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a b s t r a c t

Sulcal and gyral landmarks on the human cerebral cortex are required for various studies of the human
brain. Whether used directly to examine sulcal geometry, or indirectly to drive cortical surface registra-
tion methods, the accuracy of these landmarks is essential. While several methods have been developed
to automatically identify sulci and gyri, their accuracy may be insufficient for certain neuroanatomical
studies. We describe a semi-automated procedure that delineates a sulcus or gyrus given a limited num-
ber of user-selected points. The method uses a graph theory approach to identify the lowest-cost path
between the points, where the cost is a combination of local curvature features and the distance between
vertices on the surface representation. We implemented the algorithm in an interface that guides the user
through a cortical surface delineation protocol, and we incorporated this tool into our BrainSuite soft-
urface registration ware. We performed a study to compare the results produced using our method with results produced
using Display, a popular tool that has been used extensively for manual delineation of sulcal landmarks.
Six raters were trained on the delineation protocol. They performed delineations on 12 brains using both
software packages. We performed a statistical analysis of 3 aspects of the delineation task: time required
to delineate the surface, registration accuracy achieved compared to an expert-delineated gold-standard,
and variation among raters. Our new method was shown to be faster to use, to provide reduced inter-rater

resu
variability, and to provide

. Introduction

The examination of the patterns of variation in the human brain
ften relies upon the accurate identification of structures on the sur-
ace of the cerebral cortex. Sulci are of great interest in the structural
nalysis of magnetic resonance imaging (MRI), where the functional
nd architectonic boundaries are not directly visible. These bound-
ries have been linked to various characteristics of the sulci (Watson
t al., 1993; Roland and Zilles, 1994), thus major functional areas
n the brain may be associated with sulci. Similarly, various gyri
ave been associated with a variety of brain functions. Fischl et al.

2007) have recently reported that localization of Broadman areas
ith respect to folding patterns demonstrates stability, providing

urther motivation for aligning cortical data based on geometric
tructure.
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lts that were at least as accurate as those produced using Display.
© 2008 Elsevier B.V. All rights reserved.

There are a number of sulci that appear reliably in normal
brains; however, these structures are characterized by large vari-
ations across subjects (Ono et al., 1990). These variations have been
studied in relationship to several aspects of health and disease.
Early studies of sulci using MRI relied upon tracings on images
with slice thicknesses of 5–9 mm (Missir et al., 1989; Steinmetz
et al., 1989, 1990). Kikinis et al. (1994) traced sulcal patterns in
2D on renderings made from 3D images of brains oriented to the
same camera view. Thompson et al. (1996) performed statistical
analysis of high-resolution 3D sulcal curves that were traced on
human cryosection data. These techniques were later extended and
applied to MRI in several studies that examined sulcal asymmetry
in the hemispheres. These included explorations of the brain during
developmental stages (Blanton et al., 2001; Sowell et al., 2002), in
subjects with schizophrenia (Narr et al., 2001), and in relationship
to handedness and gender (Luders et al., 2003).

Since the sulci typically separate the brain into distinct func-

tional areas, spatial normalization techniques have been developed
that use explicitly defined sulcal features as constraints. Thompson
et al. (1997) computed high-dimensional volumetric maps by
elastically deforming scans into structural correspondence using
landmarks that were traced manually on the cortical surface. Collins

http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:shattuck@loni.ucla.edu
dx.doi.org/10.1016/j.jneumeth.2008.12.025
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t al. (1998) combined sulcal ribbons with image-based features for
olumetric registration. Cachier et al. (2001) used automatic sulcal
dentification and labeling followed by a combination of linear point

atching and intensity matching to achieve intersubject corre-
pondence. Joshi et al. (2007) used sulcal landmarks as constraints
n a combined surface parameterization/registration approach,

hich was extended to the whole volume by constrained har-
onic mapping, and finally refined using an intensity-based warp.

urface-based registration techniques, such as those described by
avatzikos et al. (1996), Fischl et al. (1999), or Tosun and Prince

