
Additive Fuzzy Systems: From Generalized
Mixtures to Rule Continua
Bart Kosko∗

Department of Electrical Engineering, Signal and Image Processing Institute
University of Southern California, Los Angeles, California, 90089, USA

A generalized probability mixture density governs an additive fuzzy system. The fuzzy system’s
if-then rules correspond to the mixed probability densities. An additive fuzzy system computes
an output by adding its fired rules and then averaging the result. The mixture’s convex structure
yields Bayes theorems that give the probability of which rules fired or which combined fuzzy
systems fired for a given input and output. The convex structure also results in new moment
theorems and learning laws and new ways to both approximate functions and exactly represent
them. The additive fuzzy system itself is just the first conditional moment of the generalized
mixture density. The output is a convex combination of the centroids of the fired then-part sets.
The mixture’s second moment defines the fuzzy system’s conditional variance. It describes the
inherent uncertainty in the fuzzy system’s output due to rule interpolation. The mixture structure
gives a natural way to combine fuzzy systems because mixing mixtures yields a new mixture.
A separation theorem shows how fuzzy approximators combine with exact Watkins-based two-
rule function representations in a higher-level convex sum of the combined systems. Two mixed
Gaussian densities with appropriate Watkins coefficients define a generalized mixture density such
that the fuzzy system’s output equals any given real-valued function if the function is bounded and
not constant. Statistical hill-climbing algorithms can learn the generalized mixture from sample
data. The mixture structure also extends finite rule bases to continuum-many rules. Finite fuzzy
systems suffer from exponential rule explosion because each input fires all their graph-cover rules.
The continuum system fires only a special random sample of rules based on Monte Carlo sampling
from the system’s mixture. Users can program the system by changing its wave-like meta-rules
based on the location and shape of the mixed densities in the mixture. Such meta-rules can help
mitigate rule explosion. The meta-rules grow only linearly with the number of mixed densities
even though the underlying fuzzy if-then rules can have high-dimensional if-part and then-part
fuzzy sets. C© 2018 Wiley Periodicals, Inc.

1. THE MIXTURE APPROACH TO ADDITIVE FUZZY SYSTEMS

We recast additive fuzzy systems in terms of their governing generalized prob-
ability mixture densities. Then a system’s if-then rules correspond to the mixed
probability densities. This approach lets users exploit the flexibility and expressive

∗Author to whom all correspondence should be addressed; e-mail: kosko@usc.edu

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, VOL. 00, 1–51 (2018)
C© 2018 Wiley Periodicals, Inc.
View this article online at wileyonlinelibrary.com. • DOI 10.1002/int.21925

2 BART KOSKO

power of fuzzy-set rules and approximate reasoning. It also lets the theory of addi-
tive fuzzy systems exploit the extensive mathematical tools of modern probability
theory and machine learning. So the mixture approach combines many of the best
aspects of fuzzy inference and probabilistic modeling.

The mixture approach also gives a practical way to extend ordinary finite ad-
ditive fuzzy systems to uncountably many rules or rule continua. This extension
turns on the convex-sum structure of generalized mixture densities. The next sec-
tion shows how the governing mixture density arises from the additive combination
of the fired fuzzy if-then rules. An immediate corollary is that every such fuzzy
system defines a conditional expectation. The corresponding conditional variance
describes the fuzzy system’s second-order uncertainty that results from the inherent
uncertainty in the then-part sets and from rule interpolation. Different rules can
produce the same conditional expectation but have different conditional variances
and thus have different confidence levels for the same output. These conditional
terms are just the first and second conditional moments of the generalized mix-
ture. There are infinitely other higher moments and in principle all admit super-
vised learning laws. Another corollary is a new Bayes theorem that specifies which
rules fire to which degree for each input. These results extend to arbitrary combi-
nations of additive fuzzy systems and their governing generalized mixture. Their
Bayes theorems specify which combined fuzzy system contributed to the output
because they define a posterior distribution over each combined fuzzy system or
over the rules that the combined systems use. The last section shows how the mix-
ture structure defines and tunes wave-like meta-rules over the rule continua. These
meta-rules tend to grow only linearly with the number of mixed densities in the
meta-level mixture.

Fuzzy systems suffer from exponential rule explosion in high dimensions.1–9

Rule explosion occurs if at least two fuzzy sets (such as SMALL and LARGE) cover
each input and output axis because fuzzy if-then rules combine such sets into
Cartesian products in the input-output product space. Figure 1 shows the rule patch
that corresponds to a single if-then rule. The Cartesian products define a graph cover
that grows exponentially with the number of input or output dimensions. The graph
cover of a vector-valued fuzzy system F : R

n → R
p tends to require O(kn+p−1)

rules. Figure 2 shows this growth in rules when passing from the simple scalar fuzzy
system F : R → R to the system F : R

2 → R with two input variables. The scalar
fuzzy system F : R → R requires on the order of O(k1+1−1) = O(k) rules. The
second system F : R

2 → R requires on the order of O(k2+1−1) = O(k2) rules.
A linguistic fuzzy rule combines fuzzy-set adjectives into an if-then conditional

statement: “If the air is COOL then set the air conditioner’s motor speed to SLOW”. The
next section gives the formal details in terms of fuzzy-rule membership functions.
A paragraph of such statements can define a fuzzy system. A fuzzy set A ⊂ R maps
input values x ∈ R to degrees of membership in the unit interval [0, 1]. It thus defines
a function a : R → [0, 1] where a(x) = Degree(x ∈ A).10 The fuzzy set COOL of
cool air temperatures maps each real temperature value t to a membership degree in
[0, 1]. So all air temperatures are cool to some degree even if most are cool only to
zero degree. Temperature acts here as a linguistic variable that takes on fuzzy-set
adjective values such as COOL or COLD or WARM.11,12 But neither the fuzzy sets nor

International Journal of Intelligent Systems DOI 10.1002/int

ADDITIVE FUZZY SYSTEMS 3

Figure 1. A fuzzy rule as a patch or fuzzy subset of an input-output product space. A Cartesian
product combines the if-part fuzzy set COOL with the then-part fuzzy set SLOW to produce the
linguistic rule “If the air temperature is COOL then set the air conditioner’s motor speed to SLOW.”
The rule COOL × SLOW or Rcool→slow defines a patch or fuzzy subset of the input-output product
space of temperature values and motor speeds. The rule also defines one of the mixed probability
densities in the fuzzy system’s mixture density p(y|x). The figure shows only the base of the rule.
It does not show the barn-like set of membership values above it.

the rules need have any tie to words or natural language. The sets simply quantize
an input or output variable or axis.5,8 Fuzzy function approximation may ignore
the linguistic structure altogether for large-scale systems.8,13,14 Simple unweighted
additive fuzzy systems reduce to radial-basis-function networks if the if-part sets
are Gaussian bell curves.15

Fuzzy rules define fuzzy patches in the input-output product space X × Y . So
the rule base gives a patch cover in the product space. The next section shows how
to construct and fire these fuzzy subsets of the product space. The firing involves
convolution with a delta spike for continuous fuzzy sets. Each vector input x0 fires
all the rules to some degree if we view the input x0 as the delta spike δ(x − x0).
Correlations extend this rule firing to the more general case where the input is a
fuzzy set A.

Consider the fuzzy rules that might control an air conditioner. The rules map
fuzzy sets of temperatures to fuzzy sets of motor speeds. They associate control sets

International Journal of Intelligent Systems DOI 10.1002/int

4 BART KOSKO

Figure 2. Fuzzy rule explosion in high dimensions. (a) shows how the fuzzy system uses fuzzy
rule patches to approximate a function f by covering its graph for one input variable. (b) shows a
finer rule-patch approximation in the 1-D case but still linear complexity. (c) shows the quadratic
rule complexity when the function and fuzzy system have two inputs. (d) shows a finer rule-patch
approximation in the 2-D case.

with temperature sets. Figure 1 shows that the linguistic rule “If the air is COOL then
set the air conditioner’s motor speed to SLOW” defines a fuzzy subset of the 2-D
product space of air temperatures and motor speeds. This rule defines the Cartesian
product COOL×SLOW of the triangular if-part fuzzy set COOL and the trapezoidal
then-part fuzzy set SLOW. Each pair (t, m) of an input temperature value t and an
output motor speed m belongs to the Cartesian product COOL×SLOW to some degree.
So the rule defines a fuzzy relation or a fuzzy subset of the product space X × Y .

The pair (t, m) satisfies or belongs to the fuzzy-rule set function rcool→slow :
R × R → [0, 1] to degree rcool→slow(t, m). The paper uses the term “set function”
to refer to the multivalued indicator functions that define bivalent and fuzzy sets. The
term does not refer to a set-valued function. So the rule Rcool→slow or COOL×SLOW
looks like a barn or hill of membership values that stands above the 2-D planar
space.1,7 The rule looks like a patch or rectangle if one views it from above as in
Figure 1. A rule patch geometrizes a minimal knowledge unit because it geometrizes
an if-then conditional or association between fuzzy sets. The rule patches need not
be connected. They almost always are connected in practice because users almost
always use connected fuzzy sets for both the if-part and then-part sets.

An additive fuzzy system adds the fired then-part sets Bj (x) of the patch
cover and then averages them. This gives rise to the system’s governing mixture
probability density p(y|x): Each normalized fired then-part set Bj (x) defines a
probability density function pBj

(y|x). Theorem 1 states this mixture result for a

International Journal of Intelligent Systems DOI 10.1002/int

ADDITIVE FUZZY SYSTEMS 5

finite rule base of fuzzy if-then rules. Theorem 6 extends the result to the case of
a rule continuum. The fired if-part set values combine with the fired then-part set
values to produce the convex mixing weights pj (x). The governing mixture is a
generalized mixture because the convex mixing weights pj (x) depend on the input
x. So each new input x produces a new set of mixing weights pj (x) in the mixture
p(y|x) = p1(x)pB1 (y|x) + · · · + pm(x)pBm

(y|x).
Corollary 1 shows that this generalized mixture structure leads at once to a

Bayes theorem that defines the converse or posterior distribution p(j |y, x) over
all m rules given the input x and the resulting fuzzy system output y = F (x).
The posterior p(j |y, x) states the degree or probability that the j th rule fired. The
posterior gives the j th rule’s relative magnitude or degree of firing or importance
in the overall output. So the posterior density gives direct probabilistic insight into
the workings of the otherwise opaque fuzzy system. It makes the fuzzy system an
interpretable rule-based model.17 Similar posterior densities show which combined
fuzzy system or which of its rules contributed to the joint output F (x) of an arbitrary
combination or fusion of multiple additive fuzzy systems.

Theorem 2 characterizes the moment structure of the fuzzy system’s gen-
eralized mixture. The expectation or first conditional moment of the generalized
mixture p(y|x) gives the fuzzy system output F (x) as a realization E[Y |X = x]
of the conditional-expectation random variable E[Y |X]: F (x) = E[Y |X = x]. This
expectation is in turn just the convex sum of the centroids cj of the m then-part
sets: F (x) = p1(x)c1(x) + · · · + pm(x)cm(x). The second conditional moment of
p(x|y) is the realized conditional variance V [Y |X = x]. It describes the second-
order uncertainty of the fuzzy output F (x) and decomposes into two convex sums.
The first sum describes the inherent uncertainty in the then-part sets Bj . The second
sum defines a quadratic penalty term for rule interpolation. The conditional variance
involves little more computation than computing the output itself and warrants much
wider use in actual fuzzy applications. Higher-order conditional moments produce
multiple convex sums. Learning changes the if-part sets or the then-part sets and
thereby changes the overall rule patch structure.

