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Abstract

Several challenging issues for applications of image/video mosaicking and upsampling with
high resolution are addressed here, all of which are mainly conducted in DCT (Discrete
Cosine Transform) domain so that lower computation complexity can be achieved.

First of all, color matching and compensation techniques are proposed to remove the
seam lines between image boundaries due to the different color tones of the inputs. Color
deviation of each input image is corrected first and color differences between input images
are then compensated using the polynomial-based contrast stretching technique. The
proposed approach is attractive for its lower computational complexity. Experimental
results demonstrate that the color-matching problem can be satisfactorily solved in the
compressed domain even when the DCT blocks of original input images are not aligned.

Two block-level image registration techniques for compressed video such as motion
JPEG or the I-picture of MPEG are investigated. The proposed methods are based on
edge estimation and extraction in DCT domain so that the computational cost of image
registration is reduced dramatically as compared with the pixel-domain edge-based regis-
tration techniques while achieving certain quality of composition. In order to reach higher

accuracy of registration, a post-processing technique, hybrid block/pixel level alignment, is

xiii



proposed so that the displacement vector resolution can be enhanced from the block level
to the pixel level. As compared with the traditional spatial-domain processing, we do not
perform the inverse DCT transform to the whole image but to some selected blocks. It is
shown by experiments that the proposed algorithm saves around 40% of the computational
complexity while achieving the same quality.

In the last part, a content adaptive technique is proposed to upsample an image to an
output image of higher resolution. The proposed technique is also a block-based processing
algorithm that offers the flexibility in choosing the most suitable up-sampling method for
a particular block type. Block classification is first conducted in the DCT domain to
categorize each image block into several types: smooth areas, textures, edges and others.
For the plain background and smooth surfaces, simple patches are used to enlarge the
image size without degrading the resultant visual quality. The unsharp masking method
is applied to the textured region to preserve high frequen(.:y components. Since human
eyes are more sensitive to edges, we adopt a more sophisticated technique to process edge
blocks. That is, they are approximated by a facet model so that the image data at subpixel
positions can be generated accordingly. A post-processing technique such as 1D directional
unsharp masking can be used to enhance edge sharpness furthermore. Experimental r'esults

are given to demonstrate the efficiency of the proposed techniques.
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Chapter 1

Introduction

1.1 Significance of the Research

Since the first camera was invented in 1816, there have been great interests in developing
more advanced image/video capturing devices and technologies. Many innovative ideas
have been brought forth: from analog to digital signals, from monochromatic to color sys-
tems, from images to video clips, and from low resolution to high resolution video. Digital
video has become popular recently as evidenced by the quick growth of the consumer elec-
tronic markets, including DVD (digital versatile disk), DTV (digital television) and other
related entertainment products and services.

DTV is a new broadcasting technology that supports multiple digital television formats.
Among all formats, high definition television (HDTYV) offers the highest quality. HDTV
uses a wide screen format and supports very high resolution that contains more than
twice as many lines as current analog TVs. Although the HDTV display device becomes
affordable to the household these days, HD video capturing devices are prevalently used

by professionals due to the high cost of the equipment. There is a growing demand for



general consumers to generate their own high quality multimedia content at a low price.
One way to create high resolution video is through video authoring using the image/video
mosaic technique.

Image/video mosaicking is the process of stitching two or more images/videos taken by
different cameras from different viewpoints. Applications of image/video mosaic techniques
can be found in computer vision, pattern recognition and remotely sensed data processing.
When input image/video contents are taken from different viewpoints, sampling times and
sensors, image registration is needed to integrate these image/video tiles together. Over
the past few decades, a lot of research has been done to obtain an image/video mosaic.
For an extensive survey of previous work, we refer to [7], [56]. Generally speaking, the
image registration technique consists of two major steps: feature detection and feature
matching. They will be reviewed in Chapter 2.

Even though image/video mosaicking has been studied for years, most techniques were
primarily developed using the information of raw video (or called uncoded video). They
are implemented in the space-time domain (or the image pixel domain). In this research,
we consider mosaicking of coded video since each individual captured video content is
often coded before its transmission. If we perform image/video mosaicking in the raw
video domain, we have to perform image/video decoding first. This involves inverse DCT
when the input video is in the compressed format such as motion JPEG and MPEG. The
approach may not be suitable for the implementation in real-time embedded systems due
to a much larger memory requirement and the extra decoding procedure demanded.

For nowadays applications, multimedia capturing and display devices of different res-

olutions can be easily connected by networks and there is a great need in developing



techniques that facilitate flexible image/video format conversion and content adaptation
among heterogeneous terminals. Quality degradation due to down-sampling, up-sampling,
blurring, coding/decoding and some content adaptation mechanism in the transmission
process is inevitable. Thus, techniques for super resolution and image enhancement are
required to generate high quality multimedia outputs. Super resolution and image en-
hancement both have been investigated for a long time and are able to acquire contents
with high performance. The challenge under the current context is to strike a balance
between low computational complexity and high quality of resultant image/video.

The above observation has motivated us to study image/video mosaicking and super
resolution enhancement directly in the compressed domain. Since motion JPEG, MPEG
and H26x coding standards all adopt the DCT representation in the coding process, our
goal of this research is to conduct the registration process in the DCT (Discrete Cosine
Transform) domain to generate the corresponding high-quality compressed image/video

mosaic from multiple compressed video inputs.

1.2 Comparison of Raw and Coded Image/Video Mosaic

Techniques

Most traditional image/video mosaic techniques are conducted in the raw image/video
domain, which is essentially an image registration problem. Image registration usually
consists of two steps: feature extraction (or detection) and feature matching. They are

briefly discussed below.



Feature detection can be done either manually or automatically. Since human eyes
are sensitive to geometric patterns, it is straightforward for people to choose matched
patterns. However, it is desirable to develop an automatic feature selection process based
on the particular application context. f‘eature detection techniques can be classified into
two categories: the feature point-based and the area-based approaches. The feature point-
based approach extracts salient points such as corners, line intersections, line ends and
centroids of closed-boundary regions. For example, the wavelet transform was used in {19)
to extract the local maxima. The partial derivatives of image pixel values were proposed
in [25) for corner detection. However, this process is time consuming and sensitive to
noise. The area-based approach uses the correlation function to determine the degree of
closeness of two regions. For example, it computes the cross-correlation of intensities of
regions of input images to find the best match. This approach is suitable for images that
do not have many details. However, its computational complexity is still high. Once
the feature information is available, the next step is to find the optimal correspondence
between extracted features. Feature matching is a process to determine the relationship
between similar objects contained by different images. This can be achieved by finding the
spatial relations between extracted features of input images.

Although existing methods lead to good results under a high SNR (Signal-to-Noise-
Ratio) environment, they are only applicable in the raw image/video domain, where the
operations are applied to image pixels. This process is computationally expensive in gen-
eral. In practice, it is seldom to have raw video contents in storage and/or transmission
in real world applications. Once some image/video content is captured, it is compressed

(or coded) for storage and/or transmission. Commonly used video coding standards such



as motion JPEG, MPEG and H26x all adopt the DCT representation in the coding pro-
cess. Thus, it is desirable to conduct the registration process directly in the DCT domain
for multiple coded video inputs to synthesize an image/video mosaic, which is the main

difference between this research and the traditional image/video mosaic techniques.

1.3 Comparison of Image-based and Block-based Super

Resolution Techniques

Similar concerns to the raw image/video mosaic techniques, image-based super resolution
techniques suffer intensive computation complexity although high performance is guaran-
teed. Block-based processing is preferred due to several advantages. First of all, block-
based algorithm reduce the degree of freedom dramatically. The dimension of the block
that is taken into account at a time is much smaller compared to the original image size.
Also, the block-based method provides a mechanism which is capable of segmenting the
image into several types so that content adaptive image processing can be chosen accord-
ingly. Moreover, since each block can be treated as a smaller image individually, parallel
processing is applicable to speed up the processing time even more. Flexibility and low
computation complexity of the block-based algorithm make it more attractive than the

traditional image-based algorithms.



1.4 Contributions of the Research

In this proposal, we first consider the color matching problem of two input image/video
content. Then, we study the image registration of two arbitrarily translated images/videos

in the DCT domain. Specific contributions of this research are highlighted below.

e Development of DCT-domain color adjustment techniques

Several color matching algorithms that compensate color differences from two input
image sequences captured by different cameras is proposed. Some of them are con-
ducted in the pixel domain while others are carried out in the DCT domain. The two
proposed techniques, i.e. histogram matching and polynomial contrast stretching,
can eliminate the seam lines successfully at a much low computational complexity
as compared with the color adjustment technique in the pixel domain. Moreover,
when comparing two proposed approaches, the polynomial-based contrast stretching
method outperforms the histogram matching method in terms of the processing time
and the memory requirement since solving a second order linear system is faster than
performing histogram adjustment and only three matching coefficients are needed to

be stored (rather than the whole histogram matching table).

e Development of DCT-domain registration techniques

The DCT-domain registration techniques for MPEG video are developed for video
mosaic authoring with indoor and outdoor scenes. Both of them can achieve certain
quality of composition while the computational cost can be reduced significantly in
comparison with the pixel-domain based techniques. Furthermore, a post-processing
technique called “hybrid block/pixel level alignment”, which is conducted partially

6



in the pixel domain, is introduced to enhance the accuracy of the alignment. For
hybrid block/pixel level alignment, an algorithm is proposed to detect corner blocks
based on the DCT coefficients. Only corner blocks detected in the DCT domain
are converted back to the spatial domain for alignment fine-tuning. This hybrid
technique can achieve excellent alignment results at the cost of slightly increased

complexity.

Robustness of DCT-domain registration in a low SNR environment

It is observed that the proposed DCT-domain registration techniques are robust in
the presence of noise. This phenomenon is studied and explained. Rather than
dealing with pixel intensities directly, the proposed DCT-domain methods adopt the
DC component of the DCT coefficients for block alignment. The DC coefficient can
be viewed as the down-sized version of the original image since it is the average
energy of the whole 8 x 8 DCT block. The DCT-domain algorithms are robust in a

low SNR environment since noise can be removed by the averaging process.

Development of DCT-domain block classification techniques

Properties of 8 x8 DCT blocks are investigated for the purpose of block classification.
A decision tree is formed to decide whether a block contains background, texture
or edges. The decision is made by some thresholds defined based on the energy
distribution of DCT coefficients. By following the decision tree, an image can be
classified into several categories, which helps reduce the computational complexity
of further processing such as super resolution. For example, a simple interpolation

scheme can be used in the background region and smooth surfaces. Texture synthesis



techniques can be performed in the texture area. A more sophisticated algorithm
with high performance should be adopted for blocks that contain important visual
information, such as corners and edges since human eyes are more sensitive to these

features.

e Development of DCT-domain super resolution and image enhancement techniques

A content adaptive technique is proposed to upsample an image to an output image
of higher resolution in this work. The proposed technique is a block-based processing
algorithm that offers the flexibility in choosing the most suitable up-sampling method
for a particular block type. Block classification is first conducted in the DCT do-
main to categorized each image block into several types: smooth areas, textures,
edges and others. For the plain background and smooth surfaces, simple patches are
used to enlarge the image size without degrading the resultant visual quality. The
unsharp masking method is applied to the textured region to preserve high frequency
components. Since human eyes are more sensitive to edges, we adopt a more sophis-
ticated technique to process edge blocks. That is, they are approximated by a facet
model so that the image data at subpixel positions can be generated accordingly. A
post-processing technique such as 1D directional unsharp masking can be used to

enhance edge sharpness furthermore.

1.5 Outline of the Dissertation

This dissertation is organized as follows. The problem of raw and coded image/video

mosaicking is explained in Chapter 2. Several DCT-domain algorithms of color matching



and adjustment are presented in Chapter 3. DCT-based image registration techniques are
proposed in Chapter 4. Properties of DCT-based image/video registration techniques are
investigated in Chapter 5. A content-adaptive up-sampling technique for image resolution
enhancement is proposed in Chapter 6. Finally, concluding remarks and future research

directions are given in Chapter 7.



Chapter 2

Research Background: Raw and Coded Video

Mosaicking

Image/video mosaic, which combines several image/video inputs into a panorama output,
has been widely used in image processing, computer graphics, computer vision, and re-
motely sensed data processing. For a generic scenario, we may consider multiple video
sources captured by an arbitrary number of cameras with different parameter settings.

The discrepancies among smaller video tiles have to be resolved for seamless composition.

2.1 Problems in Image/Video Mosaicking

Due to different camera calibrations, special attention has to be paid on compensating
those disparities such as temporal synchronization, focal length reparation, image regis-

tration and color difference adjustment. These issues are described in detail below.
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¢ Temporal Synchronization

Consider two input image sequences used to form a video mosaic. The first problem
encountered is that temporal sampling points of these two sequences are different.
As shown in Fig. 2.1, there is a gap between sampled frames in these two sequences.
The goal of temporal synchronization is to perform temporal alignment between
the two sequences, which can be achieved by camera calibration or temporal frame

interpolation so that the time difference between sequences is significantly reduced.

Stream 1

Stream 2

4 Time
- e
Time Gap

Figure 2.1: Temporal synchronization required for video mosaicking.

¢ Focal Length Compensation

The focal length is the distance along the optical axis from the lens center to its
focus (or focal point) as shown in Fig. 2.2(a). The longer the focal length, the
smaller the field of view and the smaller the radial distortion. Radial distortion is
a lens aberration in which the focal length varies radially outward from the center.
It makes a straight line curved around the border of an image, which is also called

barrel distortion. An example of various distortion effects of different cameras is
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shown in Fig. 2.2(b) [14]. Since the distortion would affect the quality of the mosaic

output, it has to be corrected as well.
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Figure 2.2: Need of focal length compensation: (a) illustration of the focal length and (b)
barrel distortion effects.

e Image/Video Registration

Image registration is a technique that aligns several partly overlapped images prop-
erly so as to create a panorama view. An example is shown in Fig. 2.3. In this step,
the critical features of each image have to be detected and their correspondence have
to be found to determine the disparities of all images. The disparities between images
may include translation, rotation and scaling effects. Translation means that there
exists a displacement vector along vertical, horizontal or both directions between a
pair of two images. By rotation, we refer to an angle difference between the axis
systems of two capturing systems. The scaling effect, also known as the zoom-in
and zoom-out effects, is a result of the focal length change. Once the disparities are
determined, input images can be aligned so as to form an image with a larger filed

of view.
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Image
registration

Figure 2.4: Illustration of color matching and compensation: (a) two input color images
and (b) the image mosaic without color adjustment.

e Color Matching and Compensation

The calibration of different cameras may be different so that their color preference
may vary. This could result in different color tones of images. As shown in Fig. 2.4
(b), the stitched image mosaic looks unpleasant since it contains two apparent seam
lines around the image boundary. The object of this process is to adjust the pixel
values of two images so that the color tones will become similar to each other. As a

consequence, the seam lines in the stitched image will be eliminated.

2.2 Review of Traditional Image Registration Techniques

When input image/video contents are taken from different cameras with a different view-
point, sampling time and sensor, image registration is needed to integrate these im-
age/video tiles together. Most traditional image registration techniques are developed
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in the pixel domain. They consist of two major steps: feature detection and feature

matching, which will be discussed in detail in this section.

2.2.1 Feature Detection

The main task of feature detection is to extract salient features such as region, line and

point features as explained below.

¢ Region features
Examples include lakes (18], forest [44], or any closed-boundary areas. They are

detected by segmentation, which is done iteratively along the registration process.

o Line features
Examples include object contours [34], line segments [53], which can be extracted by
many methods. The standard ones are Canny edge detector and an edge detector

based on the Laplacian of Gaussian.

¢ Point features
Examples include line intersections [52], line ends and centroids of closed-boundary
regions [19], [35], and corners [54], [55]). They are usually determined at positions that

have a high variance such as local extrema of the wavelet transform or a curvature.

Some feature extraction methods are based on the information provided by the first- or
second-order derivatives while others investigate the image behavior around corners. The
specific features to use may vary according to image contents and applications. However,

all of them have something in common. That is, they are locally unique, distributed over
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the image, and easy for detection. Once the feature information is available, the next step

is to find the optimal correspondence of features between image tiles.

