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Global Stability of Generalized
Additive Fuzzy Systems

Bart Kosko, Member, IEEE

Abstract—This paper explores the stability of a class of feed- v |
back fuzzy systems. The class consists of generalized additive
fuzzy systems that compute a system output as a convex sum
of linear operators. Continuous versions of these systems are
globally asymptotically stable if all rule matrices are stable
(negative definite). So local rule stability leads to global sys-
tem stability. This relationship between local and global system
stability does not hold for the better known discrete versions
of feedback fuzzy systems. A corollary shows that it does hold
for the discrete versions in the special but practical case of B2
diagonal rule matrices. The paper first reviews additive fuzzy
systems and then extends them to the class of generalized additive B,
fuzzy systems. The Appendix derives the basic ratio structure of
additive fuzzy systems and shows how supervised learning can
tune their parameters.
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Fig. 1. Fuzzy systenf” approximates a functiofi: R™ — RP by covering
|. FEEDBACK FUzzY SYSTEMS AND RULE EXPLOSION its graph with rule patches. Each rule patch is a fuzzy Cartesian product

. ) A; x B; C R™ x R? of an if-part fuzzy setd; C R™ and a then-part fuzzy
EEDBACK fuzzy Sy_Stems take their Own output _as Inpu?etBJ- C RP. The number of rule patches in the cover grows exponentially
They use a set of if—then rules to define continuous @k the order ofk™+P—! as the dimensions andp grow linearly. Learning

discrete autonomous dynamical systems on a real vector sptémes move and shape the patches. Lone optimal rule patches cover the
extrema of the function.
i =F(x) (1)

w(k +1) = F(x(k)). (2)  F. R* — R convert a vector input of sensor measurements

The feedback fuzzy syste is a vector fieldF: R — R” into a scalar control outpuk'(z). The Appendix derives the
that has the origin as a fixed poitt(0) = 0. Feedback fuzzy formal structure of this mapping. This shows how to convert a
systems can arise in control [3], [11], [38]-[41], [44], [45]s€t of linguistic if-then rules into a closed-form equation. Few
in signal processing [4], [40], or in models of complex socigglectronics applications have required dedicated hardware. The
or medical processes [2], [5], [14]-[16], [29]-[31], [35], [36],math of such fuzzy systems is simple enough that engineers
[53], where subsystems affect one another in closed causgfd only reprogram the microprocessor chip that already
loops. controls a microwave oven, washing machine, subway braking
The feedback structure often arises because a feedforwaydtem, camcorder lens, or a car transmission [18].
fuzzy systemf: R® — R™ suffers from rule explosion in high  Engineers design these rule-based systems in four steps.
dimensions [18]-[19]. Fuzzy systems are universal functiokhey first pick the system’s input and output variables. They
approximators [17] as are feedforward neural networks [7]-[8]efine fuzzy subsets of these variables. They relate these
But fuzzy systems need on the order/éftP—! rules to uni- fuzzy sets into I/O rules. Then they tune the fuzzy system
formly (and “blindly”) approximate a continuous or boundedvith test data. Engineers tuned the first fuzzy systems by
measurable functiofi: R* — R? on a compact domain. Fig. 1trial and error. Modern systems use neural networks, genetic
shows how a few fuzzy rule patches can cover the graph alfjorithms, or other statistical learning schemes to tune the
a simple scalar function. fuzzy sets and fuzzy rules. Such automated techniques become
Most fuzzy systems in practice have been simple feedfanore important for fuzzy systems that use more than three
ward fuzzy systems of low dimension. These scalar mapgut variables both because of the exponential growth in the
Manuscript received October 29, 1997; revised January 30, 1998. number of rules and because humans do not guess well either
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the air temperature and humidity and then adjusts the blower~eedback fuzzy systems offer a way to approximate dynam-
or fan. A simple fuzzy system might use these three rules. ical systems with a fixed set of rules. But feedback leads to far

IF the air iscool anddry THEN set the blower tslow: more complex dynamics and can end in chaos or instability.
IF the air iswarm and medium dryTHEN set the blower Most feedback systems are unstable. System trajectories need
to fast not converge to fixed points or to any region of the state

IF the air ishot andlow dry THEN set the blower tilast SPace near them. Gradient systems are an exception. Gradient

The input variable air temperature might have the fuzzsa/StemS have the form = —VP(x) and are stable because

subsetsold, cool, medium, warpandhot. The input variable e scalar potentiaP acts as a Lyapunov fupctlon for the ,
air humidity might have the fuzzy subsetsw dry, medium system. Most stable neural systems are gradient systems with

dry, anddry. The output variable blower speed might haV(guadratic potgntials [16], [25] but such systems are rare in the
the fuzzy subsetstop, slow, medium, fasand blast. Then space of nonlinear dynamical systems. Feedback fuzzy systems
' ' ’ f the formi = F(x) are not gradient systems.

the fuzzy systen¥’ converts paired numerical measurement®
: . - . Most research on stable fuzzy systems has used Lyapunov
(x1,22) of air temperaturéz;) and air humidity(xs) into an . . . " o
output numerical blast speefi(z1, z») functions to give a sufficient condition for system stability.
L2/ DeGlas [3] fuzzified the LaSalle invariance sets of stable

A curve or triangle-like fuzzy setd; might define what o :
. . equmbrlum points to extend the usual results on Lyapunov
the user or engineer means by cool air. Each measured Al [9]. Kiska and Gupta [11] put forth a nonquadratic
temperaturer; is bothcool to degreeu;(x;) € [0, 1] andnot y 5] b b d

cool to degreel — ay (z1). This is the sense in which fuzzyenergy function for feedback fuzzy systems based on min—-max

tems are “fuzzv” or V. ncepts are deterministic £ erators. They did not show if it acts as a Lyapunov function
SysIems are ‘zzy - or vague—Cconcepls are dete sic a fuzzy system. Tong [45] observed that no scheme to