Fuzzy rule patches endow a fuzzy system with a graph-cover structure. This
structure can make it easy to build simple fuzzy systems from words and conditional
sentences. The graph cover also implies that additive fuzzy systems are universal
function approximators.2 These properties help explain the vast number of fuzzy-
system applications in control and elsewhere.7,18–21 But the same graph cover creates
a systemic rule explosion in the input-output product space. This curse of dimen-
sionality severely limits the number of input variables in fuzzy systems. Figure 2
shows how rule explosion begins when going from just one input variable to two.

A fuzzy system F approximates a function f by covering its graph with
rule patches and then averaging the patches that overlap.2 Panels (a) and (b) of
Figure 2 show that the fuzzy approximation gets finer by using more and smaller
rule patches. Panels (c) and (d) show the same thing for ellipsoidal rule patches4 but
for a function with two input variables. The averaging corresponds to taking the cen-
troid of the summed fired rule then-parts. Data clusters can estimate the rule patches
in unsupervised learning.1,22,23 Supervised learning can further shape and tune
the rules.4,5,8,13

International Journal of Intelligent Systems DOI 10.1002/int

6 BART KOSKO

Additive fuzzy systems can uniformly approximate any continuous function on
a compact set.2 A uniform approximation lets the user pick an error tolerance level
ε > 0 in advance. The user can be sure that the error in the approximation is less
than ε for all input values x: |F (x) − f (x)| < ε for all vector inputs x. The crucial
point is that the x values do not depend on the choice of ε.

A uniform approximation may require a prohibitive number of rules if the
input dimension n is large for the vector inputs x ∈ R

n. Optimal lone rules cover the
extrema of the function f .3 They “patch the bumps.” This patch-the-bump result
suggests that rule learning can focus on estimating the zeros of the derivative map of
f . Supervised learning tends to move rule patches quickly to cover extrema and then
moves the extra rules in the graph cover to fill in between extrema.4,5 But tuning or
adapting the fuzzy rules only compounds the computational complexity.8 Tuning a
fuzzy system with just four independent variables often proves intractable in practice.
The fuzzy system can also learn by sampling from a trained neural network and
thereby convert the neural network to an approximate rule-based system.

The sets that make up the rules need not be fuzzy at all. Rectangular sets define
ordinary binary sets. These binary sets still lead to a uniform approximation for
enough rules. So the power of fuzzy systems in many cases may lie more in their
graph-cover-based ability to approximate functions than in their use of fuzzy sets or
their linguistic counterparts.

Additive fuzzy systems F can sometimes exactly represent f in the sense that
F (x) = f (x) for all x. The Watkins Representation Theorem states the remarkable
result that an additive fuzzy system F with just two rules can represent any bounded
real-valued function f of n real variables.24,25 The Watkins result does require
that the user know the functional form of f and build it into the structure of
the if-part sets of the two rules. Watkins proved the representation result only for
non-constant bounded scalar functions f : R → R. But the proof still holds for a
vector input x ∈ R

n. It even holds for infinite-dimensional input spaces. The proof
also extends directly to the case of vector outputs in R

p. Then the representation
requires exactly 2p rules if the vector components fk are each bounded and not
constant. So there is no loss of generality in stating results in the simpler scalar
case f : R → R. The Watkins Representation Theorem also holds for the so-called
TSK or Takagi-Sugeno-Kang fuzzy systems26,27 since they are special types of
additive fuzzy systems.5 TSK systems are convex sums of nonlinear systems. Most
are convex sums of linear operators or matrices.

The Watkins two-rule representation has special force in modern Bayesian
statistics because almost all common prior and likelihood probability densities are
bounded and have known closed forms.13 So exact representation allows additive
fuzzy systems to absorb many closed-form Bayesian models. Fuzzy approximation
also extends the Bayesian framework to rule-based priors and likelihoods that may
have no known closed form.13,14 The uniform approximation of both the prior and
the likelihood gives a uniform approximation of the posterior.13

We extend the Watkins representation result in two different directions. Theo-
rem 3 shows how to represent sums of bounded functions in combined fuzzy systems
where some of the fuzzy systems are ordinary rule-based approximators. This gives
a general technique for data fusion or knowledge combination. The fusion process is

International Journal of Intelligent Systems DOI 10.1002/int

ADDITIVE FUZZY SYSTEMS 7

hierarchical because mixing mixtures gives a new mixture. Then Theorem 4 shows
how to find the generalized mixture p(y|x) whose fuzzy-output average is exactly
the bounded real function f . This special mixture density mixes just two densities
in direct analogy to the Watkins Representation Theorem that represents f with just
two rules. Two mixed normal densities will always suffice if their means lie at the
bounded function’s infimum and supremum. The result still holds approximately for
small perturbations about these values. A related section shows how to use density
estimators or the Expectation-Maximization algorithm to find the fuzzy system’s
generalized mixture from training data. Supervised learning laws can also tune the
mixture or its moments or tune other parameters given suitable training data.

Extending a fuzzy system to infinitely many rules does not seem to make sense
in the face of exponential rule explosion. Firing or tuning infinitely many rules
would appear to define the ultimate form of rule explosion. This need not be if we
replace the current default of firing all fuzzy rules for each input with firing only a
carefully chosen random subset of rules. But firing too many rules can still lead to
some form of rule explosion.

Figure 3. Monte Carlo fuzzy approximation of the target function f (x) = sin x for the ad-
ditive rule-continuum fuzzy system F based on the mixture p(y|x) in (167): p(y|x) =
1−sin x

2
1√
2π

exp[− (y+1)2

2] + sin x+1
2

1√
2π

exp[− (y−1)2

2]. The blue lines in panels (a) - (c) show the
additive fuzzy approximator F (x) compared with the sine-wave approximand f (x) = sin x in
red. Panel (a) shows the result of plotting the sample average based on 100 y values drawn at
random uniformly from (−1, 1) for each of 629 x values 0.01 apart. Panel (b) shows the better
fuzzy approximation that results for 1,000 uniform samples at each input x value. Panel (c) shows
the still finer approximation for 10,000 such samples. Panel (d) shows the approximation’s slow
inverse-square-root decay of the average squared error. Each plotted point averages 10 separate
runs for a given number of random draws.

International Journal of Intelligent Systems DOI 10.1002/int

8 BART KOSKO

Working with rule continua lets the user define and tune wave-like meta-rules
as a higher-level mixture density defined on a virtual rule continuum. The mixed
densities define the meta-rules. Then statistical algorithms can tune the mixture
meta-rules with training data. The number of such meta-rules tends to grow only
linearly with the number of mixed densities. The new cost becomes the difficulty
of computing system outputs F (x) from the rule continuum. Some form of Monte
Carlo sampling can ameliorate this burden. Figure 3 shows how more Monte Carlo
sampling gives a better approximation of a target function f as the number of
random samples increases.

The next section develops from first principles the generalized mixture density
p(y|x) that governs an additive fuzzy system.

2. THE GENERALIZED MIXTURE STRUCTURE OF ADDITIVE
FUZZY SYSTEMS

A probabilistic mixture structure underlies all additive fuzzy systems. This
section proves this core mixture result from first principles of fuzzy inference. We
start with a review of finite mixture probability density functions (pdfs) and then
develop the formal machinery of additive fuzzy systems.

2.1. Mixture Models as Convex Combinations of Probabilities

Mixture models are finite convex combinations of pdfs.28–30 A convex combi-
nation mixture of m pdfs p1, . . . , pm gives a new pdf p:

p(y) =
m∑

j=1

πjpj (y). (1)

The nonnegative mixing weights π1, . . . , πm sum to unity:
∑m

j=1 πj = 1. The mix-
ture density p has m modes if the m pdfs pj are unimodal and sufficiently spread out.

A mixture model lets the user define and tune a wide range of multimodal pdfs
by mixing simple and well-behaved pdfs. This convex sum can model taking random
samples from a population made up of m subpopulations. The m subpopulations
can consist of m words or images or other patterns. The theorems below show that a
mixture describes the m rules in a fuzzy system or the q different fuzzy systems in a
combined fuzzy system. Mixtures extend to mixing denumerably and uncountably
many pdfs as the final section demonstrates.

A generalized mixture p(y|x) depends on the input value x as well as on y.
The mixture p(y|x) depends on x because in general both the mixture weights
π1(x), . . . , πm(x) and the mixed densities p1(y|x), . . . , pm(y|x) depend on x:

p(y|x) =
m∑

j=1

πj (x)pj (y|x). (2)

International Journal of Intelligent Systems DOI 10.1002/int

ADDITIVE FUZZY SYSTEMS 9

The dependence on x involves much greater complexity and expressive power than
does the simpler case of the ordinary mixture p(y) in (1).

Theorem 1 below shows that all additive fuzzy systems define a governing
generalized mixture density p(y|x). Theorem 6 and its corollaries show that a
generalized mixture p(y|x) still holds for a rule continuum where the additive fuzzy
system has as many rules as there are real numbers. Some form of the standard
additive fuzzy system in (62)–(63) is the most common fuzzy system in practice.
It has a simplified generalized mixture p(y|x) where its convex mixing weights
πj (x) depend on the input x but the mixed then-part densities pBj

(y) do not depend
on x. This simplification arises from the multiplicative structure of its rule firing
in (3). It allows users to pre-compute the then-part set centroids and volumes. It
also leads to the comparatively tractable supervised learning laws (130)–(137) for
tuning the rule parameters. The mixed then-part densities can be Gaussian in most
cases.

The most popular mixture model by far is the Gaussian mixture model. Then pj

is a scalar Gaussian N (μj , σ
2
j) or a vector Gaussian N (μj , Kj) with mean vector

μj and covariance matrix Kj . The estimation task is to find the m mixture weights
and the parameters of the mixed pdfs. The ubiquitous Expectation-Maximization
(EM) algorithm usually estimates the mixing weights π1, . . . , πm and the
Gaussian means μ1, . . . , μm and variances (or covariances) σ 2

1 , . . . , σ 2
m.28–33 The

EM algorithm iteratively maximizes the log-likelihood function. The class member-
ships of the m decision classes correspond to the hidden or latent variables in the
EM algorithm. Then carefully injected noise can always speed up convergence of
the EM algorithm34–37 as it climbs the nearest hill of likelihood. The EM updates
of the Gaussian mixture have the especially simple form (112)–(115). We discuss
below how to use two Gaussian mixture models as one way to estimate an additive
fuzzy system’s governing mixture p(y|x).

The mixture sum (1) follows from the elementary theorem on total probability.
Suppose that m binary hypothesis sets H1, · · · , Hm partition a sample space �.
Suppose further that the set E ⊂ � represents some observed evidence. Then the
theorem on total probability states that the unconditional probability of the evidence
P (E) equals the convex combination of the prior probabilities P (Hj) and the like-
lihoods P (E|Hj): P (E) = ∑m

j=1 P (Hj)P (E|Hj). This corresponds to the above
mixture sum (1) if the evidence E is the input x and if pj is the prior probability
P (Hj) of the j -th class or mixture element. So pj (x) = f (x|j) holds if the condi-
tional density f (x|j) is the likelihood that we would observe such an x if it came
from the j th class or from the j th mixed density.

Total probability also implies at once a Bayes theorem for computing the
converse or posterior probability P (Hj |E) or f (j |x). We exploit this fact below for
the generalized mixture structure of an additive fuzzy system and the combination
of multiple such systems. The Bayes theorem in Corollary 1 is but one such theorem
that follows from the governing mixture structure. The mixture-based result in (86)
states a more complex Bayes theorem when combining an arbitrary number of rule-
based function approximators with an arbitrary number of exact representations.

We turn first to the definition of the fuzzy rules themselves and how inputs fire
them.