2.2.2 Matching of Image Areas and Features

Feature (or image) matching is a process to determine the relationship between similar
objects contained in different images (or between individual images) by finding spatial
relations among extracted features. There are several ways to define the similarity or the

difference measure for image/feature pairs.

e Cross-correlation

The cross-correlation between images I) and I is defined as

__ 2 (h(4) - BU))hBG.J) - B(l) (2.1)

CCGI = A0G N - BOPYs G - B

where I)(i,j) and I(i, j) are intensity values of two areas under alignment. The
correlation function is used to determine the degree of closeness. To be more specific,
it computes the cross-correlation of intensities of a certain region of input images to

find the best match.

e Fourier transform
Fourier transform converts an image from the space domain to the frequency domain.

The cross-power spectrum of two images is defined by

Fi(wewy) Fo™(wa,wy) s dz+wydy (2.2)
| Fi(wz,wy) Fe*(wz,wy) |
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where dz and dy are the displacement parameters. The displacement is determined

by the peak of the cross-power spectrum.

¢ Mutual information

The mutual information is defined as

I(Il,Iz) = H(I7) - H(Iz | Il) = H(Il) +H(Iz) - H(Il,Iz), (2.3)

where H(I) = —Y ;¢ ;p(%) log p(i) is the entropy of source I. and p(%) is the probability

function of i. The goal here is to maximize the value of mutual information, I(I, I3).

e Norms of image difference
The sum of absolute differences (SAD) and the sum of squared difference (SSD) of

image pixels are two commonly used metrics. They are defined as

ij
88D = Y (h(i,j) - L(i, )% (2.5)
iy

¢ Hausdorff distance

The Hausdorff distance is defined as

H(4, B) = maz{h(A, B), h(B, 4))} (2.6)
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where A and B are two point sets, h(A, B) = sup,¢,infecp || @ — b ||, and where
|l - || is the Euclidean norm of a and b. It was reported in [22] that it outperforms

the cross-correlation method.

The feature matching process can be also treated as an optimization problem, which
maximizes the similarity measures (e.g. cross correlation, Fourier transform and mutual
information) or minimizes the difference measures (e.g. norms of image difference and
the Hausdorff distance). Several solutions have been proposed to solve this optimization
problem, including the Gaussian-Newton minimization, the gradient descent optimization,
and the Levenberg-Marquart optimization.

Other than the measures mentioned above, some researchers adopt the multi-scale ap-
proach which registers images from the coarse to the fine scale. The wavelet decomposition
is a representative of this hierarchical method, where the image is divided iteratively into

four subbands of different frequencies.

2.2.3 Geometric Image Transforms

Another approach to solve the registration problem is finding a geometric transform be-
tween two images. Geometric transforms may include the rigid, affine, projective, perspec-

tive and polynomial transforms. They are explained below.
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Affine transform
An affine transform is usually composed of translation, rotation and scaling. It can
be expressed in a general form as

) tr cos@® siné 3, O x
= + . (2.7)

) ty —sinf cosé 0 sy Y1

Perspective transform

The perspective transform is used to model the effect of projecting a 3D scene onto
a 2D image plane. Consider that the Cartesian coordinates in the 3D space, denoted
by (z,y, z). Then, its corresponding coordinates in the image plane can be expressed

by

e (28)

where f is the focal length of the camera.

Projective transform
If a scene plane is not parallel to the image plane, the scene is mapped onto the

image plane through the following projective transform:

o = ¥ + 212y + a13 s _ a21Z + ey + a3

= , = 2.9
a3 + azey + aszs a3z + azey + as3 ’ . ( )

where a;; are constants.
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¢ Polynomial transform
The polynomial transform is adopted for the case where the geometric model of the

camera is unknown. The transformation can be written as the following form:

= Z Z a;Ty Tl Y = Z Z bijz'y’ . (2.10)

i=0j=0 i=0j=0

2.2.4 Optical Flow

The optical flow approach has been recently proposed for video registration with good
performance {3]. Let I(z,y,t) be a function of the image intensit.y. Then, the behavior of
the neighborhood centered at position (z,y) over a short period of time can be expressed
as

ol or oI

I(z + dz,y + dy, t + dt) = I(z,y,t) + %dx+ B_ydy+ Edt+ N (2.11)

where higher order derivatives are assumed to be negligible. If point (z,y) moves to a new
position (z+dz, y+dy) over a period of time dt, we have I(x+dz,y+dy, t+dt) = I(z,y,t).

Then, (2.11) can be rewritten as

ar, oI, oI
550 gyt =0 (2.12)

Dividing both sides of Eq. (2.12) by dt and letting %"; = u, %‘f = v leads to

or ol ar
_5? = b:u + a—yv (2.13)

19



which is called the optical flow equation. It represents the intensity changes along z and
y directions and along time £. The problem is an ill-posed one and its solution demands
some additional constraints. Once the constraints are added, the problem can be solve by
the Lagrange multiplier method.

Generally speaking, automatic image registration is still an open problem. Researchers
still continue to look for better algorithms with robust performance in various application

environments.

2.3 Review of Traditional Super Resolution and Image

Enhancement

The super resolution problem is formulated below. For a more detailed discussion on the
super resolution problem, we refer to [4] and [49].

Let {Kk},'cv:l and X be the set of N low resolution input images and the desired high
resolution image, respectively. Then, by taking various degradation effects into consider-

ation, the relationship between Y; and X can be written as
Y, = Dy BiW; . X + Ny, k=1,.---,N, (2.14)

where W, is the warping matrix, By the blur matrix, D the subsampling matrix and N
the noise. This is called the image observation model [39] and shown in Fig. 2.5. Note
that, for most cases, N is assumed to be white Gaussian noise with correlation function
E{NiN;T} = 0%I. The super-resolution problem is to recover X based on observations

Y, with1<k < N,
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Figure 2.5: The observation model for super resolution.

Although many existing super-resolution techniques can provide high quality output,
most of them deal with raw video in the pixel domain rather than compressed video such as
MPEG in the DCT domain. Even some of them adopt the frequency-domain information,

they still demand the manipulation in the pixel (or space) domain.

2.3.1 Spatial-domain Algorithms

Generally speaking, spatial-domain algorithms can be categorized into following types
based on the underlying techniques: interpolation, iterated back projection (IBP), stochas-
tic reconstruction methods, set theoretic reconstruction methods, hybrid ML/MAP/POCS

methods and optimal adaptive filtering. Each of them will be discussed in the following.

¢ Interpolation

Interpolation is the most intuitive method to enhance the resolution of an image.
The most commonly used one is the bilinear interpolation. There are however other
interpolation schemes available. For example, Landweber algorithm [27] was used by
Komatsu et al. [26] and Shah et al. [45] and a weighted nearest neighbor interpola-
tion was adopted by Alam et al. [1]. A wavelet-based algorithm was introduced by
Nguyen et al. [36] to deal with interlaced two-dimensional data. Generally speaking,
interpolation operations are easy to implement. However, they are not related to the
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observation model. Important issues such as image degradation due to optical blur,

motion blur and noise, cannot be well treated by this approach.

Iterated Backprojection

Let X, Y and H be the estimates of the desired super-resolution image, the esti-
mated LR image and the image observation model. Then, we have Y = Hx. The
iterated backprojection (IBP) is a process that backprojects the error between the
kth estimated LR image Y () and the observed LR image Y by a matrix denoted by
HBP, The generalized iterative equation can be written as

gh+1) = (k) 4 gBP(y — Y1)
(2.15)

= &0 4+ HPP(Y - HxW)
The above procedure is performed iteratively until the error between the estimated
and the observed ones converges. Note that this method is not applicable if there is

some a priori information on x that has to be taken into account.

Stochastic Reconstruction

When there is a priori information on x, a stochastic method called the Bayesian
approach can be adopted. As mentioned before, the image observation model is of
the form: Y = Hx + N. The Mazimum A-Posterior (MAP) estimate of x can be
derived by maximizing the power density function (PDF) Px|Y as

g+l = grgmax P(x|Y)
(2.16)

= argmax P{ln P(Y|x) + InP(x)},
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where In P(Y|x) is the log-likelihood function and P(x) is the a priori density of x.
Note that P(x) is often represented by the Markov random field (MRF) according to
the local neighboring interaction model. The Huber MRF was adopted by Stevenson
in [43]. The Gaussian MRF was used by Hanson et al. [9] and Hardie et al. [17],
where the latter takes not only the global motion information but also the PSF of

the sensor/optical system into consideration.

Another class of stochastic reconstruction methods is based on the mazimum likeli-
hood (ML) formulation for registration, interpolation and restoration [48], [49], [11].
Katsaggelos [49] used this scheme to estimate the effect of sub-pixel shifts and noise
variance and the super-resolution image at the same time. The problem was solved
by a method called the ezpectation-mazimization (EM) algorithm. Since the a prior
information plays an important role in the ill-posed super-resolution problem, the
ML algorithm is less preferable than the MAP estimation since the ML algorithm

may not incorporate all prior knowledge properly.

Generally speaking, stochastic methods including both MAP and ML estimates pro-
vide a powerful suit of tools in the modeling of noise and the stochastic nature of

underlying image and video.

Set Theoretic Reconstruction

The projection onto the convex set (POCS) is one of the prominent methods for
solving the super-resolution problem. This idea was first introduced by Stark and
Oskoui [37]. The a priori knowledge about the solution can be treated as imposing

constraints on the solution so that it is an element of the intersection of several
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convex sets denoted by C;, i =1, - k, where each C; consists of vectors that satisfy

certain properties.

Given point x in the space, P; is the projection that projects x onto the closest
point of set C;. After applying the process iteratively, i.e. projecting point x onto
all constraint sets, we have x(®t) = P.P._;-.-PPix to fall in the intersection
set, C; = NZ,C;, which meets all constraints. Note that the closedness and the
convexity of the constraint sets only guarantee the convergence of the iteration but
not the uniqueness of the solution. Actually, the final solution highly depends on the
initial guess. The POCS method is popular due to its simplicity, flexibility of the

spatial domain observation model and the ease of incorporating a priori information.

Hybrid ML/MAP/POCS Methods

To combine the advantages of stochastic reconstruction methods and POCS, a hybrid
method was proposed in [43], [12]. If there are M constraints, the optimization can
be modified as

Minimize €2 = [y) — HiX]"Rn ™ [yx — Hixx] + a[Sx]TV[Sx] 217)

subject tox € C, 1<k <M,
where Ry, is the autocorrelation matrix of noise, S is the Laplacian operator, V is
the weighting matrix to control the smoothing strength of each pixel, and Cy, is the
constraint set. This hybrid method benefits from the optimal estimates of stochastic

reconstruction methods and the flexibility of including linear or nonlinear a priori
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information of POCS. Thus, it is applicable under a more generic setting with good

performance.

Adaptive Filtering Approach

The inverse filtering technique can also be used in solving the super-resolution prob-
lem. Jacquemod et al. [23] proposed a deconvolution process for observed images
obtained through sub-pixel translation motion. A linear minimum mean squared er-
ror (LMMSE) algorithm, which can be viewed as a motion compensated multi-frame
Wiener filter, was proposed by Erdem et al. [13] to process images with a spatial
blur and additive noise. In addition to the Wiener filter, the Kalman filter was also
adopted for super-resolution reconstruction in [40], [10]. This computationally effi-
cient scheme can deal with images degraded by the spatially-varying blur. However,

it cannot handle nonlinear modeling constraints effectively.

2.3.2 Frequency-domain Algorithms

To solve the super-resolution problem, the frequency-domain method [50] utilizes the shift

property of the Fourier transform, the relationship between the continuous Fourier trans-

form (CFT) and the discrete Fourier transform (DFT) and the assumption that the un-

derlying image is band-limited. Although there are disadvantages associated with the

frequency-domain approach, it is still computationally attractive while degraded images

only have sub-pixel global translation motion. The frequency-domain approach 5] applied

to the super-resolution problem is reviewed below.
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Let f(z,y) denote a continuous scene. Consider the following R shifted images
fr(m,y) =f($+AxT’y+AyT)’ r= 112y“'R‘ (218)

Their continuous transforms are denoted by F(u, v) and F,.(u,v), respectively. By applying

the Fourier transform to (2.18), we obtain
Fp(u,v) = exp??m(82r+bur) p(y ), (2.19)

The observed images, yr[m), mg), can be obtained by sampling the original image. That

is, we have
yrlmi, mo] = f(mT; + Az, nTy + Ay,), m,n=0,1,--- .M -1.

Let Y;[k,!] be the DFT of y, r = 1,2, -- R. Then, we have

},r[k,l]=a Z Z Fr (M_T;p +pf8:;)N_71y+Qf8y)1 7'=1,2,"'R, (220)

p=—00¢=—00

where f;, = 1/T; and f,, = 1/T), are the sampling rates along the horizontal and vertical

directions, respectively. Based on (2.19), Eq. (2.20) can be rewritten in form of
Y = &F, (2.21)

where Y is the DFT coefficient vector with elements Y; [k,{], r = 1,2,.-- R, F is the vector

consisting of samples of the CFT of the high resolution image, and & is the matrix that
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models the relationship between Y and F. Then, the solution to the super-resolution
problem can be obtained by solving a linear system for F' and then applying the inverse
DFT to the resulting F to reconstruct the space-domain image f. This frequency domain
solution procedure saves a lot of computation.

However, the assumptions made here are not realistic since the optical point spread
function (PSF) as well as the observation noise are not considered. Some extensions of [4]
have been made by Kim et al. [24] and Tekalp et al. [47], who took PSF and noise into
consideration and solved the problem by the least squares method. Later on, the recursive
least squares solution for (2.21) was proposed by Bose et al. [6], where the problem is
modified to minimize

|®F =Y [P+A|| F-c|? (2.22)

and where c¢ is an approximation to the desired solution. The solution to this problem

becomes

F=(®T® + AI)"Y(@TY + Ac), (2.23)

which can be solved iteratively rather than directly via matrix inversion. With a fast
convergence rate, the computational complexity of an iterative method can be reduced
dramatically. Kim et al. [6] proposed a recursive total least squares method to solve a
problem where errors appear in observations as well as the system matrix. Then, the

observation can be expressed as

Y =[® +EJF +N, (2.24)
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where E is the motion estimation error in ®, and N is additive noise. The problem can
be further converted to a constrained optimization problem as

Minimize || [N:E] || , (2.25)

Subject to Y — N = [® + E|F.

If there exists a simple expression of the relationship between the low-resolution and
high-resolution images, frequency-domain methods are computationally attractive. How-
ever, these methods can handle global translational motion and spatial invariant degrada-
tion only. It is difficult for them to deal with generic degradation models and to incorporate

a priori information. These are their main limitations.

2.4 Challenges of Coded Video Mosaicking and Research

Objectives

Even though image/video mosaicking has been studied for decades, most techniques have
been developed based on raw video data (or uncoded video). Thus, most algorithms are
implemented in the space-time domain (or the image pixel domain). In this research, we
consider mosaicking of coded video since each individual captured video is coded before its
transmission. If we perform image/video mosaicking in the raw video domain, it demands
image/video decoding first. For example, it will involve tedious inverse/forward DCT
when the input video is in the compressed format such as motion JPEG and MPEG.
They are not suitable for implementation in embedded real-time systems due to the heavy

computation and large memory needed in this process. Thus, it is desirable to study
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image/video mosaicking in the compressed domain directly, which is one of the main tasks
of this research.

The super resolution problem has been studied for a long while. However, all existing
algorithms have been designed for raw video inputs. For multiple coded image sequences,
how to get super resolution video based on coded video in the DCT domain (without de-
coding them back to the raw video domain fully) to save computation as well as storage is
clearly a great challenge. Some information in the coded video domain, such as DCT co-
efficients, quantization step sizes, motion vectors or even the residuals, could help improve
the performance of super-resolution outputs. However, a super resolution method fully
in the DCT domain could be very difficult due to the limitation of the frequency domain
methods as discussed in the last subsection. Thus, to develop the super-resolution tech-
nique for multiple MPEG video sequences, our initial goal is to develop a hybrid method
that utilizes raw as well as coded video data to produce a high-resolution MPEG video
output. However, in order to save the computational cost, we prefer to perform opera-
tions in the compressed domain as much as possible. The pixel domain process will be
considered only when it is absolutely needed.