Recent results still apply the standard bivalent definitions

thFT‘ car or wh_en the old user's tastes change. Engineers Sglegtability to well-defined feedback fuzzy systetfis Tanaka
eff|C|en_t Iearnlng-schemes to tune these set shapes and thlﬁéﬁ)_[“] simplified an additive fuzzy system to give the
appro?qmate optimal rules. _ i discrete feedback system in (2) as a convex sum of standard
Optimal rules offer the best way to deal with a fixed-rulgne . control systems. He then found a quadratic function
budget. Optimal rules define fuzzy rule patches in the /g 5cts as a Lyapunov function for the system. But the odds
state space that cover the gxtremafoandQ the extrema of ot finging such a Lyapunov function fall as the number of
the approximation error functioa= (f — ) [19]. This still ;65 grows. We review this result below in Theorem 2. Wang
holds after them rule patches off” have covered all of the [4g] ysed simple Gaussian additive systems (which have the
extrema off. Then adding one more rule # gives the New game form as neural radial-basis function networks [24], [32])
fuzzy systemt” of m 41 rules or rule patches. The best placg, approximate stable control systems along the lines that
to put this new rule patch is where it covers the largest b“”’ﬁblycarpou and loannou [28] followed when they used neural
of the new residual error curvé = (f— F")2. The supervised approximators for the same task.
learning schemes in the Appendix tend to move rule patchesryis paper gives sufficient conditions for the stability of
toward these optimal positions in the I/O state space. (1) and (2) when the feedback fuzzy systdiis a simple
Optimal rules do not prevent rule explosion. They easgpe of additive fuzzy system [16]. These nonlinear systems
its computational burden as well as any rules can for @mpute the global outpuf’(z) as a convex sum of the
given shape of if-part fuzzy setd;. The popular symmetric ryle outputs: Fi(z) = S7.; p;(z)B;z. The square matrix

triangular if-part sets give only a piecewise-linear fuzzy systegi linear operatorB; defines the then-part of thgth if-
F'. Gaussian and Cauchy and other bell curve if-part sets giygrt rule “If X = A; thenY = B;.” Each rule acts as a
richer and smoother fuzzy systent$ The Appendix shows |inear subsystem as in the feedback scheme of Tanaka and
how to derive learning laws that tune fuzzy sets with thessgeno [38]. The system itself is nonlinear because the convex
and other shapes. We assume throughout that the user p'@kéfﬁcentspl(x)’ .-+, pm(z) change with each input or state
the shape of the if-part set$; with no knowledge or use of vector z. The system becomes a standard linear system [46]
the functional form of the approximanfl in the special case when the system has just one rule (when
More complex if-part sets can prevent rule explosion if they, = 1). The stability results below hold for all if-part fuzzy
depend on the approximarfd The exponential rule complex-sets A; ¢ R™ of all shapes.
ity of blind approximation reduces to linear complexity in the Theorem 1 below proves that the continuous system (1) is
rare case where we know the exact form of the approximfandylobally asymptotically stable if each rule matrix is negative
and where the rules reflect the knoyin the structure of their definite and thus if each local subsystem is stable. Tanaka
if-part fuzzy sets [49]. But we do not knoyvin practice. If we [38]-[41] has shown that this result does not hold in the
did there would be no need to approximate it. The search fdiscrete case (2). Stable subsystems can still lead to global
optimal rules allows us in practice to guess only at the turnirigstability. Tanaka has applied his feedback model to the
points of f and thus not have to guess at all pitself. This neural-fuzzy test problem of backing up a truck and one or
converts the search for optimal rule patches to a search for there trailers [6], [13], [26], [40], [43]. We present Tanaka's
zeroes of the derivative mafi: f'(#) = 0. result in the framework of a generalized additive system and
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prove a corollary that gives a practical criterion for globabf the scalar set functions. Most if-part combiners actiad
stability of the discrete feedback fuzzy system (2). or conjunctive combiners [12]. The product combiner remains
The next section reviews standard additive fuzzy models asensitive to changes in the scalar values that the min combiner
extends them to generalized additive models. The third sectiemds to ignore.
proves sufficient conditions for global asymptotic stability of Joint set functions preserve correlations among input com-
these generalized additive models. The last section lookspanents. This reflects the topological fact that we cannot factor
the limits of these results and suggests other areas and othest fuzzy subsetsd; C R" into the Cartesian product
feedback fuzzy systems that future research might explope} x .- x A% for scalar fuzzy setsAj C R with set
The Appendix shows how supervised learning can tune tflmctionSaj; R — [0,1]. Rectangular and joint Gaussian set
parameters of a standard additive model and tune the if-pinhctions are rare exceptions that not only factor but factor
and rule-weight parameters of a generalized additive fuzito scalar rectangles and Gaussian bell curves. Normalized
system. It derives the general update laws for if-part sdistance measures can define joint set functions that preserve
parameters and exact learning laws to tune exponential angut correlations and that have a simple closed form [10].

other bell-curve if-part sets. Neural “competitive” learning schemes can form these joint
set functions as ellipsoidal rule patches in the 1/0O space [4].
Il. GENERALIZED ADDITIVE FUzzYy SYSTEMS The stability theorems below hold for all joint set functions

a;; R — [0,1]. We assume only that each vector input
x € R™ fires at least one rule and thus belongs to at least
one if-part setd; to nonzero degreei;(x) > 0. This just
means that the fuzzy systemis a well-defined function over
™ , ™ some domain space.
B(x) = Z w;Bj(x) = Z wja;(x)B;(x) (3) The simplest then-part sets or operat&sare fixed fuzzy
g=1 g=1 subsets of a then-part vector space. Then jtiethen-part
for scalar rule weightsv; > 0. The system is “fuzzy” [51], fuzzy setB; C R? has integrable set functidn: R — [0, 1]
[52] or “vague” [1] because then rules relate multivalued with finite positive volume or are®; and centroidc;
subsets of the input and output spaces.