International Journal of Intelligent Systems DOI 10.1002/int

10 BART KOSKO

2.2. Rule Firing as Convolution with a Delta Spike

An additive fuzzy system adds the fired then-parts of its m if-then rules
RA1→B1, . . . , RAm→Bm

. So the analysis begins with the formal structure of a fuzzy
rule RAj →Bj

and how an input vector x ∈ R
n fires the rule. There are many ways

to define a fuzzy rule. We use the usual Cartesian product for its simplicity and
because it yields the multiplicative structure of the standard additive model below in
(62)–(63). This firing result extends to fuzzy subsets A ⊂ R

n that act as inputs
to the fuzzy system F . Then F maps the power set of all fuzzy input sets to the
reals. We use a scalar-valued fuzzy system F : R

n → R for simplicity and with
no loss of generality. All results extend directly to vector-valued fuzzy systems
F : R

n → R
p.

The j th fuzzy rule RAj →Bj
states that the then-part fuzzy set Bj ⊂ R holds or

occurs if the if-part fuzzy set A ⊂ R
n holds or occurs. The rule has the linguistic

form “If X = Aj then Y = Bj ”. We need not view this if-then relation as the simple
conditional or material implication of propositional logic where the conditional is
false if and only if the if-part or antecedent is true and the then-part or consequent
is false. Such a pointwise approach can define a wide range of subset inclusions
that depend on the type of fuzzy or multivalued implication operator involved.38 We
instead view the if-then rule as a fuzzy associative memory.16

Associative memories map similar input patterns to similar output patterns.1

The simplest examples are matrices that map input vectors to output vectors using
vector-matrix multiplication. The matrix M is a distributed storage medium for
the overall input-ouput or if-then relation. The mapping itself is nonlinear as in a
neural associative memory. A fuzzy version is a compositional rule of inference
based on min-max operations.1,11,12 Then the memory matrix or finite Cartesian
product stores the association (Aj, Bj) where Aj and Bj are discrete fuzzy sets
or fuzzy-unit (“fit”) vectors. Suppose that the input finite fuzzy set A is similar to
the stored if-part set Aj : A ≈ Aj . Then composing or min-max “multiplying” the
memory matrix M with A should give an output fuzzy set B that is similar to Bj :
B ≈ Bj . Then similar inputs map to similar outputs. Our approach extends these
finite Cartesian products to operators that act on both input vectors x ∈ R

n and on
input fuzzy subsets A ⊂ R

n. We also dispense with the earlier min-max operations
and just use ordinary multiplication and addition. The trick is to cast the input vector
x0 as the Dirac delta spike δ(x − x0).

The rule RAj →Bj
is a fuzzy subset of the product space R

n × R because
its set function is a mapping rAj →Bj

: R
n × R → [0, 1]. But there are uncount-

ably many such mappings. The rule mapping has to define a rule “patch”
that combines the constituent fuzzy sets Aj and Bj . So we identify it with
the fuzzy Cartesian product Aj × Bj ⊂ R

n × R: RAj →Bj
= Aj × Bj . The Carte-

sian product Aj × Bj uses some pointwise conjunction operator “&” to de-
fine the product: Aj × Bj = {(x, y) ∈ R

n × R : x ∈ Aj & y ∈ Bj }. Older schemes
used pairwise minimum.11,12,39 We use pairwise product to define the rule set
function:

rAj →Bj
(x, y) = aj (x)bj (y) (3)

International Journal of Intelligent Systems DOI 10.1002/int

ADDITIVE FUZZY SYSTEMS 11

for all x ∈ R
n and all y ∈ R. Then the input-output pair (x, y) belongs both to the

j th rule RAj →Bj
and to the Cartesian patch Aj × Bj to degree aj (x)bj (y) because

RAj →Bj
= Aj × Bj .

The if-part fuzzy set Aj ⊂ R
n has joint set function aj : R

n → [0, 1]. The
then-part fuzzy set Bj ⊂ R has set function bj : R → [0, 1]. We allow the range
of these then-part sets to extend above 1.5,8,13 These generalized set functions bj :
R → R

+ need only be integrable because of the normalization involved in forming
the fuzzy system’s mixture density and in the moments of the mixtures. So there
is no loss of generality in working with then-part set functions that map to the unit
interval.

The symmetry of (3) implies that the rules are bidirectional: rBj →Aj
(x, y) =

bj (y)aj (x). Bidirectionality allows the fuzzy system F : R
n → R to run backwards

and give the reverse system G : R → R
n using the same rule base but with the

rules reversed to rBj →Aj
(x, y) = aj (x)bj (y).1 Then the reverse output G(y) is just

the convex combination of the centroids of the m if-part sets Aj . The centroid
bounds trap the bidirectional outputs F (x) and G(y) and keep them from diverging
to infinity. We focus here only on unidirectional fuzzy systems.

The product operator (3) generalizes a binary implication operator in a rough
sense because its truth value equals zero in the extreme case when aj (x) = 1 and
bj (y) = 0.40 The product operator shares its bidirectional symmetry with Mamdani’s
minimum implication operator t(P → Q) = min(t(P), t(Q)) where t(P) ∈ [0, 1]
gives the truth value of statement P .41 This conjunction-like behavior can comport
with informal uses of material implication because it implies that a conditional is
false if the if-part is false. Most people view the conditional “If I am dead then I
am alive” as false when the speaker is alive. But the statement is true for the usual
truth-tabular and asymmetric binary definition of implication where t(P → Q) = 1
if t(P) = 0 no matter the binary truth value of the then-part. The statement is false
even under the truth-tabular reckoning when the speaker is dead because then the
truth-value pair t(P) = 1 and t(Q) = 0 results.

The if-part set function aj : R
n → [0, 1] usually factors in practice. This occurs

because users tend to separately define fuzzy subsets of independent variables such
as temperature and humidity and luminosity. Then the if-part coordinates are not
in the same units. That does not affect the set’s or rule’s mathematical structure.
Some fuzzy rules are not factorable. This includes the ellipsoidal fuzzy rules in
Figure 2. An n-dimensional ellipsoid E does not factor in general into any product
E1 × · · · × En of scalar surfaces Ek .8 Ellipsoidal rules arise naturally from sample
covariance matrices.4

We do not require that the joint if-part set functions aj : R
n → [0, 1] factor.

But we advocate product factorization when one needs factorization because of the
mathematical benefits it confers on the standard additive model below in (62)–(63).
These benefits become ever more important as the number n of input variables
increases. Product factorization gives

aj (x) =
n∏

l=1

al
j (xl) (4)

International Journal of Intelligent Systems DOI 10.1002/int

12 BART KOSKO

when each factor fuzzy subset Al
j ⊂ R has scalar set function al

j : R → [0, 1]
for input column vector xT = (x1, . . . , xn). Earlier fuzzy systems sometimes
formed the joint set function aj by taking componentwise minima aj (x) =
min(a1

j (x1), . . . , an
j (xn))18,42–44 or by taking some other componentwise triangular-

norm operation.45,46 Triangular norms generalize minimum while their De Morgan
dual triangular co-norms generalize maximum. But the minimum function ignores
the fit information in the n fit values al

j (xl) except for the smallest fit value when
those fit values differ. The product function preserves this information because it
only scales the n fit values. The fit values maintain their relative relationships and
each contributes to the rule output. Nor need the n components in aj (x) combine
conjunctively. They can combine disjunctively or through any other linguistic or
truth function of the n terms a1

j (x1), . . . , an
j (xn). The results below just use the

aggregate fit value aj (x). So the input space can technically have infinite dimension.
Fuzzy sets A ⊂ R

n can also act as inputs to the fuzzy system F : R
n → R.

Then the fuzzy set A fires each of the m rules RAj →Bj
. This general rule firing will

show how a vector input x ∈ R
n can fire a rule as the special case when the set

function reduces to a delta spike. The idea is that A fires the rule RAj →Bj
to the

degree that A matches the j th if-part set Aj ⊂ R
n. There are many ways to define

this matching operation to give the match degree aj (A). A natural way defines aj (A)
as simply the inner-product correlation5 between A and Aj :

aj (A) =
∫

Rn

a(x)aj (x)dx (5)

when it exists for fuzzy set A with set function a : R
n → R. The correlation aj (A) is

nonnegative and may well extend beyond the unit interval. This poses no problem for
additive systems because of normalization. The correlation need only be nonnegative
and integrable.

We show next how the vector input x0 fires the j th rule RAj →Bj
.

Descriptions of fuzzy systems tend to leave this rule firing to the intuition
that the input x0 somehow “picks off” the fit value aj (x0) from the entire set-
function curve aj : R

n → [0, 1]. But how exactly does such picking take place for a
continuous set function? Such rule firing would not be an issue if fuzzy systems fired
their fuzzy rules based on two-place arguments (x, y) because such arguments would
simply evaluate the rule’s set function rAj →Bj

: R
n × R → [0, 1]. The associative-

memory structure dictates instead only a partial firing of RAj →Bj
because x0 activates

only the stored if-part set Aj .
The input x0 does not directly fire the then-part set Bj . The input x0 only

indirectly fires Bj by firing Aj and thereby invoking the fuzzy rule RAj →Bj
. We

could denote this indirect firing of Bj with the prime notation B ′
j . More accurate

notation is Bj (x0) with a corresponding conditional set function b(y|x0) for all y. The
conditional mapping b(.|.) : R × R

n → [0, 1] also makes clear that the conditioning
variable x indexes a potentially uncountable family of then-part sets Bj (x).

Suppose first that the if-part set Aj is a finite fuzzy subset of a finite
input space X = {x1, . . . , xn}. Then Aj defines a fit vector or a column vec-
tor in the fuzzy hypercube1: AT

j = (a1
j , . . . , a

n
j) ∈ [0, 1]n. Identify the input

International Journal of Intelligent Systems DOI 10.1002/int

ADDITIVE FUZZY SYSTEMS 13

x0 with its singleton set {x0}. So we can write it as the unit-binary column
vector {x0}T = (0, 0, . . . , 0, 1, 0, . . . , 0). The bit vector {x0} has a 1 in the
kth slot that corresponds to x0 (or xk). It has a 0 in all the other n − 1 slots.
Then the finite inner product picks off the desired fit value aj (x0) or ak

j :
{x0}T Aj = ak

j . The same result follows if we use instead the older min-max
composition that takes a global maximum of pairwise minima: {x0}T ◦ Aj =
max(min(0, a1

j), . . . , min(0, ak−1
j), min(1, ak

j), min(0, ak+1
j), . . . , min(0, an

j)) =
ak

j . Extending this firing operation to the continuous case requires the more
powerful machinery of Dirac delta functions or generalized functions.

The scalar or 1-D Dirac delta generalized function δ acts as if δ(x) = 0 when
x �= 0 and δ(x) = ∞ when x = 0. Yet it integrates to unity over the whole space R:∫

R
δ(x)dx = 1. But technically it has no Riemann integral and its Lebesgue integral

equals zero. The delta function naturally models an infinitesimally narrow spike and
thus an input point such as x0. It also obeys the important translation or “sifting”
property when it convolves with a continuous function f :

∫
R

δ(x − x0)f (x)dx =
f (x0). It thus naturally “picks off” the value f (x0) from the entire curve. The delta
function further generalizes to n dimensions by factoring into a product of n scalar
delta functions: δ(x) = ∏n

l=1 δ(xl) for vector input xT = (x1, . . . , xn).
We can view the vector input x0 as a special case of a continuous fuzzy set Aj

by identifying x0 with the properly translated vector delta spike: x0 = δ(x − x0).
Then we arrive at last at the “firing” operation that shows how the input x0 ∈ R

n

fires the if-part fuzzy set Aj as the Dirac-delta special case of the inner product
in (5):

aj (x0) =
∫

Rn

δ(x − x0) aj (x) dx. (6)

So firing an if-part set convolves its set function with a Dirac delta function.
Rule firing follows from the same delta-function convolution. Firing the if-part

set Aj leads to the indirect firing of the then-part set Bj . This gives the fired then-
part set Bj (x0) with conditional set function bj (.|x0) : R → [0, 1]. Combining the
product rule structure (3) with (6) shows how the vector input x0 fires the j th fuzzy
rule RAj →Bj

for all y ∈ R:

bj (y|x0) =
∫

Rn

δ(x − x0) rAj →Bj
(x, y) dx (7)

=
∫

Rn

δ(x − x0) aj (x) bj (y) dx (8)

= bj (y)
∫

Rn

δ(x − x0) aj (x) dx (9)

= bj (y) aj (x0). (10)

So bj (y|x0) = aj (x0) bj (y). This equality is identical to the result of inserting the
argument pair (x0, y) into the rule set function in (3): rAj →Bj

(x0, y) = aj (x0)bj (y).