2005), may also be used to align cortical surface models based
n geometric features of the surface without the use of explicit
onstraints. These aligned maps can then be used to study the prop-
rties of the cortex in sulcal or gyral regions. Fischl et al. (2004)
eveloped a method for labeling each point on the surface with a
euroanatomical label based on a manually labeled training set and
eometric priors. Yeo et al. (2008) extended this work, proposing a
enerative model for the joint registration and parcellation of the
ortical surface that provided improved parcellation accuracy. Geo-
etric features can also be combined with explicitly defined sulcal

onstraints (Eckstein et al., 2007).
Manual delineation of sulcal anatomy can be a time-consuming

rocess, and much effort has gone into the development of auto-
ated approaches to identify sulci. We summarize a few of the

ecent methods here. Khaneja et al. (1998) applied dynamic pro-
ramming to identify length minimizing geodesics and curves of
xtremal curvature to identify the sulcal fissures. Le Goualher et al.
1999) developed a method called sulcal extraction and assisted
abeling (SEAL), which detected cortical ribbons that were then
ssociated manually with known sulci. Zeng et al. (1999) devel-
ped an automatic intrasulcal ribbon finding technique using the
istance function computed as part of a coupled level set surface
xtraction method. Caunce and Taylor (2001) applied active shape
odels to identify sulci. Tao et al. (2002) applied a statistical shape
odel to identify sulci on cortical surfaces that were mapped to

he unit sphere. Rivière et al. (2002) generated maps of the cortical
ulci using a graph matching approach based on neural networks
rained with manually labeled data. Rettmann et al. (2002) applied a
atershed method to the sulcal beds in order to identify major sulci;

his was later augmented with a system to perform assisted label-
ng of the identified regions (Rettmann et al., 2005). Ratnanather
t al. (2003) applied dynamic programming to identify crestlines
n cortical surfaces. Tu et al. (2007) applied a supervised learn-
ng approach to perform extraction of sulcal lines from MRI using
urves that were manually delineated.

While automated methods have been successfully applied in
everal settings, their accuracy may not be satisfactory for expert
euroanatomists, particularly in the presence of the wide variation
hat appears in neuroanatomy and in image acquisition quality.
ata from subjects exhibiting abnormal cortical shape, such as

ndividuals with Alzheimer’s disease, may be handled better by
anual delineation. In registration applications, errors in automatic

ulcal identification may propagate into errors in the registration
ccuracy. It is likely that landmarks defined by experts, who have
een trained to make consistent decisions when faced with ambi-
uities that arise frequently in the analysis of cortical geometry,
ill produce improved registration results. In some cases a par-

icular area, such as the visual cortex, may be of interest and
onstraints specific to that area may provide more appropriate reg-
stration. Furthermore, some of the methods for automatic sulcal
elineation (e.g., Rivière et al., 2002; Tu et al., 2007) require an

xpert-labeled training set. Thus, in certain instances, it is still
esirable to use a manual approach to perform sulcal landmark

dentification.
Several semi-automated methods have been developed that

llow raters to define curves on the cortex. Display (Montreal Neu-
nce Methods 178 (2009) 385–392

rological Institute, Montreal, Canada) is an OpenGL-based software
package that provides a 3D rendering of a cortical surface, synchro-
nized with views of a corresponding MRI or other data. Users can
define a series of points along a curve, which are joined using a
shortest-path algorithm based on the Euclidean distance between
edges on the surface mesh. The Caret software package (avail-
able online at http://brainmap.wustl.edu/caret/) provides facilities
for delineation of landmarks on various types of neuroanatom-
ical data, including inflated and flattened cortical surfaces (Van
Essen et al., 2001). Sulcal landmarks produced with Caret have been
used in surface-based registration processes (Van Essen, 2005).
The RView software package (available online at http://rview.colin-
studholme.net) displays volume and surface data; it also provides
the capability to define sets of points joined by straight line seg-
ments to define landmarks such as sulci. Bartesaghi and Sapiro
(2001) developed a system for optimally computing geodesics on
surfaces, and used it to identify sulci and gyri based on local cur-
vature measures. Hurdal et al. (2008) applied Dijkstra’s algorithm
to find shortest paths between endpoints of sulci, using a weighted
graph with an edge cost function designed to follow crestlines such
as gyri or sulci. Studies of variation in manually delineated sulcal
delineations can be limited by the variations in the definitions of
the end points of sulcal curves, specifically when pointwise corre-
spondence between curves is derived from the end point positions.
To address this problem, Durrleman et al. (2008) proposed measur-
ing the distance between landmark curves using currents, with no
implicit assumption of pointwise correspondence.

In this paper, we describe a semi-automated curve tracking algo-
rithm and its implementation as part of a curve tracing protocol
software tool. The curve tracking method computes a weighted
graph from the vertices and edges of a triangle mesh representation
of the cerebral cortex. The weight of each edge is determined by a
combination of local curvature features and the distance between
vertices on the surface representation. Given two seed points on
the surface, we use a shortest path algorithm on the weighted
graph to determine a series of edges that follow the valleys of
sulci or the ridges of gyri. The tracking tool was integrated into our
existing BrainSuite software package (Shattuck and Leahy, 2002)
to guide the user through the process of identifying a sequence of
well-defined landmarks on the cortical surface. The user can seed
multiple points along the path and view the results in real-time
as points are added or as the end point of the curve is moved on
the surface. The view of the curve traced on the cortical surface is
synchronized with a view of orthogonal slices in a corresponding
3D image volume, providing the user with additional context for
decision making during the delineation process. To establish per-
formance relative to an established software tool, we performed
inter-rater and intra-rater comparisons using both Display and our
new BrainSuite tool. The results demonstrate that our new method
can achieve comparable accuracy with reduced inter-rater variabil-
ity in dramatically less time.