DCT provides a powerful tool for energy compaction (by removing spatial redundancy
of the underlying image), and it is widely used in image coding standards such as JPEG
and MPEG. Thus, we study image/video registration, color matching, and super resolution
techniques based on multiple coded video clips in the DCT domain. Besides, motion
vectors can provide auxiliary temporal information for image alignment. The proposed

system is illustrated in Fig. 2.6.
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Figure 2.6: Illustration of the proposed video mosaicking system.

The ultimate object of this research is to develop an efficient system to generate a
mosaic image/video using several images/videos captured by different sensors under dif-
ferent conditions. Suppose there are few input video sequences of SD level produced by
different cameras and then passing through the MPEG encorders to generate compressed
MPEG format streams. A stitching scheme is performed mostly in the compressed domain
without going through the conversion to the spatial domain. Note that there are some
assumptions made in the proposed system. For example, the temporal synchronization
parameters are well calibrated and the radial distortions caused by various focal length
are also compensated in advance. Then, there are two major research issues remaining:
namely, color matching and image/video registration. They need to be addressed to com-
pensate the discrepancy between two image/video inputs to make one high quality stitched
output.

In our research, most of process are performed in the DCT domain so that a high

resolution image sequence can be obtained from several low resolution image sequences
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via video mosaicking. Furthermore, a post-processing technique called super resolution

can be applied to any region-of-interest or even the whole image for the highlight purpose.
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Chapter 3

Color Matching and Compensation of Coded

Images

A video source captured by a camera usually has its unique color preference and response
to the light. Consequently, the brightness and color of different video sources may vary
significantly. Even though images are perfectly gtitched geometrically, apparent seam lines
may still exist between video tiles [35]. To make the image/video mosaic look more natural,
it is important to find a way to adjust the color tones of image/video inputs as close as
possible.

Several ideas in comparing the color similarity between two images have been studied.
For example, a structured light approach was proposed by Tsukada and Tajima [51]. More
recently, a new technique was proposed by Hu and Mojsilovic [21] to extract relevant colors,
where a new color distance measure was used to assure the optimal matching of different
colors from two images. Most of previous color matching algorithms are conducted in
the spatial domain, which demands a larger amount of computation. Since many video

sources are encoded using the motion-compensated predictive coding technique such as
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the MPEG and H.26x coding standards, it is preferred that the task of color matching and
correction is done in the DCT transform domain (rather than in the pixel domain) in the
video mosaic authoring process.

Under the simplifying assumption that all other differences have been compensated,
we examine and compare various color-matching techniques in the pixel and the DCT
(Discrete Cosine Transform) domains in this chapter. Algorithms in the pixel domain
as well as the transform domain for color difference compensation and seam line removal
among video tiles are proposed. They are compared in terms of visual quality. It will be
demonstrated by experimental results that the transform-domain algorithm can achieve
good quality of composition while dramatically reducing the computational burden of
decoding/encoding.

The overlapping region of two images can be determined in the image/video registration
process, which will be described in Chapter 4. Here, it is assumed that the overlapping
region of two adjacent images has I columns. For these I columns, we perform some
manipulation to make each color component of two images to share a similar range of
values. Two approaches are considered. They are the histogram-based approach and the
polynomial-based contrast stretching approach, which will be described in Sec. 3.2 and

Sec. 3.3, respectively.

3.1 Pre-processing via White Balancing

Before the compensation of the color difference between two images, a pre-processing called
white balancing may be needed to correct the color tone of each image individually. White
balancing is the process of adjusting image colors under different illumination conditions
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so that the color bias of each image can be removed. In other words, an object that
appears in white in human eyes are rendered white in the photo. It is not difficult for
our eyes to determine the white color under a different light condition automatically but
it is a difficult task for cameras to do so. A technique called the Gray World Assumption

(GWA) has been developed to achieve this goal and will be reviewed below.

3.1.1 Fundamentals of Gray World Assumption (GWA)

The GWA states that a given image is assumed to have a sufficient amount of color
variations. In other words, the average value of the R, G and B components of an image
should average out to a common gray value. Under this assumption, the three channels
are adjusted individually but the adjustment ratios for each channel should be kept the
same for all pixels. This procedure can be done detailed as follows.

Consider R, G, and B three color components. The first step is that the mean of each
component as well as the total mean are calculated and denoted by mp, mg, mpg and

mRGR, respectively. The ratio of each component is then defined as

MRGB MRGEB mpGB
TR= y Tg=———; rp=—r. (3.1)
mp mg mpg

According to these ratios, the color components R, G, and B can be adjusted by

Rewa=rr-R, Gewa=r¢'G; Bewa=rp'B. (3.2)

An example of GWA is shown in Fig. 3.1. We see that the color tone has been compensated

and the output image quality has been improved.

34



Figure 3.1: Experimental results of applying the Gray World Assumption to all image
pixels: (a) the input image and (b) the output image.

3.1.2 White Balancing in DCT Domain

By examining HSI components and the corresponding histograms of the two images in
Fig. 3.1, we see that the main difference lies in the H component while there is not
much difference in the S and 1 components. It indicates that GWA focuses more on the
adjustment of the H component and less on that of the S and the I components. If we
examine GWA in the YCbCr space, we see that it has more impacts on the chrominance
components, i.e. Cb and Cr. Two different cases are considered below to verify the idea
of performing GWA on Cb and Cr components.

For the first case, an image with lower saturation and lower intensity is shown in Fig.
3.2(a) and the corresponding output of the GWA enhanced image is shown in Fig. 3.2(b).
We see that the yellowish color tone has been corrected to some degree but the output
image quality is poor due to the low intensity.

For the second case, an image with a different hue component but the same two other
channels is shown in Fig. 3.1(a) and the corresponding output of the GWA enhanced

image is shown in Fig. 3.1(b). The quality of the output image is significantly enhanced.
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Finally, by comparing Fig. 3.1 (b) and Fig. 3.2(b), we see that GWA works better for
the hue adjustment (color tone manipulation) but cannot do much for the adjustment of

the saturation and intensity components.

o qusiy Mg

(a) (b)

Figure 3.2: Experimental results of applying GWA to an image with low saturation and
low intensity components.

3.1.3 Experimental Results

A preliminary experiment of performing GWA in the DCT domain has been conducted
to verify the proposed idea of improving color quality of an image. As shown in Fig.
3.3, we find that the result is similar to the one in Fig. 3.1(b). In other words, GWA
is applicable to the chrominance components to compensate the color tone of an image
successfully. Note the GWA works well under the assumption that the underlying image
has a sufficient amount of color variations. Thus, if the image content is dominated by
a certain color, the algorithm may fail to provide a high quality output image. Another

color processing approach is proposed in the next section to deal with this situation.
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Figure 3.3: Experimental results of applying GWA in the DCT domain.

3.2 Histogram Matching

In this section, we consider the problem of adjusting histograms of two images to elimi-
nate the seam lines around boundaries in an image mosaic using the histogram matching
method. The color associated with each pixel can be represented using the RGB or the
YCbCr color coordinates. In the following discussion, we focus on the histogram adjust-
ment for any single color component (i.e. a monochrome image). The same process can

be applied to the three color components separately.

3.2.1 Fundamentals of Histogram Matching Technique

The histogram of an image is obtained by choosing a bin size, which is usually 256 or
fewer since we adopt the 8-bit representation for a monochrome image, and counting the
number of pixels with values belonging to each bin. Finally, we may divide the number of
each bin by the total number of pixels for the normalization purpose. If we treat an image
as a source and its gray level value a random variable, then the histogram can be viewed

as the probability density function (pdf).
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» By histogram matching, we refer to a process that adjusts the histogram of an image to
be similar to the desired one. We use I, H;, and Hy to denote an input monochrome image,
its histogram and the histogram of the desired output monochrome image, respectively.
Our goal is to find the mapping F so that Hp(;,) = Hy. To perform histogram matching,

we need the cascade of the following two steps.

e Step 1: Map from I to I’ using the cumulative distribution function (cdf) of input

image I), which is denoted by Fi, and

e Step 2: Map from I’ to F(I) using the inverse cumulative distribution function

(icdf) with respect to the desired histogram Hy, which is denoted by F.

Please note that the cdf of an image is computed from its histogram by summing
up successive bin counts from 0. The cdf is a function that maps the interval [0,256] to
[0,1] while the inverse cdf is another function that maps [0,1) back to [0,256]. Thus, the

histogram equalization can be written as

F(h) = FBa[F(h)]

Fig. 3.4 shows an example, where the histograms of three components (RGB) of an
image are adjusted by applying the histogram matching technique. The three sub-figures
in the top row of (a) are histograms of the R, G, B color components of the first original
input and the bottom row are those of the second original input. The histograms of first
and second output images after histogram matching are shown in the top and bottom rows

of (b), respectively.
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Figure 3.4: The histograms of three components of an image: (a) before and (b) after
histogram matching.
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3.2.2 Pixel-domain Color Adjustment

Since it is in the pixel domain, the image color is typically represented by its red (R),
green (G), and blue (B) components. Take the R component for example. Let R,(z,v)
and Ry (z,y) be two 2-D sequences of the red component in the overlapping region for image
1 and image 2, respectively. We first compute the mean mpg(z,y) of the corresponding
pixels in these two sequences. Then, we can generate histograms for three sequences
separately: Rj(z,y) and Ra(z,y) and the mean sequence mg(z,y). Afterwards, we can
define a mapping table, Lp,, for pixels of image 1 in the overlapping region so that the
histogram of Ry (z,y) alone can be converted to that of the mean sequence. Then, by
adopting the same mapping rule, we are able to update the R components of all other
pixel values for image 1. The same procedure can be applied to image 2. After the R, G,
and B components of both images are properly updated with the above procedure, these
two new images should have the same color tone in the common (i.e. overlapping) region

as well as the two disjoint regions.

Input image 1 Input image 2 My
Look up table Look up table
Ly Ly
Update R1 Update R2

Hfa E L

Figure 3.5: The block diagram of histogram matching in the pixel domain.
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3.2.3 DCT-domain Color Adjustment

Instead of dealing with RGB components, we manipulate the DC values of YCbCr for color
adjustment when performing color adjustment in the DCT domain, since image/video

coding is usually done in the YCbCr domain.

1. Basic scheme for exactly matched block locations

For the DCT domain processing, we first consider a simplified case where the DCT
blocks from image 1 and image 2 have the exact match as shown in Fig. 3.6(a). Then,
we perform the color matching process by adjusting the Y, Cb, Cr values of the DC
coefficient of each DCT block. For each color component of the DC coefficient, we
can adopt the histogram matching method which is described in Sec. 3.2 for color

adjustment.

2. Modified scheme for blocks with displacement

Next, let us consider a more complicated case, where the DCT blocks from image 1
and image 2 are offset by an amount of m and n pixels along the horizontal and the
vertical directions, respectively, where m and n are in the range of 0 and 8. Then,

we can proceed with the following three steps.

e Step 1: Once the spatial displacement (m,n) is known, we use the bilinear
interpolation to interpolate the DC components of four DCT blocks from image
1, i.e. a, b, ¢, and d shown in Fig. 3.7, that surround the target DCT block
of image 2 so that the interpolated block has the same spatial location as the
target DCT block. The interpolated DC value is called the DC component of
the pseudo DCT block in image 1.
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e Step 2: We adjust the color values of the DC components of the DCT block in

image 1 and the pseudo DCT blocks in image 2 using the algorithm presented

in Sec. 3.2.

e Step 3: We use the bilinear interpolation again to interpolate the DC com-
ponents of the DCT blocks of image 2 based on the DC components of their

surrounding pseudo DCT blocks. This process is illustrated in Fig. 3.7.

/-IIDJ'O}

1

4

y W /
] h (x0+m.y0+n
(a) (b)

image 1
Figure 3.6: The DCT blocks from images 1 and 2 have (a) the exact matched location and
(b) an offset of (m,n).

pseudo DC value
in image 1

7N~
s
GO
vzl
| K,
(x0+m,y0+n) b(x0+8,y0) ¢(x0+8,y0+8)

{
lmage 1

AR

Z

I
=H

)

= |

Figure 3.7: The bilinear interpolation of four DCT blocks to synthesis the pseudo DCT
blocks and vice versa.
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3.3 Polynomial Approximation

3.3.1 Pixel-domain Contrast Stretching

The color tone adjustment can be achieved by using contrast stretching as detailed below.
First, we compute the mean value of each color component of pixels in the overlapping
region. Then, we can approximate the mapping from the original color component to
this newly calculated color component with a polynomial which is described in Sec. 3.3 of
different orders for one input image. We have n+1 coefficients for a n-th-order polynomial.
These coefficients can be determined using the least square methods for all pixels in the
overlapping regions. Once these coefficients are found, they can be used to update the
values in the non-overlapping region of this image. The same procedure can be applied
to the other input image. In our experiment, we found that it is sufficient to have a low
order polynomial such as n = 2. The improvement comes from a larger n is very limited.

More details will be shown in Sec. 3.5.2.

3.3.2 DCT-domain Contrast Stretching

Here, we still consider two cases: a basic scheme with exactly matched block locations and
a modified scheme with blocks with displacement. Note that the data sequences here are
DC values of YCbCr in the overlapping region instead of RGB components. After solving
the linear system for coefficients a and b, we are able to update all the other DC values in
the non-overlapping region. Note that the data size is 1/64 of the one in the pixel domain

since each 8 x 8 block has only one DC value.
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3.4 Post-processing via Linear Filtering

Consider two data sequences, x = [zg z1 -+ zz)and y = [yo 11 - yn]. We would like
to combine them together to form a new data sequence which contains some information
of the original two sequences with different weights respect to their spatial positions. In
terms of mathematics, the relationship between the new sequence and the original two

data sequences can be expressed as

z(i) =axx(@)+ (1 —a) x y(@) fori=0,---,n. (3.3)

where 0 < a <1 is the weighting parameter whose values are shown in Fig. 3.8.

weight1
1

spatial position

Figure 3.8: The curves of two weighting parameters used in the linear combination.

3.4.1 Pixel-domain Post-processing

After the above step, we still see two seam lines between the overlapping and the non-
overlapping regions. To remove seam lines, we weigh values from images 1 and 2 and
combine these weighted values into one final value. In terms of mathematics, the relation-

ship between the new image and the original two images can be expressed as

R(i,5) = ax Ri(,5) + (1 - @) x Ry, j), (3.4)
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where R'(i,7) is the new value at position (4, 7) in the overlapping region of the output
stitched image, Ii’l (2, 7) is the updated value at position (i, 7) in the overlapping region of
image 1, 1%'2(1’, 7) is the updated value at position (i, j) in the overlapping region of image
2, and 0 £ o £ 1 is the weighting parameter varying according to the pixel position. In
our experiment, we let the value of o increase linearly from 0 to 1 when (¢, j) moves from

the boundary of image 1 to the boundary of image 2 along the overlapping region.

3.4.2 DCT-domain Post-processing

After updating all DC values, the seam lines between image boundaries might still exist.
To remove seam lines, we can convert the color space from the YCbCr values back to the

RGB values, and apply the same method as described in Sec. 3.4.

3.5 Experimental Results

In this section, we present some preliminary experimental results with two input images
as shown in Figs. 3.9(a) and (b). These two test images have a very different color tone.
Besides, there is a significant overlapping region between them. It is assumed that the
registration part has been done so that the two images are well aligned in the common
area.

Fig. 3.10 shows the stitched image without color matching, where a simple color
component averaging operation is applied in the overlapping part of two images. As we
can see from the output image, there exist three regions of different color tones and two

apparent seam lines between two adjacent regions.
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(b)

Figure 3.9: The original two input images.

Figure 3.10: The stitched image without color matching,

3.5.1 Stitched Images After Color Matching
3.5.1.1 Histogram Matching

The stitched image using histogram matching in the pixel domain is shown in Fig. 3.11.
As we can see, the color tone of the output image has been adjusted to lie in the middle of
the two input images. Furthermore, the seam line has been eliminated satisfactorily. The
output image looks just like a natural image with a wider angle of view.

Image stitching using the DCT domain processing based on histogram matching in the
DC coefficient of DCT blocks is given in Fig. 3.12. We see the color deviation phenomenon

in the non-overlapping regions since most of the pixel values fall outside the dynamic range
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Figure 3.11: The output image after color adjustment in the pixel domain with histogram
matching.

of [0,255] after converting the updated values of Y, Cb, and Cr back to the RGB color

coordinates.