International Journal of Intelligent Systems DOI 10.1002/int

14 BART KOSKO

This gives rAj →Bj
(x0, y) = bj (y|x0) for all y. We can write this more compactly at

the set level as rAj →Bj
(x0) = aj (x0) Bj . The product-scaling rule firing aj (x0) Bj is

the “standard” part of the standard additive model below in (62)–(63).
The same derivation holds for a fuzzy-set input A ⊂ R

n. Replace the delta
function δ(x − x0) with the input set function a(x). Then the above derivation gives
b(y|A) = aj (A)bj (y) using (5).

A similar argument shows that using pairwise minimum in (3) or
rAj →Bj

(x0, y) = min(aj (x0), bj (y)) leads to the fired then-part rule as the min-clip
aj (x0) ∧ Bj . Many earlier fuzzy systems used the min-clip to fire rules and did so
on an ad hoc basis. But the min-clip aj (x0) ∧ Bj ignores all the information in the
then-part set Bj above the level of aj (x0). That missing information undermines
the system’s performance and needlessly complicates learning laws and other op-
erations. The product-scaled firing aj (x0) Bj gives full weight to all information
above the aj (x0) level because the fit value aj (x0) simply scales or shrinks the en-
tire then-part curve Bj over the same domain. Product-scaled firing also simplifies
learning laws as well as function approximation and representation. So we assume
the standard product-scaled firing aj (x0) Bj throughout. The next task is to combine
these fuzzy rules into a functioning fuzzy system.

2.3. Generalized Mixtures Govern Additive Fuzzy Systems

A fuzzy system F : R
n → R must somehow combine its rule base of m fuzzy

rules RA1→B1, . . . , RAm→Bm
when it processes each fuzzy input x ∈ R

n to produce
the output F (x).

Early fuzzy systems took the union or componentwise maximum of the
m rules.18,42,47 This reflected an earlier fuzzy ethos of using maximum for disjunction
operators and minimum for conjunction operators. It also reflected the so-called ex-
tension principle11,12,42 for composing finite fuzzy vectors with fuzzy relations. This
approach derives from Zadeh’s original 1965 proposal10 for extending point map-
pings to fuzzy-set mappings. But even these systems took the union of only the fired
then-part sets Bj (x) and not the rules themselves. So they formed the set function
b(y|x) of the combined rule firings B(x) as b(y|x) = max(b1(y|x), . . . , bm(y|x)).
This satisfies the min-max philosophical constraint of keeping the set function b(y|x)
in the unit interval. But the maximum operation ignores the overlap in all the fired
then-part sets Bj (x). It is just this overlap information that changes the relative
weight of rule firings and thus that allows the system to distinguish slightly different
inputs.

Neural networks offer another way to combine rules. Their default combi-
nation technique is to superimpose associative patterns such as (Aj, Bj) onto the
same memory medium. This means adding correlation or outer-product matrices
for associative memories.48–52 The additive structure of many learning algorithms
either uses or approximates this correlation (Hebbian) structure. But adding memory
matrices limits memory capacity and recall accuracy. Each superimposed pattern or
association becomes a form of noise or crosstalk for all the others.

An additive fuzzy system1 F : R
n → R adds the m fired then-part sets Bj (x)

from the fuzzy rule base RA1→B1, . . . , RAm→Bm
for a given vector x ∈ R

n. The system

International Journal of Intelligent Systems DOI 10.1002/int

ADDITIVE FUZZY SYSTEMS 15

stores the m rules by storing only the rule parameters in its sum structure. This allows
an additive fuzzy system to work with a rule continuum because the system uses
only a random rule sample or realization from the virtual rule continuum. Taking
the sum of fired then-part sets Bj (x) gives the total rule firing B(x) for input x:

B(x) =
m∑

j=1

Bj (x). (11)

The combined structure B(x) is a generalized fuzzy set because its set function
b(y|x) exceeds unity in general.

We allow m nonnegative rule weights w1, . . . , wm to scale the m rules and
thereby alter the combined rule firings B(x). The m weights wj define the diagonal
entries of an m × m rule-weight matrix W . Then off-diagonal entries wkj define
cross rules of the form RAk→Bj

. We focus for simplicity just on the usual diagonal
rules. So we assume that wkj = 0 when k differs from j . Learning can also tune
the rule weights and they can depend on the input x. The rule weights slightly
generalize (11) to

B(x) =
m∑

j=1

wjBj (x) (12)

with corresponding set function b(y|x) = ∑m
j=1 wjbj (y|x). A generalized additive

system results in (12) if we replace the fired then-part set Bj (x) with an arbitrary
nonlinear map Bj : R

n → R
p.5 A Tanaka fuzzy dynamical system results if Bj is a

stable square matrix. A TSK or Takagi-Sugeno-Kang additive system results if Bj

is a linear function f (x1, . . . , xn) of the input x since it is a feedback system.5

Normalizing the set function b(y|x) of (12) by its own finite integral yields the
fuzzy system’s governing mixture density p(y|x):

p(y|x) = b(y|x)∫
R

b(y|x) dy
(13)

where we assume that the generalized set function b(y|x) is nonnegative (and never
identically zero) and integrable. The conditional p(y|x) is a proper pdf because it
is nonnegative and integrates to unity. The mixture p(y|x) results directly from the
additive combination of the fired then-part rules (12). Normalization of a maximum
or supremum combiner will still produce a probability density but not a mixture
density.

We can define a Bayesian or maximum-a-posteriori fuzzy system FMAP as that
fuzzy system that finds the mode of the posterior pdf p(y|x):

FMAP (x) = argmaxy p(y|x) (14)

International Journal of Intelligent Systems DOI 10.1002/int

16 BART KOSKO

where the search is over all output values y. Markov Chain Monte Carlo techniques
can estimate such MAP values in many cases.53,54 We will work instead with an
additive fuzzy system based on the first moment of the posterior p(y|x). But there
may well be cases where an analyst or engineer would want to work with some form
of the purely Bayesian model (14).

Theorem 1 states the general mixture result for an additive fuzzy system. It
uses the fact that the normalized fired then-part set function bj (y|x) is a proper pdf
pBj

(y|x):

pBj
(y|x) = bj (y|x)∫

R
bj (y|x) dy

= bj (y|x)

Vj (x)
(15)

where Vj (x) = ∫
R

bj (y|x) dy > 0 is the area or volume under the then-part fuzzy-
set curve Bj (x). So we assume that all such curves have positive area and are
integrable.

THEOREM 1. Mixture Theorem for Additive Fuzzy Systems. Additive rule combination
(12) defines a finite mixture probability density p(y|x):

p(y|x) =
m∑

j=1

pj (x) pBj
(y|x) (16)

where the generalized mixture weights pj (x) have the ratio form

pj (x) = wj Vj (x)∑m
k=1 wk Vk(x)

. (17)

Proof. Insert the additive property (12) of combined fired then-part sets Bj (x) into
(13) and expand:

p(y|x) = b(y|x)∫
R

b(y|x) dy
(18)

=
∑m

j=1 wj bj (y|x)∫
R

∑m
k=1 wk bk(y|x) dy

(19)

=
∑m

j=1 wj bj (y|x)∑m
k=1 wk

∫
R

bk(y|x) dy
(20)

=
∑m

j=1 wj Vj (x) bj (y|x)
Vj (x)∑m

k=1 wk Vk(x)
(21)

=
∑m

j=1 wj Vj (x)pBj (y|x)∑m
k=1 wk Vk(x)

(22)

International Journal of Intelligent Systems DOI 10.1002/int

ADDITIVE FUZZY SYSTEMS 17

=
m∑

j=1

(
wj Vj (x)∑m
k=1 wk Vk(x)

)
pBj

(y|x) (23)

=
m∑

j=1

pj (x) pBj
(y|x) (24)

for fired then-part pdf pBj
(y|x) of the j th rule’s then-part set Bj . �

The mixture-weight pdfs pj (x) are generalized because they depend on x. Each
input x produces its own set of convex mixture weights. This greatly increases the
mixture’s nonlinear expressive power over the simple fixed-weight mixture in (1).
It also greatly increases the difficulty and computational complexity of adapting or
tuning the mixture.

The mixture result (16) further holds more generally for input fuzzy sets A in-
stead of simply input point vectors: p(y|A) = ∑m

j=1 pj (A) pBj
(y|A) for correlation

firing (5). This set generalization holds for all subsequent results and for the same
reason even though we will focus only on vector inputs.

The mixture structure implies the existence of a discrete latent or “hidden”
random variable Z. The variable Z takes as values the class memberships j of the
m subpopulations. The subpopulations here are just the m rules. So P (Z = j) is
the prior probability that the j th rule fires. It is just this variable Z that the EM
algorithm computes conditioned on the data and current parameter estimates.

The pdf P (y|Z = j, x) is a likelihood. We can also write it as p(y|j, x) or in
input-indexed form as Px(Y = y|Z = j) or just Px(y|j). It is the probability that
the fuzzy system F will emit the output value y or F (x) given that the j th rule fired
and given the vector input x.

The rule variable Z shows that the basic fuzzy-system mixture density (16)
is just the law of total probability. This holds because the rule-firing events
{Z = 1}, . . . , {Z = m} partition the underlying sample space because they are
mutually disjoint and exhaustive for each x. So {Y = y} = {Y = y} ∩ {∪m

j=1{Z =
j}} = ∪m

j=1{{Y = y} ∩ {Z = j}} for each x. Then the partition gives Px(Y = y) =∑m
j=1 Px({Y = y}, {Z = j}) = ∑m

j=1 Px(Z = j) Px(Y = y|Z = j) from the ratio

definition of conditional probability P (B|A) = P (A∩B)
P (A) for P (A) > 0. This last

sum restates total probability. It is just the mixture result (16) in slightly different
notation.

A Bayes theorem follows at once from (16) as it does from all mixtures. The
theorem computes the converse probability p(j |y, x) = Px(Z = j |Y = y) that the
j th rule fired given the observed output value y and the input x. This converse or
posterior density p(j |y, x) specifies which rule fired to which degree given the input
vector x that produced the observed output y. This converse information gives direct
insight into how the rule-based system reached its output decision. So it makes the
additive fuzzy system an interpretable model.17 This posterior p(j |y, x) also plays a
key part in the EM algorithm’s update equations for a Gaussian mixture model.28–30

It gives a practical way to measure the relative importance of each rule in the rule
base for any given input x.

International Journal of Intelligent Systems DOI 10.1002/int

18 BART KOSKO

COROLLARY 1. Bayes Theorem for the mixture density (16) of an additive fuzzy
system:

p(j |y, x) = pj (x) pBj
(y|x)∑m

k=1 pk(x) pBk
(y|x)

(25)

where j = 1, . . . , m indexes the m rules RA1→B1, . . . , RAm→Bm
of the additive fuzzy

system.

