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This paper shows how adaptive systems can learn to add an
optimal amount of noise to some nonlinear feedback systems.
Noise can improve the signal-to-noise ratio of many nonlinear
dynamical systems. This “stochastic resonance” (SR) effect occurs
in a wide range of physical and biological systems. The SR
effect may also occur in engineering systems in signal processing,
communications, and control. The noise energy can enhance the
faint periodic signals or faint broadband signals that force the
dynamical systems. Most SR studies assume full knowledge of
a system’s dynamics and its noise and signal structure. Fuzzy
and other adaptive systems can learn to induce SR based only
on samples from the process. These samples can tune a fuzzy
system’s if–then rules so that the fuzzy system approximates the
dynamical system and its noise response. The paper derives the SR
optimality conditions that any stochastic learning system should
try to achieve. The adaptive system learns the SR effect as the
system performs a stochastic gradient ascent on the signal-to-
noise ratio. The stochastic learning scheme does not depend on
a fuzzy system or any other adaptive system. The learning process
is slow and noisy and can require heavy computation. Robust
noise suppressors can improve the learning process when we can
estimate the impulsiveness of the learning terms. Simulations test
this SR learning scheme on the popular quartic-bistable dynamical
system and on other dynamical systems. The driving noise types
range from Gaussian white noise to impulsive noise to chaotic
noise. Simulations suggest that fuzzy techniques and perhaps other
adaptive “black box” or “intelligent” techniques can induce SR
in many cases when users cannot state the exact form of the
dynamical systems. The appendixes derive the basic additive fuzzy
system and the neural-like learning laws that tune it.

Keywords—Adaptive signal processing, dynamical systems,
fuzzy systems, neural networks, noise processing, robust statistics,
stochastic resonance.

I. STOCHASTIC RESONANCE AND ADAPTIVE

FUNCTION APPROXIMATION

Noise can sometimes enhance a signal as well as corrupt
it. This fact may seem at odds with almost a century of
effort in signal processing to filter noise or to mask or
cancel it. But noise is itself a signal and a free source of
energy. Noise can amplify a faint signal in some feedback
nonlinear systems even though too much noise can swamp
the signal. This implies that a system’s optimal noise level
need not be zero noise. It also suggests that nonlinear signal
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systems with nonzero-noise optima may be the rule rather
than the exception. Fig. 1 shows how uniform pixel noise
can improve our subjective perception of an image. A small
level of noise sharpens the image contours and helps fill in
features. Too much noise swamps the image and degrades
its contours.

Stochastic resonance(SR) [11]–[13], [21], [23], [26],
[68], [80], [89], [128], [161], [162], [181], [185], [186],
[193], [243] occurs when noise enhances an external forcing
signal in a nonlinear dynamical system. SR occurs in a
signal system if and only if the system has a nonzero
noise optimum. The classic SR signature is a signal-to-
noise ratio (SNR) that is not monotone. Fig. 2 shows the
SR effect for the popular quartic-bistable dynamical system
[13], [26], [179]. The SNR rises to a maximum and then
falls as the variance of the additive white noise grows. More
complex systems may have multimodal SNR’s and so show
stochastic “multiresonance” [79], [240].

SR holds promise for the design of engineering systems
in a wide range of applications. Engineers may want to
shape the noise background of a fixed signal pattern to
exploit the SR effect. Or they may want to adapt their
signals to exploit a fixed noise background. Engineers now
add noise to some systems to improve how humans perceive
signals. These systems include audio compact discs [150],
analog-to-digital devices [10], video images [222], schemes
for visual perception [215], [216], [228], and cochlear im-
plants [178], [182]. Some control and quantization schemes
add a noise-like dither to improve system performance [10],
[147], [150], [198], [222]. Additive noise can sometimes
stabilize chaotic attractors [16], [77], [168]. Noise can also
improve human tactile response [48], muscle contraction
[42], and coordination [49]. This suggests that SR designs
may improve how robots grasp objects [51] or balance
themselves. SR designs might also improve how virtual or
augmented reality systems [32], [106] can create or enhance
the sensations of touch and balance.

SR designs might lead to better schemes to filter or
multiplex the faint signals found in spread spectrum com-
munication systems [71], [227]. These systems transmit and
detect faint signals in noisy backgrounds across wide bands
of frequencies. SR designs might also exploit the signal-
based crosstalk noise found in cellular systems [142], [229],
Ethernet packet flows [143], or Internet congestion [113].
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Fig. 1. Uniform pixel noise can improve the subjective response of our nonlinear perceptual
system. The noise gives a nonmonotonic response: a small level of noise sharpens the image features
while too much noise degrades them. These noisy images result when we apply a pixel threshold to
the popular “Lena” image of signal processing [187]:y = g((x+n)��) whereg(x) = 1 if x � 0
andg(x) = 0 if x < 0 for an input pixel valuex 2 [0; 1]and output pixel valuey 2 f0;1g. The
input image’s gray-scale pixels vary from zero (black) to one (white). The threshold is� = 0:05.
We threshold the original “Lena” image to give the faint image in (a). The uniform noisen has mean
mn = �0:02 for images (b)–(d). The noise variance�2

n
grows from (b)–(d):�2

n
= 1:67� 10�3

in (b), �2
n

= 2:34 � 10�2 in (c), and�2
n

= 1:67 � 10�1 in (d).

Fig. 2. The nonmonotonic signature of stochastic resonance. The graph shows the smoothed output
SNR of a quartic bistable system as a function of the standard deviation of additive white Gaussian
noisen. The vertical dashed lines show the absolute deviation between the smallest and largest
outliers in each sample average of 20 outcomes. The system has a nonzero noise optimum and
thus shows the SR effect. The noisy signal-forced quartic bistable dynamical system has the form
_x = f(x)+s(t)+n(t) = x�x3+" sin!0t+n(t). The Gaussian noisen(t) adds to the external
forcing narrowband signals(t) = " sin!0t. Other systems can use multiplicative noise [9], [27],
[67], [74], [78], [83] or use non-Gaussian noise [36], [38], [39], [79], [206].

The study of SR has emerged largely from physics and
biology. The awkward term “stochastic resonance” stems
from a 1981 article in which physicists observed “the
cooperative effect between internal mechanism and the
external periodic forcing” in some nonlinear dynamical

systems [13]. Scientists soon explored SR in climate
models [195] to explain how noise could induce periodic
ice ages [11], [12], [193], [194]. They conjectured that
global or other noise sources could amplify small periodic
variations in the Earth’s orbit. This might explain the

MITAIM AND KOSKO: ADAPTIVE STOCHASTIC RESONANCE 2153



observed 100 000 year primary cycle of the Earth’s ice
ages. This SR conjecture remains the subject of debate
[73], [194], [245]. Physicists have since found stronger
evidence of SR in ring lasers [170], [236], threshold
hysteretic Schmitt triggers [69], [171], Chua’s electrical
circuit [4], [5], bistable magnetic systems [97], electron
paramagnetic resonance [81], [84], [217], magnetoelastic
ribbons [230], superconducting quantum interference
devices (SQUID’s) [103], [117], [220], Ising systems [20],
[188], [226], coupled diode resonators [151], tunnel diodes
[165], [166], Josephson junctions [22], [104], optical
systems [9], [61], [120], chemical systems [62], [72],
[99], [105], [129], [145], [180], and quantum-mechanical
systems [93]–[96], [153], [164], [205], [214], [235].