An additivefuzzy system [16], [21]F: R — RP storesm
rules of the form “If X = A; thenY = B;” and adds the
“fired” then-partsB; () to give the output seB(z)

A fuzzy or multivalued setA C R™ has a multivalued V; :/ bi(y) dy >0 4)
indicator functiona: R* — [0,1]. We call this map a Rp
set function or a “membership” [51] function becausg:) / yb;(y) dy
measures the degree to which the objece R™ belongs ¢, — JBP ' )
to the setA: a(z) = Degree(z € A). The then-part set ! / biy) d
B; C RP has a like set functio;: R — [0,1]. A finite re v
discrete spac&X = {z1,---,x,} has continuum many fuzzy _ _
subsetsA € X in the form of 'fuzzy unit orfit [16] vectors We can extend the fixed then-part sets to point-to-set maps

Bj(x) C RP or fuzzy sets that may change with each vector
t input z. Then the then-part set functién defines a map from

vector defines a unique point in the unit hypercitha]”. This & Product space to real numbersige " x R — [0,1].

cube or sets-as-points framework [16] extends to countat@Cch inPutz picks out a new then-part fuzzy sdf;(x)
spacesX. A rule patchA; x B; C R* x RP has set function through the restricted set functién(z, -): R? — [0,1]. These
Ra.xp,: R x RP — [0,1]. This defines a fuzzy matrix in variable then-part set functions must replace the fixed then-part

the finite case. The value of a rule patch most often equdtd1ctions in (4) and (5) to give the variable then-part volumes

a simple product of fit values at each point in the 1/O statl(%) and centroidsz;(z).
space:Ra. xp. (1.y) = a;(x)b; () The Appendix shows that the sum (3) leads to a SAM or
R, wen, (z,y) = aj(@)b;(y).

The second sum in (3) states that the additive modgigndard additive modef the system o_utPuF(a:)_(_:on”’lputes
is standard because it expands the fired then-part s#i€ centroid of the output sél(x) when it “defuzzifies’B(x)
B!(z) with product scaling or correlation-product encoding® MaPs the fuzzy set to a scalar or vector [50]

Bj(z) = a;(x)B;(z) for then-part seB3’(z). This implies the .
product patch structur® 4« g, (z,y) = a;(x)B;(y). F(x) = Centroid Z wia;()B;(x) )
Simple fuzzy systems use a fixed then-part fuzzyBgetA S

A = (a1,---,a,). Then we can writes; = a(z;) for the
discrete set functiom: X — [0,1]. So each fuzzy set or fi

generalizedfuzzy system viewsB; as an arbitrary linear or m =

nonlinear mappings;: R* — R?. We will restrict B; to the Z wja;(z)Vi(z)e;(x)

linear or matrix map on the input spaég: R* — R". Then =

#' = B;(z) = B,z is a state vector in the input state space. = ()
The jth if-part fuzzy setA; C R" has joint set function Z wja;(x)V;(x)

a;: R™ — [0, 1]. The joint set function may factor inte scalar j=1

or marginal set functiona}; R — [0,1],--+,a}: R — [0,1] m

to give the factored set functiom;(z) = [[i_, a’(z;) or =Y pia)e(x) 8)

a;(x) = min(aj(x1),---,a}(x,)) or any other combination i=1
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for the m convex coefficients The continuous casB; C R’ requires that we replace the
singleton set{y;} with a delta pulse
) Vi) g e st i
I m ' bj(z,") = 6(y —y;) = 6(y — y;(2)). (11)
Z wya;(2)V; (@) ) ) ) )
= Then eachr: gives a generalized “sef3;(x) with unit volume

and with a new spike or range poigf for its centroidc;(x)
Note that for each input there must be at least one positive
convex coefficientp,(x) > 0. This holds becausebelongs to Vi(z) = / bi(z,y) dy = / y—y;)dy=1 (12)
at least one of the: if-part sets to nonzero degree;(x) > 0. Rp Rp
The proof of Theorem 1 below depends on this fact. / yb;(x,y) dy
The SAM system gives the global outplit+) as the convex ci(x) = LB
sum of local outputs or centroids. This convex structure holds ! / bi(z,y) dy
for all additive fuzzy systems [16]-[17]. The Appendix also re
shows how supervised learning or gradient descent can tune
the four SAM parameters in (7). - /RP ybly = uy) dy = (). (13)
_ The SAM system can also take a fuzzy SBIC K" @S pop he additive combiner in (3) further reduces to
input and still compute a vector or point outpilA) € RP. A

correlation achieves this and extends the if-part set functions in " , "
a natural way [21]a;(A) = [z« a(x)a;(x) dz. This replaces B(z) = Z w; Bj(w) = > wja;(x)B;(x)
the convolved delta puls&x — x) or binary “singleton” set ];1 =t
with the set functionz: R™ — [0, 1] in the fit-valued integral _ o o
aj(ro) = [pn 6(z — zo)a;(z) dz. Then the proof of the N z_:l w5 ()80 = ) (14)
SAM theorem still goes through and gives the set-SAM output = ] ]
F(A) = Y7 pi(A)e. and leads to the generalized SAM Theorem in (19)
A problem occurs if we try to extend the SAM fuzzy o :
dynamical systent = F'(z) to a set-SAM dynamical system F(x) = Centroid 5(x)) (15)
of the form A = F(A). The set SAM still gives a convex sum / yb(z,y) dy
of then-part centroids and thus a vector. Its centroidal structure T (16)
does not give a set as output. We could view the vector output b(z,y) dy
as the center of a set or use it in some othérhocscheme Rp
to produce a final output sét(A). But there is no direct way .
to convert a set SAM into a dynamical system. We will work /RP y Z w;a; (2)8(y — ;) dy
instead with dynamical systems on point spaces. Yet even here = ::1 17
we have to extend the SAM framework to a generalized SAM o o
to ensure practical conditions for global stability. /Rp part wja (@)8y = ;) dy
We now derive a like SAM theorem for a fully generalized m
SAM. We wiI_I use a special form of this modgl to _define the Z wja;(z) / yb(y —y;) dy
fuzzy dynamical systems (1) and (2). The key idea is to replace =1 Rp
the generalized “set functior?’;(x, -) with a Kroeneker delta = m (18)
pulse in the discrete case and with a Dirac delta function in Z w;a;(z) / 8y —y,) dy
the continuous case. j=1 Ry
SupposeB; is an arbitrary map from the input vector space m
R™ to the output vector spack’. The mapB;: R" — R is Z w;a;(x)y;
again just am-by-p matrix B, in the linear case we will arrive _J=1 (19)
at. The mapB; is a nonlinear operator in general. It maps each i
x to a new output vectoy; = B;(x). The output vectory; Z wja;(x)

depends o asy;(z). We omit this notation for simplicity. :n‘l
We can view this nonlinear-operator case as a special case of -