Proof. This corollary of (16) follows from the definition of conditional probability
and then using (16) to eliminate the denominator probability:

p(j |y, x) = Px(Z = j |Y = y) (26)

= Px(Z = j) Px(Y = y|Z = j)

Px(Y = y)
(27)

= pj (x) pBj
(y|x)

p(y|x)
(28)

= pj (x) pBj
(y|x)∑m

k=1 pk(x) pBk
(y|x)

. (29)

�

The mixture result (16) does not depend on the product rule structure in (3).
Both it and the Bayes result (25) hold for any additive fuzzy system.

We show now how the standard or product structure (3) of a SAM or standard
additive model simplifies both results by eliminating the dependence on the input x
in the likelihood pdfs pBj

(y|x):

pBj
(y|x) = pBj

(y) (30)

so long as aj (x) > 0. The elimination of the conditioning x from pBj
(y|x) follows

from (10) and (15):

pBj
(y|x) = bj (y|x)∫

R
bj (y|x) dy

= aj (x) bj (y)

aj (x)
∫

R
bj (y) dy

(31)

= bj (y)∫
R

bj (y) dy
= pBj

(y). (32)

Then (16) gives the SAM mixture density pSAM (y|x) as

pSAM (y|x) =
m∑

j=1

pj (x) pBj
(y). (33)

International Journal of Intelligent Systems DOI 10.1002/int

ADDITIVE FUZZY SYSTEMS 19

The SAM result (30) likewise simplifies Corollary 1 to the Bayesian ratio

pSAM (j |y, x) = pj (x) pBj
(y)∑m

k=1 pk(x) pBk
(y)

. (34)

Note that a given generalized SAM mixture density pSAM (y|x) defines an
m-rule SAM fuzzy system. This requires only that we equate the if-part set function
aj (x) of the set Aj to the mixture weight pj (x). We can likewise equate the then-part
set function bj (y) of the set Bj to the then-part likelihood density pBj

(y). We can
also set the rule weights wj to unity as a default.

The generalized mixtures (16) and (33) allow arbitrary combination of additive
fuzzy systems. This holds because a mixture of mixtures is itself a mixture. This
self-similar property of mixtures holds for infinite mixtures as well as for finite
mixtures. We explore it elsewhere for hierarchical fuzzy systems. We show now
how it applies to combining q-many additive fuzzy systems.

A simple way to combine q additive fuzzy systems F 1, . . . , F q is just to mix
them with q convex coefficients v1, . . . , vq . The fuzzy approximation theorem2 al-
lows each fuzzy system Fk to uniformly approximate an expert or sampled nonlinear
process or any other knowledge source.55 The result is a new higher-level mixture
p(y|x):

p(y|x) =
q∑

k=1

vk pFk (y|x) (35)

where pFk
(y|x) is the mixture density of the kth additive fuzzy system Fk . This

mixing process can continue indefinitely. It will always produce an overall or master
mixture density. The result still combines multiple knowledge sources into a common
fuzzy rule base.

A more powerful way to combine fuzzy systems is to combine their rules or
throughputs rather than their outputs.5 This applies to any form of fuzzy system. It
has special force for additive systems because of their convex-sum structure. The
technique replaces the rule-firing sum in (12) with a weighted sum of such rule
firings:

B(x) =
q∑

k=1

vkBk(x). (36)

A higher-order sum of sums can replace B(x) and so on indefinitely for any method
of computing fired rules Bk(x). Suppose in particular that the method is the additive
one in (12). Then the same expansion of the generalized set function b(y|x) from
the proof of Theorem 1 yields

p(y|x) =
q∑

k=1

mk∑
j=1

pk
j (x) pk

Bj
(y|x) (37)

International Journal of Intelligent Systems DOI 10.1002/int

20 BART KOSKO

where now the generalized mixture weight pk
j (x) has the ratio form

pk
j (x) = vkak

j (x) wk
j V k

j (x)∑q
k=1

∑mk

j=1 vkak
j (x) wk

j V k
j (x)

. (38)

The SAM mixture pSAM (y|x) just replaces pk
Bj

(y|x) with pk
Bj

(y).
The Bayes result in Corollary 1 extends to

p(k, j |y, x) =
pk

j (x) pk
Bj

(y|x)∑q
k=1

∑mk

j=1 pk
j (x) pk

Bj
(y|x)

(39)

where the new discrete knowledge-source random variable W takes as values the
labels k = 1, . . . , q of the q fuzzy systems or knowledge sources. The posterior pdf
p(k, j |y, x) states the probability or relative importance of the j th rule of the kth
expert or system given input x and given the observed output y.

A second Bayes Theorem gives the relative importance p(k|y, x) of the kth
fuzzy system or expert Fk given the observed value y for the input x. The result
follows by marginalizing out the mk rules of the kth expert or fuzzy system:

p(k|y, x) =
mk∑
j=1

p(k, j |y, x) (40)

=
∑mk

j=1 pk
j (x) pk

Bj
(y|x)∑q

k=1

∑mk

j=1 pk
j (x) pk

Bj
(y|x)

. (41)

We turn next to the moment structure of the additive-fuzzy-system mixture
density p(y|x) and the related system-level theorems on SAM fuzzy systems.

3. MIXTURE-BASED PROPERTIES OF ADDITIVE FUZZY SYSTEMS

The generalized mixture p(y|x) leads to several key properties of additive
fuzzy systems in general and SAM systems in particular. This includes recasting a
fuzzy system F : R

n → R as a conditional expectation with its own conditional-
variance uncertainty measure. It also includes adaptation rules and both function
approximation and exact function representation.

3.1. Moments of Generalized Mixtures

An easy theorem is that every fuzzy system F is a conditional expectation:
F (x) = E[Y |X = x]. This holds just so long as the fuzzy system “defuzzifies” or
computes the output F (x) as the centroid of the system’s combined rule firings
B(x): F (x) = Centroid(B(x)). Any method of combining the rule firings suffices
if the corresponding joint set function b(y|x) is nonnegative and integrable. The

International Journal of Intelligent Systems DOI 10.1002/int

ADDITIVE FUZZY SYSTEMS 21

proof below in (42) – (46) follows the same lines of that of the next theorem that
shows how the integrable set function b(y|x) and thus the mixture p(y|x) leads to
all higher-order moments so long as the appropriate integrals exist.

We first establish some moment notation. We will focus on positive-integer
central moments about the mean. There are in general uncountably many fractional-
order moments. All results also hold for non-central moments. Denote the fuzzy
system’s kth conditional moment as μk(x). The first non-central moment μ(x) is just
the conditional-expectation realization E[Y |X = x]. The second central moment
μ(2)(x) is the conditional variance V [Y |X = x] and so on up to the kth moment
μ(k)(x) = E[(Y − E[Y |X = x])k|X = x]. All the moments result from integrating
or averaging against the additive fuzzy system’s mixture pdf p(y|x). The mixture
structure of p(y|x) simplifies these moments in the additive case.

The first non-central moment μ(x) is the output of the additive fuzzy system
if the system uses centroid defuzzification of the fired then-part sets B(x): F (x) =
Centroid(B(x)). This follows by expanding the definitions:

μ(x) = E[Y |X = x] (42)

=
∫

R

y p(y|x) dy (43)

=
∫

R
y b(y|x) dy∫

R
b(y|x) dy

(44)

= Centroid(B(x)) (45)

= F (x). (46)

So every centroidal fuzzy system is a conditional expectation. This result holds even
if the system is not additive.

The second central moment μ(2)(x) about the mean is just the system condi-
tional variance V [Y |X = x]:

μ(2)(x) = V [Y |X = x] (47)

=
∫

R

(y − F (x))2 p(y|x) dy. (48)

Additive fuzzy systems also use the local moments involved in the then-part of
the j th rule RAj →Bj

. These rule-level central and non-central moments arise from
the rule likelihood pdf pBj

(y|x) in (15). The first local non-central moment is the
centroid cj (x) of fired then-part set Bj (x):

cj (x) = EBj (x)[Y |X = x] =
∫

R

y pBj
(y|x) dy. (49)

Then the SAM condition in (30) also leads to dropping the conditioning term x.
So the user can pre-compute these unconditional then-part centroids cj along with
the related then-part volumes or areas Vj . The second rule-level moment is the

International Journal of Intelligent Systems DOI 10.1002/int

22 BART KOSKO

conditional variance σ 2
Bj (x)(x) associated with Bj (x):

σ 2
Bj (x)(x) = EBj (x)[(Y − EBj (x)[Y |X = x])2|X = x] (50)

=
∫

R

(y − cj (x))2pBj
(y|x) dy. (51)

The SAM condition (30) also drops the conditioning term X = x here and al-
lows the user to pre-compute the inherent unconditional uncertainty σ 2

Bj
in the

then-part of the rule. These pre-computations can substantially speed implementa-
tion when computing first-order F (x) and second-order V [Y |X = x] uncertainty
terms.

We can now state and prove the moment theorem for additive systems. It states
that all higher central moments are convex sums. This holds because they inherit
the mixture’s convex structure.

THEOREM 2. Moment Theorem for additive fuzzy systems:

μ(k)(x) =
m∑

j=1

pj (x)
k∑

l=0

(
k

l

)
EBj (x)[(Y − cj (x))l] [cj (x) − F (x)]k−l (52)

for each positive integer k and combination coefficient
(
k
l

) = k!
l!(k−l)! .

Proof. Use the additive mixture structure (16) for p(y|x) and invoke the binomial
theorem (p + q)k = ∑k

l=0

(
k
l

)
pl qk−l in the expansion of μk(x):

μ(k)(x) = E[(Y − E[Y |X = x])k|X = x] (53)

=
∫

R

(y − F (x))k p(y|x) dy (54)

=
∫

R

(y − F (x))k
m∑

j=1

pj (x) pBj
(y|x) dy (55)

=
m∑

j=1

pj (x)
∫

R

(y − F (x))k pBj
(y|x) dy (56)

=
m∑

j=1

pj (x)
∫

R

[(y − cj (x)) + (cj (x) − F (x))]k pBj
(y|x) dy (57)

=
m∑

j=1

pj (x)
∫

R

k∑
l=0

(
k

l

)
[y − cj (x)]l[cj (x) − F (x)]k−l pBj

(y|x) dy (58)

International Journal of Intelligent Systems DOI 10.1002/int

ADDITIVE FUZZY SYSTEMS 23

=
m∑

j=1

pj (x)
k∑

l=0

(
k

l

) {∫
R

[y − cj (x)]lpBj
(y|x) dy

}
[cj (x) − F (x)]k−l (59)

=
m∑

j=1

pj (x)
k∑

l=0

(
k

l

)
EBj (x)[(Y − cj (x))l] [cj (x) − F (x)]k−l . (60)

�
The moment theorem has several important corollaries. The first is that any

centroidal additive fuzzy system F is just a convex combination of then-part set
centroids:

F (x) =
m∑

j=1

pj (x) cj (x) (61)

for convex mixing weights pj (x) in (17) in Theorem 1 for the non-central case where
μ1(x) = ∫

R
y p(y|x) dy. The SAM product-rule condition (3) and (49) eliminate

the conditioning variable x on the then-part centroid cj . This result is what we often
call the SAM Theorem5:

F (x) =
m∑

j=1

pj (x) cj (62)

where now the convex weights pj (x) have the more familiar form

pj (x) = wj aj (x) Vj∑m
k=1 wk ak(x) Vk

. (63)

The result also follows directly by taking the centroid of the combined then-part
rule firings b(y|x) as in (42)–(46).