Some biological systems may have evolved to exploit
the SR effect. Most SR studies have searched for the SR
effect in the sensory processing of prey and predators.
Noisy or turbulent water can help the mechanoreceptor
hair cells of the crayfishProcambarus clarkiidetect faint
periodic signals of predators such as a bass’s fin motion
[58], [59], [186], [202], [208], [210], [243]. Noise helps
the mechanosensors of the cricketAcheta domesticadetect
small-amplitude low-frequency air signals from predators
[146], [172], [173]. Dogfish sharks use noise in their mouth
sensors when they detect periodic signals from prey [17].
The SR effect appears in the mechanoreceptors in a rat’s
skin [47] and in the neurons in a rat’s hippocampus [90].
The SR effect occurs in a wide range of models of neurons
[25], [27], [44], [45], [46], [102], [207], [231] and neural
networks [24], [25], [27], [29], [30], [41], [44]–[46], [114],
[115], [149], [154]–[159], [183], [189], [206].

Research in SR has grown from the study of external
periodic signals in simple dynamical systems to the study of
external aperiodic and broadband signals in more complex
dynamical systems [35], [36], [41], [44]–[47], [102], [108],
[146], [209], [231]. Below we review examples of these
dynamical systems and the performance measures involved
in the SR effect. There is no consensus on which signal-to-
noise performance measure best measures the SR effect.
The breadth of SR systems suggests that the SR effect
may occur in still more complex dynamical systems for
still more complex signals and noise types. These signal
systems may prove too complex to model with simple
closed-form techniques. This suggests in turn that we might
use “intelligent” or adaptive model-free techniques to learn
or approximate the SR effects.

Below we explore how to learn the SR effect with adap-
tive systems in general and with adaptive fuzzy function
approximators [132]–[136] in particular. Adaptive fuzzy
systems approximate functions with if–then rules that relate
tunable fuzzy subsets of input and outputs. Each rule defines
a fuzzy patch or subset of the input–output state space. The
fuzzy system approximates a function as its rule patches
cover the graph of the function. These systems resemble
the radial-basis function networks found in neural networks
[100], [176], [136]. Neural-like learning laws tune and
move the fuzzy rule patches as they tune the shape of the
fuzzy sets that make up the rule patches. The learning laws

in the appendixes use input–output data from the sampled
noisy dynamical system. The rule patches move quickly to
cover optimal or near-optimal regions of the function (such
as its extrema). Experts can also state verbal if–then rules in
some cases and add them to the fuzzy patch covering. These
rules offer a simple way to endow a fuzzy approximator
with prior knowledge or “hints” [1], [2] that can improve
how well a fuzzy system approximates a function or how
well it generalizes from training samples [197]. Fuzzy
systems achieve their patch-covering approximation at the
high cost of rule explosion [135], [136]. The number of
rules grows exponentially with the state-space dimension
of the fuzzy system. We stress that our SR learning laws
can also tune nonfuzzy adaptive systems.

Adaptive fuzzy systems offer a balance between the
structured and symbolic rule-based expert systems found
in artificial intelligence [221] and the unstructured but
numeric approximators found in modern neural networks
[100], [101], [132]. These or other adaptive model-free
approximators might better model the SR effect in some
dynamical systems. Our first goal was to show that adaptive
systems can learn to shape the input noise and perhaps
shape other terms to achieve SR in the main closed-
form dynamical systems that scientists have shown produce
the SR effect. Our second goal was to suggest through
these simulation experiments that adaptive fuzzy systems or
other model-free approximators might achieve SR in more
complex dynamical systems that defy easy math modeling
or measurement.

This paper presents three main results. The first and
central result is that a system can learn the SR effect if
it performs a stochastic gradient ascent on .
Then the random noise gradient can tune the
parameters in any adaptive system through a slow type of
stochastic approximation [219]. We derive these learning
laws in terms of discrete Fourier transforms. The idea
behind the gradient-ascent learning is that such hill climbing
is nontrivial if and only if the SNR surface shows some
form of SR. The second result is that the SNR first-order
condition for an extremum has the ratio form
for . The term can produce impulsive
or even Cauchy noise that can destabilize the stochastic
gradient ascent. Time lags in the training process can
compound this impulsiveness. The third result is that a
Cauchy-based noise suppressor from the theory of robust
statistics can often reduce the impulsiveness of the noise
gradient and thus improve the learning process.

The paper reviews the main math models involved in SR
to date and reviews the adaptive fuzzy rule structure that
can implicitly approximate these models and produce a like
SR effect. The next two sections review these dynamical
systems and the competing performance measures that
scientists have used to detect SR in them. We used a
standard based on discrete Fourier spectra.
Most SR research has focused on the quartic bistable
dynamical system. We worked with that signal system in
detail and also applied the stochastic learning scheme to
other dynamical systems. The learning scheme converged
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in most cases to the SR effect or the SNR mode in all of
these systems. The SR learning scheme still converged for
the quartic bistable system when we replaced the forcing
additive Gaussian white noise with other additive random
noise, with infinite-variance noise, and with chaotic noise
from a chaotic logistic dynamical system. Sections V and
VI derive the SR optimality conditions and the stochastic
learning law and then test the learning scheme in SR sim-
ulations of the quartic bistable dynamical system and other
dynamical systems. The appendixes derive the supervised
learning laws for the fuzzy function approximator where
the fuzzy sets have the shape of sinc functions.

II. SR DYNAMICAL SYSTEMS

This section reviews the main known dynamical systems
that show SR. These models involve only simple nonlin-
earities. They also simply add a random noise term to a
differential equation rather than use a formal Ito stochastic
differential [43], [60], [86]. There are so far no theorems
or formal taxonomies that tell which dynamical systems
show SR and which do not. A dynamical system relates
its input–output response through a differential equation of
the form

(1)

(2)

The input may depend on both time and on the
system’s state . The system is unforced or autonomous
when for all and . The system output or
measurement depends on the state through .
The output of a simple model neuron may be a signum
function: .

A. Quartic Bistable System [13], [56], [75],
[82], [109], [121], [179], [249]

The quartic bistable system is the most studied model
that shows SR. It has the form

(3)

(4)

for a quartic potential
with , input signal , and white Gaussian
noise with zero mean and variance
and . Researchers sometimes include
the forcing functions and in the potential function:

. The
unforced version of (4) has the form . It
has two stable fixed points at and
one metastable fixed point at . These fixed points
are the minima and the local maximum of the potential

. Fig. 3 shows the quartic
potential for . The two minima are at .
Fig. 3 shows the potential at rest and hence with no input
force. Fig. 4 shows the potential when the external
sinusoidal input modulates it at each time instant.

Fig. 3. Unforced quartic potential:U(x; t) = �(1=2)x2 + (1=4)x4.

B. Threshold Systems [36], [79], [88],
[91], [122], [123], [201]

Threshold systems are among the simplest SR systems.
They show the SR effect for many of the performance
measures in the next section. A simple threshold system
can take the form

if
if

(5)

for the signal and a threshold .
Thresholds quantize signals. So we state the general forms
of uniform infinite quantizers with gain . A uniform
mid-tread quantizer with step size has the form

(6)

A mid-riser quantizer has the form

(7)

The floor operator gives the greatest integer less than
or equal to its argument. Researchers have studied the
SR effect in -level quantizers that approximate some
dynamical systems [203].

C. Bistable Potential Neuron Model [27]

This neuron model is a bistable system of the form

(8)

The multiplicative and additive noises and are zero
mean and uncorrelated. The term is a constant.

D. Monostable Systems [63], [64], [66], [98], [232], [238]

These systems have no potential barriers as do bistable
and multistable systems. They have only one stable fixed
point. A special case is the single-well Duffing oscillator

(9)
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Fig. 4. Forced evolution of the noise-free quartic potential system:U(x; t) = �(1=2)x2

+(1=4)x4 + (1=4)x sin 2�t. (a) Unforced potential surface att = 0 when the sinusoidal forcing
term is zero. (b) SurfaceU(x; t) at time t = (1=4). (c) SurfaceU(x; t) at time t = (3=4).

where and for . These
systems show the SR effect in the small signal limit with
an approximate linear response.