3.5.1.2 Polynomial Approximation

The result of using the polynomial-based contrast stretching in the pixel domain is shown
in Fig. 3.13. The performance is similar to that of histogram matching. There are no
seam lines and no color transition inside it.

The result using the polynomial-based contrast stretching as shown in Fig. 3.14 looks
significantly better if compared to Fig. 3.12. The two input image have similar color
tones, which are close to that of the mean color values of the overlapping region. This

phenomenon can be explained below.
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Figure 3.12: The output image after color adjustment in the DCT domain with histogram
matching.

Since the histogram describes the overall distribution of a random variable, the more
data we generate, the more accurate the description is. As to the polynomial approxi-
mation, it can be viewed as a point-wise approximation method. In our experiments, the
region of the overlapping part is more than half of the original one. Thus, there is a lot
of information for us to find out the relationship between these two images in the pixel
domain so that both the histogram matching method and the polynomial approximation
method work well. However, in the transform domain, we have one DC value for each 8 x 8
DCT block to find out the relationship, which is significantly less than the data in the pixel
domain. Thus, the result is less robust. On the other hand, the degree of freedom in the
polynomial approximation (i.e. the number of coefficients of the polynomial) is usually 3
or 4, which is still much fewer than the number of constraints in either the pixel domain

or the DCT domain. Thus, the result is more robust.
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Figure 3.13: The output image after color adjustment in the pixel domain with polynomial
approximation.

Fig. 3.15(a) and (b) shows the stitched image using the polynomial-based contrast
stretching technique in the DCT domain with exactly matched blocks and in the DCT
domain with block displacement, respectively. To make the results more visible, we zoom
in specific regions of the output image. As we can see, the color tone of the output image
has been adjusted to lie in the middle of the two input images. Furthermore, the seam
lines in Fig. 3.10 have been eliminated satisfactorily. The output image appears to be a
natural image with a wider angle of view. The result for the DCT domain techniques has

similar performance as the one in the pixel domain whether the block is aligned or not.

3.5.2 Performance Comparison

1. Comparison of processing time

The comparison of processing time between the pixel and the DCT domains is shown

in Table 3.1. The computation time for polynomial approximation is less than that
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Figure 3.14: The output image after color adjustment in the DCT domain with polynomial
approximation. :

for histogram matching. As far as the memory is concerned, polynomial only needs
to store three coefficients for each pair of sequences while the histogram needs an
array of size at least 256 by 1. Polynomial approximation seems to be superior to

histogram matching in both the computational cost and the memory requirement.

2. Comparison of MSE with different order of polynomial approaches

Figure 3.15: Stitched images with polynomial approximation in the DCT domain (a)
without block displacement and (b)with block displacement.
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As mentioned before, polynomial based contrast stretching has a better performance
in image quality, computation complexity and memory requirement. Note that the
polynomial adopted for approximation is of order 2. Theoretically, the higher the
order, the more accurate the approximation. However, higher order polynomial will
cost more computation complexity. Table 3.2 shows how the order would affect the
performance in terms of MSE (mean squared error). As it is shown in this table,
higher order approximation does improve the performance but not that obviously.
Therefore, we may say that the second order polynomial approximation is sufficient

to provide outputs to some satisfactory degree.

Table 3.1: Comparison of processing time (seconds) between two different domains and
two different approaches.

Pixel Domain | DCT Domain | Save
Histogram Matching 71.243 (sec) 8.623 (sec) | 87.90%
Polynomial Approximation | 52.135 (sec) 6.810 (sec) | 86.94%
Save 26.82% 21.02%

Table 3.2: MSE for different order polynomial approaches.

order Y Cb Cr
2 | image 1| 5574.6 | 1132.4 | 664.8
image 2 | 7001.3 | 1343.8 | 2035.5
3 [image 1 [ 5449.1 [ 1131.9 | 646.9
image 2 | 6980.4 | 1285.6 | 2037.3
4 |[image 1| 5298.0 [ 1123.8 | 649.5
image 2 | 7011.7 | 1282.0 | 2045.6
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3.5.3 Other Considerations

For each 8 x 8 DCT block, each coefficient represents the weight of its corresponding
spatial frequency, and there are 64 basis patterns. Typically, the DC value contains most
information about the 8 x 8 block so that we only adjust DC values of two images to
be the same in the DCT domain. Figs. 3.16(a) and 3.16(b) show the output images,
where we try to match not only the DC values but also the first three and five AC values,
respectively. The color tone is similar to the one shown in Fig. 3.14. However, we observe
some artificial patterns appearing all over the whole image which degrades the quality of
the output image significantly. It is not surprising since modifying DCT coefficients for
each block is equivalent to changing the weights of the basis patterns. Once the proportion
relationships between spatial frequencies have been modified, the output image will not be
the same. This explains the occurrence of artificial patterns if we attempt to match AC

values as well.

3.6 Conclusion

Several color matching algorithms that compensate the color differences from two input
image sequences captured by different cameras were studied in this chapter. Some of them
are conducted in the pixel domain while others are carried out in the DCT domain. It was
demonstrated by experimental results that the DCT domain technique saves more than
80% computational cost as compared to the pixel domain technique while the quality of
the resulting image mosaic is about the same for both approaches. It was also observed

that the polynomial-based contrast stretching method has better performance than the
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histogram matching method in terms of the processing time and memory requirement.
Experimental results presented in this chapter are restricted to the image mosaic only.
It is worthwhile to consider to generalize this technique to the video mosaic in the near

future.
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Figure 3.16: Image mosaic with the 2nd order polynomial in the DCT domain: (a) DC
plus the first three AC values and (b) DC plus the first five values.
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Chapter 4

Fast and Accurate Block-Level Registration of

Coded Images

4.1 Block-level Image Registration with Edge Estimation

In this section, we study the registration of two images that contain only translation
displacement in the horizontal and vertical directions. We address the problem in the
DCT domain with the DC and AC values of the luminance component of each block
available. We attempt to align the images to some satisfactory degree using these DCT
coefficients. The proposed algorithm basically contains three steps: image segmentation

for foreground extraction, edge estimation and parameter estimation.

4.1.1 Image Segmentation for Foreground Extraction

At the first step, a DC map, which contains only the DC values of the Y component of
the DCT blocks, of each input image is formed. Note that the size of the DC map is

1/64 of that of the original one. To simplify the alignment process in the later stages,
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Figure 4.1: Conversion from a DC map to a binary activity map: (a)the DC map and
(b)the binary activity map.

we first perform image segmentation on the DC map to extract the regions of interest.
Otsu [38] proposed a method to divide the light intensity histogram into two distinct parts
automatically. It is stated below and will be used for our image segmentation task. Given
a histogram, we can compute its statistical properties. In particular, we use w(k), p(k)
and pr(k) to represent the zeroth cumulative moment, Ithe first cumulative moment and
the mean of a bin with index &, respectively. The histogram can be split using threshold
k* such that

o*(k*) = max o(k) (4.1)

1<k<l

where o%(k) = %’?—;’f&%ﬁ Once the optimal value of k£* is determined, we can obtain
a binary activity map B from the DC map. Ideally, the foreground (set to be 1) and the
background (set to be 0) can be separated in the binary activity map. One example of
converting the DC map to the binary activity map results is shown in Fig. 4.1. In Fig.
4.1 (a), we show the DC maps of two images that we intend to align. Their corresponding
binary activity maps are shown in Fig. 4.1(b). IEven with only the DC values, the DC
maps shown in Fig. 4.1(a) still provide many fine details that make the alignment task

difficult,
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Suppose that the two original input images are of size P; x P;. Then, their DC maps
are of size N; x Nj, where N; = P;/8 and N; = P;/8 (as shown in Fig. 4.2(a)). Note

that d; and d; in Fig. 4.2(b) are the displacement parameters. To search for the optimal

P=8N

Original image
(a) (b)

Figure 4.2: (a)The relationship between original images and binary maps and (b) the
geometrical representation for displacement.

alignment with integer block accuracy, we can compute the sum of absolute difference of

the left and the right images ( DC maps ) with a displacement d; and d;:

min > | Lpc(bi, b;) — Rpe(bi + di, by + dj) | (4.2)
"% by b

where the summation sums up all the b;’s and b;’s belonging to the overlapping region. If
we do an exhaustive search based on either the DC maps or the binary activity maps, the

complexity, C, will be proportional to
C N; x Nj. ) (43)

However, the computation with the binary activity maps is much faster since it takes only

0 and 1 two values. It is possible to further simplify the search if we consider the edge
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information present in the foreground part of the binary activity map. This is done in the

next step.

4.1.2 Edge Estimation

In this subsection, we only consider 8 x 8 DCT blocks located in the foreground region.
Our objective is to extract the edge strength and orientation information. This can be

done by examining the definition of the discrete cosine transform:

Fyy = CquZZ (2 + l)uvr (2_7 + l)vﬂf( i), (4.9)

=0 j=0

It is easy to verify that the first few AC coefficients represent some specific ways to sum
up the pixels in an 8 x 8 block as shown in Fig. 4.3. Let us take Fjg as an example. The
coefficient is obtained by a weighted summation of 64 pixels, where the top 4 rows take the
positive sign while the bottom 4 rows take the negative sign. If Fyo has a large magnitude,
it implies that there is a good chance that we will have a horizontal edge. Similarly, if
Fy has a large magnitude, then we may have two horizontal edges. The same argument
applies to other low frequency AC coefficients as indicated in Fig. 4.3. Shen et al. [46]

proposed a rough way to estimate the edge orientation in a block as

7 7
tan @ = Z Fﬂv/z Fuo- (4.5)
u=l

v=1

This formula is reasonable since the numerator and the denominator indicate the strengths
of the horizontal and vertical edges, respectively. Although the obtained edge orientation

information is kind of rough, the coarse edge detection technique in the DCT domain was
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Figure 4.3: The sign patterns of weighted pixel values for the first few AC values.

proved to be about 20 times faster than traditional edge detectors in the pixel domain.

Furthermore, the edge strength can be computed according to the following formula:

Fio + aFy Fo1 + aFp

hvertical = 9111 tand and h-hor'i::onta! = 9111tand’ (46)

Here, we exploit the fast edge orientation estimation algorithm with some modification.
That is, we only consider edges that are aligned with the straight lines without any offset
from the center of each 8 x 8 block as shown in Fig. 4.4(a). Furthermore, since it is a block-
based estimation, it is difficult to represent a large number of possible edge orientations
with good accuracy. Thus, we restrict the estimated edge orientation to eight quantization
levels as shown in Fig. 4.4(b). To summarize, we use Eq. 4.5 to compute the edge
orientation in blocks of the foreground and then quantize the edge orientation into 8 levels

for further processing.
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Figure 4.4: The eight quantized levels for coarse-scale edge orientation estimation.
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4.1.3 Displacement Parameter Estimation

Based on the results obtained from Section 4.1.2, we apply the edge-based image regis-
tration technique to determine the displacement parameters to align the left and right
two images. One simple way to achieve the alignment is to compute the cross-correlation
between the two edge maps, where the edge strength is set to be zero in the background

region.

N<(N; /i <(Nif2) |, N: N
= 0 (o8 o 2) )
J1 i

# (Ba((i + 1), G+ 51) —mp,) (47)

where N; and N; represent the width and the height of the overlapping region and mg,
and m E, are the mean values of the overlapping regions of E; and Es, respectively. The
vector, (%, ), that leads to the maximal correlation value, gives the optimal displacement
in the horizontal and the vertical directions. Since the horizontal or the vertical size of
the edge map is 1/8 of that of the original one, the actual amount of displacement should

be scaled up by a factor of 8 with respect to the coordinates of the original input images.

4.1.4 Experimental Results

In this section, we present some experimental results with four test image pairs as shown
in Figs. 4.5, where (a) and (b) are indoor scenes and (c) and (d) are outdoor scenes
(600x448). Generally speaking, images of the outdoor scene usually consist of a higher
noise level so that it is more difficult to extract the accurate edge information. The image

registration results are usually poorer.
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(d)The forth test image pair

Figure 4.5: The four test image pairs.

4.1.4.1 Performance Comparison in Processing Time

Here we compare the two image registration systems using the traditional pixel domain

approach and the proposed DCT domain approach. The computational saving comes

from two different parts. First, the DCT domain approach avoids the inverse DCT and

the forward DCT processes required by the space domain approach. Second, the resolution

of the space domain image pair is much finer than that of the DCT domain image pair, i.e.

64 versus 1. Thus, the search for the displacement vector demands much more time. The

execution time for the alignment of the 4 test image pairs is compared in Table 4.1 and

Fig. 4.6. We see the time saving ranges from 95-97% as compared with the traditional

space domain approach.

Table 4.1: Comparison between the proposed and the traditional one in processing time.

1st 2nd 3rd 4th

traditional | 34.2340 | 36.1410 | 35.8910 [ 34.1100
proposed | 1.0310 | 1.7030 | 1.7500 | 1.6880
save(sec) | 33.2030 | 34.4380 | 34.1410 | 32.4220
save(%) | 96.9884 | 95.2879 | 95.1241 | 95.0513
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Figure 4.6: Performance comparison in processing time.

4.1.4.2 Comparison of Output Image Quality

We compare the registered output image results in Figs. 4.7-4.10, where (a) shows the
results based on the proposed DCT-domain technique and (b) gives the results based on
Canny’s edge detection. As shown in Fig. 4.7(a), although the estimated edge maps are
not as accurate as the ones obtained using Canny’s edge detector, the proposed method
does catch the general trend well. Besides, the stitched output image in Fig. 4.7(a) looks
very similar to the corresponding one in Fig. 4.7(b). Please note that the two input
image pairs as shown in Fig. 4.5(a) have a color-mismatch problem. However, the color
mismatch does not affect the registration results since the proposed approach does not
rely much on the color information. Instead, it is based on the extracted edge with the
luminance component only. As shown in Fig. 4.8, the proposed DCT domain approach
misses a lot of edge in the facial and cloth areas. Only the edge information in the hair
region is caught. This is partly due to the poor performance of the image segmentation
step for the foreground extraction and partly due to the limitation of edge detection in
the DCT domain. However, since both left and right input images are processed with the
same technique, the missed edges do not hurt the image alignment job at the later stage.

Actually, the hair information is sufficient to do the alignment. As a result, the proposed
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(b)

Figure 4.7: Image registration results of (a)the proposed DCT-domain and (b)the space-
domain approaches.
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method can provide almost the same performance as the traditional space domain approach
at a much lower computational complexity.

Fig. 4.9 provides the edge detection and image registration results of an image pair
of the outdoor scene. The edge maps appear to be quite complicated. However, the
proposed technique still provides a simpler edge map to make the later alignment task
easier. Furthermore, the two output image mosaics are indistinguishable by human eyes.
Finally, for the image pair shown in Fig. 4.5(d), we show the edge detection and the image
registration results in Fig. 4.10. By examining Fig. 4.10(a) carefully, we can find that the
output image is not perfectly registered in terms of the DCT blocks using the proposed
method. We see from the windows of the white building that there exists a misalignment
of the two images and the amount of misalignment is around 3 DCT blocks (or 24 pixels).
This could be explained by the periodic pattern of roofs that occupy a quite large area
of the two input images. Thus, there exist multiple local maxima that make the global
maximum selection difficult. One way to fix this problem is to consider multiple thresholds
so that we can weigh edges in the window area more to avoid the confusion caused by edges
of the roof region. Since the proposed approach is block-based so that a single error in the

edge map will lead to a block error in the image domain.

4.2 Block-level Image Registration based on Edge Extraction

A multi-scale DCT-domain image registration technique for two MPEG video inputs is
proposed in this section. Several edge detectors are first applied to the luminance com-

ponent of DC coefficients to generate the so-called difference maps for each input image.
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Figure 4.8: Image registration results of (a)the proposed DCT-domain and (b)the space-
domain approaches.
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Figure 4.9: Image registration results of (a)the proposed DCT-domain and (b)the space-
domain approaches.