The SAM Theorem (62) states that the output F (x) is just a convex com-
bination of the then-part centroids c1, . . . , cm. This gives the important bound
cmin ≤ F (x) ≤ cmax for scalar systems F : R

n → R. A similar bound holds for
vector-valued systems. Then the SAM output F (x) lies inside a centroid-based
hyperbox.5 This bound greatly simplifies the proof that centroidal additive fuzzy
systems can uniformly approximate any continuous function f defined on a compact
set K ⊂ R

n.2,5

The SAM Theorem still holds if the if-part sets Aj and then-part sets Bj are
rectangles. Then there is no fuzziness in the system. It does remain a rule-based
system and still enjoys the crucial property of uniform function approximation. We
can further dispense with viewing functions such as aj : R

n → [0, 1] as defining
fuzzy sets at all. We can view them instead as indexed families of conditional
probabilities. Suppose the set Aj stands for COOL air. Suppose that X = x holds
where X is a temperature variable. Then the fuzzy view is that the air is cool to
degree aj (x). But we can also view aj (x) as the probability that the air is cool given
that it is x: P (COOL|X = x) = aj (x). Then coolness is a binary concept that admits

International Journal of Intelligent Systems DOI 10.1002/int

24 BART KOSKO

probabilities of occurrence. All air is either cool or it is not for a given temperature
value x. Context and further constraints can detail the degree to which such non-cool
air is warm or hot at x. We may well find the fuzzy view of cool air simpler and
more intuitive than the probabilistic view. That is a pragmatic judgment and not a
mathematical one.

The SAM system (62) also reduces to the center-of-gravity fuzzy systems found
in most applications of fuzzy control. The center-of-gravity models assume that all
m then-part sets Bj are the same. They often are congruent triangles or simply
spikes centered at cj . So the volumes Vj are all equal and drop out of (63). The
same holds impliedly for the rule weights wj . The implicit assumption is that then-
part uncertainty does not matter. That is an odd assumption in a fuzzy framework.
But it is accurate in terms of computing just the first-order output F (x). The SAM
Theorem (62) shows that F (x) depends only on the centroid cj and volume Vj of the
then-part set Bj . There are infinitely many Bj set shapes compatible with a given
centroid cj and volume Vj . The next result shows that then-part shapes matter for
higher-order uncertainty.

Another corollary of the Moment Theorem is a simple closed form for the
conditional variance V [Y |X = x] that describes the inherent uncertainty in any
system output or answer F (x):

V [Y |X = x] =
m∑

j=1

pj (x) σ 2
Bj (x) +

m∑
j=1

pj (x) [cj (x) − F (x)]2. (64)

This follows from (52) because the combinatorial sum reduces to the
three terms

(2
0

) + (2
1

) + (2
2

)
and because the expectation that corresponds

to the middle term equals zero upon using (49) in its expansion. The
data-dependent variance σ 2

Bj (x) is just the expectation with respect to

the rule likelihood pBj
(y|x): σ 2

Bj (x) = EBj (x)[(Y − EBj (x)[Y |X = x])2|X = x] =∫
R

(y − cj (x))2pBj
(y|x)dy. Then-part set rectangles still result in rule (uniform)

uncertainty even though such sets are not fuzzy. The SAM version again drops the
parameter dependency on the input variable x:

V [Y |X = x] =
m∑

j=1

pj (x) σ 2
Bj

+
m∑

j=1

pj (x) [cj − F (x)]2 (65)

with mixing weights pj (x) in (63).
The shape of Bj controls the corresponding then-part variance σ 2

j in (65). So
the shape of the then-part sets affects the second-order uncertainty. This still holds
in the popular center-of-gravity case when all then-part sets Bj are the same and
hence give rise to the same nonzero variance σ 2:

V [Y |X = x] = σ 2 +
m∑

j=1

pj (x) [cj − F (x)]2. (66)

International Journal of Intelligent Systems DOI 10.1002/int

ADDITIVE FUZZY SYSTEMS 25

The variance σ 2 > 0 gives the unresolvable minimum uncertainty in the system.
This also shows that two fuzzy systems F 1 and F 2 can satisfy F 1(x) = F 2(x) for
all x and yet differ in their second-order uncertainty. One system need have only
wider then-part sets than the other.

The two terms on the right side of (65) measure the second-order uncertainty
in each output F (x). This acts as a natural confidence measure for the output F (x)
without invoking the complexity of Type-2 fuzzy sets or other ad hoc uncertainty
structures. The first term gives the convex-weighted uncertainty or variance of the
m then-part sets. The mixing weight pj (x) tends to be large if the input x fires the if-
part set Aj to a high degree. This properly gives more weight to the corresponding
then-part uncertainty σ 2

j . Larger then-part sets lead to larger variance values σ 2
j .

This may lead the user to inverse-scale the rule weight as wj = 1
σ 2

j

to counteract this

effect.
The second term is a weighted penalty term. The quadratic term [cj − F (x)]2

is an interpolation penalty. Each rule tugs the global output toward its local centroid
cj . An input x that fires Aj to a high degree tends to have a large weight pj (x).
Then the j th centroid cj might well dominate the convex sum and so F (x) ≈ cj

may hold. But other inputs x may not fire any if-part set to high degree. This occurs
when the system interpolates for missing rules. The system output F (x) becomes
increasingly unreliable as the conditional variance V [Y |X = x] increases. Large
values of V [Y |X = x] imply that the system is essentially guessing at the output
relative to its stored set of m rules.

An important fact is that any SAM system that can compute a fuzzy output F (x)
in (62) can also compute the conditional variance V [Y |X = x] in (65) with the same
information. Yet apparently no published fuzzy system had ever done so until the
2005 ballistic application paper.9 So the reader does not know for those thousands
of other published systems which outputs F (x) involve more inherent interpolation-
based uncertainty than other outputs. A fuzzy engineer could in principle incur
negligence liability for not disclosing this inherent system limitation if such failure
to disclose causes foreseeable downstream harm.

A matrix covariance version of (65) also holds for vector-valued fuzzy systems
F : R

n → R
p and may be of use in problems of state estimation or data fusion. It

shows that the p × p conditional covariance matrix KY |X=x = E[(Y − E[Y |X =
x])(Y − E[Y |X = x])T |X = x] is a similar convex combination of an inherent then-
part covariance term and an interpolation-penalty term:

KY |X=x =
m∑

j=1

pj (x) KBj (x) +
m∑

j=1

pj (x) [cj (x) − F (x)][cj (x) − F (x)]T (67)

where KBj (x) = ∫
Rp [y − cj (x)][y − cj (x)]T pBj

(y|x) dy for y ∈ R
p.

The Moment Theorem also applies to the combination of q additive fuzzy
systems F 1, . . . , F q . Then the combined mixture density p(y|x) in (37) gives the

International Journal of Intelligent Systems DOI 10.1002/int

26 BART KOSKO

combined system F in (61) as a double sum:

F (x) =
q∑

k=1

mk∑
j=1

pk
j (x)ck

j (x) (68)

with convex mixing weights pk
j (x) in (38). This double sum admits recursive

formulation5 for adding new fuzzy systems. The SAM version again drops the
dependency on x for the then-part centroid cj . The corresponding conditional vari-
ance is also a double sum:

V [Y |X = x] =
q∑

k=1

mk∑
j=1

pk
j (x)σ 2,k

Bj (x) +
q∑

k=1

mk∑
j=1

pk
j (x)[ck

j (x) − F (x)]
2
. (69)

Similar double-sum expansions hold for all higher-order moments when combining
q additive systems.

3.2. Combining Fuzzy Function Approximation and Representation

A SAM fuzzy system can uniformly approximate any continuous function
f : K ⊂ R

n → R
p if K is a compact subset of R

n.2,5,56 Uniform approximation
means that |F (x) − f (x)| < ε holds for all vector inputs x. So the user can pick the
desired minimum error level ε in advance and still be sure that the approximation
holds for all inputs.

The proof is constructive and here we only sketch it. The proof combines the
convex-sum structure of the SAM system in (62) with two properties of compact sets.
The convex structure traps the output F (x) in cmin ≤ F (x) ≤ cmax for a scalar system
F : R

n → R. A related centroid-hyperrectangle bound holds in the vector-valued
case. Then the output vector F (x) ∈ R

p always lies in the bounding hypercube. The
first compactness property holds for mappings between metric spaces. It states that
a continuous function on a compact set is uniformly continuous. Uniform continuity
ensures an ε-based distance bound for all points that lie within a fixed distance
δ > 0 from one another. The second compactness property is the defining property
that every open cover of K has a finite sub-cover.57 So a finite set of overlapping
hypercubes can cover K . The proof arranges these cubes so that each cube corner
lies at the midpoint dj of its neighboring cube. Then it centers the then-part sets Bj

so that their centroids lie at f (dj). These properties lead to the uniform result that
|F (x) − f (x)| < ε for all x ∈ K .

The uniform approximation theorem still holds for the more general additive
case so long as the variable fired then-part sets Bj (x) still have the same centroid
cj for all x. So it holds for a min-clip rule firing aj (x) ∧ Bj if Bj is symmetric
because then aj (x) ∧ Bj and Bj have the same centroid cj . It need not hold for the
supremum defuzzification (14) because then the output F (x) may fall outside the
centroid interval [cmin, cmax] or the p-dimensional hyperbox extension.5

Fuzzy function representation lets a SAM system F equal f exactly: F (x) =
f (x) for all x. This is trivial for a constant function f (x) = c for all x. Then a SAM

International Journal of Intelligent Systems DOI 10.1002/int

ADDITIVE FUZZY SYSTEMS 27

with just one rule gives F (x) = c if the sole then-part set B has centroid c. This
holds because any nonzero firing a(x) > 0 gives B(x) = a(x)B. So B(x) has the
same centroid c as B has. Then the centroidal output is F (x) = c.

The Watkins Representation Theorem proves the remarkable result that a scalar
SAM system with just two rules can exactly represent a non-constant function f if
f is bounded.24,25 The catch is that the user must know the closed form of f and
then build it into the if-part set structure of the two rules. So the theorem offers little
or no guidance in general blind approximation where the user has access only to a
few noisy input-output samples of f . But there are cases where the user does know
the form of f and can then absorb that structure into the fuzzy system. This occurs
in standard Bayesian statistics where the user assumes a closed form prior pdf h(θ)
and a closed form likelihood pdf g(x|θ). The pdfs are almost always bounded in
practice. So a fuzzy system can directly absorb them13,14 as Theorem 3 shows.

The Watkins Representation Theorem is so important and so little known that
we next state and prove it as a separate proposition. Then we will examine some of
its consequences and it extend it to representing multiple bounded functions when
combining several additive fuzzy systems. The original Watkins Representation
Theorem applied to scalar-to-scalar bounded functions f : R → R. But the same
argument applies to any finite or even infinite input space. So we first state and prove
it for the usual scalar-SAM case of f : R

n → R. The result extends at once to the
vector case f : R

n → R
p where the representation requires 2p rules. The two rules

in the scalar case have the form “If X is A then Y is B1” and “If X is not-A then Y
is B2”. The set function a : R

n → R for A absorbs the bounded function f into its
structure.

PROPOSITION 1. Watkins Representation24,25: Suppose that f : R
n → R is bounded

and not a constant. Then the SAM fuzzy system F : R
n → R in (62) can exactly

represent f with just two rules: F (x) = f (x) for all x ∈ R
n.