E. Hodgkin–Huxley Neuron Model [44], [156], [209]

The Hodgin–Huxley model is among the most studied
models in the neural literature.

(10)

(11)

(12)

(13)

Here is the membrane potential or activation andis the
sodium activation. The term is the sodium inactivation,
is the potassium activation, is the membrane capacitance,

is the leakage reversal potential, is the leakage
conductance, is the potassium reversal potential, is
the maximal potassium conductance, is the potassium
ion-channel density, is the sodium reversal potential,

is the maximal sodium conductance, is the sodium
ion-channel density, is an input current, and is a
subthreshold aperiodic input signal. These systems use a
neural threshold signal function that lets the neuron
rest or retract after firing. SR occurs when a low level of
noise brings the input signal above the neuron’s firing
threshold.

F. FitzHugh–Nagumo (FHN) Neuron Model [35],
[44]–[46], [102], [154], [155], [183], [207], [244]

The FHN neuron model is a two-dimensional limit cycle
oscillator that has the form

(14)

(15)

Here is a fast (voltage) variable, is a slow (recovery)
variable, is a constant (tonic) activation signal, is
an input signal, and is noise. Sample constants for the
SR effect are

, and [46].

G. Integrate-Fire Neuron Model [25], [31], [37],
[39], [44], [74], [211], [231]

This neuron model has linear activation dynamics.

(16)

where is cell membrane voltage, is a positive drift, is
a decay constant rate, and is a resting level. A threshold
function governs the neuron’s output pulse firing and gives
the nonlinear system that shows the SR effect.
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H. Array And Coupled Systems [24], [27], [29],
[30], [41], [44]–[46], [92], [110], [114],
[115], [124], [149], [154]–[159], [177], [183],
[188]–[190], [206], [212], [215], [216]

These systems combine many units of the above systems.
They include neural networks and other coupled systems.
A special case is the Cohen–Grossberg (“Hopfield”) [132]
feedback neural network

for (17)

for neural activation potential , synaptic efficacy ,
and hyperbolic neural firing function .
Simulations show that the SR profile grows more peaked
as the number of neurons grows [115]. One study [115]
found that the SR effect goes away for .

I. Chaotic Systems [3], [5], [13], [33], [52],
[160], [196], [241], [242], [251]

Some chaotic systems show the SR effect. These models
include Chua’s electric circuit, the Henon map, the Lorenz
system, and the following forced Duffing oscillator:

(18)

At least one researcher [87] has argued that noise-induced
chaos-order transitions need not be SR.

J. Random Systems [15], [19], [28], [68], [144], [252]

These systems include many classical random processes
such as random walks and Poisson processes. They also
include the pulse system [15] whose response is a random
train of pulses with a pulse probability that depends on
an input signal through

(19)

The input is the signal plus noise:
. This model includes many -driven physiochemical

systems [15].
Other systems show SR in the literature [7], [11], [14],

[20], [55], [107], [127], [167], [169], [188], [193], [213],
[225], [239], [246], [248]. Special issues of physics journals
[23], [181] also present other systems that show SR. Most
use the SR measures in the next section.

III. SR PERFORMANCE MEASURES

This section reviews the most popular measures of SR.
These performance measures depend on the forcing signal
and noise and can vary from system to system. There is
no consensus in the SR literature on how to measure the
SR effect.

Some researchers study a stochastic dynamical system
in terms of the Fokker–Planck (or forward Kolmogorov)
equation [57], [125], [184], [218]

(20)

for drift term and diffusion term . This partial
differential equation stems from a Taylor series and shows
how a probability density function of a Markov system’s
states evolves in time. System nonlinearities often preclude
closed-form solutions. Approximations and assumptions
such as small noise and small signal effects can give closed-
form solutions in some cases. These solutions motivate
some of the performance measures below. SR dynamical
systems in general need not be Markov processes [78],
[192].

A. Signal-to-Noise Ratio

The most common SR measure is some form of SNR
[69], [75], [85], [111], [169], [249]. This seems the most
intuitive measure, even though there are many ways to
define SNR.

Suppose the input signal is the sinewave .
Then the SNR measures how much the system output

contains the input signal frequency

(21)

dB (22)

The signal power is the magnitude of the
output power spectrum at the input frequency .
The background noise spectrum at input frequency

is some average of at nearby frequencies [116],
[169], [249]. The discrete Fourier transform (DFT)
for is an exponentially weighted sum of
elements of a discrete-time sequence of
output signal samples

(23)

The signal frequency corresponds to bin in the DFT
for integer and for . This gives the
output signal in terms of a DFT as . The noise
power is the average power in the adjacent bins

for some integer
[6], [249]

(24)

We expand this noise term in Section V to include all
energy not due to the signal.

An adiabatic approximation [169] can give an explicit
SNR for the quartic bistable system in (4) with sinewave
input

(25)

(26)
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(a) (b)

(c)

Fig. 5. SNR measure of the quartic bistable system_x = x � x3 + s(t) +n(t) with output
y(t) = sgn(x(t)). The signals is the sinewaves(t) = " sin 2�f0t where " = 0:1 and
f0 = 0:01 Hz. (a) SNR-noise profiles of zero-mean white noise from Gaussian, Laplace, and
uniform probability densities. The simulation ran over 20 distinct noise seeds over 10 000 s with
time step�T = 10000=1000000 = 0:01 s in the forward Euler formula of numerical analysis.
(b) Average SNR-noise profile and its spread for Laplace noise. (c) Average SNR-noise profile and
its spread for uniform noise. Fig. 2 shows a like SR profile for Gaussian noise. Fig. 18 shows the
SR profile for the quartic bistable system when chaotic noise drives the system. The plots show
distinct spreads of SNR for each kind of noise.

Here is the barrier height when
defines the potential minima, and

is the variance of the additive white Gaussian noise
. This result stems from Kramers rate [139] if the signal

amplitude is small and if its frequency is smaller than the
characteristic rate or curvature at the minimum
[169]. The SNR approximation (26) is zero for zero noise

. It grows from zero as grows and reaches a
maximum at before it decays. So the optimum
noise intensity is .

There is no standard definition of system-level signal
and noise in nonlinear systems. We work with an SNR
that is easy to compute and that depends on standard
spectral power measures in signal processing. We start with

a sinewave input and view the output state
of the dynamical system as a mixture of signal and noise.
We arrange the DFT computation so that the energy of the
sine term lies in frequency bin . The squared magnitude
of this energy spectrum acts as the system-level
signal: . We view all else in the spectrum
as noise: where the total
energy is . We ignore the factor
that scales and since the ratio cancels its effect.
Fig. 2 shows the SR profile with this SNR measure for the
quartic bistable system with forcing sinewave input signal
and Gaussian noise. Fig. 5 shows the SR profiles of the
quartic bistable system with forcing Gaussian, uniform, and
Laplace noise. Fig. 17 shows the SR profiles of the quartic
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(a)

(b)

Fig. 6. Feedforward fuzzy function approximator. (a) The
parallel associative structure of the additive fuzzy system
F : Rn ! Rp with m rules. Each inputx0 2 Rn enters
the systemF as a numerical vector. At the set level,x0 acts as
a delta pulse�(x � x0) that combs the if-part fuzzy setsAj and
gives them set valuesaj(x0) =

R
�(x � x0)aj(x) dx. The

set values “fire” or scale the then-part fuzzy setsBj to giveB0

j .
A standard additive model (SAM) scales eachBj with aj(x).
Then the system sums theB0

j sets to give the output “set”B. The
system outputF (x0) is the centroid ofB. (b) Fuzzy rules define
Cartesian rule patchesAj � Bj in the input–output space and
cover the graph of the approximandf . This leads to exponential
rule explosion in high dimensions. Optimal lone rules cover the
extrema of the approximand, as in Fig. 7.

bistable system for impulsive noise with infinite variance.
Fig. 18 shows the SR profile of the quartic bistable system
for chaotic noise from a logistic dynamical system.