2. Methods

2.1. Curve-tracking procedure

We assume, as input to our algorithm, a triangular mesh M, com-
prising a set of vertices, V = {v1, v2, . . . , vNV

}, and a set of edges,
E = {e1, e2, . . . , eNE

} that compose the triangles of the mesh. Each
vertex vi ∈ V is a point in 3D space, and each edge ej ∈ E is a pair

of integers corresponding to the indices of the vertices V. This tri-
angle mesh can be produced in a number of ways. In this work,
we focus our validation on surfaces produced by the method of
MacDonald (1998), though we have also applied the technique to
surfaces produced with our own BrainSuite software (Shattuck and

http://brainmap.wustl.edu/caret/
http://rview.colin-studholme.net
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ig. 1. A cortical surface model shaded by (top) its convexity measure and (bottom)
he cost function (˛).

eahy, 2002), FreeSurfer (Dale et al., 1999), and BrainVoyager (Brain
nnovation B.V., Maastricht, The Netherlands).

Given a pair of points va ∈ V and vb ∈ V , we compute an optimal
ath through a weighted graph constructed from the surface mesh.
hile we could define the weights of this graph using the Euclidean

istances of the edges in the path, such a path would be unlikely
o follow the neuroanatomical features of the surface. Instead, we
ompute the cost of each edge using the Euclidean distance mod-
lated by a measure of the local convexity at each point. The path
hat is found will thus depend on the local properties of the surface.

.1.1. Convexity measure
We define the convexity measure at each vertex index i as

i = − 1
|Ni|

∑
j ∈ Ni

n̂i · vi − vj

‖vi − vj‖
, (1)

here Ni is the set of first-order neighbors of vertex i, i.e., those
ertices sharing an edge with vi, |Ni| is the size of set Ni, vi is the
D spatial position of vertex i, and n̂i is the surface normal at i. The
urface normal n̂i is computed as the average of the normals of the
riangles adjacent to vertex vi, with the convention that the normals
oint outwards from the surface.

In simpler terms, the sum in Eq. (1) averages the cosines of the
ngles between the surface normal at vi and the edges connected
o that vertex. Fig. 1 shows a map of the convexity measures for a
ortical surface model. In a flat configuration, ci will be zero since
he surface normal is orthogonal to the connected edges. If the sur-
ace is locally concave, i.e., has negative mean curvature, at that
oint, then the angles will be in the range (0, �/2) since all points
n the neighborhood are above the tangent plane. Thus, the sum
ill be positive, and ci will be negative. Similarly, if the surface is

ocally convex, i.e., has positive mean curvature, then the sum will
e negative and ci will be positive. In previous work, we adopted
his measure (Timsari and Leahy, 2000) in place of mean curvature,
nce Methods 178 (2009) 385–392 387

as it could be computed rapidly. We note here that this measure
could be replaced by more formal discrete approximations of cur-
vature, such as those described by Meyer et al. (2003). In practice,
the convexity measure we selected has been effective and produced
sulcal tracking results that were satisfactory to neuroanatomists.

2.1.2. Graph weighting
We create a weighted graph G = (E, V, W) from the edge and ver-

tex sets, E and V. The weighting wk ∈ W of an edge ek = (vi, vj), ek ∈ E
is determined by the equation

wk = ‖vi − vj‖ · (˛i + ˛j), (2)

where ˛i is a cost function that we define at each vertex

˛i =
(

1
1 + exp(−� · ci)