Proof. The function f has a supremum β = supx∈Rn f (x) and an infimum α =
infx∈Rn f (x) because f is bounded. Then β > α because f is not constant. Then
define the set function of A1 as a1(x) = β−f (x)

β−α
. Define the set function of A2 as

a2(x) = 1 − a1(x). Pick unit rule weights wj = 1 and then-part volumes Vj = 1 so
that they drop out of the SAM system (62). Center B1 at centroid c1 = α and center
B2 at c2 = β. Then the two-rule SAM has the form

F (x) =
∑2

j=1 aj (x) wj Vj cj∑2
k=1 ak(x) wk Vk

(70)

= a1(x) α + (1 − a1(x)) β

a1(x) + 1 − a1(x)
(71)

=
(

β − f (x)

β − α

)
(α − β) + β (72)

= f (x). (73)
�

International Journal of Intelligent Systems DOI 10.1002/int

28 BART KOSKO

A simple example is f (x) = sin x. Sine is bounded with α = −1 = c1 and
β = 1 = c2. So a1(x) = 1−sin x

2 and a2(x) = 1+sin x
2 . Then F (x) = sin x.

A more sophisticated example is the beta pdf Beta(a, b) over the unit interval.
Bayesian models often use a beta prior B(a, b) to model a binomial success parame-
ter θ with a conjugate binomial likelihood. Applying Bayes theorem after n Bernoulli
trials gives the posterior pdf as the updated beta B(a + x, b + n − x) if x is the num-
ber of successes and n − x is the number of failures out of n trials.13 Then the new
beta pdf B(a + x, b + n − x) can serve as the new prior in the next round of bino-
mial trials. The beta pdf f (θ) with positive scaling parameters a and b has the form
f (θ) =
(a+b)

(a)
(b)θ
a−1(1 − θ)b−1 if
 is the gamma function:
(α) = ∫ ∞

0 xα−1e−xdx

with α > 0. The values θ of the random variable � lie in the unit interval [0, 1].
Consider the skewed case of a = 8 and b = 5. Then α = 0 and β = 12!

7!4!
7744

1111 since

(n) = (n − 1)! for any positive integer n. This gives a1(θ) = 1 − 1111
7744 θ

7(1 − θ)4.
Then F equals Beta(8, 5): F (θ) = 12!

7!4!θ
7(1 − θ)4.

The vector extension to bounded functions f : R
n → R

p requires that each
scalar function fk in f = (f1, . . . , fp) be both bounded and non-constant. Define
the set function of Ak

1 as the first Watkins coefficient ak
1(x) = βk−fk(x)

βk−αk
. So the second

Watkins coefficient is ak
2(x) = 1 − ak

1(x) = fk(x)−αk

βk−αk
. Center the kth component’s

first then-part set Bk
1 at the centroid ck

1 = αk . Center Bk
2 at the centroid ck

2 = βk . Then
each SAM vector component Fk is a two-rule scalar-valued SAM that represents fk

as before. So F (x) = (f1(x), . . . , fp(x)) = f (x).
An example of a 2-D Watkins representation is the parametrized unit

circle in the plane: f (x) = (sin x, cos x) where 0 ≤ x < 2π . We have again
for sine that α1 = −1 = c1

1 and β1 = 1 = c1
2. So its Watkins coefficients are

a1
1(x) = 1−sin x

2 and a1
2(x) = sin x+1

2 . Cosine is bounded and likewise gives a2
1(x) =

1−cos x
2 and a2

2(x) = cos x+1
2 . Then a 4-rule SAM F represents the unit circle as

F (x) = (sin x, cos x).
The vector Watkins representation fails for the 3-dimensional helix f (x) =

(sin x, cos x, x) unless the domain of x is bounded because the identity function
f (x) = x need not be bounded. The scalar identity function has as its first Watkins
coefficient a(x) = v−x

v−u
if x ∈ [u, v]. Note also that the Watkins representation in

Proposition 1 still holds for TSK systems26,27 because TSK systems are additive
fuzzy systems5 and because we can take the output then-part sets to be their constant
centroids.

Adding a Watkins representation to a fuzzy system takes care. The two-rule
representation of Proposition 1 exhausts the rule base of a simple fuzzy system. The
SAM system contains only the two Watkins rules. So we instead absorb the Watkins
representation of some function f into the double-sum combined SAM of (68). This
means including the two Watkins rules into the combined rule-firing sum B(x) in
(36). The next two cases demonstrate the combination technique. The second case
generalizes the first. Theorem 3 states the final result.

The first case combines r non-constant bounded real functions f1, . . . , fr into
the SAM F in (68). This generalizes Proposition 1 so that F represents a sum of
r bounded functions in a single rule base of 2r rules. The mixture p(y|x) in (103)

International Journal of Intelligent Systems DOI 10.1002/int

ADDITIVE FUZZY SYSTEMS 29

below represents this sum as its first moment. We state this new generalization of
Proposition 1 as a separate corollary. The vector version is immediate.

COROLLARY 2. Generalized Watkins Representation for r combined SAM fuzzy sys-
tems: Suppose the r real functions f1, . . . , fr are bounded and not constant. Then the
combined SAM fuzzy system F : R

n → R in (68) is just the sum of the r represented
functions:

F (x) =
r∑

k=1

fk(x) (74)

for all x ∈ R
n.

Proof. Use the same representation scheme as in the proof of Proposition 1 but with
one key change: Scale the kth representation’s two then-part centroids as ck

1 = rαk

and ck
2 = rβk . Then the result follows from the simple structure of the convex

weights pk
j (x) for a Watkins representation: pk

1(x) = ak
1 (x)∑r

k=1(ak
1 (x)+1−ak

1 (x))
= ak

1 (x)
r

and

pk
2(x) = ak

2 (x)
r

. Then F (x) = ∑r
k=1

∑2
j=1 pk

j (x)ck
j = ∑r

k=1(ak
1(x)αk + ak

2(x)βk) =∑r
k=1 fk(x) as in the proof of Proposition 1. �

Corollary 2 has an easy generalization to the case of non-equal system weights
u1, . . . , ur . The system weights u1, . . . , ur give F (x) as the convex combination
F (x) = ∑r

k=1 λkfk(x) where λk = uk∑r
k=1 uk if ck

1 = αk and ck
2 = βk .

The representation sum (74) obeys a Bayes theorem that gives the posterior
probability prep(k|y, x) that the kth representation fk “fired” or appeared in the
combined system given that the input x produced output y or F (x). We can interpret
prep(k|y, x) as the relative importance of fk to the combined output F (x). The
Watkins representations simplify the mixture density p(y|x) in (37) to give the
combined Watkins mixture prep(y|x) as

prep(y|x) = 1

r

r∑
k=1

2∑
j=1

ak
j (x)bk

j (y). (75)

Then prep(y|x) and (41) give the posterior pdf prep(k|y, x) as

prep(k|y, x) = ak
1(x)(bk

1(y) − bk
2(y)) + bk

2(y)∑r
k=1[ak

1(x)(bk
1(y) − bk

2(y)) + bk
2(y)]

. (76)

The Bayes result (76) shows again that the shapes of the then-part sets Bk
j matter

even for exact Watkins representations. The representations assume only that each
Bk

j has unit area or volume V k
j . But the two then-part fit values bk

1(y) and bk
2(y) can

still differ for the same non-rectangular then-part set B and thus can produce different
values of prep(k|y, x). The case of congruent rectangles Bk

j gives bk
j (y) = c > 0 for

k and j . Then (76) reduces to the discrete uniform density prep(k|y, x) = 1
r

in the

International Journal of Intelligent Systems DOI 10.1002/int

30 BART KOSKO

unweighted case. It reduces to prep(k|y, x) = λk for r weighted representations with
weights u1, . . . , ur . Even the unweighted case of congruent rectangles Bk

j gives a
conditional variance V [Y |X = x] in (69) that varies with the input x.

The second combination case generalizes the first. It combines the same r
non-constant bounded functions f1, . . . , fr with q rule-based SAM approximators
F 1, . . . , F q . So it generalizes the sum result (74). It shows that the combined system
is a convex-weighted sum of two terms. The first term is just the r summed repre-
sentations (74). The second term is the double sum that combines q approximators
as in (68). The result separates the representations from the approximations and
then combines the separated systems with higher-level convex weights that depend
on x. We next state and prove this general separation theorem for fuzzy knowledge
combination.

THEOREM 3. Separation Theorem for combining fuzzy representations with approxi-
mations. Suppose that the r real functions f1, . . . , fr are bounded and non-constant.
Suppose that the q functions F 1, . . . , F q are SAM fuzzy systems. Combine all r + q
functions in a single SAM fuzzy system F as in (68). Then F is a convex combination
of the representation sum (74) and the double SAM sum (68) of the q SAMs:

F (x) = s(x)
r∑

k=1

fk(x) + (1 − s(x))
q∑

k=1

mk∑
j=1

pk
j (x)ck

j (77)

for convex weights s(x) = Vrep(x)
Vrep(x)+Vrule(x) and 1 − s(x) = Vrule(x)

Vrep(x)+Vrule(x) .

Proof. Represent each function fk with two rules as in the result (74) above. Define
Vrep(x) = ∫

R
brep(y|x)dy and Vrule(x) = ∫

R
brule(y|x)dy. Split the total fired then-

part set B(x) into representation and rule-based terms:

B(x) = Brep(x) + Brule(x) (78)

with u1 = · · · = ur+q = 1 without any loss of generality. Then

F (x) = Centroid(Brep(x) + Brule(x)) (79)

=
∫

R
ybrep(y|x)dy + ∫

R
ybrule(y|x)dy

Vrep(x) + Vrule(x)
(80)

=
(

Vrep(x)

Vrep(x) + Vrule(x)

) [∫
R

ybrep(y|x)dy

Vrep(x)

]

+
(

Vrule(x)

Vrep(x) + Vrule(x)

)[∫
R

ybrule(y|x)dy

Vrule(x)

]
(81)

= s(x)Centroid(Brep(x)) + (1 − s(x))Centroid(Brule(x)) (82)

= s(x)Frep(x) + (1 − s(x))Frule(x) (83)

International Journal of Intelligent Systems DOI 10.1002/int

ADDITIVE FUZZY SYSTEMS 31

= s(x)
r∑

k=1

fk(x) + (1 − s(x))
q∑

k=1

mk∑
j=1

pk
j (x)ck

j (84)

if we replace Frep(x) with (74) and replace Frule(x) with the SAM version of
(68). �

The same argument shows that the combination’s mixture p(y|x) obeys a
related decomposition into a mixture of representation and rule-based mixtures:

p(y|x) = s(x)prep(y|x) + (1 − s(x))prule(y|x). (85)

The mixture (85) gives a macro-level Bayes theorem for the probability
p(Representation|y, x) that the observed output y or F (x) given input x is due
to Frep(x) or the representation sum (74) rather than due to Frule(x) or the q com-
bined SAM systems in (68):

p(Representation|y, x) = s(x)prep(y|x)

s(x)prep(y|x) + (1 − s(x))prule(y|x)
. (86)

Then p(Rule-based|y, x) = 1 − p(Representation|y, x).
The Separation Theorem and its corollaries can apply to many forms of com-

bining or fusing q knowledge sources K1, . . . ,Kq .58 The knowledge sources can
in principle include feedback knowledge nets such as fuzzy cognitive maps.59–62

Adaptive fuzzy function approximation can use sample data to grow and tune a set
of mk rules so that the kth combined fuzzy system Fk : R

n → R
p approximates a

given scalar- or vector-valued knowledge source Kk : R
n → R

p. Lack of sample
data requires that the fuzzy engineer guess at the initial set of rules or else ask experts
for such rules. The engineer can also try to infer the rules from expert documents
or watching expert behavior. Then supervised learning may still be able to at least
partially tune the Fk rule parameters given some performance samples from Kk .
The next two sections show how to tune a fuzzy system’s governing mixture p(y|x)
and its rule parameters with training data. Unsupervised clustering can also tune
parameters. It does so mainly by initializing rule patches to clusters in the sample
data.1,4,5,7–9

A Watkins representation may apply in the case of scalar-valued data or knowl-
edge sources Kk : R

n → R. A natural application is to pattern classifiers such as
linear classifiers or logistic regressors or feedforward neural networks with a single
output classifier neuron.63–65 These systems map an n-dimensional pattern vector
x ∈ R

n to the output value 1 if x belongs to a given pattern class and map to 0 or −1
otherwise. The pattern inputs may also map to a fuzzy or gray-scale value in the bi-
nary unit interval [0, 1] or in the bipolar interval [−1, 1]. A simple Watkins combiner
can use a modified version of Corollary 2 that weights or mixes the r classifiers f k

to give F (x) = ∑r
k=1 λk f k(x) for convex weights λ1, . . . , λr as discussed above.