B. Cross-Correlation Measures

These “shape matchers” can measure SR when inputs are
not periodic signals. Researchers coined the term “aperiodic
stochastic resonance” (ASR) [41], [44], [45], [102] for such
cases. They defined cross-correlation measures for the input
signal and the system response in terms of the mean
transition rate in the FHN model in (14)–(15)

(27)

(28)

where is the time average: .

C. Probability of Residence Time and Escape Rate

This approach looks at the probability of the time
that a dynamical system spends in a stable state between

consecutive switches between the stable states [55], [68],
[82], [121], [250]. So depends on the input noise
intensity. Data can give a histogram of this to
estimate the actual probability for each input noise intensity

. The probability of residence time relates to the first
passage time density function (FPTDF) or the interspike
interval histogram (ISIH) found in the neurophysiological
literature [19], [25], [28], [34], [76], [154]–[158], [163].
The symmetric bistable system (4) with input

gives a system that tends to stay at or wander
about one stable state for s and then
hops to a new stable state as it tracks the input.

D. Information and Probability of Detection

Tools from information theory can also measure SR.
The information rate of a threshold system shows the SR
effect for subthreshold inputs [31], [36], [37], [231]. The
FHN neuron model (14)–(15) shows SR for aperiodic input
waveforms when we measure the cross correlation between
input and output or the information rate [44], [46], [102].
Noise can also sometimes maximize the mutual information
[50]

(29)

The mutual (Kullback) information and Fisher
information [50] can measure SR in some neuron models
[31], [191], [231]. Probability of correct detection and other
statistics can also measure SR [108], [116], [231].

E. Complexity Measures

Researchers have suggested other ways to measure SR.
These include Lyapunov exponents, Shannon entropy, fluc-
tuation complexity that measures the net information gain,
and -complexity for first-order Markov stochastic automata
[160], [247].

Other forms of SR measures also occur in the SR
literature. They include the other SNR’s [64], [123], [131],
[148], [152], the amplification characteristic of a system like
those found in electronic devices [9], [40], [94], [95], [126],
susceptibility [65], [66], [177], [233], “crisis” measure in
chaos [33], and prediction error of spike rates [35]. The
number of SR performance measures will likely grow
as researchers explore how noise and signals drive other
systems in the vast function space of nonlinear dynamical
systems.

IV. A DDITIVE FUZZY SYSTEMS AND

FUNCTION APPROXIMATION

This section reviews the basic structure of additive fuzzy
systems. The appendixes review and extend the more
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Fig. 7. Lone optimal fuzzy rule patches cover the extrema of
approximandf . A lone rule defines a flat line segment that cuts the
graph of the local extremum in at least two places. The mean value
theorem implies that the extremum lies between these points. This
can reduce much of fuzzy function approximation to the search for
zeroesx̂ of the derivative mapf 0 : f 0(x̂) = 0.

formal math structure that underlies these adaptive function
approximators.

A fuzzy system stores rules of the word
form “If Then ” or the patch form

. The if-part fuzzy sets
and then-part fuzzy sets have set functions

and . Generalized fuzzy sets
map to intervals other than . The scalar sinc set func-
tions in Fig. 23 map real inputs to “membership degrees”
in the bipolar range . The system design must
take care when these negative set values enter the SAM
ratio in (31). The system can use the joint set function
or some factored form such as
or , or any other con-
junctive form for input vector
[132].

An additive fuzzy system [132], [133] sums the “fired”
then-part sets

(30)

Fig. 6(a) shows the parallel fire-and-sum structure of the
SAM. These nonlinear systems can uniformly approximate
any continuous (or bounded measurable) functionon a
compact domain [133], [136]. Engineers often apply fuzzy
systems to problems of control [119] but fuzzy systems can
also apply to problems of communication [200] and signal
processing [130] and other fields.

Fig. 6(b) shows how three rule patches can cover part of
the graph of a scalar function . The patch-cover
structure implies that fuzzy systems suffer
from rule explosionin high dimensions. A fuzzy system

needs on the order of rules to cover the graph
and thus to approximate a vector function .
Optimal rules can help deal with the exponential rule
explosion. Lone or local mean-squared optimal rule patches
cover the extrema of the approximand[135], [136]. They
“patch the bumps” as in Fig. 7. Better learning schemes
move rule patches to or near extrema and then fill in
between extrema with extra rule patches if the rule budget
allows.

The scaling choice gives a SAM. Appen-
dix A shows that taking the centroid of in (30) gives
the following SAM ratio [132], [133], [134], [135]:

(31)

Here is the finite positive volume or area of then-part set
and is the centroid of or its center of mass. The

convex weights have the form
. The convex coefficients

change with each input vector.
Fig. 8 shows how supervised learning moves and shapes

the fuzzy rule patches to give a finer approximation as
the system samples more input–output data. Appendix B
derives the supervised SAM learning algorithms for the sinc
set functions [136], [174], [175] in Fig. 23 that we use in
the SR simulations. Supervised gradient ascent changes the
SAM parameters with performance data. The learning laws
update each SAM parameter to maximize the performance
measure of the SR dynamical system. This process
repeats as needed for a large number of sample data pairs

. Fig. 8(e) displays the absolute error of the sinc-
based fuzzy function approximation.

V. SR LEARNING AND EQUILIBRIUM

The scalar SAM fuzzy system can learn
the SR pattern of optimum noise of an unknown dynamical
system if it uses enough rules and if it samples enough
data from a dynamical system that stochastically resonates.
Below we derive a gradient-based learning law that tunes
the SAM parameters to achieve SR from samples of system
dynamics. It can also tune the parameters in other adaptive
systems. We first define a practical SNR measure in terms
of discrete Fourier transforms. Other SR measures can give
other learning laws.

A. The SNR in Nonlinear Systems

Suppose a nonlinear dynamical system has a sinewave
forcing function of known frequency Hz. We search
the sinusoidal part of the output for the known
frequency but unknown amplitude and phase in the
system output response . The “noisy signal” has
the form of “signal” plus “noise”

(32)

The SNR at the output is the spectral ratio of the energy of
to the energy of . We assume that the signal

is always present. This ignores the important problem of
signal detection but lets us focus on learning the SR effect.

We define the SNR measure as

(33)

Here , and is the
-point discrete Fourier transform (DFT) of

(34)
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Fig. 8. Fuzzy function approximation. Two-dimensional (2-D) sinc SAM function approximation
with 100 fuzzy if–then rules and supervised gradient descent learning. (a) Desired function or
approximandf . (b) SAM initial phase as a flat sheet or constant approximatorF . (c) SAM
approximatorF after it initializes its centroids to the samples:cj = f(mj). (d) SAM approximator
F after 100 epochs of learning. (e) SAM approximatorFafter 6000 epochs of learning. (f) Absolute
error of the fuzzy function approximation(jf � F j).

We assume that the discrete frequency is
an integer for sampling rate and . We also
assume that there is no aliasing due to sampling. Then we
can show that for large the SNR measure in (33) tends
to the standard definition of SNR as a ratio of variances.