)�

, (3)

where ci is the local measure of convexity, � is a global constant con-
trolling the slope of the sigmoid, and � is a second global constant
that determines the influence of the convexity term in the weight-
ing function. In this work, we use � = 20 for the sigmoid slope. We
did not perform extensive testing of this parameter, but this value
demonstrated acceptable performance during initial development
of the algorithm. The sigmoid provides a limit on extreme convex-
ity measures, making the method more robust to rapid changes in
the surface that result from noise that is often present in surface
models, such as those produced from tissue classification maps.
The weight averages the robust convexity measure along the edge.
When � = 0, the weighting is based solely on the Euclidean dis-
tance between the two vertices; when � > 0, paths through convex
regions will have higher costs than paths of equal edge length
through concave regions, thus the path through the concave region
will be preferred. Changing the sign of the convexity measure or the
sign of � will reverse this effect, allowing us to trace convex regions.
In the context of cortical surface models, changing these parame-
ters allows the algorithm to follow sulci or gyri when we apply
this method to cortical surface models. Lambda is user-adjustable.
We selected a default value of � = 2 based on our initial use of the
algorithm; we did not formally test the stability of this parame-
ter. The influence of � will vary depending on the smoothness of
the particular surface and feature being traced. On rough surfaces,
increasing � to larger values will cause the curve to trace around
surfaces bumps which may be attributable to noise rather than
anatomy. Fig. 1 shows a map of the vertex cost function, ˛i, for a
cortical surface model, with � = 20 and � = 2.0. The darker blue
areas indicate the lowest cost vertices, and are largely restricted
to the sulcal fundi. Fig. 2 shows examples of curves traced upon
white matter/grey matter boundary surfaces produced by Brain-
Suite using parameter settings to follow sulci, gyri, or unweighted
edge length.

2.1.3. Path computation
Once the edge weighting has been determined, the graph can be

used to compute paths between seed points. Given two vertices, va

and vb, we compute the shortest weighted path between them using
Dijkstra’s algorithm (Dijkstra, 1959). This path will be composed of
contiguous points on the cortical surface mesh M, joined by edges
from E. In practice, more complicated curves may be defined as the
total path computed between adjacent pairs of points in an ordered
set of points defined by the user.
2.2. Software implementation

2.2.1. Landmark identification
We built the curve identification algorithm into a customized

version of our BrainSuite software (Shattuck and Leahy, 2002).
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Fig. 2. Surface curves traced with the method described in this paper; all points were
traced using the same 2 seed points. (top) Surface curve automatically traced using
the Euclidean distance along each edge (� = 0). (middle) Sulcal curve traced using
� = 2 and positive convexity weighting. (middle) Gyral curve traced using � = 2 and
negative convexity weighting.
nce Methods 178 (2009) 385–392

BrainSuite uses OpenGL to display a 3D rendering of the cortical
surface mesh (see Fig. 3). The user can interactively reorient this sur-
face and zoom to different levels of detail. This view is synchronized
with 3 orthogonal views of a corresponding 3D MRI volume that can
be loaded into the interface. This allows the user to identify neu-
roanatomical landmarks through several views. The software can
be run interactively on Windows-based PCs or on other platforms
using tools such as WINE (http://www.winehq.org).

When tracking a curve on the surface, the user can identify an
initial seed point va by clicking on the view of the surface. The soft-
ware then displays that point on the surface and computes the data
used in the Dijkstra algorithm. This provides a fast method to com-
pute the optimal path between va and any other point on the mesh.
Once these data have been generated, the user can select a second
point on the surface. The Curve Protocol software then generates
the lowest cost path and displays it on the cortical surface model.
Because all necessary data for optimal paths from va have been com-
puted, the software updates the displayed curve as the user drags
the next point to different locations on the surface. These updates
occur in real-time on relatively modest personal computers; we
have achieved acceptable performance on computers with 1.7 GHz
Intel Pentium 4 processors. The rapid updates provide the user with
direct feedback so that he or she can quickly select an appropri-
ate endpoint or midpoint for a cortical landmark. This allows the
user to ensure that the traced curve properly follows the anatomy,
which would otherwise be difficult near interrupted sulci. Once
an initial pair of points has been selected, the optimal path is dis-
played and the software computes the Dijkstra information from
the second point. The user can then track curves from this next seed
point, and this new path segment is added to the complete path.
We also developed the software to provide undo features, allowing
the user to rewind the curve to correct mistakes that may occur
during the landmark selection process. The user can also adjust the
� parameter to determine the influence of the curvature weighting.
For example, when tracing an interrupted sulcus, the user can cross
another gyrus by setting the weighting to zero.

2.2.2. Protocol interface
Since the purpose of this software tool is to provide a mechanism

for identifying a set of landmarks that are defined by a delineation
protocol, we built a specialized interface that displays the protocol
information within BrainSuite (see Fig. 3). A protocol file is specified
using an XML document. This protocol file provides a definition
for each curve, including descriptions of the start and stop points
that should be used for the landmark, the direction in which the
landmark curve, e.g., sulcus, should be traced, and additional notes
of any features or special criteria that should be observed during
the delineation process. An additional field is provided for a URL
reference, which allows a webpage to be specified that provides
additional information relating to the landmark.