66



Figure 4.10: Image registration results of (a)the proposed DCT-domain and (b)the space-
domain approaches.
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Then, a threshold is selected for each difference map to filter out regions of lower activ-
ity. Following that, we estimate the displacement parameters by examining the difference
maps of the two input images associated with the same edge detector. Finally, the ul-
timate displacement vector is calculated by averaging the parameters from all detectors.
It is shown that the proposed method reduces the computation complexity dramatically
as compared to pixel-based image registration techniques while reaching a satisfactory re-
sult in composition. The major four parts of the algorithm are detailed in the following

sections.

4.2.1 Edge Detection on DC Maps

A DC map of each input image that contains DC values of the luminance (Y) component
of all blocks is formed. Since only the DC value is considered for each 8 x 8 block, the size
of the DC map is 1/64 of that of the original image. This means the data we are dealing
with are much less than that in the traditional pixel-domain approach. Based on those
DC maps, four different edge detectors (Hy, Ha, H3 and H,) are applied to each of them.

Those edge detectors are:

--1 2 —1- .—1 -1 _1.
Hi=|_192 1|H=| 2 2 2
| -1 2 —1 | | -1 -1 -1
-—1 -1 2- [ 2 -1 —1-
H3=|_1 92 -1 |Hs=] 1 2 -1
|2 -1 -1 | -1 -1 2
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They measure the variation of the image in vertical, horizontal, 45 degree, and 135 degree
directions, respectively. Each detector can produce one difference map so that there are
four difference maps of each input image. We use D;; to denote the difference map of
image 7 = 1,2 with edge detector Hj, j = 1,2,3,4. Difference maps are normalized so
that all of their values fall between 0 and 1 for further processing. Note that H,, Hj,
H3 and Hj are the second-order derivative filters. The first-order derivative filter and the

second-order derivative filters in the horizontal direction are given below:

-1 2 -1 W 1 0 -1
-1 2 -1} 10 -1
-1 2 -1 10 -1

The reason to adopt the second-order derivative filter than the first-order derivative filter

/ /\\ s, \¥_ I2
Figure 4.11: Comparison between the first- and the second-order derivative filters.

can be explained using Fig. 4.11. As we can see, the line detector (i.e. the 2nd-order
detector) is able to extract more features than the gradient detector (i.e; thé 1st-order
detector). Note that the detectors are applied to the DC map, we should choose the one
that can extract out the region of interest with more active features. Thus the difference
maps generated by the 2nd order derivative filters are more suitable for the alignment task

in the next stage.
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Figure 4.12: The difference maps of (a)image 1 and (b)image 2 using filter H; and the
corresponding binary activity maps of (c)image 1 and (d) image 2.

4.2.2 Thresholding

In this step, a content adaptive threshold is set up for each pair of difference maps to
generate corresponding binary maps. The main purpose of this step is to filter out minor
changes. It reduces confusion and speeds up the following alignment step. The difference
maps obtained using filter H; for two original DC maps are shown in Figs. 4.12 (a)
and (b) while their corresponding binary activity maps, D, and Dy, are shown in Figs.
4.12 (c) and (d), respectively. As we see from D;; and Dy, only the vertical difference are
preserved for displacement parameters estimation. Similarly, horizontal, 45 degree and 135
degree features are extracted after applying Hs, H3 and Hy, respectively. Those features
help determine the displacement parameters more accurately and reduce the processing

time since the unnecessary detail information has been eliminated.

4.2.3 Displacement Parameter Estimation

Let P; x P; and N; x N; be the sizes of two original input images and their DC maps,

respectively, as shown in Fig. 4.2. Then, we have

P .
Ni = g‘ and N; = %. (4.8)
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Based on obtained D;;, i = 1,2 and j = 1,2,3,4, our task is to determine the alignment
parameter for the four sets of binary images. The two-dimensional normalized cross-
correlation is computed and the optimal displacement parameter is determined at the
position where the maximum value occurs in both vertical and horizontal directions. Let
(di1,dj1) be the parameter pair we get from the binary images obtained by applying
detector H;. Similarly, we have (di2, dj2), (di3, d;j3) and (di4,djs) by following the same
procedures. Once those four sets parameters are available, the final estimated displacement
can be acquired by either averaging or simply chosing the best one from these four vectors.
Then, a coordinate conversion, scaled up by a factor of 8, is performed due to the size
difference between the original and binary images. The first three steps of the proposed

procedure can be described in a flow chart as shown in Fig. 4.13.

4.2.4 Experimental Results

Experimental results with six test image pairs are shown in this section. Those test
images are shown in Fig. 4.14 where (a) and (b) are indoc;r scenes while (c) to (f) are
outdoor scenes with different content complexity, different amount and different types of
displacement but all with the same size (600 x 448). Note that the experimental results
show that color mismatch does not affect the quality of registration since the proposed
method is not color dependent. Thus, all test images presented here are under the same

light conditions to reveal the exact quality of output composition.
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Figure 4.13: A detailed overview of the proposed method.

4.2.4.1 Performance Comparison in Processing Time

The comparison of execution time of the traditional pixel-domain process and the proposed
DCT-domain technique is shown in Table 4.2 and Fig. 4.15. The major computation
saving of the proposed method comes from two parts: the pixel-DCT domain conversion
and information reduction. For the DCT-based method, the time consuming steps, such
as inverse DCT and forward DCT, are avoided. Also, as mentioned before, the data being
manipulated in the DCT domain has been cut down to 1/64 of the original images so
that much less time is required for displacement searching. Those two reasons reduces the

processing time over 95% as compared to the traditional pixel-domain approach.
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Figure 4.14: The original test images.

Table 4.2: Comparison between the proposed and the traditional approaches in processing
time (sec). (a) traditional (b)proposed method. (c) and (d) are the savings in terms of
seconds and percentages.

1 2 3 1 5 6
(a) | 35.22 | 35.28 | 30.13 | 35.45 | 36.11 | 37.64
(b) | 1.407 | 1406 | 1.437 | 1.516 | 1.407 | 1.422
(c) | 34.10 | 34.25 | 38.13 | 34.43 | 35.08 | 36.58
(d) | 97.07 | 97.07 | 97.44 | 97.13 | 97.14 | 97.18

4.2.4.2 Comparison of Output Image Quality

The final estimated displacement parameters and composite outputs are shown in Table 4.3
and Fig. 4.16, respectively. Since we know the exact amount of displacement in adva.nce,
the estimation errors can be calculated by subtracting the actual ones and the ones that
determined by the proposed method. As we see from Table 4.3, estimation errors are

within two pixels as compared to the actual displacements. In other words, the precision
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Figure 4.15: Performance comparison in processing time.

can be reached to the sub-block accuracy. The reason why this accuracy can be attained
is to consider several displacement parameters generated by different detectors. Each
of detectors has a specific directional feature so that the bias among those displacement
parameters can be compensated by averaging all of them. In other words, if more detectors
applied to the images, more robust parameters we would get. Thus, the pixel accuracy or
even the sub-pixel accuracy is possible once appropriate detectors with a good feature .can
be designed. However, more processing time would be required for applying more filters
to the images. We have to find a balance between the processing time and the alignment

accuracy.

4.2.4.3 Discussion

Theoretically speaking, the proportion of overlapping area to the original size would af-
fect the quality of the composition since a larger area provides more information such as
corners, lines and some other useful features while small area does not. Our experimental
results show that, for the same content of images, a larger overlapping area results in more
accurate alignment. However, it also depends on how much useful features are within

the overlapping parts. If there are only few feature points in the original images, then
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Figure 4.16: The stitched images.
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Figure 4.17: Figure 4.16 continued.
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Table 4.3: Comparison between the displacement parameters (d;, d;) derived based on the
proposed approach and the actual displacement parameters, (d;', d;’).

1 2]3]4]5]¢6]
8xdj | 296|304 | 304 | 200 | 400 | 504 |
8xd;; | 448 [ 600 | 304 | 448 | 520 | 496 ||
8xdj; | 296]304]304]200] 408 | 504 ||
8+di | 448 | 600 | 296 | 448 | 520 | 496

[ 8xd;; 304296 296 | 200 | 400 | 504

[ 8+dis | 448]600] 296 | 448 | 528 | 496

[ 8+d;s 296|296 | 296 | 200 | 400 | 504 ||

[ 8+dis [ 448600 | 296 | 448 | 528 [ 496 ||

[ 8xd; 298 | 300 | 300 | 200 [ 402 | 504 |
8+ d; 448 1 600 | 298 | 448 | 524 | 496 ||
djactuat | 300 | 300 | 300 | 200 | 400 | 503
digctuat | 448 | 600 | 300 | 448 | 524 | 495

8x(d;—dy)| 2] ool o]+2]+1

[8+di-d)J o Jo]-2]0] 0]+

no matter how large the overlapping area is, the performance is similar since the number
of useful features is the same. Also note that whether the overlapping area is a multiple
of eight affects the quality of composition since if those DCT block are not well aligned,
the corresponding DC values of two images at the same position represent different in-
formation. In this case, a suitable process, such as interpolation, must be performed in

advance.

4.3 Robustness of the Proposed Alignment Method

In this section, the robustness of the proposed alignment algorithm are examined by taking
the images with noise as the inputs to the system. The input images of size 480 x 640

considered here are of three different levels of Gaussian noise which are 12.5%, 25% and
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37.5%. The DCT-domain registration technique is applied on those images and the ex-
perimental results of noise levels being equal to 12.5%, 25% and 37.5% are shown in Fig.
4.18(a), (b), and (c), respectively. Note that the results shown here are the part of the
output images that are locally enlarged in order to make it easy to see the quality of the

alignment.

Figure 4.18: The composition results with different levels of Gaussian noise: 12.5%, 25%,
and 37.5%.

As revealed in Fig. 4.18, the quality looks good for all cases while the traditional pixel-
domain approach can reach high accuracy for the case with noise level up to 12.5%. Our
block-based method takes an advantage of dealing with DC maps of the original images.
Since the DC map can be treated as a down-sized version of the original image, many
features will be averaged out during this process. Therefore, the effect caused by noise
can be eliminated and the confusion will be reduced as well while doing the alignment.
This verifies the robustness of the proposed block-based alignment algorithm while noise

is involved.
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Chapter 5

Advanced Mosaic Techniques for Coded Video

In this chapter, we describe three advanced topics for coded video mosaicking: hybrid
block/pixel registration, block-based video registration and block DCT analysis and clas-

sification.

5.1 Hybrid Block/Pixel Registration

It was shown in Chapter 4 that the block-based registration algorithms save lot of computa-
tions using either DC or AC coefficients. However, the accuracy of block-based registration
is measured only of the resolution of a block, which is of size 8 x8. It is desirable to enhance
the resolution of the displacement vector to the pixel-level accuracy. To get such a result,
some pixel-domain registration can be made after the block-level registration. In other
words, the block-level registration can be viewed as a coarse-level alignment while the
pixel-level registration yields the fine-level alignment. However, we do not have to perform
the inverse transform on all blocks but some selected blocks to save the computation. The

reason is simple. There are blocks that correspond to the flat background so that they do
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not carry much information. On the other hand, there are blocks that contain valuable
spatial domain information such as edges and corners. Thus, we may perform inverse
DCT on these blocks and use the spatial domain information to enhance the registration
accuracy. In this case, the computational complexity of this hybrid approach will still be

significantly lower than that of the traditional pixel-domain approach.

5.1.1 Alignment of Projected Boundary Blocks

To enhance the accuracy of the alignment, one method is to convert the boundary blocks
of two overlapping images back to the pixel domain, add two-dimensional pixel values
along horizontal or vertical directions followed by a normalization procedure to get one-
dimensional data vectors of both images at the same data point. Then, we can perform
the 1D alignment for projected lines. This concept is illustrated in Fig. 5.1. The best

match would happen at the position where the maximum correlation value occurs.
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Figure 5.1: Project two-dimensional data to one-dimensional.

It is observed in our experiments that the alignment can be fine-tuned to reach the

pixel-level accuracy and the estimation errors are within two pixels. This process is fast
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and easy to implement. However, it is not robust in dealing with all kinds of different
images since some information may be lost by projecting data from the 2-D domain to
the 1-D domain. Also, if the areas of two input images to be transformed back to the
pixel domain are not exactly the same, the relevant and irrelevant data could be mixed
together to confuse the alignment task. Moreover, if the image content consists of repeated
patterns, the normalized data would contain several peaks so that the exact match is more
difficult to achieve. The performance of this processing highly depends on the quality of

composition obtained from the block-level registration and the image content.

5.1.2 Alignment of Selected 2D Blocks in the Pixel Domain

It is known that salient features of images play an important role in the registration process.
Areas without salient features such as the plain background or smooth surfaces contribute
little to the final registration result. Thus, we may identify those blocks that contain the
salient features in the DCT domain and then transform them back to the pixel domain to

fine-tune the coarse alignment result obtained at the block level.

5.1.2.1 Corner Block Detection

As presented in Sec. 4.2, line detectors H; and H; can filter out simple vertical and
horizontal edges. Based on these two types of edge information, corner blocks can be

roughly determined by the following procedure.

1. Computing Horizontal and Vertical Edge Maps

By applying H; and Hs to the DC map of an input image, we get two normlized
edge magnitude maps, i.e., Dy; and Dy, which takes values between 0 and 1. To
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eliminate areas with minor activities such as the background, an adaptive threshold
method is applied to the magnitude maps to create binary images By) and Byo. This
threshold value determines the number of blocks of higher activities to be selected in
the next step. On one hand, the more blocks selected, the more information provided.
On the other hand, the more blocks selected, the higher the computational cost. For
example, if higher accuracy is required and a little sacrifice at the complexity is
acceptable, the threshold should be set to a lower value. On the contrary, if the

computational speed is the main concern, the threshold value should be raised.

. Computing the Weighted Edge Map

Given two binary images, By and By, from the prevous step, we will combine

them into a new map using the following weighted scheme:

C(Z’J) =wy X BHl(ivj) +wo X BH2(iaj)) wh 75 w2, (51)

where C(%, j) has four possible values: 0, w), w2 and w; + wa, which mean that the
block is a flat block, a block with a strong horizontal edge, a block with a strong

vertical edge and a block with strong horizontal and vertical edges, respectively.

. Decision Making for Corner Blocks

Once the weighted map C is formed, the next step is to determine which block,
C (4, 7), has a higher possibility to be a corner block by examining the activities of its
eight neighboring blocks. There are several patterns observed that may have one or

multiple corners at position (¢, 7). For C(i, j) # 0, if its neighboring activities match
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one of the patters shown in Fig. 5.2, we claim that this block to be a corner block
and set its corner map flag, Beorner(?,7), to 1. Otherwise, its corner map flag is set

to zero.

0/ I[o [{o] [o]] ojo|o| {o|ofoO
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Figure 5.2: The 3 x 3 block patterns that have a higher probability to contain one or
multiple corners at the central block.

It is worthwhile to check the validity of the above rule by observing some image exam-
ples. To do so, corner blocks in the overlapping region of two input images are checked.
First, several corner blocks of one input image are selected automatically using the above
rule. Then, their corresponding blocks of the second input image are picked manually.
Two cases are examined. The first case is to perform the inverse DCT on selected blocks
for examination. The second case is to perform the inverse DCT on those selected blocks
as well as their eight neighbors.

In this test example, the two input images are of size 480 x 640, and ten corner blocks
are selected from each image. Let fi corner and fj_corner denote the fine-tuned horizontal
and vertical displacement parameters, where 0 <| fi_corner |< 7 and 0 <| fi_corner 1< 7,
since the coarse scale alignment has been done at the block level. In the example of

concern, the coarse-scale displacement vector is equal to (480, 408), which is also the actual
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displacement vector. Thus, the fine-scale alignment parameters f; corner 8nd fj_corner are
both equal to zero.
Case 1: Inverse DCT applied to selected corner blocks only

Take one selected corner block of image 1 for instance. After being inverse transformed
back to the space domain, two different features, corners and edges, are extracted so that

they can be aligned with its corresponding block in image 2.

1. Pixel-wise Matching

For a selected 8 x 8 block in the pixel domain, corner detection is performed followed
by a pixel-wise comparison. The results are shown in Table 5.1, where each column
indicates one alignment result based on each of the 10 selected blocks. As shown in
the table, most blocks yields accurate fine-tune parameters. For blocks indexed by
8-10, all 64 pixels in the pixel domain have the same value. That is, the selected

block is part of background which provides no clue for fine-scale alignment at all.