. . ) ; ; 20
the above point-to-set caég(x, -): B¥ — [0, 1] if we view the Z Pi(@)y;(z) (20)

discrete then-part fuzzy sét; («) as the singleton sety; (x)}. j:f
This gives a unit pulse or binary set function _ p;(2)B;(z) 1)
. i=1
oy L B =y . .
bi(z,-) = {07 if B,(x) £y, (10) for the m variable convex coeff|c(|e;1ts
) _ w;a;\ &

An exercise shows that (10) gives a discrete version of the pi(*) = 5 ’ (22)
SAM Theorem. Here the summable couiB;) = b,(y1) + Z w;a;(x)
b;(y2) + - replaces the volumé&; in (4). j=1
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The convex sum (21) defines a nonlinear mlapR™ — RP in Sugeno’s notation [33]. Then thgh rule has the form

if m > 1 and thus if the system has two or more rules. - j p
This holds even if each then-part sBi is a linear map or IFX=4; THENY =by+bz1+bret - +byzn (29)

matr_ix. No one has yet found a stability result for these genefghere the then-part term describes a piecewise linear set
nonlinear-operator systems. _ _ function such as a triangle or trapezoid. Least squares or
We next reverse the arrow of generality and briefly réy kaiman filter can use sample data to pick and tune the
view special cases of the generalized SAM model in (21doefficients [33]. The first SAM model (7) should technically
These range from feedback models to the popular but oftgg,\y here because the piecewise-linear sets have different
ad hoc“center of gravity” (COG) model of feedforward fuzzy 5645 or volumes); () and centroids;; (=) and because these
systems. _ volumes and centroids change with each inpuThe varying
Tanaka [38]-[41] has explored the special case of (21) WhgBlumes V;(z) affect both the linguistic “meaning” of the
the operatorB; is not only a matrix but am-by-n square then-part sets and how they weight the SAM outpit:).
matrix. Tanaka ignores the rule weights in his ad hocSAM The simpler and more popular SAM's replace the then-part
model. So he implicity assumes that they all equal the SafBerator B;: k" — RP with a simple and fixed fuzzy set
positive value:w; = --- = w,, > 0. Then the rule weights B; C RP or b;: R* — [0,1]. Then (21) and (7) reduce to the

cancel from the SAM ratio in (19). Tanaka uses this Simpﬁmple but popular fixed-parameter SAM system
SAM system to define the discrete autonomous dynamical

system in (2) as a convex sum of vector-matrix products z’": wias(2)Vie,
Vat) I3
z(k+1) =F(z(k)) (23) Fa) == (30)
=" pj(a(k)Bja(k). (24) §=) wja; (x)V;
j=1

) o This model reduces to the still more popular COG fuzzy model
The square matrixB; can house the coefficients of a

piecewise-polynomial or more complex set functipn[38].

Triangles and trapezoids are examples of such continuous Z a; ()P
piecewise-polynomial set functions. The square maisix Fz) = F; (32)
can also house a separate control or forcing functigfk). a;(x)

The continuous case gives the feedback fuzzy system in (1) ot !

as a like convex sum _
if the modes or “peaksP; of the then-part set8; C R? equal

the then-part set centroids and if the then-part set8; all
have the same areas or volunigsand the same rule weights
wj: P =c¢;,Vi= =V, >0,andw; =+ = wy,, > 0.
The next section gives sufficient conditions for global asymp- Mamdani [22]-[23] first put forth the COG model as an
totic stability of the dynamical systems in (24) and (25). ad hocway to convertm discrete fuzzy if-then rules into
A still less-general SAM case is the so-called TSK or T8 simple control systenf’. The model isad hoc because
case [34], [37]. Sugeno [33] and Terano [42] call this the “thirflamdani and other engineers use a simple additive ratio like
inference method” for how a fuzzy systefimaps an input: (31) but claim that they combine rules not with a sum but
to an outputF(x). This method replaceB; with a piecewise with pairwise maximum or union in accord with the so-called
linear map or appropriate-by-p matrix operatorB; in the “extension principle” [33], [42], [52]. The centroid of the
unweighted SAM equation. This gives the feedforward fuzZgutput setB(z) = U7, B; = U7, a;(z)B; does not give
system[’ as a convex sum of linear functions the SAM ratio (30) or (31) or any other tractable form. Indeed
such pairwise maxima drivé&? toward a fixed rectangle or
i cube as the number of overlapping then-part sef8; grows
Fle) = Z p;(2)B;() (26) 117, S0 the centroid of the output sét(x) tends toward a
=t constant value as grows.
The trouble with the COG model is that it ignores the area
or volume of the then-part set functiori3;. Then we can

&= Em: p;(%)Bjz. (25)
=1

== — (27) always replace the fuzzy sef$; with nonfuzzy rectangles or
Z a;(x) cubes that have the same centroids or even with Kroeneker
= delta pulses or Dirac delta functions centered at the centroids.
m The latter switch amounts to putting;(y) = 6(y — ¢;)
aj(x) [bé + by + by 4+ bﬁwn} for continuous fuzzy set#;. Then the SAM Theorem goes

.
Il
-

through as in the more general case of (12)—(21) above.