When a user selects a curve in the curve protocol interface,
BrainSuite displays the information for that curve and provides a
button to launch the related webpage if required by the user. The
user can trace curves defined by the protocol, save curve sets, and
load them. The protocol is stored in the same file as the saved
curves, thereby providing a record of which protocol was followed
to define a set of landmarks. Each landmark can be described in the
protocol as being required or optional, and BrainSuite will warn
users when they save a set of curves that is incomplete. These
curves can be exported in formats appropriate for surface regis-
tration methods (e.g., Thompson et al., 2004) or studies of sulcal

variation (e.g., Blanton et al., 2001; Narr et al., 2001; Sowell et
al., 2002; Luders et al., 2003). In this work, we adapted the exist-
ing LONI protocol (Sowell et al., 2002, protocol available online at
http://www.loni.ucla.edu/Protocols/SulcalAnatomy) into this for-
mat. This protocol specifies each sulcal landmark to be traced by

http://www.winehq.org
http://www.loni.ucla.edu/Protocols/SulcalAnatomy
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ig. 3. The BrainSuite curve protocol tool. Tracing protocols, defined in XML, can be
ndo previous points selected, and save and load results. The interface also provide

single contiguous curve. Included in this protocol is the speci-
cation for how the rater should trace each landmark, including
ow to locate the landmarks on the brain surface and how to deter-
ine the path to take for each sulcus. The protocol accounts for
any of the variations that are encountered across subjects; this

rovides a consistent set of rules that plays an important role in
stablishing reliable landmarks for intersubject analysis. For exam-
le, in the case of a bifurcation, the protocol specifies which path to
ollow. Similarly, in the case of a sulcus that may be interrupted by
gyrus, the protocol specifies how the traced curve should traverse

he gyrus. In the case of tracing an interrupted sulcus with Brain-
uite, the raters were instructed to adjust the curvature weighting
o allow the curve tracker to cross gyri as necessary.

.3. Validation methodology

To assess our new method, we compared its use to that of Display
Montreal Neurological Institute, Montreal, Canada), which had
een used previously as a standard for delineation at the UCLA Lab-
ratory of Neuro Imaging. Display allows users to delineate curves
sing an OpenGL interface, and it will compute paths along mesh
dges between seed points using a shortest path algorithm.

Tracings were performed on 12 cortical surface meshes. These
eshes were produced from T1-weighted MRI volumes using the

ortical surface extraction method of MacDonald (1998). Each mesh
epresents one hemisphere of the brain. These surfaces were traced
reviously by experts within our laboratory to produce training
tandards for use within our laboratory; these expert delineations
ere performed using the Display software. The expert delineations

ncluded landmark curves on the lateral aspect of the brain hemi-
phere for six of these surfaces (L1–L6) and landmark curves on

he medial aspect of the remaining six surfaces (M1–M6). A set of
3 curves (see Table 2) was selected that were determined to be
onsistently present in most subjects. Surfaces L1–L6 were used
or evaluating 13 curves on the lateral surface of brains; surfaces

1–M6 were used for evaluating 10 curves on the medial surface.
into the tool. The user can select a curve to be traced, and control the � parameter,
ss to additional information via URLs encoded in the protocol specification.

In principal, we could have evaluated the 23 curves on all 12 sur-
faces; however, we opted to use the existing expert delineations as
our gold standard for evaluation since they have been used reliably
for several years.

Delineation of the surfaces was performed by six raters who
had limited experience with cortical surface delineation and lim-
ited neuroanatomical knowledge. This selection of the raters should
reduce bias effects that might otherwise result from experience
with the delineation tools. We note that the raters were not blinded
to which method they were using, as the tools have very differ-
ent interfaces. The raters were trained on the LONI protocol by an
experienced rater and trainer (E.K.). The raters delineated a set of
8 practice surfaces, constructed using the same methods as those
used in the study. The raters had engineering backgrounds but
minimal knowledge of brain anatomy. Therefore, training involved
learning both cortical anatomy and the tracing protocol, as well as
the use of the two software packages. Training sessions started with
BrainSuite, because it provided better visualization of the cortical
surfaces. A total of 6 cortical surfaces were traced by all participants,
during which they familiarized themselves with cortical anatomy
and the use of BrainSuite. A second tracing session then followed,
during which the participants were instructed to trace 2 more sur-
faces with Display to learn how to use that software. Feedback on
their delineation results was provided by the trainer.