Table 5.1: The fine-tuning parameters (fi_corner; fi_corner) determined by the pixel infor-
mation of each detected corner block pair.

I 1J2T3]4]s]6]7] 8 ] 9 [ 10 ]
" fi._corner 0/0f|0]|-7]0 N/A N/A N/A "
I Ficorner | 01007 [0]0[-7 [ N/A|NJA|N/A |

o
)
~

2. Line-wise Matching

Rather than pixel-wise comparison in a block, the edge information is extracted for
the alignment purpose. The alignment results are presented in Table 5.2. Note that
there is no "N/A” for all blocks which means more information can be provided by
edges.
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Table 5.2: The fine-tuning parameters (fi_edge, fj_edge) determined by the edge information
of each detected corner block pair.

1]2[3][ 4 [5]6] 7 [8] 9 [ 10 ]

fi.corner 00 0.5 -2
| Ficorner JO|O]O] O [O[O[075[0[-15]-05

o
o
o
o
(=]
(o)

From the above two tables, we see that most matching pairs can yield the correct
results while some cannot. The final displacement parameters can be determined by the
best three pairs (rather than averaging the aisplacement vectors of all 10 sets).

Case 2: Inverse DCT applied to selected corner blocks and their eight neigh-
bors

Intuitively, a larger area should contain more useful information for registration refine-

ment. Thus, a better result is expected in this case.

1. Pixel-wise Matching

First, the corner information is extracted out for each 24 x 24 area. Then, the fine-
tuning parameters are determined by the pixel-wise comparison. The results are

given in Table 5.3.

Table 5.3: The fine-tuning parameters (fi_corner, fj_corner) determined by the pixel infor-
mation of each detected corner block pairs.

(=]
~
oo
©

i 1]2]3]4]5 10 |

fi_corner 0]0{0]0 -4 “
fj-corner gjojojojojol-2]101]2 -2"

(=]
(=}
o
o
[=2]

2. Detecting Edges - Line-wise Matching
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The edge information is first extracted in the same area. Then, the fine-tuning

parameters are determined by the edge information. The resulting parameters are

given in Table 5.4. By comparing results in Table 5.3 and 5.4, we see that the

alignment based on the edge information is more accurate since it has smaller errors.

The pixel-wise alignment is usually more sensitive to noise. This explains the reason

why the line-wise alignment based on the edge information provides a better choice.

Table 5.4: The fine-tuning parameters (fi_edge, fj_edge) determined by the edge information

of each detected corner block pairs.

| 1123456 7 [8] 9 10 ||
[ Ficase |OJOJO]O]0O]05] 0 [0]3.75[-1.25 |
[ f;cape [0 JO]O]0]0] 0 [-05]0] 45 [ -05 |

Since the corner blocks are determined in a downsized image. Sometimes salient fea-

tures are split between two adjacent blocks. Thus, it is not very reliable to perform the

inverse DCT to an isolated block without considering its neighboring blocks. We see from

experimental results that the useful information will not be missed if 3 x 3 blocks centered

at the corner block are transformed back to the pixel domain. In summary, the alignment

based on the information of a larger area is more robust, and it is better to compare the

edge information in these two blocks to determine the fine-scale displacement vector.

5.1.3 Experimental Results

The performance of the hybrid block/pixel registration technique is demonstrated in

this section. The execution time comparison of the traditional pixel-domain edge-based

method, the proposed DCT-domain alignment technique, and the proposed hybrid block
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or pixel alignment method is shown in Table 5.5, where the size of test images 1 to 8 is

448 x 600 and that for test images 9 and 10 is 480 x 640. As compared with the pure

DCT-domain alignment method, the hybrid method has to do some extra work, including

corner block detection, inverse DCT transform, as well as edge detection in the pixel do-

main. This is the reason why that the processing time is longer than that of the proposed

block-based algorithm. The final displacement parameters are shown in Table 5.6. It is

clear that the hybrid block/pixel method improves the accuracy to the pixel level for all

test images at the price of increased complexity.

Table 5.5: Execution time comparison (in the unit of seconds) of (a) the traditional method,

(b) the proposed DCT-domain algorithm and (c) the proposed hybrid method.

1 2 3 4 5 6 7 8 9 10
(a) | 19.11 | 19.14 | 19.53 | 19.44 | 19.53 | 19.45 | 19.42 | 20.39 | 23.02 | 22.94
(b)| 1.36 | 1.34 | 1.36 | 1.34 | 1.34 | 1.34 | 1.36 | 1.34 | 1.41 | 1.36
(c) | 922 [ 10.61 | 897 | 9.02 | 9.44 | 10.23 | 9.69 | 12.03 | 11.64 | 12.47

Table 5.6: Comparison of displacement vectors:

(di,d;j) is obtained by the block-

level alignment, (d;_nybrid, dj_nybria) is obtained by the hybrid block/pixel alignment and
(di.actual, dj_nctual) is the actual one.

1] 2 ]3] 4]5]6]7]8]9]10]

d; 600 | 448 | 448 | 520 | 496 | 448 | 296 | 522 | 480 | 480

d; 298 | 200 | 296 | 400 | 504 | 306 | 302 | 398 | 408 408"

di_hybrid 600 | 448 | 448 | 524 | 495 | 448 | 296 | 524 | 480 | 480 ||

d;_hybrid 300 | 200 | 298 | 400 | 503 | 300 | 300 | 400 | 408 | 408 ||

di actual 600 | 448 | 448 | 524 | 495 | 448 | 296 | 524 | 480 | 480 ||

d;_actual 300 | 200 | 298 | 400 | 503 | 300 | 300 | 400 | 408 | 408 |
[ diactua — ds 0]0JO]| 4]1]0]o0o][]z2]0]o0

d; octual — 4 2 | 0] 2] ]o0o|-1]-6|-2]2]0]0 ||

i actual —Gimgria ] 0 | 0O JOJOJTOofTolofJo]Jo]ol]

d;_actual = dj_hybria | O 0 0 0 0 0 0 0 0 OJ]
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5.2 Block-based Video Registration

We assume that inputs to the system are two synchronized MPEG videos at a frame
rate of 30 fps. Also, there are only translation differences between them, both containing
some moving objects. In order to avoid the ambiguity caused by pure image-to-image
alignment and trajectory-based alignment, the input sequences to the proposed system are
first segmented into two parts: the static background and the moving objects. Then, they
are separately registered based on their associated spatial and the temporal information.
The flow chart of the proposed algorithm is given in Fig. 5.3. The unit of the process is 1
GOP (15 fps in our experiments). In other words, the displacement parameters are updated
for each GOP. Take the first GOP as an example. After applying four edge detectors (4.2)
to the DC map of the I frame, the first set of alignment parameters is determined. Since
this is the block-based alignment, a further refinement process is required in order to reach
higher accuracy. In the second pass, the motion information of objects from each frame
within the same GOP is used to obtain several other sets of refinement parameters. Based
on alignment and refinement parameters, we can estimate the final displacement parameter

using a weighted average of them.

5.2.1 Static Background Alignment

Based on the I frames of two input sequences, DC maps are available by extracting out
the DC coefficients of all blocks in the luminance (Y) component. Since only the DC value
is considered for each 8 x 8 block, the size of the DC map is 1/64 of that of the original
image. This means that the data we are dealing with are much less than that in the
traditional pixel-domain approach. Based on the information provided by those two DC
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Figure 5.3: The flow chart of the proposed system.

maps, a rough alignment can be done by applying a DCT-domain registration algorithm
as described in section 4.2. Four edge detectors are applied on the DC map so that there
are four difference maps of each input I frame. For each pair of difference maps, a content
adaptive threshold is determined to generate the corresponding binary maps. Based on the
four sets of obtained binary images, we determine the alignment parameter by computing
two-dimensional normalized cross-correlation followed by a coordinate conversion due to
the size difference between the original and binary images. Then, the final estimated
alignment parameter, (a;,a;), can be acquired by either averaging or simply choosing the

best one from these four vectors.

5.2.2 Moving Object Alignment

In this step, the motion vectors of the major moving object obtained from all frames in one

GOP are accumulated so that the trajectory can be formed. According to this information,
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a trajectory-based alignment process can be applied to enhance the alignment accuracy.
Note that the diameter of the bouncing ball in our experiments is around 48 pixels, which
corresponds to 3 macroblocks. Thus, in order to avoid incorrect information provided by
motion estimation, the motion vector is not considered if its size exceeds a predetermined
threshold value (which is set to 3 times the macroblock size in the given example). Once
the candidate motion vectors of each frame are determined, a one-dimensional correlation-
based sequence alignment process is performed and the optimal parameter is determined
at the position where the maximum value occurs. Since the GOP of the input sequence
consists of 15 frames, we have 14 refinement parameters for each GOP in total, denoted
by (rix, k), £ = 1,2,---,14. There exists a tradeoff between the size of the moving object
and the speed of the process. Usually, a larger moving object is preferred since it clearly
and strongly represents the behavior of the cluster of macroblocks that contains the object.
That is, it is easy to tell whether a macroblock belongs to the actual moving object or just
an estimation error. However, in this case, we have to consider more motion vectors, which
requires some more processing time. On the other hand, if the moving object is not that
big, say within one macroblock, then only one motion vector is taken into consideration.
Even though the computational complexity is lower, the robustness of the estimation result

is also lower.
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5.2.3 Displacement Parameter Estimation

Following the procedures described in the last two subsections, coarse-alignment and
motion-based refinement parameters, (a;,a;) and (ri,7j), & = 1,2,3,--+,14, are ob-

tained. The final displacement parameter, (d;, d;), can be computed as
1 14
(di,d;) = a x (ai,e;) + (1 —a) x [-1—4 X Z(Tik, Tjk)] . (5.2)
k=1

In words, (d;,d;) is a weighted average of (a;,a;) and (v, 7jk), kK =1,2,3,---,14. In our
experiments, we tried different values of o and found that a = 0.5 provides a reasonably
good result. The same procedure is applied to all GOPs of the input sequences. Note
that the GOP of the generated input videos is 15 frames and since the frame rate is 30
fps (frames/sec), one can update the displacement parameters every I frame, i.e. every
0.5 sec. Thus, if there is an error occurring in P and B frames, it will not propagate for
too long so that severe visual degradation of the output can be avoided. If there is an
abrupt scene change occurring in one GOP, the residual signal in one particular frame will
become quite large. It is not difficult to find a threshold to detect such a scene change
frame. Then, we are gnble to split the GOP into two separate parts. Thus, the proposed

alignment process can be applied to each individual part separately.

5.2.4 Experimental Results

For the first example, the leading I frames of the two input MPEG2 sequences are shown
in Fig. 5.4. As shown in this figure, the moving object is a yellow bouncing ball in front

of a poster with a horizontal translation motion only. Fig. 5.5 shows the portion of the
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15, 30" and 45 stitched frames from the two input sequences. The displacement
parameters determined by the I frames and motion vectors of the first three GOP’s are
(410, 480), (408, 480), and (410, 480), respectively. Thus, we are able to use the background

and motion information to do the alignment to generate a mosaic video of high quality.

() (b)

Figure 5.5: The portion around the boundaries of stitched frames: (a) the 15th frame, (b)
the 30th frame, and (c)the 45th frame.

The two input sequences for the second example are outdoor scene as shown in Fig. 5.6.
The 15, 30", and 45" stitched frames are shown in Fig. 5.7. We see that these stitched
frames have good quality. When comparing obtained displacements with the actual ones,

we observe that the estimation errors are no larger than one half block (i.e. 4 pixels).
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Figure 5.7: The portion around the boundaries of stitched frames: (a) the 15th frame (b)
the 30th frame and (c)the 45th frame.

5.2.4.1 Discussion

Generally speaking, the proposed DCT-domain and motion vector-based alignment cannot
provide sufficiently accurate information to reach 100% alignment accuracy since they are
either block- or macrblock-based features. Some estimation error will result. However, by
averaging and weighting, those effects can be reduced to some satisfactory degree. Also,
our algorithm belongs to area-based alignment techniques, which is usually more robust
than feature-point based alignment since some feature points may disappear in one of two
frames and feature tracking is not easy.

Experimental results show that certain accuracy can be reached in the first step based
on the alignment of DC coefficients alone in most cases. However, the proportion of

the overlapping area to the original size and how many useful features are within the
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overlapping parts would affect the quality of the composition. If there are few textured
feature points in original images, the performance degrades. On the other hand, if the
overlapping region contains highly regular periodic textured patterns, the accuracy gf the
alignment will decrease, too. In the second step, since only moving objects are considered,
the characteristics of the objects plays an important role.

The two steps of the proposed algorithm are both conducted using coded video data.
Thus, we do not have to seek additional image/video features and the tedious conversion
between the spatial and compressed domain can be avoided. As a result, we can save a
lot of computation. Also, since only DC coefficients are taken into consideration for rough
alignment, it can be treated as a downsized version of the original image with the factor
of 1/64. For those two reasons, the computation complexity is reduced a lot when it is
compared to the traditional spatial domain processes. This is the main advantage of the

proposed algorithm.

5.3 DCT Block Analysis and Classification

Traditional image registration techniques can be categorized into two groups: feature-based
and area-based. Both of them are conducted in the pixel domain. In other words, the
detection process is performed over the whole image. To save the computation complexity,
we may find an efficient way to analyze the image block content in the DCT domain so
that different processing techniques can be applied to blocks of different characteristics.
For example, an image can be classified into the background, textures, edges, and so on.

Then, based on the group type, we can treat them differently.
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5.3.1 DCT-Domain Block Classifications

A block classification scheme based on the DCT domain information is proposed here. By
examining the definition of 2D (two-dimensional) DCT transform for an 8 x 8 block given

below

Fyy = C,,Cvzz (2¢ + l)wr (2_7 + l)wrf( i), (5.3)

1=0j5=0
we see that each DCT coefficient is a linear combination of 64 basis functions as shown in

Fig. 5.8.
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Figure 5.8: The 8 x 8 array of basis images for the 2D DCT.

Each basis function has different vertical and horizontal space frequencies. The most
left upper corner, Fy is called the DC coefficients and the rest 63 coefficients, Fi; are
called AC coefficients. The DC coefficient represents the weighting of the lowest frequency
within the 8 x 8 block while the most right bottom AC coefficients represents the weighting
of the highest space frequency. In other words, a guess of the content of this 8 x 8 block
in the pixel domain can be made by observing those 64 DCT coefficients.

As shown in Fig. 5.9, some groups are formed according to some specific geometric
properties.
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Figure 5.9: Area grouping of DCT coefficients for defining the ratios for block classification.

o Fij fori=10,...,3 and j = 0,...,3, are clustered as GiopFreq- These shadowed
blocks form a group called GimpicEdge; Which contains only simple vertical and hor-

izontal edges.

o The first row, Fy; for j =0,...,7, characterizes the behavior of vertical edges while
the first column, Fy for i =0,...,7, illustrate the activity of horizontal edges. They

form the groups called GyerEdge and GhorEdge, respectively.

e The remaining blocks are grouped as Ghighrreq Which consists of blocks with high

space frequency and the whole 8 x 8 block is defined as Gosq;-
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Let SlowFreqs SsimpleEdges ShorEdges Sver Edges ShighFreg, a1d Sora; denote the summations
of the total energy of each group. Then, some ratios can be defined for block classification.

They are given as

y A — DC i.' . « Sei (i,j)
Rpcli, j) = ﬁ(:‘% ! RsimpleEdge (i, ) = m;.:jdii.;)
: StowFreg(id), ;o —  ShighFreq(iuj)
RiowFreq(i, j) ;::_(q_r‘:‘ei'j i Rpighrreq(i,j) = —;"ﬁfsr
y 4 5 (‘v]), « — sh “"
Ruerpdge(i,j) = =572 Rhorbdge(iyj) =  heriisel)

for0<i<h and 0<j<w

(5.4)

where h and w are 1/8 of the height and the width of the original images, respectively,
and the values of those ratios are between 0 and 1.

An appropriate threshold is set for each ratio so that the weak activities of each group
can be eliminated. For example, suppose that only the top 10% of those edge blocks are
needed, a threshold is adopted to filter out the 90% of blocks which have smaller ratio
values. These blocks are called inactive blocks and they are not going to be taken into
consideration for the following steps so that the computation complexity can be saved to
some degree.