Learning or hand tuning can change the centroids and
Z a;(x) volumesV; of the then-part set$3;. The COG model does
i=1 not permit this. Some engineers have extendedatiehoc

= (28)

m
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COG model to include a then-part variance parameter to gcbbability density
like a volume or rule weight. Suppose the then-part sets b
B; are scalar Gaussian bell curves. Then their set functions pylz) = &
have unit area o¥; = 1. But we may still want to punish / bz, y) dy
rules or give them less weight if their then-part bell-cufzg Rp

has a larger varianoef. The SAM model (30) reduces to thiseven thoughb(,4) > 1 may hold for integrableb. This
weighted Gaussian COG model [48]«f; = 1/07. _ result proves thaall centroidal fuzzy systems are probabilistic

The COG SAM reduces in turn to the popular radial baséi/stems [17], [21], [27].

function (RBF) systems of neural network theory. A simple
Gaussian SAM gives both a COG model and the popular REF. matters. A conditional varianc¥[Y|X = z] describes
model of Moody [24] and Specht [32]. Wang and Mendel [47}e ncertainty in each fuzzy system outgi(t:). Define the
have recently restated this RBF model in fuzzy notation asyfn_part probability density as the normalized set function:
simple scalar Gaussian SAM: R* — R pe,(y) = b;(y)/V;. This gives the then-part variance as

(41)

The result also shows that the structure of the then-part sets

mo fn of, = J2% (y — ¢)’pp,;(y) dy. This leads in turn to a
2 H 143 () measure of the SAM uncertainty [20]-[21]
Fz) == = : (32) m
ANy VIYIX =a] = ) pj(2)os,
Z H /JA?' (-Tz) j=1
j=1 j=1 m
' ’ » . — F(z))? 42
+> pile)(e — F(x))*. (42)

The SAM (30) reduces to (32) for independent Gaussian sets
with product combination of if-part set functions of the form
with scaling constant in the unit interval and for the followingrhe second term in (42) acts as a penalty term for rule
identifications: interpolation in a SAM. The system outpf¥z) has the most
confidence if only one of the rules fires dead on. The COG
y== (33)  case reduces the first term in (42) to the lone vatte Two

i=L

a;(z) = H ai () (34) COG’s can have the same first-order B(z) values if they
7 b A have the same if-part sets and if they have then-part sets with
" the same centroids. But their outputs will differ in their system
— H 1145 () variance if the then-part set volumes or variances differ.
- All of these additive fuzzy systems follow from the additive
V=1 (35) assumptionB(x) = XL, w;Bj(x). This additive scheme can
¢ — (36) also combine any number of feedforward or feedback fuzzy

systems [20]. We just view the output sBt(k) of the kth
The unity volume follows in (35) since the: then-part fuzzy systemF;: R — RP as a fired then-part set and weight
Gaussian sets extend over all & Equation (36) follows it with a new system weight,. The new weightssy, -- -, v,
because the mode of a Gaussian set equals its centroid aaed not sum to unity but they often do in practice [21]. This
Wang and Mendel use the mode definiticH ‘is the point in gives the total system output as the weighted sum of all rule
R at whichy.5;(z) achieves its maximum value.” They furtheffirings: B(z) = X! _, v.B*(z). Then the centroid oB gives
call the SAM convex coefficients; (=) “fuzzy basis functions” the total system output’(z) as a higher order SAM ratio.
in this Gaussian case even though they are not orthogorle fuzzy systemds,-- -, F, need not each be additive in
These new names add no new content to the RBF SAM structure.
(32) or to the weighted RBF SAM withy; = 1/07.
Specht [32] arrived at the RBF model (32) as a special case . STABILITY OF GENERALIZED
of a Parzen probability density estimator. He observed that ADDITIVE DYNAMICAL SYSTEMS
(32) had the form of a Gaussian conditional expectation. A

like result holds for all of the above SAM models We first prove the asymptotic global stability of the unforced

continuous generalized additive fuzzy system
F(z) =Centroid B(z)) (37)

/ yb(z,y) dy
Rr
b d .
re U@ ) dy from (25). A control input column vector, can steer the

= / yp(yl|z) dy (39) generalized SAM feedback system (43) throughcontrol
Rr matrices C;

b= F) =3 pyo)Be (@3)
J=1

(38)

—E[Y|X =] (40)

for eachz € R™. This holds because the ratio in (38) of the &= pi(z)[Bjz+ Cyul. (44)
joint distribution to the marginal defines a proper conditional i=1
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A like convex sum holds for the forced discrete generalized Proof: Choose the Lyapunov functiah as the quadratic

SAM in (24) form L(t) = z¥(t)z(t). Then
m L = 2.I'T.Z' (48)

k = () Bjx(k) + Ciul(k)]. 45 m
w(k+1) ; pi(e(k)[Bjz(k) + Ciu(k)] (45) ot S B )

j=1

The unforced case assumes= 0 and lets us look at the m
stability of the equilibrium vectotr, = limy_oo (k) if it =2 pi(x)z" B;a. (50)
exists. We take the equilibrium vector to be the origip:= 0. i=l1

The equilibrium pointz. is stablein the sense of Lyapunov at all times ¢ there is at least one convex coefficient that
if small Changes in the initial conditions lead to Only Sma%beyspk(x(t)) > 0. So L <0 a|0ng trajectories if each
changes in the state trajectory [9], [46]: for &l and all then-part matrixB; is negative definite. Q.E.D.
e > 0 there is a6 > 0 such that||lz(ko) — zc|| < é implies  The proof of Theorem 1 extends the stability proof of the
lz(k) — ze|| < e forall k > ko. The norm is the Euclidean continuous-time linear system or one-rule case. The feedback
norm: ||z||* = 2% + --- + z}. The pointz. is asymptotically SAM F in (43) is nonlinear since the convex coefficientr)
stable if it is stable and if it attracts the state trajectorychange with each input. The fact that at each timeat least
for all ko there is aé’ > 0 such that||z(ko) — zc|| < &' one term obeygy(x(t)) > 0 lets us treat the convex sum of
implies limy ..o [|z(k) — z.][ = 0. The equilibrium is matrices as if it were a simple sum with constant coefficients.
globally asymptotically stable if we can pidk to be arbitrarily This does not hold in the discrete case.