Theorem:

(35)

Here and
. We need further assumptions to derive

(35). First consider the “energy” in each frequency bin
of the transform

(36)

(37)

(38)

(39)

where and are the DFT’s of and in (32).
Suppose the sinusoidal term has the form

(40)

for . Its DFT has the form [199]

(41)

(42)

(43)

(44)

where is an integer, is
a frequency band, , and is the Kronecker
delta function. So vanishes when both and

. This gives

(45)

So and contain all the energy of the
sinusoidal signal . We define the noise power as

and assume that is stationary and ergodic with
zero mean. Then Parseval’s theorem gives

(46)

(47)

(48)
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The ergodicity of gives (47). Now consider the total
output spectrum

(49)

(50)

(51)

(52)

(53)

Then (53) and (39) give

(54)

Then the SNR structure in (33) follows:

(55)

(56)

(57)

for large and for small (or null) and .
Note that for due to the
symmetry of the DFT.

The result (57) also holds if the zero-mean noise sequence
is not correlated in time and does not correlate with

. Then we can take expectations of and
to get

(58)

(59)

(60)

(61)

(62)

(63)

(64)

and

(65)

(66)

(67)

Putting (64) and (67) into (33) gives

(68)

(69)

Then as .

B. Supervised Gradient Learning and SR Optimality

An adaptive system can learn an SR noise pattern that
maximizes a dynamical system’s SNR. The learning law
updates a parameter of a SAM fuzzy system (or of any
other adaptive system) at time stepwith the deterministic
law

(70)

for learning coefficients . This is gradient ascent
learning. We assume that the first-order moment of the SNR
exists. We seldom know the probability structure or the
expectation of the SNR. So we estimate this expectation
with its random realization at each time step:

. This gives thestochasticgradient learning law

(71)

or simple random hill climbing. We assume the chain rule
holds (at least approximately) to give

(72)

Here is the noise level or standard deviation of the forcing
noise term . We want the SAM or other adaptive system

to approximate the optimum noise levelfor any input
signal or initial condition of the dynamical system: .
We then use and interchangeably

(73)

The term shows how any adaptive system
depends on its th parameter . We again assume that
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the chain rule holds to get

(74)

Then implies that

(75)

(76)

Like results hold for the decibel definition
dB for the base-10 logarithm

(77)

(78)

We next put (75)–(78) into (74) to get the log term that
drives SR learning

if
if

(79)

The right side of (79) leads to the first-order condition for
an SNR extremum

(80)

or simply

(81)

We can rewrite this optimality condition as

(82)

when the partial derivatives of and with respect to
are not zero at . Equations (80) and (82) give a
necessary condition for the SR maximum. The result (82)
says that at SR the ratio of the rate of changes ofand
must equal the ratio of and . This has the same form
as the result in microeconomics [140] that the marginal
rates of substitution of two goods must at optimality equal
the partial derivatives of the utility function with respect
to each good. But (81) and (82) hold only in a stochastic
sense for sufficiently well-behaved random processes.

We find the second-order condition for an SR maximum
when from

(83)

(84)

(85)

(86)

(87)

or . The last equality follows from the
first-order condition or

since then . A like
result holds for . We still get the second-order
condition

(88)

These first- and second-order conditions show how the
signal power and noise power relate to each other
and to their derivatives at the SR maximum.

Much of the noisiness and complexity of the random
learning law (71) stems from the probability structure that
underlies the random optimality “error” process

(89)

near the optimum noise . The probability density
of depends on the statistics of the input noise, the
differential equation that defines the dynamical system, and
how we define the signal and noise termsand .

Below we test statistics of the random processfor the
quartic bistable system in Fig. 9. The results suggest that in
some cases the density ofis Cauchy or otherwise belongs
to the “impulsive” or thick-tailed family of symmetric
alpha-stable bell curves with parameterin the characteris-
tic function [18], [70], [223], [224]. The parameter
lies in and gives the Gaussian random variable
when or . It gives the thicker-tailed
Cauchy bell curve when or . The
moments of stable distributions with are finite only
up to the order for . The Gaussian density alone has
finite variance and higher moments. Alpha-stable random
variables characterize the class of normalized sums that
converge in distribution to a random variable [18] as in the
famous Gaussian version of the central limit theorem. The
noisiness or impulsiveness of the-based learning grows
as falls. Note also that the ratio is Cauchy if
and are jointly Gaussian [70], [137], [141], [204]. Our
simulations found that the impulsiveness ofstemmed at
least in part from the step size of the successive DFT’s in
(92).

We now derive the SR learning laws in terms of DFT’s.
We can approximate and with a ratio of
time differences at each iteration

(90)

(91)
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The math model in (1)–(2) gives the exact learning laws.
Recall that the -point DFT [199] for a sequence of states

has the form

(92)

The time index denotes the current time for
the sampling period . Let denote the partial
derivative of the signal energy at iteration with respect
to the output evaluated at time step:

. We likewise put and
. We assume some form of the chain

rule holds to give

and

(93)

We first derive and in (93). Consider
the partial derivative of with respect to at time
step

(94)

(95)

(96)

(97)

(98)

So the partial derivative of the signal spectrum
is

(99)

The partial derivative follows in like manner

(100)

(101)

from Parseval’s relation

(102)

(103)

We can consider the term in (93) as a sample of
at the time step .

Recall the math model of the dynamical system (1)–(2)
and let . Assume that

for the zero-mean white noise
process with unit variance . So the model
becomes

(104)

(105)

The chain rule gives

(106)

Let denote . Assume that is sufficiently
differentiable. Then differentiate with respect to time [8]
to get

(107)

(108)

The last derivative results from ’s explicit depen-
dence on . So the additive case

gives

(109)

(110)

We need to simulate the evolution (108) for and
obtain from (106). Then we put (99), (103), and
into (93) to get the stochastic gradient learning law

(111)

(112)

(113)

Here we omit the constant factor from (75)–(78) or
view it as part of the learning rate in (113). The learning
law for the parameters of a function approximator

that approximates the surface of optimal noise levels
follows in like manner. Here replaces the parameter
so the learning law becomes

(114)

(115)
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(I) (II)

Fig. 9. Visual display of samples from the equilibrium termEn = (Sn=Nn)
� ((@Sn=@�)=(@Nn=@�)). (a) Cauchy-like impulsive samples ofEn at each iterationn
for the discretized version of the quartic bistable system_x = x � x3 + " sin 2�f0t + n(t)where
" = 0:1 and f0 = 0:01 Hz. The system outputs are (I)yt = xt and (II) yt = sgn(xt).
The noise intensity is the constant�2

n
= 0:25 that lies near the optimal level. (b) Converging

variance test as a test for infinite variance. The sequence of sample variances will converge
to a finite value if the underlying probability density has finite variance and diverges if it has
infinite variance. (c) Log-tail test of the parameter� in an alpha-stable probability density. The
test plotslogProb(X > u) versuslogu for largeu. If the density is alpha-stable with� < 2
then the slope of this plot is approximately��. The test found� � 1. So the probability
density of En was approximately Cauchy.

(I) (II)

Fig. 10. Visual display of @ SNRn=@� = (1=Sn)(@Sn=@�) �(1=Nn)(@Nn=@�) for the
quartic bistable system_x = x � x3 +s(t) + n(t) where s(t) = " sin 2�f with " = 0:1 and
f = 0:01Hz. The system has linear outputy(t) = x(t) in (I) and binary outputy(t) = sgn(x(t)) in
the (II). The noise variances are the constants�2

n
= 0:25. (a) Cauchy-like samples of@ SNRn=@�

at each iterationn. (b) Converging variance test as test of infinite variance. The sequence of
sample variances converges to a finite value if the underlying probability density has finite variance,
otherwise it has infinite variance. (c) Log-tail test of the parameter� for an alpha-stable bell curve.
The test looks at the plot oflogProb(X > u) versuslogu for largeu. If the underlying density
is alpha-stable with� < 2 then the slope of this plot is approximately��. This test found that
� � 1 and so the density was approximately Cauchy.
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(a) (b)

Fig. 11. Learning paths for the quartic bistable system with output (a)y(t) = x(t) and (b)
y(t) = sgn(x(t)). The learning law takes the form (113). The optimal noise level is� � 0:5 for
both cases. The impulsiveness of the learning term@ SNR=@� destabilizes the learning process
near the optimal noise level.