The raters then delineated the 12 test cortical surface models.
Each surface was delineated twice by each rater—once in Display
and once in BrainSuite. The order in which the delineations were
performed was randomized to reduce bias effects from fatigue and
experience with the surfaces and software. Each rater was pro-
vided a schedule specifying which brain surface to trace with which
software package. The lateral brain surfaces were traced first. In

statistical terms, each rater was assigned the same 12 experimen-
tal units, produced by the combination of 2 software packages
(BrainSuite,Display) × 6 brains(L1–L6). This order was randomized
for each rater. The order was then repeated for the 6 medial surfaces,
replacing L1 with M1, and so on. The raters were instructed to record
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90 D.W. Shattuck et al. / Journal of Neu

he time taken to delineate each surface completely. A set of curves,
hich had previously been established by very experienced raters

t the UCLA Laboratory of Neuro Imaging using the Display software
ool, was used as the ground truth for this study. To compare Brain-
uite and Display, we analyzed 3 aspects of the delineation task:
ime efficiency, delineation accuracy, and inter-rater variability.

.3.1. Time efficiency
To analyze the delineation time, we considered the rater as a ran-

om factor, and the software (BrainSuite/Display) and delineation
ide (lateral/medial) as fixed factors. We followed the summary
tatistic approach and modeled the delineation time separately for
ach rater using an ANCOVA (analysis of covariance) design:

r
i = br

1 + br
2sr

i + br
3vr

i + br
4hr

i + �r
i . (4)

here ti is the delineation time for the ith cortical surface; si is the
oftware indicator variable (0 for BrainSuite, 1 for Display); vi is the
iew indicator variable (0 for lateral, 1 for medial), hi is the habitua-
ion covariate, which denotes the brain delineation order (1 for the
rst brain, 2 for the second, etc.), and ei is the error term. Variables
1, b2, b3, and b4 are the estimable model parameters, and the first
erm b1 is the intercept term (mean delineation time). We use the
uperscript r to denote that the same model is fit separately per rater
. We include the view indicator in this model since brains L1–L6
ere traced on the lateral side and brains M1–M6 were traced on

he medial side. The medial and lateral tracing tasks differed sig-
ificantly in key areas, including the numbers of curves traced, the
ifficulty in visualizing the anatomy, and the nature of the curves
hat were traced.

.3.2. Delineation accuracy
Because of limited neuroanatomical knowledge, the raters

ften produced large tracing errors irrespective of software. Such
rroneous tracings constitute large measurement outliers, which
eemed the analysis of variance approach inaccurate. To evaluate
hether delineation accuracy is affected by each software, we used

he median statistic, which is robust to the presence of outliers.
For a surface s and a specified curve n, we estimate the error

ifference Er
s,n between Display and BrainSuite in a traced curve

r
s,n from a rater r as

r
s,n = e1(Dr(Display)

s,n , Dg
s,n) − e1(Dr(BrainSuite)

s,n , Dg
s,n), (5)

here Dg
s,n is the gold standard curve and e1 is a distance measure

efined by

1(Da, Db) = 0.5
1

Na

∑
pa ∈ Da

min
pb ∈ Db

|pa − pb|+0.5
1

Nb

∑
pb ∈ Db

min
pa ∈ Da

|pb − pa|,

(6)

here the first term in (6) is the average minimum distance of each
oint in curve Da to a point in curve Db, and the second term is
he average minimum distance from each point in Db to a point
n Da. We note that this is one of the 24 distance measures based
n the Hausdorff distance that were described by Dubuisson and
ain (1994). For each rater, we estimate the median of the error
ifference as

r = medians,nEr
s,n. (7)

.3.3. Inter-rater variability
To trace a curve, Display requires the selection of multiple points
n a surface, which are then joined by line segments computed
sing the shortest path along the surface mesh edges. BrainSuite,
n the other hand, guides curves based on a curvature weighted
owest-cost path algorithm. Therefore, as long as brain anatomy has
een identified accurately, the software will tend to trace the same
nce Methods 178 (2009) 385–392

curve, reducing inter-rater variability. To evaluate this effect, we
measured the inter-rater variance for each curve using the following
equation:

Var{Dr
s,n} = 1

2R(R − 1)

R∑
r1=1

R∑
r2=1

e1(Dr1
s,n, Dr2

s,n)2. (8)

where R = 6 is the number of raters.

3. Results

The 6 raters delineated all 12 brains according to the methods
described above. In one case, due to a file transfer error, one rater
had to retrace a single curve that had been traced in Display; the
corrected file was used in this study. We assumed this had a minimal
impact on the assessment of the methods and did not take this
into account in the analysis. The raters did not record how many
manually selected points were needed for each curve. The raters
reported that they did not alter the default parameter settings (� =
2.0) in the BrainSuite tracing tool, except in the case of interrupted
sulci where they turned this feature off (� = 0.0) in some instances.
The raters did not have control over the value of �, which was set
to 20 in all cases.