large. When these results hold they hold uniformly for the \we next look at the stability of the unforced discrete
autonomous system (43) and its discrete version in (51). feedback fuzzy systems in (44)
We seek a smoothyapunov function.: R* — R for the .
continuous feedback SAM model (43) that is positive definite _ _ ' '
L(x) > 0 whenz # 0 and that obeyd.(z) = 0 whenz = 0 alk+1) = Flak) = ; pi(@(k)Bje (k). 1)
and that grows to infinity as the vector squared ndjnj? S _
grows to infinity: L(z) — oo asz¥x — oo. This holds if A stable matrixB; in this discrete case means that the linear
we takeL as the quadratic formZxz or as the more generalSubsystenx(k+1) = B;x(k) is asymptotically stable and thus
quadratic forme? P for somen-by-n positive definite matrix that alln eigenvalues\, - -, A} of B; lie in the unit circle in
P. Then standard results in Lyapunov stability theory [9] impl§he complexz-plane:limy .., Bf = < if [\}| < 1 for all 4.
that the dynamical system (43) has a stable equilibriure: 0 A key question is whether the discrete system (51) is stable
if L. <0 and has a globally asymptotically stable equilibriurif €ach rule matrixs; is stable. Tanaka [38]-[39] first showed
z. = 0 if L<o0 along system trajectories for all # 0. A that the answer is no for a slightly simpler unweighted SAM
discrete Lyapunov functio.(z(k)) leads to stability for the model. But we show below that the answer is yes in the special
unforced version of the discrete unforced dynamical systemGase where each rule mati; is not only stable but diagonal.
(51) if AL < 0 and to global asymptotic stability inL < 0 Tanaka showed that stability did not hold for a simple two-rule
along system trajectories. system with the two then-part “set” matrices
We can now prove the main result of this paper. The 1 _1 1 _1
generalized SAM in (43) is globally asymptotically stable if By = <1 02) and Bp = < 1 02)
all the local rule matriced3; are stable. A stable matri®;
in the continuous case means thid} is negative definite: Matrix B; has the two eigenvalues = % +4 % and B, has
zT Bz < 0 for all nonnull state vectors # 0. This result the two eigenvalues, = —% +i % All four eigenvalues lie
extends the usual stability result for linear systems and redudeghe unit circle. So both matrices or linear subsystems are
to it in the one-rule case whem = 1. stable. Tanaka showed that the unweighted convex sum (51) is
Theorem 1 (Continuous SAM Stability)The generalized unstable for trapezoidal then-part sets and A> and constant
feedback SAM system or unity rule weightsw; = w> > 0. He did find a sufficient
condition for stability of (51). We restate it here in the more
. general SAM case without proof.
r= Z pi(z)Bjz (46)  Theorem 2 [Discrete SAM Stability (Tanaka)[The gener-

=t alized discrete-time feedback SAM system
with convex coefficients "
w(k+1) =" pi(a(k))Bja(k) (52)
wilr)a; T j=1
pi(x) = M @4n -
Z wi(x)a;(x) with convex coefficients
= / w;(x(k))a;(x(k
1 pi(a(k)) = m’( (k))a;(x(k)) (53)
is globally asymptotically stable if each then-part rule matrix Z w;(x(k))a; (x(k))
=1

B; is negative definite.
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is globally asymptotically stable if there exists a commooausal networks. These dynamical networks have node dynam-
positive definite matrix” such that allm of the then-part ics that resemble the neuronal dynamics of some asymmetric
matricesBjTPBj — P are negative definite. feedback neural networks. But cognitive maps combine in

There is no known way to find such a common positivaonneural ways and learn with causal laws that differ from
definite matrix””. The odds of finding such & fall with each synaptic learning laws. They involve few stability results when
new rule we add to the system. Exponential rule explosi@ausal learning laws change their rule structure [15]-[16].
offers little hope of finding such & for large-scale systems. More complex cognitive maps result when feedforward fuzzy

We next present a corollary to Theorem 2 that gives systems like SAM’s or other cognitive maps define the 1/10
sufficient condition for the identity choic& = I. Then the structure of a cognitive map’s nodes or fuzzy sets. No one has
discrete system (52) will be globally asymptotically stable fiound a stability result for such hierarchical fuzzy dynamical
each rule matrixB; is stable and if eacl; is diagonalwith  systems.

real coefficients These knowledge networks offer one way to combat fuzzy
Corollary (Discrete Diagonal SAM Stabilify The general- rule explosion in dynamical approximation. But they do so at
ized discrete-time feedback SAM system the risk of instability, computational intractability, and system
™ inscrutability. These knowledge networks = F(z) use a
z(k+1) = Z pj(z(k))B;z(k) (54) fixed number of rules or edges to approximate a dynamical
i=1 systemz = f(z). The n fuzzy nodes or sets of fuzzy

cognitive maps and other knowledge networks define their
global system trajectory as a path in thedimensional unit

Proof: The diagonal matrixB; — Diag{b;(1,1),---, hypercube[0, 1]*. Each parameter choice carves this fuzzy

. ) Y : cube [21] intok attractors that can differ in shape as well as in
b;(n,n)] is symmetric and lists its eigenvalues along its Mape. A repeller boundary may separate an attractor basin that
diagonal. So the choic& = I in Theorem 2 gives ype. P y may sep

contains a fixed point or limit cycle or limit torus from a basin

BfPBj —P= Bf — L (55) that contains an aperiodic equilibrium or chaotic attractor. We
] o ] ) o . may want the fuzzy knowledge netwaik= F(x) and its fixed

The diagonal matrix3; — I is negative definite iff all of its mper, of nodes or rules to approximate both qualitative and

eigenvalues are negative. This holds iff each diagonal enfpyangitative aspects of some known or unknown dynamical

obeyst?(i,i) — 1 < 0 iff b3(¢,5) < 1iff |b;(¢,4)| < 1. The systemi = f(x).

last condition|b;(¢,4)] < 1 holds for all¢ and thus for all Simple mean-squared approximatiiw: f is not likely to

eigenvalues of the matrisB;. This is just the definition of onqure that the fuzzy dynamical approximatohas the same

is globally asymptotically stable if alln then-part matrices
B; are diagonal and stable.

stability for matrix ;. - - QED. gualitative structure as the approximand dynamical sysfem
This practical result holds for any positive definite matix 55 The attractors in the fuzzy systém= F(z) should ap-
of the form P = cI with constanic > 0. For thgnB]TPBj ~—  proximate the number, shape, and type of the attractors in the
P = cBj — cl. So the diagonal conditionb?(i,i) — ¢ < 0 gpproximand dynamical syste = f(x). This can involve
still leads to the stability conditiofb, (¢, )| < 1. the search for system embeddings and mutual information or
the search for Lyapunov exponents and fractal dimensions and
IV. CONCLUSIONS other invariants of the system’s orbits and attractors. Research

We have shown that the global asymptotic stability dn temporal neural networks [25], [28] has not solved or
generalized additive fuzzy systems can depend on the magien often addressed the like problems of neural dynamical
structure of the rules. The same proofs do not go throughdpproximation. Fuzzy dynamical approximation promises to
we replace the matrices with fuzzy set functions as in tiemain an open research area well into the next century if not
SAM system in (7) or with more general nonlinear operatorgell into the next millennium.