(a) (b)

Fig. 12. Learning paths for the quartic bistable system with outputy(t) = x(t). The learning
law has the form (132). Optimal noise levels are (a)� � 0:35 and (b)� � 0:5. The learning
paths converge close to the optimal levels.

(116)

We get (113) if replaces and . Appendix B de-
rives the last partial derivative in the chain-rule
expansion (73) for all SAM fuzzy parameters . This
is again the step where users can insert other adaptive
function approximators and derive learning laws for their
parameters by expanding . Formal stochastic
approximation [219] further requires that the learning rate

must decrease slowly but not too slowly

and (117)

Linear decay terms obey (117). We used small
but constant learning rates in most simulations.

VI. SR LEARNING: SIMULATION RESULTS

This section shows how the stochastic SR learning laws
in Section V tend to find the optimal noise levels in many
dynamical systems. The learning process updates the noise
parameter at each iteration . The learning process
is noisy and may not be stable due to the impulsiveness
of the random gradient . We used a Cauchy
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(a) (b)

Fig. 13. Impulsive effects on learning paths of noise intensity�n. The quartic bistable system has
the form _x = x � x3 + s(t) + n(t) with binary outputy(t) = sgn(x(t)) and initial condition
x(0) = �1. The input sinusoid signal function iss(t) = 0:1 sin 2�(0:01)t. (a) The sequence�n
with different initial values that differ from the optimum noise intensity. (b) Noise-SNR profile of
the quartic bistable system. The graph shows that the optimum noise intensity lies near� = 0:5.
The paths of�n do not converge to the optimum noise. This stems from the impulsiveness of the
derivative term@ SNRn=@� in the approximate SR learning law (137).

noise suppressor from the theory of robust statistics [112]
to stabilize the learning process. Then sample paths of
converged and wander about the optimal values if the initial
values were close to the optimum.

The response of a system depends on its dynamics and
on the nature of its input signals. We applied the SNR
measure to the quartic bistable and other dynamical systems
with sinusoidal inputs. Future research may extend SR
learning to wideband input signals. Fig. 24(a) shows how
the optimum noise level varies for each input sinewave in
the quartic bistable system. The learning process samples
the system’s input–output response as it learns the optimum
noise. It does not make direct use of the equation that
underlies the system.

An adaptive fuzzy system can encode this pattern of
optimum noise in its if–then rules when gradient learning
tunes its parameters. The fuzzy system learns this optimum
noise level as it varies the output of a random noise
generator. More complex fuzzy systems can themselves act
as adaptive random number generators [136], [200].

Consider the forced dynamical system in (1)–(2) with
initial condition . We set up a discrete computer
simulation with the stochastic version of Euler’s method
(the Euler–Maruyama scheme) [53], [86], [115]

(118)

(119)

with initial condition . Here the zero-mean
white noise sequence has unit variance . The
term scales so that conforms with the
Wiener increment [86], [115], [184]. The learning process
itself does not use the system model in any calculation. It
needs access only to the system’s input–output responses.
The learning process’s sampling period differs from

Fig. 14. Visual display of sample statistics of approximated
@ SNRn=@�. (a) Cauchy-like samples of@ SNRn=@� at
each iterationn for quartic bistable system with sinusoidal
input of amplitude " = 0:1 and frequencyf0 = 0:01
Hz. We compute @ SNRn=@� at each iteration from
@ SNRn=@� � [(Sn � Sn�1)=Sn � (Nn �Nn�1)=Nn]
sgn(�n � �n�1) in (136). We vary the noise level�n between
�n = 0:50 and �n = 0:51 so thatsgn(�n � �n�1) changes
values between 1 and�1. The plot shows impulsiveness of
the random variable@ SNRn=@�. (b) Converging variance test
as test of infinite variance. The sequence of sample variances
converges to a finite value if the underlying probability density
has finite variance. Else it has infinite variance. (c) Log-tail test
of the parameter� in for an alpha-stable bell curve. The test
looks at the plot oflogProb(X > u) versus logu for large
u. If the underlying density is alpha-stable with� < 2 then
the slope of this plot is approximately��. This test found that
� � 1 and so the density was approximately Cauchy. The result
is that we need to apply the Cauchy noise suppressor (131) to
the approximate SR gradient@ SNRn=@� in (136) as well as to
the exact SR gradient in (129).

the time step of the dynamical system’s simulator in
(118)–(119). The subsampling rate for the quartic bistable
system is 1 : 50. We ignored all aliasing effects.

MITAIM AND KOSKO: ADAPTIVE STOCHASTIC RESONANCE 2167



(a) (b)

(c) (d)

Fig. 15. Learning paths of�n with the Cauchy noise suppressor�(z) = 2z=(1+z2) for the quar-
tic bistable system with binary threshold outputyt = sgn(xt). The term�(@ SNRn=@�)replaces
@ SNRn=@� in the SR learning law (133). The paths of�n wander in a Brownian-like mo-
tion around the optimum noise. The suppressor function� makes the learning algorithm more
robust against impulsive shocks. The input signals are (a)s(t) = 0:1 sin 2�(0:001)t, (b)
s(t) = 0:1 sin 2�(0:005)t, (c) s(t) = 0:1 sin 2�(0:01)t, and (d)s(t) = 0:2 sin 2�(0:01)t.

A. SR Test Case: The Quartic Bistable System

We tested the quartic bistable system (4) in detail because
of its wide use in the SR literature as a benchmark SR
dynamical system. The quartic bistable system for

with binary output has the form [185]

(120)

(121)

or in the linear-output case. The sinewave input
forcing term is . The term is a
zero-mean additive white Gaussian noise with variance
and where and . The discrete version
has the form (118)–(119):

(122)

or (123)

with initial condition . The time step is .
The sampling period is with 1 : 50 subsampling.

We can freely choose the time length between the itera-
tion step and the step . Longer time lengths can better
show how the noise intensityat iteration affects ,
and . We chose the time length
s for the simulations of the quartic bistable system. The
sampling period was s. This yields 2048
samples per iteration. This long period of time allows for
low frequency signals such as Hz.

The simulations use Gaussian noise, Laplace noise, uni-
form noise, and impulsive alpha-stable noise. We also tested
the quartic bistable system with the chaotic noise from the
logistic map. Figs. 2, 5, and 18 show the output SNR for
input signal for Gaussian noise,
Laplace noise, uniform noise, and chaotic noise from the
logistic map.
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(a) (b)

Fig. 16. Learning paths of�n for other noise densities in the quartic bistable system with binary
output yt = sgn(xt). The input signal iss(t) = 0:1 sin 2�(0:01)t. The optimal noise lies near
� = 0:5 for both cases of (a) Laplace noise and (b) uniform noise.

The Jacobian of the quartic bistable system has the form

(124)

(125)

Then the partial derivative from (110) gives
the evolution of for the quartic bistable
system

(126)

Its discrete version has the form

(127)

We used the initial condition in simulations.
Then we get from (106) for use in the learning law
(113). The linear output has .
We can approximate a binary output as

for a large positive . Then
.

