) takes values as {0,1,...,(n —
2)/2,n/2}; hence, (B-4) becomes
n a2
Pr (Z si < 0) = Z (1-p)", n even (B-6)
i=1 t=0\ ¢

Figure B.1 shows Pr (3", s; < 0) as a function of n for different values of p < 0.5. Each curve
corresponds to one value of p, and is obtained by using (B-5) and (B-6) alternatively for odd and
even values of n. Observe from Figure B.1 that each curve is oscillating with a decreasing tendency,
and the decreasing slope is steeper for smaller p. Hence, it is possible that the classifier achieves
better performance than its non-adaptive mode by just using a simple adaptive voting strategy, and
the performance improvement is more dominant as the non-adaptive FAR of the classifier becomes
smaller.

2. When 7 is odd, the probability of the adaptive decision for x, being incorrect is given by
(B-5). For X4, if its non-adaptive decision 8,41 = 1, then Y7, s; (which must be odd) should
be no greater than —1 to guarantee 7% s; < 0. On the other hand, if s,41 = —1, then Y1, s;
should be no greater than 1 to guarantee 7' s; < 0. Consequently, the probability of the adaptive
decision for x,4; being incorrect, Pr (E“"'ll 8 < 0), can be expressed as a conditional probability,
ie.

Pr (%l si < 0) (B-7)

=1
n

= Pr (ZS,‘ <-1
i=1

Because the non-adaptive decisions, sy,. .., Ss+1, are independent of each other,

1=1
( )

=1
n+1
Pr (z 5 < 0) = Pr (Zs, < —1) Pr(sp+1 =1)+ Pr (Zs, < 1) Pr (spy1 = -1)
=1

i=1

= (1-p)Pr (Z s; < —1) + pPr (Xn: 5 < 1) (B-8)

i=1 =1

Sn4l = —1) Pr (3n+l = —1)

Sp41 = 1) Pr(sp41 =1)+ Pr (Z s <1

i=1

Upon the substitution of (B-3) with m = —1 or 1 into (B-8), and letting ¢t = (n + k)/2 [hence,
k < m implies that 0 < t < (n + m)/2], we obtain

nt1 (n=1)/2 . (n+1)/2 [
Pr (Z si < 0) =(1-p) ) t 1-p)p"t+p Y t (1-p)'p""
i=1 t=0 t=0

(B-9)
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The difference between (B-9) and (B-5) is

Pe(S s <o) -rr (z <o)

i=1 =1
(=12 { . mi1)/2 [ (n-1)/2 {
=(1-p Y, Q-p'p"+p >, 1-pp*t- > (1-p)'p™
t=0 13 t=0 t t=0 t
n-1)j2 { (n+1)/2
=-p ), 1-p)ip" "t +p D, (1-pip*
t=0 t t=0 t
=p " (1 - p)(nt/2pn=1/2 5 g (B-10)
(n+1)/2

This means that the probability that the adaptive decision for x4 is incorrect is larger than the
probability that the adaptive decision for x,, is incorrect when n is odd.

When = is even, the probability of the adaptive decision for x, being incorrect is given by
(B-6). For Xy11, if sp41 = 1, then Y%, s; (which must be even) should be no greater than —2 to
guarantee E,_l s; < 0. On the other hand, if s,4+1 = —1, then %, s; should be no greater than
0 to guarantee 3_"H!s; < 0. Consequently, the probability that the adaptive decision for X, is

incorrect, Pr (Z“ 1 8i < 0), can be expressed as a conditional probability, i.e.

=1
n
= Pr ( 8;i < =2|Spp1 = 1) Pr(spy1=1)+ Pr (Zs, <0|sp41 = 1) Pr (sp41 = -1)
=1 i=1
= Pr (Z 5; < —2) Pr(sp41=1)+ Pr (Z s; < 0) Pr(spy1 =-1)
=1 1=1
= (1-p)Pr (Z i < —2) + pPr (Z 5 < 0) (B-11)
i=1 i=1

Upon the substitution of (B-3) with m = —2 or 0 into (B-11), and again letting ¢ = (n + k)/2
[hence, k£ < m implies 0 < ¢ < (n+ m)/2], we obtain

nt1 (n=2)/2 ( , Wk
Pr (Zs,-go)= 1-p) > 1-p)'p" 4>, t (1-p)p"* (B-12)

i=1 =0 t t=0
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The difference between (B-12) and (B-6) is:

Pr (%ls,- go) — Pr (is,- go)

i=1 =1

(n=2)2 { \ w2 f a2
=(1-p ), 1-p)'p" "t +p), 1-p)'p"t=->_ (1-p)p""
=0 t ) t=0 \ t =0\ ¢t
(n-2)/2 n \ nf2 n
=(1-p) ), 1-p)'p" - (1-p) ). 1-p)'p
=0 t ) t=0\ ¢
n
= —(1-p) (1 -p)"*p"2 <0 (B-13)
n/2

This means that the probability that the adaptive decision for x,4; is incorrect is smaller than the
probability that the adaptive decision for x,, is incorrect when n is even.

3. When n is odd, if sp41 + Sp42 = 2 (corresponding to sp,41 = 1 and sp42 = 1), then Y1 s;
(which must be odd) should be no greater than —3 to guarantee 372 s; < 0; if sp41 + Suy2 =0
(corresponding to sp4; = 1 and sp42 = —1, or Spp1 = —1 and sp4g = 1), then Y7 s; should
be no greater than —1 to guarantee Y."*2s; < 0; and, if sp41 + Sny2 = —2 (corresponding to
Sn+1 = —1 and sp42 = —1), then > 7, s; should be no greater than 1 to guarantee Z?__’ff s; <0.

Consequently, the probability that the adaptive decision for x,42 is incorrect, Pr (Z}‘:f 8 < 0),

can be expressed as a conditional probability, i.e.

n
ZS§§—3

Snt1 + Sny2 = 2) Pr(sn41 + Sni2 = 2)

™
»
A

<-1 Spt1 + Snt2 = 0) Pr (sn+1 + Spp2 = 0)

Sn+1 + Sny2 = *2) Pr (sp41 + Snt2 = —2)

n
= Pr Zs; < —3) Pr (sp41 + Sny2 = 2) + Pr (Z 5; < —1) Pr (spt1 + Sny2 =0)

=1

(

:
+P7‘(gsigl
(

(

n
+ Pr Zsi < 1) Pr (spt1 + Snt2 = —2)

= Pr(spy1 =1)Pr(sp42=1)Pr (Zn: s;i < —3)

i=1

+ [Pr(sp4+1 = 1) Pr(spy2 = —1) + Pr(sp41 = —1) Pr (sn42 = 1)) Pr (Xn: s < —1)

=1
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+ Pr(sp41 = —=1) Pr(sp42 = —-1) Pr (E s < 1)

=1

= (1-p)?Pr (zn: 8; < —3) + 2p(1 — p)Pr (i s; < —1) + p?Pr (i s; < 1) (B-14)
=1

i=1 =1
Upon the substitution of (B-3) with m = —3, —1 or 1 into (B-14), and letting ¢ = (n+ k)/2 [hence,
k < m implies 0 < t < (n + m)/2], we obtain

n+2 n=3)/2 ( , (n=1)/2 ( .
Pr (Z&'SO) = (1-p)?% >, t Q-p)'p"t+2p(1-p) > t (1-p)p

=1 t=0 t=0

t

(n+1)/2 [
+ 7 Y 1-p'p" (B-15)
t=0
The difference between (B-15) and (B-5) is:

Pe(L s <o) - pr (Sm <o)

i=1 i=1

m=3)2 { (n-nys2
= (1-p)? (Q-p)p*t+2p(1-p) ) (1-p)ip
t=0 \ t =0 t
(n+1)/2 { \ (n-n/2
+ 9 > 1-p)p" - ) (1-pp
t= t / i=0 t
n=3)/2 . (n=1)2 { .
=(1-p?% Y Q-pp" '+ @p-20"-1) ), 1-p)p"
t=0 \ t t=0 t
)2 ()
+ > 1-p)fp"
i=0 t )
(n=3)/2 { (n-1)/2 {
=(@1-9 Y (1-p)p"t = [1-p7+9Y X (1-p)p"
t=0 t 1=0 t
(m+1)/2 [
+ p (1-p)p""
t=0 t

(n+1)/2

= —(1-p) " (1- p)(n+1)/2p(n+l)/2 +p n (1- p)(n+1)/2p(n+l)/2
(n—1)/2 (n41)/2
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n
= (2p-1) o 1)2 (1 — p)(r+)/2p(n+1)/2 (B-16)
n—

In the above derivation, we have used the fact

(n—-1)/2 (n+1)/2

Note that (B-16) is negative when p < 0.5. This means that the probability of the adaptive
decision for x,42 being incorrect is smaller than the probability of the adaptive decision for x,
being incorrect when n is odd.