The stability of these dynamical systems remains an open and
active area of research.

Fuzzy research has also yet to produce a practical definition
for the partial stability of fuzzy or nonfuzzy dynamical sys-
tems. Other research [3], [11], [45] has raised this question but
not answered it. A frequency approach might take this measurérlhis appendix presents and derives the basic SAM Theorem
of stability as some limiting proportion of initial conditions inused in Section Il. It also shows how supervised gradient
a region that lead to standard stability. A qualitative approadescent can tune or learn the parameters in the SAM The-
might cast the measure in terms of statistical robustnem®m. The last part of the Appendix derives scalar learning
or relax the binary constructs that lie beneath the standdasivs for simple but popular fuzzy set functions. Simulations
definition of system stability. have shown that these adaptive set functions can quickly

Still broader research questions involve the stability and agpproximate a wide range of sampled functions.
proximation power of fuzzy (autonomous) dynamical systemsThe SAM theorem assumes that the fuzzy system
Z = F(z) that consist of a knowledge net of interlockingt': R — RP storesm if-then rules. Them then-part sets
rules or rule cycles. Fuzzy cognitive maps [2], [5], [14]-[16]B,(x) can change with each input vectorand thus so can
[29]-[31], [35]-[36], [53] offer one such class of knowledge othe then-part volume¥;(z) and centroids:; ().

APPENDIX
SAM THEOREM AND SUPERVISED LEARNING
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SAM Theorem: Suppose the fuzzy systefi: R* — RP S . J
is a SAM: F(z) = Centroid B(z)) = Centroid %72, w;a; z_: wja;(z) o i(2,y) dy
(x)B;(x)). Then F(z) is a convex sum of then then-part = ’_nll (Al11)
set centroids Z w;a;(x) / bi(x,y) dy
m =1 RP
> wjay(@)V(@)ei(x) ’ o
i=1 m yb x, Yy dy
F(z)= J _ (A1) Z W (@)Y (2) /Rp j
> way(2)Vi(w) Ly T Vi)
j=1 = m (A12)
m wa(x)V(w)
= > pi(@)e;(a). (A2) E SR
j=1 m
The convex coefficients or discrete probability weights Z w;a;(x)V;(x)c;(x)
p1(x), - -pm(2z) depend on the input through the ratios _ =t (A13)
p(z) = mwjaj(x)Vj(x) ' (A3) z_:l wja; (x)V;(z)
Z wyay(2)Vi(2) !
k=1 QE.D.

V;(z) is the finite positive volume (or areagif= 1 in the range Supervised learning changes SAM parameters with error

spaceRr), ande;(z) is the centroid of then-part sét;(z) data. The error at each timeis the desired system output
minus the actual SAM outputs, = d; — F(z:). Then

V;(z) = / by, ) dyr---dy, >0 (A4) supervised gradient descent can learn or tune SAM systems
RP [21] by changing the rule weights; in (A14) below. Or it can
/ ubi (@, yp) dys - dyp change the then-part volumé_/g, the then-pa_rt set centroids
_ Jre (A5) G OF the parameters of the if-part set fqnctmq,s The rule
weightw; enters the ratio form of the weighted SAM system

cj(z) =
/ bj(xvylvvyp)dyldyp
RP

The popular scalar case pf= 1 reduces (A4) and (A5) to Z wja;(z)Vjc;
oo _ j:l
Vi) = [ e dy (A6) F@) =5 (A14)
o > wiai(@)V;
/ ybi(z,y) dy =t
ci(z) = =% (A7) in the same way as does the then-part volurhén (Al). So
/ bi(z,y) dy both have the same learning law if we replace the nonzero
- weight w; with the nonzero volume/;
Proof: The theorem follows by expanding the centroid OF
of the combined output seB(z) and invoking the SAM w;(t+ 1) =w;(t) — (A15)
assumption in the hypothesis of the theorem to rearrange terms dw;
OF ar
=w;(t) — 9F au; (A16)

= w;(t) + ey L fxt) [, — F(z)] (A17)

/ yb(z,y) dy w;(t)
— i _ JRP
F(x) = Centroid B(z)) = b J (A8) for instantaneous squared erry = %(d, — F(x;))? with
R (z,y) dy desired-minus-actual erref = d; — I'(x;). Then the volumes
m change in the same way if they do not depend on the weights
/ y Z w;b(z,y) dy (which they do in most ellipsoidal learning schemes [4], [21])
Rr i
= (A9) OF
m Viit+1)=V,;(t) — py — Al18
/ > wib(a,y) dy D=V Gy, (A19)
Rr h
= — V) + e B [~ Fay] (A19)
Vi(t)
| 0> was@bites) dy
YR = (A10) for some decreasing sequence of learning weigpg. The

m learning law (A17) follows sinc€dE/0w;) = —e and since
/ Z wja;(z)b;(z,y) dy (A20)—(A22) (shown at the bottom of the next page) from the
B = SAM Theorem.
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The centroidc; in the SAM Theorem has the simplestupdate law (A26) simplifies to

learning law .
e+ 1) 0 - 9E OF oy mb(t +1) =mb(t) + piep;(z)le; — Flzy)] (97772‘
t+1l)=¢ e o @ 8)
=c;(t) + e (x). (A24)