The equilibrium term in (89) helps gauge the noisiness
of the learning process. We compute at each iteration

from

(128)

The statistics of change with the noise level and with
the sinewaves values and . The empirical histogram
of is a bell curve. A key question is how thick are
its tails. Fig. 9 shows samples from the quartic bistable
system (122)–(123) with Gaussian noise . The
convergence of variance test [223] confirms that had
infinite variance in our simulations. The log-tail test [223]
of parameter in the family of alpha-stable probability
densities leads to the estimate . So the density
is approximately Cauchy. Recall also that
is a Cauchy random variable if and are Gaussian

[70], [204] or if they obey certain more general statistical
conditions [137], [141]. This suggests that much of the
impulsive nature of and hence of the learning process
may stem from the ratio of derivatives in (128).

We also simulate the random gradient with
the partial derivatives from (99), (103), and from
(108)

(129)

The simulations confirm that the random gradient
is often impulsive and can destabilize the

learning process (113) at or near the optimal noise level.
The impulsiveness of in Fig. 10 suggests that

may have an alpha-stable probability density
function with parameter . A log-tail test found
that . So again has an approximate
Cauchy distribution.

We tested the learning law (113)

(130)

Fig. 11 shows the simulation results. It displays the un-
stability in the learning due to the impulsiveness of the
random gradient .

The theory of robust statistics [112] suggests one way to
reduce the impulsiveness of . We can replace
the noisy random sample with a Cauchy-like noise
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(a)

(b)

(c)

Fig. 17. Learning paths ofn for alpha-stable noise in the quartic bistable system with binary
outputyt = sgn(xt). The input signal iss(t) = 0:1 sin 2�(0:01)t. (a) � = 1:9. (b) � = 1:8. (c)
� = 1. The dispersion acts like a standard deviation and controls the width of the alpha-stable
bell curve. Learning becomes more difficult as� falls and the bell curves have thicker tails. The
impulsiveness is so severe in the Cauchy case (c) thatn often fails to converge. Note the noisy
multimodal nature of the SNR profiles.
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(a) (b)

Fig. 18. Learning paths of the scaling factorAn in chaotic noisent = An(zt � 1=2) from
the logistic dynamical systemzt+1 = 4zt(1� zt). The dynamical system is the quartic bistable
system with binary outputyt = sgn(xt). The input signal iss(t) = " sin 2�f0t wheref0 = 0:01
Hz and " = 0:1. The top graph in (a) shows a sample noise pathnt from the chaotic logistic
map whenAn = 1.

suppressor [112]

(131)

So replaces the noise gradient
in (129). This gives the robust SR learning law

(132)

Fig. 12 shows the results of the SR learning law (132)
with the gradient in (129). The learning paths in (113)
converge near the optimal noise level.

The above learning law requires a complete knowledge
of the math model that describes the dynamical system. It
also needs accurate estimation of the evolution of (108).
This may not be practical in many cases. So we instead
sample and and use the approximation formulas
(90) and (91). This gives the learning law

(133)

(134)

(135)

We also replace the difference with its sign
to avoid numerical instability. The gradient

becomes

(136)

This approximation gives the SR learning law

(137)

This learning law does not require that we know the
dynamical model. It depends only on samples from the
system dynamics and from the input signal .

Fig. 13(a) shows sample learning paths of for the
quartic bistable system and approximation (136). Fig. 13(b)
shows the noise-SNR profile of the dynamical system. The

learning paths converge to the optimum noise values
only in some cases. The chance of path convergence is
higher for larger sinewave amplitudes. The paths do not
converge as often for small amplitudes. The simulations
confirm that the random gradient in (136)
is often impulsive and can destabilize the learning process
(137) as in Fig. 13. The impulsiveness of in
Fig. 14 suggests that may have an alpha-stable
probability density function with parameter . A log-
tail test found that . So in (136) also has
an approximate Cauchy distribution.

We again apply the Cauchy-like noise suppressor
from robust statistics [112] to reduce the impulsiveness
of the approximated term in (136). So

replaces the approximation of the noise
gradient in (136) to give the robust SR
learning law

(138)
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(a)

(b)

Fig. 19. SR learning paths of�n for the threshold systemyt = sgn(st + nt � �) where
sgn(x) = 1 if x � 0 and sgn(x) = �1 if x < 0. The input sinewave isst = " sin 2�f0t
with additive white Gaussian noise sequencent. The parameters are (a)f0 = 0:001; " = 0:1, and
� = 0:5 and (b)f0 = 0:001; " = 0:5, and� = 1.

Fig. 15 shows the results of the SR learning law (138). The
learning paths converge to the optimum noise level if the

initial value lies close enough to it. Then wanders in a
small Brownian-like motion about the optimum noise level.

Like results hold for other noise densities with finite vari-
ance such as Laplace and uniform noise. Fig. 16 shows
learning paths for the quartic bistable system (122)–(123)
with Laplace noise and uniform noise. We also tested the
quartic bistable system with alpha-stable noise. Fig. 17
shows the paths of the optimal dispersion for

, and . The learning degrades asfalls and the alpha-
stable bell curves have thicker tails.

We also used a chaotic time series as the forcing noise
in the quartic bistable dynamical system [118]. The simple
and popular logistic map created the noise sequence

(139)

from the initial value [118]. The positive
sequence stays bounded within the unit interval:

. The chaotic noise comes from

(140)

The factor acts as the scaled power or standard
deviation if the term is a zero-mean random
variable with unit variance. Learning tunes so that the
dynamical system shows the SR effect. Fig. 18 shows a
sample chaotic noise sequence and shows twolearning
paths on their way to stochastic convergence.

B. Other SR Test Cases

The SR learning schemes also work for other SR models.
We here show only the results for zero-mean white Gauss-
ian noise. We first tested the discrete-time threshold neuron
model

if
if

(141)
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(a)

(b)

Fig. 20. SR learning paths of�n for the forced bistable neuron model_x = �x + 2tanh x
+" sin 2�f0t+ n(t) with binary outputy(t) = sgn(x(t)). The parameters of the input sinewaves
are f0 = 0:01 Hz and (a)" = 0:1 and (b) " = 0:3.

for The threshold sets the output of
the neuron. The input sinewave has the form

. The Gaussian noise has variance .
The threshold system is not a dynamical system but it
does show SR. Fig. 19 shows the result of learning when

, and and when
and . The sampling period is .

We next tested the bistable potential neuron model with
Gaussian white noise [27]

(142)

(143)

We ignored the multiplicative noise in (8). Fig. 20 shows
the SR learning paths of . The sinewave input is

where Hz and and .
The time step in the discrete simulation is .
The sampling period is or times the time
step .

We next tested the forced FHN neuron model [183]. We
rewrote (14)–(15) with and with the changes of
variables , and
[46]

(144)

(145)

(146)

The constants are , and
as in [102]. The sinewave

input is with 0.1 and 0.5
Hz. The sampling period is with .
Fig. 21 shows the learning paths of the standard deviation

of the Gaussian white noise.
We also showed SR learning in the forced Duffing

oscillator with Gaussian white noise [196]

(147)

(148)
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(a)

(b)

Fig. 21. SR learning paths of�n for the FHN neuron model� _x = �x(x2 � 1

4
) � w + A

+s(t) + n(t) and _w = x � w with output y(t) = x(t). The parameters are� = 0:005 and
A = �(5=12

p
3 + 0:07) = �:31056. The sinewave input signal iss(t) = " sin 2�f0t where

(a) " = 0:01 and f0 = 0:1 Hz and (b)" = 0:01 and f0 = 0:5 Hz. (a) and (b) show how SR
learning convergence can depend on initial conditions. The distant starting point�0 > 7:5� 10�3

leads to divergence in the third learning sample in (a) but it leads to convergence in the third
learning sample in (b).