When n is even, if s,41 4 Snt2 = 2 (corresponding to sp41 = 1 and Sp42 = 1), then 37 s;

(which must be even) should be no greater than —2 to guarantee %42 s; < 0; if $p41 + Sny2 = 0

(corresponding to s,41 = 1 and sp42 = =1, Of Sp41 = —1 and Sp42 = 1), then Y 7, s; should be
no greater than 0 to guarantee Y""*?s; < 0; and, if Sn41 + Spy2 = —2 (corresponding to sp41 = —1
n+2

and sp42 = —1), then Y, s; should be no greater than 2 to guarantee ) 72;" s; < 0. Consequently,
the probability that the adaptive decision for x,42 is incorrect, Pr (Z:‘ff s < 0), can be expressed

as a conditional probability, i.e.

2| 8p41 + Snp2 = 2) Pr (sn+1 + Sn42 = 2)

Sp41 + Sng2 = 0) Pr (3n+1 + Spy2 = 0)

Snt1 + Sny2 = —2) Pr (sn41 + Sny2 = 2)

= Pr Zs < - )Pr(sn+1+sn+g—2 )+ Pr (ZS,SO) Pr (sp41 + Spy2 = 0)

=1

Z ) Pr (sp41 + Sn42 = 2)
= Pr(sp41 = 1) Pr(sp42 =1) Pr (Z s; < —2)
=1

+ [Pr(sn4+1 = 1) Pr(sny2 = —1) + Pr (sp41 = —1) Pr (sp42 = 1)] Pr (E s; < 0)
i=1

+ PT‘(Sn+1 = —1)P7‘ (5n+2 = _1) Pr (Zsi < 2)

i=1
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n
23532

i=1

n
ZS,‘SO

1=1

= (1-p)Pr (isz- < —2) +2p(1 - p) Pr (
=1

)+p2pr(

Upon the substitution of (B-3) with m = -2, 0, or 2 into (B-17), and letting ¢t = (n + k)/2 [hence,

) (B17)

k < m implies 0 < t < (n + m)/2], we obtain:

2 (n-2)/2 n 2
Pr (Z 5i < 0) =(1-p? ), (1-p)p"t+2p(1-p) > (1-p)'p""
i=1 t=0 \ i t=0 t
(n+2)/2 n \
+ p? y 1-p)p" (B-18)
t=0
The difference between (B-18) and (B-6) is:
Pr (Tfs,- < 0) - Pr (isi < 0)
=1 i=1
(n-2)/2 ( n 2
=(1-p)° ) (1-p)p" " +2p(1-p)). (1-p)p~
t=0 \ t t=0 t
(n+2)/2 \ n/2
+ p° ( " la-pt-3 ( " ) (1-p)p"
t=0 t ) =0\ ¢
m=2)2 { e f
=(1-p? ) Q-p)'p" '+ (2p-20"-1)) (1-p'p"*
t=0 t t=0 \ ¢
(n+2)/2 [
+70 ) (1-p)'p""
t=0 t
(n=2)/2 n/2
= (1-9* Y ( " ) L-p)p™ - [ -p2+ 7 3 ( " ) (1-p)'p"
t=0 t t=0\ ¢
(nt2)2 [
+0 Y, (1-pp"
t=0 t
- _(1 _ p)2 n (1 _ p)n/2pn/2 +P2 n (1 _ p)(n+2)/2p(n—2)/2
n/2 (n+2)/2
—_ n (1 _ p)n/2+2pn/2 + (1 _ p)(n+2)/2p(n+2)/2
n/2 (n+2)/2
n! n n 1-p P
= (n/2)(n)2 - 1)!(1 - [‘ n/2 n/2+1] (B-19)

Observe that (B-19) is negative when p < 0.5, because (1 —p) > p and n/2 < n/2+ 1. This means
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that the probability that the adaptive decision for x, 42 is incorrect is smaller than the probability
that the adaptive decision for x,, is incorrect when n is even.