After the threshold for each group is defined, every block can be categorized into a
different group by following the tree structure as given in Fig. 5.10. Note that the blocks
of each group have relative strong strength with respect to a specific geometric property.

The block classification diagram can be explained below.

¢ A block in an image is first separated into the plain background and complex areas
according to the Rpc value. Since the DC value can be treated as an average of each
8 x 8 block and its corresponding geometric pattern is a plain area with its space
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frequencies equal to (0,0). Thus, if the DC energy dominates the total strength of
the block at position (i, j), i.e. higher Rpc(i, 7), then the block has high possibility
to be a part of background or smooth area without containing any useful information

for registration.

For blocks in the group of complex areas, they can be further categorized into the
texture group and the non-texture group by setting an threshold on RhpighFreq since

the texture blocks usually have higher space frequencies.

As to the non-texture group, some blocks might contain only simple edges which
are purely vertical or horizontal edges and can be extracted out by considering
RgimpleEdge, i-€. the behavior of the fist few AC coefficients. If the vertical edges are
of interest, then blocks with only vertical edges can be taken out from the group of

simple edges.

One advantage of this tree structure is that one can choose ’any leaf’ of it. In other

words, blocks can be classified based on different features. Each path to the leaf is just

a combination of several decisions. For the results of horEdge/verEdge, we can even use

the method proposed before to compute the edge strength and classify blocks into even

smaller groups.

5.3.2 Experimental Results

The experimental results of two test images of size 480 x 640 are displayed in Fig. 5.11

and Fig. 5.12. In these figures, blocks with intensity one in (a) and (b) show the extracted

background areas, blocks containing texture are displayed in (¢) and (d), and blocks with
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Figure 5.10: The block classification diagram.

simple edges are shown in (e) and (f). The background are perfectly extracted for both
cases so that some processing tasks, such as registration and super resolution, can be
skipped for those blocks. For blocks in the texture group, they can also be ignored in
registration since the repetitive pattern may cause confusion in the alignment process and
human eyes are not sensitive to the displacement of the textured region. It is apparent
that more attention should be paid to blocks containing edges since they provide useful
features for registration. Sharp edges are especially preferred. For reasons described above,
different weights can be assigned to blocks of different characteristics.

To conclude, features are first extracted and more complicated enhancement techniques
are applied only to those blocks that have a higher weight. Then, the total computational
complexity can be reduced on the blocks of less importance while the visual quality remains

satisfactory.
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(a) background blocks of image 1 (b) background blocks of image 2

w -
-

(c) texture blocks of image 1 (d) texture blocks of image 2

(e) simple edge blocks of image 1 (f) simple edge blocks of image 2

Figure 5.11: The block classification results - 1st test image.
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(c) texture blocks of image 1 (d) texture blocks of image 2

(e) simple edge blocks of image 1 (f) simple edge blocks of image 2

Figure 5.12: The block classification results - 2nd test image.
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Chapter 6

Block-Adaptive Image Upsampling and

Enhancement Techniques

Several techniques for color compensation and registration of coded images were introduced
in previous chapters. The proposed methods provide efficient ways to correct the color
distortion and composite images to form a panorama output. Note that the degradation
of the image/video quality during the capturing process has not yet been considered in
both cases. If the image/video contents are displayed among various electronic devices of
different resolutions, quality degradation may become severe. To overcome this problem
a;xd generate an output image of higher quality, super resolution and image enhancement
techniques are discussed in this chapter. These techniques will be integrated with the
DCT-domain block classification technique to lead to an integrated enhancement system.

Block classification, which can be conducted in either the pixel domain or the DCT
domain, categorizes each image block into several types. It serves as a pre-processing
step to analyze the image content so that different processing techniques can be selected

for different groups. In this chapter, image upsampling and enhancement techniques are
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developed based on block classification results. They are explained in Section 6.1 and

Section 6.2.

6.1 Block-Adaptive Image Up-Sampling Techniques

A block-adaptive super resolution technique for image up-sampling is proposed in this
section. Several issues are examined, including the computation complexity, visual quality
and the difference between the original HR image and the image with down- and up-

sampling.

6.1.1 Complexity Comparison

With the Maximum A Posteriori (MAP) approach as the backbone for the image upsam-
pling system, we would like to compare the computational complexity between traditional
image-based and block-adaptive approaches. The whole image is treated as a single data
vector in the image-based method. In contrast, the image is divided into several blocks
of equal size in the block-adaptive method, where each sub-block is viewed as a small
image for individual processing. Block size 8 x 8 is chosen here for its compatibility with
prevalent image/video coding schemes.

Different interpolation methods, including the zero-order-hold (ZOH), bilinear inter-
polation (BLI), block-adaptive super resolution (BSR) and traditional MAP estimation
(MAP), are applied to several images with different sizes for the processing time com-
parison in Table 6.1. Note that the original image is treated as a data vector for the
zero-order-hold, bilinear interpolation and MAP methods, while the original image is di-

vided into several 8x8 blocks in the block-adaptive algorithm. As shown in Table 6.1, the
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zero order hold method and bilinear interpolation methods have a lower computation cost

as compared with the block-based super resolution algorithm or traditional MAP method.

Table 6.1: Comparison of processing time (sec.) of different interpolation methods, in-
cluding the zero-order-hold (ZOH), bilinear interpolation (BLI), block-adaptive super res-
olution (BSR) and traditional MAP estimation (MAP).

| Image Size | ZOH | BLI BSR MAP
[ 8x8 ]0.0161[0.0160 | 0.5620 | 0.5620
| 16x16 [0.0162]0.0150 | 2.1250 | 3.4852
| 32x32 |0.0150 | 0.0161 | 6.4220 [ 119.8280
| 64x64 ]0.0320[0.0620 | 23.8910 | N/A
[| 128 x 128 | 0.2030 | 0.1250 | 80.4690 [ N/A
[| 256 x 256 | 1.2650 | 1.4680 | 241.2650 | N/A

Fig. 6.1 shows the relationship between the image size and the normalized processing
time for each interpolation method. Note that the x-axis denotes the original image size
that ranges from 8 x 8 to 256 x 256 while the y-axis represents the normalized processing
time for each method (in the unit of seconds per pixel). As shown in Fig. 6.1, the
normalized processing time of the zero order hold or the bilinear interpolation does not
fluctuate a lot as the image size increases. For traditional image-based MAP (the black
line) as shown in Fig. 6.1, the computational complexity increases dramatically as the
input image size increases. For an image of size N x N, it will be represented by an N2 x 1
vector as the input to the MAP function. Then, its gradient (1st-order derivative) is an
N? x 1 data vector and the 2nd-order derivative would be of size N2 x N2. When the
image size N becomes larger enough, the matrix size will be of O(N4), which explains
the lack of experimental data for MAP when the image size is larger than 64 x 64 in
the table and the figure. In the proposed block-adaptive algorithm, we apply different
interpolation techniques based on different block types. Since bilinear interpolation has a

104



lower computation complexity than MAP, the proposed algorithm has a lower complexity

than MAP.
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Figure 6.1: The complexity for different methods measured in terms of the processing time
(in the unit of seconds) as a function of the image size (in the unit of pixels).

6.1.2 Visual Quality Comparison

By comparing the block-adaptive algorithm and the traditional MAP method, we see that
their outputs have similar perceptual quality except that the formal one has blocking
artifacts. As shown in Figs. 6.3 to 6.5, the difference between these two results lies only in
boundary areas. Moreover, there is little difference when the algorithm is applied in either
the RGB domain or the YCbCr domain. This is because super resolution techniques are
more related to the spatial characteristics but less to the color characteristics. Thus, we

can choose either the RGB or the YCbCr domain to apply the superresolution techniques.
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(a) BSR (b) MAP

(c) BSR (d) MAP

Figure 6.2: Visual quality comparison of different image-upsampling methods for blocks
of size 8 x 8 in RGB domain ((a) and (b)) and in YCbCr domain ((c) and (d)).
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(a) BSR (b) MAP (¢) Difference

(d) BSR (e) MAP (f) Difference

Figure 6.3: Visual quality comparison of different image-upsampling methods for blocks
of size 16 x 16 in RGB domain ((a) and (b)) and in YCbCr domain ((d) and (e)). (c) and
(f) are difference maps.
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(a) BSR (b) MAP (c) Difference

(d) BSR (e) MAP (f) Difference

Figure 6.4: Visual quality comparison of different image-upsampling methods for blocks
of size 32 x 32 in RGB domain ((a) and (b)) and in YCbCr domain ((d) and (e)). (c) and
(f) are difference maps.
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Figure 6.5: Visual comparison of output images with image size of 64 x 64((a),(d)), 128 x
128((b),(e)), and 256 x 256((c),(f)), respectively.

6.1.3 Image Re-sizing

Consider an image that is first downsized by a .fact.or of two horizontally and vertically
and then up-sampled back to its original image size. Some content information is lost
during this process so that the output image has poorer quality. It is worth to mention
that the degradation degree is not all the same throughout the whole image. It actually
content-dependent, and it is not efficient to adopt the same processing for the whole image.
If the severely degraded areas can be localized, we can focus on enhancing those regions
only to improve the visual quality.

The difference between the original HR image and the resized LR image is compared in
Fig. 6.6, where the two images are divided into 8 x 8 blocks and the difference is computed

block by block. Then, blocks that have a difference above a certain threshold are marked.
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Those blocks are examined for their group type after block classification. Then, we can

apply a more advanced processing technique to handle these difficult regions.

downsample Bilinear
Interpolation

Original upsampled

T

Compare the difference

Figure 6.6: Comparison between the original and the degraded images due to image resiz-
ing.

We show the original and the resized images in Figs. 6.7 (a) and (b), respectively,
where only downsampling/upsampling is considered without any blurring for the resized
image. Their absolute difference is shown in Fig. 6.7(c). We see from this figure that the
major difference occurs in the edge/texture areas, which is consistent with our expectation.
Thus, we only have to focus on the edge/texture blocks for visual enhancement.

According to the above observations, we conclude that the proposed block-adaptive
algorithm can save computational complexity while keeping good performance. First, the
block-adaptive processing reduces the computational cost efficiently since tl;e degree of
freedom is much less than the original image. Second, the visual quality of image-based
and block-adaptive methods is close except for regions close to block boundaries. If the
boundary can be manipulated carefully, we can improve the image quality at a lower cost.
Third, degradation mainly is localized in regions that contain edges and/or textures during

the resizing process. Thus, to reduce the complexity more, image enhancement techniques
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can be applied to those area rather than the whole image. Due to the above three reasons,
the proposed content-adaptive image up-Sampling method provides a good solution that

has a good balance between processing complexity and resulting image quality.

6.1.4 Initialization for Block MAP Iteration

As mentioned above, bilinear interpolation is used as the basic image enhancement tech-
nique for smooth blocks while the block-based MAP estimator is adopted for blocks that
contain edges. To perform the block MAP, we need some initial image for iterative en-
hancement. Two MAP optimized images initialized by the bilinear interpolation method
and the zero-order-hold method are shown in Fig. 6.8 (a) and (b), respectively. We see
that the bilinear interpolation method yields a better result in terms of smoothness. The
reason is explained by Fig. 6.9. Consider two blocks: an edge block (the green one) and a
texture block (the blue one). The MAP method is applied to the edge block while bilinear
interpolation is performed on the texture block. If the zero-order-hold method is utilized
in the initialization, the expanded matrix will look like the right hand side in the figure.
There is some discontinuity between those two expanded blocks in the beginning. Since
MAP is performed based on this initialization, the discontinuity tends to exist even after
several iterations. Thus, bilinear interpolation should be adopted so that those two blocks
has similar behavior in the very beginning,.

Although the block-adaptive algorithm provides an efficient way to enhance the visual
quality and spatial resolution for edges and textures, the output images contain blocking
artifacts due to different processing applied to adjacent blocks. Although the use of bilinear

interpolation for initialization helps eliminate the blocking artifact, some of them may still
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remain. Thus, a more multi-mode enhancement technique is required for even better
quality of output. In other words, instead of dealing complicated and non-complicated
cases, the image should be divided into several groups such as plain area, texture, edges
and others, so that adaptive enhancement algorithms can be chosen for different needs.
For the plain area, an effortless method can be utilized so that the computation cost
can be saved for edge blocks to apply more complicated processing. The details and the

experimental results are given in the next section.

6.2 Image Up-Sampling with Adaptive Enhancement

In this section, another approach to achieve image quality enhancement is introduced.
Again, the DCT-domain block classification is utilized to segment the image into several
types, smooth areas, textures, edges and others. Instead of enhancing the quality of edge
blocks only, the algorithm introduced in this section is separated into four parts according
to the block types.

Blocks that belong to the plain background group contain smooth surfaces. Since there
is not much variation in those areas, an effortless zero-order hold method can be adopted to
expand the image content without degrading the visual quality much. In contrast, texture
can be treated as the spatial repetition of a certain local pattern. Bilinear interpolation
followed by a technique called “unsharp masking” [41] are applied to texture blocks to
enlarge the block size while magnifying the variations at the same time. This cascaded
operation yields an output image block of good quality. The parameters of the unsharp
mask, e.g. the size of the impulse response array and the weighting coefficients, control the
sharpness of the output image. They can be chosen adaptively for different applications.
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Since human eyes are more sensitive to edges, upsampling of edge blocks demands
special treatment. By viewing an image as a gray-level intensity surface, it can be approx-
imated by a facet model which is built to minimize the difference between an intensity
surface and observed image data. The facet model is modified to fit the need of image
enhancement which is detailed in the next subsection. For the blocks which are not be-
longed to these three groups, is categorized as others. The complexity of those blocks
falls between the plain background and the edges so that bilinear interpolation is chosen
for upsampling whose computation cost is between zero-order-hold method and the facet
modeling and unsharp masking.

More details of the key processing, the facet modeling and unsharp masking, which are

adopted for image upsampling are given in the following two subsections.

6.2.1 Facet Modeling

As mentioned before, a facet model is built to minimize the difference between an intensity
surface and observed image data. The piecewise quadratic polynomial is used in Haralick’s

facet model [41]. That is, an image F(3j, k) is approximated by

F(r,e) = ky+kor + kac + kgr? + ksre + kgc?

+kyrc? + kgrc + kor?c?, (6.1)

where k, are weighing coefficients to be determined and r and c are the row and column
Cartesian indices of image F(j, k) within a specified region. The determination of coeffi-

cients k;, 1 < k € 9, demands a least square solution. However, since polynomials r™c",
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m,n =0, 1,2, are not orthogonal, the solution of coefficients k; becomes an ill-conditioned
problem. To convert the ill-conditioned problem to a well-conditioned, a set of orthogonal
polynomials is used in the polynomial expansion instead. For example, we may consider

the use of 3 x 3 Chebyshev orthogonal polynomials as given below:

Pl(T,C) =1, PQ(T,C) =T, PS(T’C) =6
Py(r,c) =12 - %, Ps(r,c) =rc, Pg(r,c)=c?— %

(6.2)
Pr(r,c) =c(r® - %), Pa(r,c)=r(c? - Y

Py(r,c) = (7‘2 - %)(02 - %)s

where 7,c € {-1,0,1}. As a result, the approximation can be rewritten in the form of

N
F(r,c) =) anPy(r,c), (6.3)

n=1

where a, are polynomial coefficients which can be determined by convolving the image
with a set of impulse response arrays. To obtain the facet model, we set up observation
equations at integer parameters r and ¢ to approximate the image value at a local region.
For the image upsampling purpose, we compute F(r, c) at non-integer r and c values. It
can be used to interpolate an image with any upsampling factor. For example, £(0.5, 0.5)
can be computed and inserted between £(0,0) and F(1,1) as shown in Fig.6.10 so that
the image size can be enlarged by a factor of two. Similarly, the image size can be adjusted
11

to any desired size by assigning different non-integer parameters such as ( §, 3”), (%, 7) into

the approximating polynomial.
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To compare the performance of bilinear interpolation and facet modeling, some test
results are shown in Fig. 6.11. The five input images are a vertical rectangle, a 45-
degree triangle, a fan shape, a 135-degree triangle and a horizontal rectangle while the
output image are the enlarged version of the input image by a scaling factor of two in
each dimension. Fig. 6.11 (a) are images upsampled by bilinear interpolation and (b) are
those interpolated using facet modeling. These two methods have similar performance for
vertical and horizontal edges. However, for edges with other orientations or curved lines,
facet modeling outperforms bilinear interpolation. As compared to the blocky results of
bilinear interpolation, facet modeling is capable of capturing the behavior of the edge more
accurately so that the output image has smooth edges without annoying artifacts. When
other scaling factors are considered, the facet model has additional advantage. That is,
the polynomial coefficients are computed only once. To interpolate an image to a different
size, we only have to find the proper non-integer r and ¢ values for facet model evaluation.
Generally speaking, facet modeling is a good choice to model an edge while dealing with

image up-conversion.