3.1. Time performance

The estimated model for the time analysis ANCOVA model
parameters bi for each rater are shown in Table 1. The b1 term indi-
cates the mean time, in minutes, required to delineate a set of curves
on a brain surface. The remaining terms indicate, for each rater, the
differences in time required with respect to different aspects of the
study. We note that the signs of each of these terms were consis-
tent across the raters. The b2 term indicates the difference in time
required to use Display instead of BrainSuite. The sign for b2 was
positive for all raters, thus more time was needed to trace curves
with Display. The time difference between tracing the medial sur-
face, which requires fewer curves, and tracing the lateral surface is
denoted by b3; its negative value indicates that the medial side was
traced faster then the lateral. Finally, the habituation parameter b4
indicates that there was a linear learning effect, since its negative
value indicates that less time was required to trace the latter brains
in the set.

To establish statistical significance, we used the above param-
eters as data on a second level analysis. For example, to test for a
software effect, we define the statistic S = meanr{br

2}. This statistic
is equal to 10.77 min for the original dataset, denoting the aver-
age extra time to delineate brains using Display. To test whether
the positive value of S was statistically significant, we generated
26 permutation samples S∗ by randomly multiplying each subject’s
value by ±1: S∗ = meanr{(±1)br

2}. The original statistic S was larger
than all permutation samples, indicating a software effect with p-
value = 1/26 = 0.0156. We can similarly demonstrate a view and
habituation effect with the same p-value.

3.2. Delineation accuracy

The median statistic for accuracy assessment had values 0.2127,
0.0588, 0.0402, 0.0504, 0.3287, 0.0621 in units of mm for the 6
raters. Since this statistic is always positive, using the same permu-
tation procedure as described in the time efficiency analysis, we
can show that less error was introduced by the BrainSuite software

with p-value = 0.0156. However, we have observed that the software
dependent component of the error was typically much smaller than
the errors introduced by erroneous curve tracings. Therefore, the
neuroanatomical knowledge of the raters is much more important
than the software they use.
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Table 1
Estimated model parameters for each rater for the delineation time ANCOVA model, in units of minutes.

Parameter Rater 1 Rater 2 Rater 3 Rater 4 Rater 5 Rater 6

Mean delineation time b1 16.0920 36.8500 12.2333 20.0667 19.2167 9.6667
Software (BrainSuite/Display) b2 15.2397 5.3333 6.8333 18.0833 11.4167 7.7500
Side (Lateral/Medial) b3 −7.2329 −14.3333 −5.5000 −12.5833 −12.7500 −6.0833
Habituation b4 −1.3222 −4.1714 −0.9714 −1.8643 −1.4071 −0.3214
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he consistently positive b2 parameter indicates that more time was required to use
ess time was required to trace the medial surfaces, which had fewer curves, than the
hat less time was required to trace the latter brains in the study.

.3. Inter-rater variability

The majority of curves, as listed in Table 2, had less inter-
ater variance with BrainSuite than with Display. We performed
one-sided Wilcoxon signed rank test of the difference between

he variance of Display curves minus the variance of BrainSuite
urves. We tested the null hypothesis that the difference comes
rom a distribution whose median is zero, against the alternative
hat the distribution has positive median. The p-value was equal
o 7.03 × 10−4, indicating that BrainSuite reduces inter-rater curve
ariance.

. Discussion

The work presented here demonstrates an improved approach
o the manual delineation of cortical landmarks. While the method
ould be applied to the delineation of either sulci or gyri, our val-
dation study examined the identification of sulcal landmarks. We
hose this focus because of our previous application of sulcal-based
rotocols since these are frequently used in intersubject registra-
ion methods (e.g., Thompson et al., 2004; Joshi et al., 2007). The
nalysis of sulcal curve tracing results produced by six raters shows
hat the new tool was as accurate or better than Display, another
oftware package that has been widely used within the Labora-

ory of Neuro Imaging and elsewhere. Furthermore, our algorithm
roduced results with reduced inter-rater variability. Users were
onsistently able to produce delineations using BrainSuite in less
ime – 10 min per brain on average – than using Display. Reducing
he time required to perform the delineation while also reducing

able 2
nter-rater variance (in units of mm2) for protocol curves traced by 6 individuals
sing BrainSuite and Display.