This can arise for independent exponential or Gaussian sets

So the termaw;, V;, andc; do not change whep; ~ 0 and  @i(z) = I 6 o)) = Fa [(#) = i), The exponen-
thus when thejth if-part set barely firesa;(z;) ~ 0. The tial a;(z) = Zimr w3 (V=) has parameter partial derivatives
centroid learning law (A24) is a convex-weighted version aif;/duf = v§ — x,.(t) and 8f;/ovk = k. This gives the

the classical Widrow—Hoff LMS learning law [16]. exponentlal learning laws
Tuning the if-part sets involves more computation since X
the update law contains at least one extra partial derivative. %; FE+1) =y F() + e (@)l — F(o))(vf — 1)
Suppose if-part set functioa; is a function of! parameters (A29)
aj h: aj(m},---,m}). Then we can update each parameter U]k(tJr 1) :U]k(t) + e (x)e; — F(a:)]u? (A30)
wit
for vector inputsz = (x1,---,z,) € R".
mi(t+1) =mf(t) — g? SF 5% (A25)  The Gaussiam;(z) = ¢=(1/? ¥ (5=m3/79)" has mean
4 om partial derivatived f;/dm% = x; — m%/(c%)? and variance
— (1) + ey pj(@e) le; — F(ar)] aag@- partial derivatived;/0c¥ = (a1 —m})?/(o})?. This gives
a;(z) om; the Gaussian learning laws
(A26) &
k k Tk — My
o o my(t+1) =mj(t) + wep;(x)le; — F(@)] — 5
Factored joint if-part sets,; = [[;_, a}(m},d}) further (o)
complicate the learning law. Here each joint set factors into (A31)
n scalar fuzzy sets. Each scalar fuzzy set function depends (o — m;s‘)Q
for simplicity only on its two mean-like and dispersion-like 7; (t+1) =o0; He )+ perp;(x)[e; — F(a)] W
parametersn; and d;. Then the chain of partial derivatives J (A32)

in (A25) gains a fourth term

These Gaussian laws are the familiar learning laws of RBF's.

O0E OF 8@1 8a (A27) Gaussian set functions reduce the SAM model to Specht’s [32]

mf(t +1)= mf(t)

" OF Oa; 0ak amk RBF network or “generalized regression neural network.” The
o _ _ Gaussian learning laws offer a good way to cheat when tuning
Product factorization gives this new term &s;(x)/da% = the much simpler (but nondifferentiable) triangle if-part sets

H;;k a’(x;). This new term multiplies the second term orfound in many applications. We can use the smooth update

the right-hand side of (A26). It also reflects how factorizatiotaws (A31) and (A32) to update triangles or trapezoids or other

assumes that the if-part components do not correlate kts by viewing their centers and widths as the Gaussian means

combine independently of one another. and variances. We can also derive direct piecewise learning
Exponential if-part set functions can reduce the learnirigws for these simple if-part set functions.

complexity. They have the formj = efi(mim5) and obey  We can derive other supervised SAM learning laws from

da;[Omy = a;(f;(m},---,mb)/Omk). Then the parameter other set functions. These include two strong competitors to
oF z)Vjc; Z wia;(x)V; — a;(x)V; Z wia;(z)Vic;
i =L (A20)

ow, m 2
<Z wiai(w)Vi>
i=1
¢ zm: wia; (z)V; Z wia;(2)Vie;

w;ja;(@)V;

_w = (A21)
w; Y wia(x)Vi | Y wiai(z)V; Z w;a;(2)V;
=1 =1 =1
=2 fe, ) (n22)

w;
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the Gaussian SAM laws. The first is the set of Cauchy SAM5] ____, “Virtual worlds as fuzzy cognitive mapsPresencevol. 3, pp.
i 173-189, Spring 1994.
learning laws [6] J. A. Dickerson, H. M. Kim, and B. Kosko, “Fuzzy control of platoons
D (a:) of smart cars,” inProc. IEEE FUZZ-94 pp. 1632-1637.
mi(t+ 1) =m,;(t) + ue [c; — F(z)] [7] E. Hartman, J. D. Keeler, and J. Kowalski, “Layered neural networks
aj(a:) with Gaussian hidden units as universal approximatdigtiral Com-
putat, vol. 2, pp. 210-215, 1990.
r—my a;(2) (A33) [8] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
d2 J networks are universal approximatord\eural Networks vol. 2, pp.
J 359-366, 1989.
Dj (g:) [9] P. A.loannou and J. SuiRobust Adaptive Control Englewood Cliffs,
di(t+1) =d;(t) + e [c; — F(x)] NJ: Prentice-Hall, 1995.
a;(x) [10] H. M. Kim and B. Kosko, “Fuzzy prediction and filtering in impulsive
T — a (x) noise,” Fuzzy Sets Systol. 77, pp. 15-33, Jan. 15, 1996. y
. J J (A34) [11] J. B. Kiszka, M. M. Gupta, and P. N. Nikiforuk, “Energetistic stability of
d; d; fuzzy dynamic systemsJEEE Trans. Syst., Man, Cyberwol. SMC-15,

These laws tune the “mean” and dispersion terms of tlig]

generalized Cauchy set functions: R — R* of the form

! 5 (A35)
x —m; )

d;

a;(x) =

(13]

[14]

(18]

Cauchy and Gaussian probability densities belong to ﬂ['ﬁ]
same family of alpha-stable densities [10], [21]. But Cauchy

variables do not have finite variances or higher moments. Th
do have nearly the same bell-curve shape as the Gaussian

e

curves. Their ratio form gives an easier set of if-part sets to

compute with than do the exponentials of Gaussians.
The other set of learning laws are the sinc SAM learnin
laws
da; T —my 1 .
et . _ f .
am; <a1(a:) COS< i )) Py if & £ m;
(A36)
g“" =0, ifz=m (A37)
T
Oa, T —my 1
| gi(x) — — A38
ad; <a1 () = cos < d; )) d; (A39)

18]
do]
[20]
[21]
[22]

(23]

[24]

These laws tune the popular sinc function of signal processings)

dJ
T —my

d;

sin <L — mj)
aj(z) = ——2 2 (A39)

[26]

[27]

Simulations show that sinc SAM'’s tend to converge faster afif]
more accurately than do Gaussian or Cauchy SAM’s. SAM

systems that use factored joint sinc or Cauchy set functio

ns

must include the fourth partial derivative in (A27) in their

learning laws. Sinc set functions have an extended range that
lets them take on negative values. These values and the infinitg

lobes in the sinc function may have no linguistic “meaning.’

[30]
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