Fig. 22 shows the learning paths of for input sinewave
with frequency Hz and with amplitudes
and . The sampling period is with

.

C. Fuzzy SR Learning: The Quartic Bistable System

We used a fuzzy function approximator to
learn and store the entire surface of optimal noise values
for the quartic bistable system with input sinewaves. The
fuzzy system had as its input the 2-D vector of sinewave
amplitude and frequency . We tested the system with
the fixed input initial value . The fuzzy system
itself defined a vector function and used
200 rules. The chain rule extended the learning laws in
the previous sections to tune the fuzzy system’s parameters

as in (71)

(149)

(150)

Appendix B derives the partial derivative for the
sinc SAM fuzzy system that we used. The Cauchy noise
suppressor gives the learning law as

(151)

Fig. 23 shows how we formed a first set of rules on the
product space of the two variablesand . It also shows
how the learning laws move and shape the width of the
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(a)

(b)

Fig. 22. SR learning paths of�n for the forced Duffing oscillator�x = �� _x + x + x3

+" sin 2�f0t+n(t) with outputy(t) = x(t) and� = 0:15. The parameters of the input sinewaves
are f0 = 0:01 Hz and (a)" = 0:1 and (b) " = 0:3.

if-part sinc set. Fig. 24 shows the results of SAM learning
of the optimal noise pattern for the quartic bistable system.
The sinc SAM used 200 rules. Fewer rules gave a coarser
approximation.

VII. CONCLUSION

Stochastic gradient ascent can learn to find the SR mode
of at least some simple dynamical systems. This learning
scheme may fail to scale up for more complex nonlinear
dynamical systems of higher dimension or may get stuck in
the local maxima of multimodal SNR profiles. Simulations
showed that impulsive noise can destabilize the SR learning
process even though the learning process does not minimize
a mean-squared error. Simulations showed that the key
learning term itself can give rise to strong impulsive shocks
in the learning process. These shocks often approached
Cauchy noise in intensity. A Cauchy noise suppressor gave
a working SR learning scheme for the DFT-based SNR

measure. Other SNR measures or other process statistics
may favor other types of robust noise suppressors or may
favor still other techniques to lessen the impulsiveness.

Fourier techniques may not extend well to the general
case or broadband or nonperiodic forcing signals found in
many nonlinear and nonstationary environments. Wavelet
transforms [54], [138], [234], [237] may offer better ways to
measure SR effects in these cases when nonperiodic signals
drive nonlinear dynamical systems. Wavelet transforms can
adaptively localize nonperiodic signals in both time and
frequency. Fourier techniques tend to localize periodic
signals either in frequency or in time. Arbitrary or random
broadband signals may require new techniques to detect
these signals and extract their key statistical features from
their noisy dynamical backgrounds.

Gradient-ascent learning can find the SR mode of the
main known dynamical models that show the SR effect and
can do so in the presence of a wide range of noise types.
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(a)

(b)

(c) (d)

Fig. 23. If-part sinc fuzzy sets. (a) Scalar sinc set functionaj(x) = sin x=x. Sinc sets are
generalized fuzzy sets with “membership values” in [�.217,1]. Elementx belongs to setAj

to degreeaj(x): Degree(x 2 Aj) = aj(x). (b) Initial subsets for sinewave amplitudes and
frequencies. There are ten fuzzy sets for amplitude" and 20 fuzzy sets for frequencyf0. The product
of two one-dimensional (1-D) sets gives the 2-D joint sets:aj(x) = aj("; f0) = a1j (")a

2

j (f0). So
the product space gives10� 20 = 200 if-part sets in the if–then rules. (c) One of the 2-D if-part
sinc sets in the 200 rules at the initial location. (d) Learning laws tune the location and width of
the same set in (c) after 30 epochs of learning.

This suggests that SR may occur in many multivariable dy-
namical systems in science and engineering and that simple
learning schemes can sometimes measure or approximate
this behavior. We lack formal results that describe when
and how such SR learning algorithms will converge for
which types of SR systems. This reflects the general lack
of a formal taxonomy in this promising new field: which
noisy dynamical systems show what SR effects for which
forcing signals?

APPENDIX A
THE STANDARD ADDITIVE MODEL (SAM) THEOREM

This appendix derives the basic ratio structure (31) of a
SAM fuzzy system and review the local structure of optimal
fuzzy rules.

SAM Theorem:Suppose the fuzzy system
is a standard additive model: Centroid

Centroid for if-part joint set function
, rule weights , and then-part

fuzzy set . Then is a convex sum of the
then-part set centroids

(152)

The convex coefficients or discrete probability weights
depend on the input through

(153)
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(a)

(b)

Fig. 24. Optimal noise levels in terms of the SNR for the
quartic bistable system with binary output. (a) The optimum noise
pattern when inputs are sinewaves with distinct amplitudes and
frequencies. (b) SAM fuzzy approximation of the optimum noise
after 30 epochs. The sinc SAM used 200 rules. One epoch used
20 iterations that trained on 200 input amplitudes and frequencies.
The quartic bistable system has the form_x = x�x

3+s(t)+n(t)
with initial condition x(0) = �1. The initialized SAM gave the
output value 0.2 as its first estimate of the optimal noise level.

is the finite positive volume (or area if ) and
is the centroid of then-part set

(154)

(155)

Proof: There is no loss of generality to prove the
theorem for the scalar-output case when

. This simplifies the notation. We need but replace the
scalar integrals over with the -multiple or volume
integrals over in the proof to prove the general case.

The scalar case gives (154) and (155) as

(156)

(157)

Then the theorem follows if we expand the
centroid of and invoke the SAM assumption

Centroid Centroid
to rearrange terms

Centroid (158)

(159)

(160)

(161)

(162)

(163)

(164)

Now we give a simplelocal description of optimal lone
fuzzy rules [135], [136]. We move a fuzzy rule patch so
that it most reduces an error. We look (locally) at a minimal
fuzzy system of just one rule. So the fuzzy
system is constant in that region: . Suppose that

for and define the error

(165)

We want to find the best place. So the first-order condition
gives or

(166)

Then implies that

(167)

at . So the extrema of and coincide in this case.
Fig. 7 shows how fuzzy rule patches can “patch the bumps”
and so help minimize the error of approximation.

APPENDIX B
SAM GRADIENT LEARNING

Supervised gradient ascent can tune all the parameters
in the SAM model (31) [134], [136]. A gradient ascent
learning law for a SAM parameter has the form

(168)
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where is a learning rate at iteration. We seek to
maximize the performance measure of the dynamical
system . Here the SNR defines the performance

.
Let denote the th parameter in the set function .

Then the chain rule gives the gradient of the SNR with
respect to , with respect to the then-part set centroid,
and with respect to the then-part set volume

and

(169)

We have derived the partial derivative
in Section V-B. We next derive the partial

derivatives for the SAM parameters

(170)

(171)

The SAM ratio (31) gives [134]

(172)

and

(173)

Then the learning laws for the centroid and volume have
the final form

(174)

and

(175)

Learning laws for set parameters depend on how we
define the set functions. The partial derivatives for the scalar
sinc set function have the
form

for
for

(176)

(177)

So this scalar set function leads to the learning laws

(178)

(179)

Like results hold for the learning laws of product
-D set functions. A factored set function

leads to a new form for the performance
gradient. The gradient with respect to the parameterof
the th set function has the form

where

(180)

Products of the scalar sinc set functions defined the if-part
fuzzy sets in the SAM approximator. Simulations
have shown [174], [175] that sinc set functions tend to
perform at least as well as other popular set functions in
supervised fuzzy function approximation.
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