urve BrainSuite Display

ylvian fissure 0.0669 2.2214
entral sulcus 0.7552 1.4937
ostcentral sulcus 4.9397 5.2170
recentral sulcus 0.4018 0.9754
uperior temporal sulcus main body 2.5692 1.7645
uperior temporal sulcus ascending branch 1.8983 1.7679
ransverse occipital sulcus 14.5701 14.1739
ntraparietal sulcus 1.5365 2.7808
rimary intermediate sulcus 1.7256 1.9433
nferior temporal sulcus 0.6676 1.1129
nferior frontal sulcus 0.7439 0.7983
uperior frontal sulcus 1.8302 4.1926
lfactory sulcus 4.7014 5.4206
allosal sulcus 0.7380 0.7472
uperior rostral sulcus 0.3383 0.6818
nferior rostral sulcus 0.7287 1.0865
aracentral sulcus 2.3139 2.8526
ingulate sulcus, anterior segment 1.3430 2.8599
ingulate sulcus, posterior segment 0.7920 2.5374
arieto-occipital sulcus 3.1697 3.3113
alcarine sulcus, anterior segment 0.7599 1.1439
alcarine sulcus, posterior segment 3.1257 3.1236
ubparietal sulcus 1.5099 2.9581
lay than BrainSuite. Similarly, the consistently negative b3 parameter indicates that
l surfaces. The habituation parameter, b4, was also consistently negative, indicating

inter-rater variation without compromising accuracy is a significant
improvement.

Several factors may have been involved in the improvement
provided by BrainSuite for the delineation task tested. The most
significant difference between the two software programs, for the
purpose of delineation, was the curvature weighting used by Brain-
Suite. It was this difference that allowed the curved paths of the
cortical anatomy to be defined in BrainSuite with fewer mouse
clicks without compromising the quality of the delineations. Anec-
dotally, the raters reported using approximately 3 points per curve
delineated in BrainSuite and approximately 15 points per curve
delineated in Display. Differences in the user interface were also
likely factors. BrainSuite rendered the brain surface model faster
than Display, providing the user with smoother rotation of the sur-
face to visualize the anatomy. BrainSuite provided visual updates
of the curve being drawn, giving the user better feedback so that he
or she could easily reposition the curve during delineation. Brain-
Suite also provided features for undoing segments of a drawn curve,
while Display only allowed the user to restart a curve if changes
had to be made. Furthermore, BrainSuite provided the details of the
delineation protocol directly in the user interface, while the use of
Display required the user to cross-reference external documenta-
tion, e.g., a website.

Our algorithm is closest related to the approaches taken by
Bartesaghi and Sapiro (2001) or Hurdal et al. (2008). We note
that the approach of Bartesaghi and Sapiro (2001) computes the
geodesic on the surface, and is not restricted to the mesh edges.
In our principal application of image registration, we are matching
the meshes using finite element methods (Thompson et al., 2004;
Joshi et al., 2007), thus delineation on the edges is appropriate.
Bartesaghi and Sapiro (2001) also make the point that Dijkstra’s
algorithm can produce multiple minimal paths. In practice, should
such a case arise it would be circumvented during the delineation
procedure by the trained rater. The sulcal identification method of
Hurdal et al. (2008) is quite similar to the one we present here,
though it uses a slightly different cost function devised to achieve
the same purpose. In that work, which was focused on the mathe-
matical shape analysis of the curves, 10 sulcal curves were specified
by users who selected the two endpoints of the curve, with verifica-
tion by another user. The pre-central sulcus was split into superior
and inferior components, and specified with two curves. The low-
est cost path between them was then computed. The approach we
present here is more general, as it allows for more explicit control by
the operators. We note that the curves we generate would be suit-
able for analysis by the methods described by Hurdal et al. (2008).
An additional difference between our method and that of Bartesaghi
and Sapiro (2001) or Hurdal et al. (2008) is our use of a convexity
metric in place of an estimate of mean curvature. A natural exten-
sion of the work we present here would be to explore alternate cost

functions, though pragmatically the cost function we use has been
demonstrated to produce satisfactory results for detection of sulci
and other landmarks.

In related work, we have been developing new protocols for
delineation of the surfaces generated from the white-matter/grey-
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ater interface, such as those produced using BrainSuite. These
urfaces represent the deep cortical folds more accurately and
herefore make the delineation task more challenging. For exam-
le, the Sylvian fissure in these surfaces is mostly an empty
pace, thus surface landmarks cannot be defined upon it. In that
nstance, we instead trace the deep circular sulcus of the insula
s a landmark. Also, we have identified optimal subsets of sul-
al landmarks that minimize the cortical surface registration error
Joshi, 2008). We anticipate that these developments will allow us
o apply our delineation method more broadly and further reduce
he burden of manual delineation. We are currently preparing an
pdated public release version of the BrainSuite software, which
ill include the method and tools described here. The BrainSuite

oftware is available online at http://brainsuite.loni.ucla.edu and
ttp://brainsuite.usc.edu.
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