6.2.2 Unsharp Masking

An unsharp masking is designed for sharpening an image with edges and details more
emphasized. It is commonly used for most digital images due to its applicability for many
editing softwares. More details including 2D and 1D unsharp making are given in the

following two sections.
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6.2.2.1 2-D Unsharp Masking for Texture Blocks

The unsharp masking technique utilizes the information of the blurred version of the orig-
inal image by convolving with an uniform L x L impulse response array. After generating
the low resolution image, the unsharped masked image G(j, k) can be derived by subtract-
ing the blurred version F(j, k) with a certain weighting function from the original image

F(5,k), i.e,

l1-¢

, c .
G(Jvk) = _F(J’k) - % — 1

2c-1

FL(ja k)’ (64)

where c is the weighting constant and it usually lies in the range § < ¢ < §. Generally
speaking, the sharpening effect gets stronger as c decreases and L increases. An unsharp
masking is not capable of adding extra details to the image. Instead, it can enhance
the appearance of details by narrowing down the transition band around the edge, i.e.
increasing the acutance.

As shown in Fig. 6.12, the unsharp mask neither increases the spatial resolution nor
transforms the edge into the ideal one (i.e. the blueline). However, the image after unsharp
masking (i.e. the red line) has a larger contrast that results in better visual quality. Note
that the 2D unsharp mask considered here has no directional preference, which fits the
characteristic of isotropic texture. Therefore, the isotropic 2D unsharp mask is suitable for

enhancing the visual quality of isotropic texture. Some examples are given in Fig. 6.13.

6.2.2.2 1-D Unsharp Masking for Edge Blocks

When the edge is taken into account, the situation is slightly different from texture en-

hancement. Since the edge has an orientation, it is possible to enhance the sharpness of the
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edges more efficiently by adopting 1D directional unsharp masking. The mask dimension
is reduced to one so that it can be oriented to performed in the direction that is normal
to the edge so that the maximum performance is reached. Again, smaller ¢ and larger L
provide better performance. However, it requires longer processing time. It is a tradeoff

between visual quality and computation complexity.

6.2.3 Experimental Results

In this section, some preliminary experimental results are reported. Test images are of
different sizes and with different content complexity. Images are interpolated by bilinear
interpolation and the proposed content-adaptive method by a factor of two in each di-
mension. Since the objective measurement such as MMSE is not able to reflect the visual
quality accurately, we show four test results in Figs. 6.14 and 6.15, where images in column
(a) are results of bilinear interpolation and those in column (b) are results of the proposed
method. It is clear that the proposed algorithm outperforms bilinear interpolation in the
resulting visual quality. |

If we zoom in the result by examining the 1D image data across an edge as shown in
Fig. 6.16, we see that the line with stars (the proposed method) has a narrower transition
band as compare with that of the dashed line (bilinear interpolation). Moreover, the curve
of the proposed method has a better match with an ideal curve. Overall, the proposed
method has better performance especially in areas that contain edges.

Generally speaking, the proposed method treats an image as a composition of numerous
smaller blocks with different contents. From this viewpoint, an image can be categorized

into several groups so that adaptive algorithms can be applied more efficiently to different
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regions. Experimental results show that the DCT-domain block classification provides
fairly good segmentation of image blocks. Although it is not always able to reach 100%
accuracy, it behaves as a pre-processing to analyze the image contents to help in algorithmic
development to meet various requirements of different applications.

For the process of upsampling, different methods are performed on different areas
according to their content complexity. For edges using facet modeling, it has an advantage
of flexibility in scaling. It is easy to enlarge an image with any factor by only changing the
coordinates without recalculation while the traditional interpolation method may require
upsampling followed by downsampling in order to accommodate some desired image size.
Furthermore, based on the edge orientation information, the 1D post-processing provides
a way to enhance the visual quality even more.

The DCT-domain processing becomes more important for applications nowadays since
most image and video are compressed by DCT. In this work, a geometric property inher-
ently in DCT coefficients was investigated and used for block classification. Experimental
results show that the proposed block classification using the tree structure works well. The
proposed upsampling algorithm based on block classification is content-adaptive which
adopts relatively low cost processing for regions that contain less important information
to save computational complexity for critical areas that require more sophisticated pro-
cessing. It was shown by experimental results that the visual quality has been improved
with sharper edges and more details in texture areas. How to scale an image sequence

efficiently is an interesting topic worth further investigation.
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(a)Original image (b)Upsampled image
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Figure 6.7: Detecting difference between the original and the resized images using bilinearly
interpolation.
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Original HR Image Original HR Image

Figure 6.8: The block-based MAP estimator with different initialization methods: (a)
zero-order-hold, and (b) bilinear interpolation.
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Figure 6.9: Comparison of differences between two initialization methods.

aonl & Lo | 2 a9

0505) 4.}~ _+(05,05)

i //

A |Tm A g | A

o] 2 ool 2 [e)

A = A s A

o A o A o
‘ (-1,-1) (-1,0) (-1.1)
4

Figure 6.10: The coordinates of a facet model.
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(a) (b) (c)

Figure 6.11: Experimental results of (a) bilinear interpolation, (b) the facet model and (c)
1D directional unsharp masking.
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Figure 6.12: Comparison of pixel intensity before and after applying an unsharp mask.

Figure 6.13: Experimental results of unsharp masked texture patterns: (a) the original
texture patterns and (b) the unsharp masked texture patterns.
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(a) (b)

Figure 6.14: Experimental results of first two test patterns: (a) bilinear interpolation and
(b) the proposed content-adaptive upsampling method.
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(a) (b)

Figure 6.15: Experimental results of the other two test patterns: (a) bilinear interpolation
and (b) the proposed content-adaptive upsampling method.
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Figure 6.16: The 1D image data across an edge.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

The objective of this research is to develop an efficient system to generate an image/video
mosaic from multiple image/video inputs captured by different cameras under various con-
ditions. Several techniques were proposed in this work to compensate the color discrep-
ancy and spatial displacement between inputs so as to achieve a high-resolution naturally-
looking mosaic output under simplifying assumptions. For example, temporal synchro-
nization and focal length distortion problems are resolved in advance. The developed

algorithms are briefly summarized below.

e Color Matching of Coded Image/Video

We considered the problem that two images appear different in their color tones
and only have translation displacement between them in Chapter 3. Under the
assumption that the overlapping region is well-aligned, we emphasized on matching

the color in the compressed domain. We proposed two methods, histogram matching
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and polynomial contrast stretching, to compensate the different color tones of two
input images in the DCT domain. Both proposed methods are applied only to the
DC values. The DC value, which is the average of 64 pixel values within each 8 x 8
block, represents the average behavior of the block. Therefore, if the original image
size is not too small relative to 8 x 8, the pixel-dom.ain relationship between two

images can still be preserved by those DC values in the compressed domain.

It was shown by experimental results that polynomial approximation outperforms
histogram matching in terms of output quality and memory requirements. Note that
the polynomial used was a second order one. Although higher order polynomials can
reduce the bias of matching, it demands more computation and may also result in
an increase of variability. This can be demonstrated by our performance evaluation
experiments using the MSE measurement, which is defined as the difference between
the updated DC values and the expected mean values in the overlapped region.
From the experiment, we found that increasing the order does not always lead to

performance improvement.

The overlapped regions of two input images were assumed to be well-aligned at the
block level, i.e. the displacement vector is equal to [8m,8n] with integers m and
n. This assumption is however not practical in real world applications. Thus, an
improvement was made to deal with the case where input images have an arbitrary
displacement vector of form [m, n]. That is, we can perform an interpolation, which
computes the pseudo DC value that is located at the well-aligned position. Then,

the color matching is applied to those pseudo DC values.
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For video color matching, the proposed algorithm can be directly applied to all
I frames. In other words, the stretching coefficient is updated for every I frame or
every time when a scene change is detected for higher efficiency. For P and B frames,
the same procedure can be applied to residuals to obtain another set of parameters.
Based on the. updated I frame values and the updated residuals of P and B frames,
a final estimated value can be computed. For both image and video color matching
techniques, only DC values are taken into consideration. Since there is one DC value
available for each 8 x 8 DCT block, the computational cost is reduced down to the
scale of 1/64 as compared with the spatial domain methods. Also, the output of the
approximation system is a set of three coefficients which can be stored efficiently and
reused for several frames when dealing with image sequences. The proposed color
matching technique can produce an image/video mosaic to a satisfactory degree
while only a small amount of computation is required. The color matching work was

published in [28] and (29).

Block-Level Coded Image Registration

We considered the problem of block-level coded image registration in Chapter 4. For
image registration, we assume that the two input images are translated but without
any rotation or scaling. Since our target is coded image registration, we consider
image registration techniques performed in the DCT domain. We developed two

algorithms based on edge estimation and edge detection, respectively.

The method based on edge estimation consists of three steps. First, image seg-

mentation is performed using the DC coefficients of the luminance component for
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foreground extraction. Second, for the foreground region, the edge orientation within
each 8 x 8 block is estimated by the DCT coefficients of the first row and first col-
umn followed by a 8-level quantization. Finally, a correlation-based technique is

performed to find the displacement vector between two images.

The method based on edge detection also consists of three steps: edge detection on
the DC map, thresholding and parameter determination. For edge detection, four
3 x 3 second order edge detectors are applied to the DC coefficients of the luminance
component of each input image. Each detector can extract a different edge property
so that the generated difference maps preserve edges of various orientations, e.g.
horizontal, vertical, 45-degree and 135-degree edges. Next, a threshold is set up
for each difference map to produce a binary map to filter out some minor edges.
Finally, the displacement parameters are determined based on the binary maps of
input images generated by the same detector, and the actual displacement vector in

the pixel domain is calculated by averaging parameters obtained from all detectors.

It was demonstrated by experimental results that the proposed algorithms saves more
than 90% of the computational cost as compared to the traditional pixel domain tech-
niques while the output visual quality remains about the same. The performance
is consistent regardless of indoor or outdoor scenes. Although it is a block based
processing, the quality of the alignment can be enhanced to the sub-block (4-pixel)
accuracy. The results of the coded image registration research were published in [30],

[31] and [32).
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e Advanced Coded Image/Video Mosaic Techniques

In Chapter 5, we investigated three advanced coded image/video mosaic techniques

as summarized below.

— Hybrid Block/Pixel Alignment Technique

A post-processing technique, called hybrid block/pixel level alignment, was pro-
posed to enhance of the displacement vector resolution from the block level to
the pixel level. After applying line detectors to the DC map of an image, the
energy of vertical edges of each block can be obtained. Then, a threshold is
set to choose the candidates which belong to the group of high energy. For
those candidates, a weight is given in order to distinguish them from blocks
of other behaviors. The same procedure is performed for labeling blocks of
horizontal edges so that a four-value map is available of an image. Several
geometric patterns of size 3 x 3 are predefined for the purpose of determining
whether the centered block contains a corner in the spatial domain or not. If a
block is classified as a corner block, its eight neighboring blocks and itself are
transformed back to the pixel domain for more accurate alignment. As com-
pared with the traditional spatial-domain processing, we do not perform the
inverse DCT transform to the whole image but to some selected blocks. It was
shown by experiments that the proposed algorithm saves around 40% of the

computational complexity while achieving the same quality.

— Coded Video Registration
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The problem of stitching two MPEG sequences with a frame rate of 30fps
(frames per second) together to become a mosaic video output was investigated.
This was done under the assumption that the two image sequences were well
aligned in the temporal domain and had the same GOP structure. The proposed
algorithm first segments the I frame of each GOP (15 frames in our experiments)
into the static background and moving objects. For the static background, the
DC values of the luminance component are extracted to form a DC map. Then,
based on the DCT domain image registration technique presented in Chapter
4, a set of displacement parameters can be determined. For the moving object,
motion vectors are extracted from the remaining frames within the same GOP.
Some incorrect motion vectors can be filtered out based on the prior information
of the moving object. The displacement parameters can be updated every GOP
based on the motion information. It was shown by experimental results that
the proposed approach can provide satisfactory performance while keeping the

computational low. The video registration results were published in [33].

DCT Block Classification

The DCT domain techniques are attractive since many image and video inputs
are of the compressed format using the DCT representation. It is important to
analyze the properties of DCT coefficients so that we can bridge the information
between the raw and the coded image/video data more conveniently. Since each
DCT coefficient represents the energy of a specific pattern with different vertical
and horizontal spatial frequencies, we defined some ratio values and developed

a tree structure so as to group blocks into different categories based on the
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distribution of DCT coefficients in an 8 x 8 block. It was shown by experimental
results that the proposed tree structure can capture some important block types
such as the plain background, smooth areas, textures, and edges. Based on the
classification result, we can adopt different processing techniques in different

areas to save computations.

— Super Resolution and Image Enhancement

The DCT-domain processing becomes more important for applications nowa-
days since most image and video are compressed by DCT. The geometric prop-
erty associated with DCT coefficients has been investigated and used for block
classification in this work. Experimental results showed that the proposed block
classification using the tree structure works well. The proposed upsampling al-
gorithm based on block classification is content-adaptive. That is, it applies the
processing techniques of relatively low complexity to regions that contain less
important information to save computational complexity for critical areas that
require more sophisticated processing. It was shown by experimental results
that the visual quality has been improved with sharper edges and more details

in texture areas.

7.2 Future Work

The demand on flexible media content conversion across heterogeneous capture and display
terminals will continue to grow when more and more terminals are linked by networks.

Users will not be only satisfied by rich functionalities of an isolated device but also by
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compatibilities between different terminals so that they can get the best output based
on the platform available. The difference between terminals has to be compensated by
software algorithms to facilitate multimedia data migration from one machine to the other
with minimal degradation.

The emphasis will be the balance of computational complexity and resultant im-
age/video quality. Unlike traditional methods, we conduct processing directly in DCT
domain and adopting geometric property inherently in DCT coefficients for processing
speedup. However, the proposed algorithms have limitations in applicability. More re-
search efforts towards an integrated system that offers flexibility and compatibility among
heterogeneous terminals are expected in the near future. Some research issues are high-

lighted as follows.

¢ Eliminating Blocking Artifacts Resulting from Block-based Algorithm

In our proposed system, blocks in a whole image frame are classified into several
groups by following the tree structure proposed in Chapter 5 based on the distribu-
tion of DCT coefficients. Each group has its own specific geometric properties. That
is, an image is classified into the plain background, smooth areas, textures, or areas
with strong edges or corners. Different geometric properties provide different visual
effects. For example, areas with strong edges require better algorithms to improve
the resolution since human eyes are more sensitive to those regions. For the areas of
the plain background or smooth areas, a simple zero-order-hold method or a bilinear
interpolation operation can produce good results. Since blocks are manipulated with

different processing techniques individually, there may be artificial block boundaries
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generated as a result of block partitioning. Thus, a low complexity post-processing

technique is required to remove blocking artifacts.

Enhanced Resolution of Moving Objects

For multiple video sequences, the regions of interest containing target objects can be
combined with their motion information of the following B and P frames for moving
object extraction. Based on the movement of the object, we may develop an algo-
rithm especially tailored to enhance the resolution of moving objects. As observed
by some researchers, [43], (42}, [15], [2], and [16], the quantization step size provides
important information about the feasibility of the solution. The estimated solution
can be verified using the quantization step size. If the quality of the output video is
not satisfactory, some post-processing techniques to further resolution enhancement
can be considered. Since we only deal with the regions of interest here, the number
of iterations required for the optimal solution is expected to be fewer than that of
the traditional iterative approach. Then, the computational cost can be saved while

maintaining good performance in visual quality.
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