According to the above proof, the probability of the adaptive decision for x, being incorrect
has a decreasing tendency, and when n is even, the probability of the adaptive decision for x,; or
Xn+2 being incorrect is smaller than the probability of the adaptive decision for x,, being incorrect.
We can therefore always find an even value of no(p) for each p < 0.5, such that the probability of
the adaptive decision for x,, being incorrect is smaller than p when n > ng(p). For each p < 0.5,
we search for ng by calculating Pr (17, s; < 0) for even values of n [using (B-6)] and comparing
it with p. Figure B.2 shows ng(p) as function of p < 0.5. Observe that ng(p) is non-decreasing with
respect to p. This means that when the non-adaptive performance of a classifier is worse (i.e. p is
larger) it takes more time [i.e., a larger ngo(p)] to guarantee that the adaptive performance of this
classifier is better than its non-adaptive performance.

We conclude that when the FAR of a classifier for its non-adaptive mode is less than 0.5, then
its performance for the adaptive mode should be better than its non-adaptive mode after a certain

time no(p), which can be determined from Figure B.2.
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Figure B.1: The probability that the adaptive decision for a prototype is incorrect as a function
of its index n and for different values of p, which is the FAR of the classifier for its non-adaptive
mode.
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Figure B.2: no(p) as function of p < 0.5. The probability that the adaptive decision of the n-th
prototype is incorrect is always smaller than that of its non-adaptive decision as long as n > ng(p).

66



Bibliography

(1] G. Casella and R. L. Berger, Statistical Inference, Second Edition, Duxbury Press, Pacific
Grove, CA, 2002.

[2] R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification, John Wiley & Sons, Inc., New
York, NJ, 2001.

[3] D. L. Hall and J. LLinas, “An Introduction to Multisensor Data Fusion,” Proceedings of the
IEFE, pp. 6-23, vol. 85, no.1, January 1997.

[4] D. Lake, “Efficient Maximum Likelihood Estimate for Multiple and Coupled Harmonics,” Army
Research Laboratory, ARL-TR-2014, December, 1999.

[5] J. M. Mendel Uncertainty Rule-Based Fuzzy Logic Systems: Introduction and New Directions,
Prentice Hall, Upper Saddle River, NJ, 2001.

[6] D. N. Politis, “Computer-Intensive Methods in Statistical Analysis,” IEEE Signal Processing
Magazine, vol. 15, No. 1, pp. 39-55, Jan. 1998

[7] J. A. Robertson and B. Weber, “Artificial Neural Networks for Acoustic Target Recognition,”
Joint Report between ARL and ITT Research, 1993.

[8] N. Srour and J. Robertson, “Remote Netted Acoustic Detection System: Final Report,” Army
Research Laboratory, ARL-TR-706, May, 1995.

[9] M. C. Wellman, N. Srour, and D. B. Hills, “Acoustic Feature Extraction for a Neural Network
Classifier,” Army Research Laboratory, ARL-TR-1166, January, 1997.

[10] H. Wu and J. M. Mendel, “Data Analysis and Feature Extraction for Ground Vehicle Identifi-
cation Using Acoustic Data,” Proceedings of 2001 MSS Specialty Group Meeting on Battlefield

67



Acoustic and Seismic Sensing, Magnetic and Electric Field Sensors, Applied Physics Lab/Johns
Hopkins University, Laurel, MD, October, 2001.

[11] H. Wu and J. M. Mendel, “Classification of Ground Vehicles from Acoustic Data Using Fuzzy
Logic Rule-Based Classifiers: Early Results,” Unattended Ground Sensor Technologies and
Applications IV, SPIE AeroSense 2002, Orlando, FL, 2002.

[12] A. M. Zoubir and B. Boashash “The Bootstrap and its Application in Signal Processing,”
IEEF Signal Processing Magazine, vol. 15, No. 1, pp. 56-76, Jan. 1998

68