Vector-valued Watkins representation can likewise absorb vector-valued knowledge
sources Kk : R

n → R
p. A SAM system can learn from the neural net by sampling

from it.

International Journal of Intelligent Systems DOI 10.1002/int

32 BART KOSKO

Combining vector-valued classifiers can also use fuzzy rule-based approx-
imators. An important case is the family of mixture-of-experts models66–68 that
combines classifiers or neural networks with generalized mixing weights that de-
pend on the input x. The Separation Theorem can in principle combine these and
other committee-based systems along with Watkins-represented classifiers.

We turn next to how to acquire the generalized mixtures p(y|x) that underlie
additive fuzzy systems.

3.3. Finding Generalized Mixture Densities for Additive Fuzzy Systems

Using a mixture approach to fuzzy systems requires answering a basic question:
Where does the generalized mixture density p(y|x) come from? There are several
ways to arrive at a representative mixture p(x|y).

The simplest approach is that of classical knowledge engineering. The user
simply defines m desired if-then rules RA1→B1, . . . , RAm→Bm

. Then the mixture
p(y|x) arises from the additive combination structure and (13). This step converts
the fuzzy-set design of the rule base into a purely probabilistic system for further
processing.

A more technical approach converts the given associated sets (Aj, Bj) of the
rules into a generalized mixture where the normalized rule weights wj define the
convex mixing weights:

p(y|x) =
m∑

j=1

vjaj (x)bj (y) (87)

where the convex weight vj has the form

vj = wj∑m
k=1 wk

(88)

for positive rule weights wk . This approach assumes that the user can adjust the
center and width of a density to represent linguistic fuzzy-set values such as COOL
and WARM in Figure 1. We assume without loss of generality that the set functions aj

and bj have unit volumes and thus behave as ordinary probability density functions.
Dividing by non-unity volumes achieves the same result. Then integration and the
Moment Theorem give the fuzzy system output F (x) as the convex combination of
the fit-valued-scaled centroids aj (x) cj :

F (x) =
∫

y p(y|x) dy (89)

=
m∑

j=1

vj aj (x)
∫

y bj (y) dy (90)

=
m∑

j=1

vj aj (x) cj . (91)

International Journal of Intelligent Systems DOI 10.1002/int

ADDITIVE FUZZY SYSTEMS 33

A still more sophisticated approach uses the Watkins representation structure of
Proposition 1 to find p(y|x). Consider the problem of finding a generalized mixture
p(y|x) such that F (x) = f (x) holds exactly for all x for a given bounded real-valued
function f . What p(y|x) produces F = f ?

We show now that a simple two-term mixture p(y|x) will always achieve the
representation F = f so long as the target function f is bounded and not constant.
The vector-valued version mixes 2p densities.

THEOREM 4. Mixture-based Representation Theorem. Suppose that f : R
n → R is

bounded and not a constant. Suppose that the generalized mixture density p(y|x)
mixes two then-part pdfs with Watkins coefficients:

p(y|x) =
(

β − f (x)

β − α

)
pB1 (y) +

(
f (x) − α

β − α

)
pB2 (y) (92)

for equal rule weights w1 = w2 > 0 and then-part set volumes V1 = V2 > 0 and
where c1 = α = infx∈Rn f (x) and c2 = β = supx∈Rn f (x). Then the SAM system
F : R

n → R based on p(y|x) represents f : F (x) = f (x) for all x.

Proof. The Watkins coefficients β−f (x)
β−α

and f (x)−α
β−α

are convex weights because they
are nonnegative and sum to one. Each convex coefficient pj (x) equals the corre-
sponding if-part set function aj (x): pj (x) = wj Vj aj (x)∑m

k=1 wkVkak(x) = aj (x)
a1(x)+1−a1(x) = aj (x).

But a1(x) = β−f (x)
β−α

and a2(x) = f (x)−α
β−α

. So the two-rule SAM structure gives

p(y|x) =
2∑

j=1

pj (x) pBj
(y) (93)

=
(

β − f (x)

β − α

)
pB1 (y) +

(
f (x) − α

β − α

)
pB2 (y). (94)

Then the Moment Theorem (52) and the centroid definitions c1 = α = infx∈Rn f (x)
and c2 = β = supx∈Rn f (x) give the fuzzy system output F (x) as

F (x) = E[Y |X = x] (95)

=
∫

R

y p(y|x) dy (96)

=
(

β − f (x)

β − α

)∫
R

y pB1 (y) dy +
(

f (x) − α

β − α

)∫
R

y pB2 (y) dy (97)

=
(

β − f (x)

β − α

)
c1 +

(
f (x) − α

β − α

)
c2 (98)

=
(

β − f (x)

β − α

)
α +

(
f (x) − α

β − α

)
β (99)

International Journal of Intelligent Systems DOI 10.1002/int

34 BART KOSKO

= βα − f (x)α + f (x)β − αβ

β − α
(100)

= f (x)[β − α]

β − α
(101)

= f (x). (102)
�

This argument shows that in general E[Y |X = x] = f (x) holds for all x for
all probabilistic systems if the first moments exist. Gaussian then-part sets suffice.

The final section shows how this theorem applies in computing with fuzzy rule
continua. The result is the Monte Carlo approximation of the bounded non-constant
real function sin x in Figure 3. It mixes two unit-variance normal bell-curve pdfs
with appropriate Watkins coefficients based on the target function sin x.

Theorem 4 extends to the sum of r bounded real functions f1, . . . , fr in Corol-
lary 2. The new mixture p(y|x) mixes 2r likelihood pdfs pBjk

(y) with scaled Watkins
coefficients for generalized mixing weights:

p(y|x) =
r∑

j=1

[
1

r

(
β − fj (x)

β − α

)
pBj1

(y) + 1

r

(
fj (x) − α

β − α

)
pBj2

(y)

]
(103)

where Centroid(Bj1) = ∫
R
ypBj1

(y)dy = rαj and Centroid(Bj2) = ∫
R
ypBj2

(y)dy =
rβj . Then F (x) = ∫

R
yp(y|x)dy = ∑m

j=1 fj (x). Unit-variance normal likelihoods
suffice in (103): pBj1

(y) = N (rαj , 1) and pBj2
(y) = N (rβj , 1).

A natural question is whether the two-pdf mixture representation in (94) is
robust against noisy or other perturbations of the two mixed densities. The proof
shows that the representation does not depend on the variance or higher-moments
of the two mixed densities. Suppose we additively perturb the mean of pB1 by ε > 0
and the mean of pB2 by δ > 0. Then the respective means become α + ε and β + δ
in the proof at (99). This gives the perturbed representation as

F (x) = β − f (x)

β − α
(α + ε) + f (x) − α

β − α
(β + δ) (104)

= f (x) + ε
β − f (x)

β − α
+ δ

f (x) − α

β − α
(105)

= f (x) + εa1(x) + δa2(x). (106)

So the special case of identical perturbations ε = δ gives a simple additive pertur-
bation:

F (x) = f (x) + ε (107)

since these set-function values are convex and obey a1(x) + a2(x) = 1 for all x. The
same argument shows that the multiplicative perturbations εα and δβ lead to

F (x) = εa1(x)α + δa2(x)β . (108)

International Journal of Intelligent Systems DOI 10.1002/int

ADDITIVE FUZZY SYSTEMS 35

Table I. Additive Perturbation Analyis.

Average Squared Error

Samples ε = 0.0 ε = 0.1 ε = 0.5 ε = 1.0

500 0.0091 0.0184 0.2611 1.0083
1,000 0.0045 0.0142 0.2524 1.0078
2,000 0.0027 0.0119 0.2509 1.0021
5,000 0.0012 0.0012 0.2507 1.0004
10,000 0.0007 0.0010 0.2499 1.0000

Table II. Multiplicative Perturbation Analysis.

Average Squared Error

Samples ε = 0.5 ε = 1.0 ε = 1.5 ε = 2.0

500 0.1336 0.0089 0.1228 0.5027
1,000 0.1320 0.0045 0.1177 0.4571
2,000 0.1313 0 0024 0.1114 0.4550
5,000 0.1320 0.0011 0.1085 0.4532
10,000 0.1312 0.0008 0.1061 0.4524

Then the special case of ε = δ gives a simple scaled perturbation:

F (x) = εf (x) . (109)

Both perturbation results hold for the original Watkins Representation Theorem
itself because the hypotheses of the theorem also equate the centroid of the first then-
part set with the infimum α of f and the second centroid with the supremum β. So
the perturbations still apply to the same proof step (99). The somewhat ironical result
is that the perturbed representations (106) and (108) show that we can approximate
exact representations. The user need not use exactly centered mixed pdfs to get an
approximate result.

Table I shows four categories of Monte Carlo simulation results of the addi-
tive perturbation (107) for the target function f (x) = sin x in Figure 3. The first
category is the perturbation-free case of ε = 0. The three other categories are the
perturbations ε = .1, .5, and 1. The simulation accuracy improves slowly with sam-
ple size n with the inverse of

√
n. Table II similarly shows four categories of

multiplicative perturbation (109) for the same target function. The perturbation-
free category is ε = 1. The other three categories of perturbation are ε = .5, 1.5,
and 2.

Theorem 4 has two structural limitations. The first is that the function f must
be bounded. Truncation of an unbounded function can achieve this in practice. But
it comes at the expense of throwing away information about f .

The second limitation can be the most daunting in practice: The user must
know the closed form of the bounded function f . But the user may have access
only to incomplete samples (x1, y1), . . . , (xn, yn) from an unknown source. The
samples may also be noisy. Overcoming this second limitation requires using some
approximation technique.

International Journal of Intelligent Systems DOI 10.1002/int

36 BART KOSKO

Density estimators can separately approximate the joint pdf p(x, y) and the
marginal pdf p(x) that define the generalized mixture p(y|x) through the ra-
tio definition p(y|x) = p(x,y)

p(x) . Ordinary nonparametric kernel density estimators

can serve this task. Kernel estimates generalize histograms.67 This also leads to
kernel-regression estimators for the conditional expectation or regression function
E[Y |X = x] and thus to the fuzzy system output F (x).

Most kernel regressors have a ratio structure similar to the convex-combination
structure of SAM fuzzy models because additive fuzzy systems add up fired then-
part sets in a type of histogram before taking the centroid of the summed sets. But
kernel regressors arise from an ad hoc choice of kernel functions. Kernel regressors
also have estimation artifacts that depend on the shape of the kernel function and on
the adaptation technique used to fit them to data.

The EM algorithm32,69 offers a practical and reasonably efficient way to
estimate the two densities p(x, y) and p(x) based on observed vector samples
(x1, y1), . . . , (xn, yn). The basic EM trick introduces a new “hidden” variable z to the
known variable x and its marginal p(x) by rearranging the definition of conditional
probability p(z|x) = p(x,z)

p(x) to express the known marginal p(x) as p(x) = p(x,y)
p(z|x) .

The probabilities at iteration k depend on a vector of parameters �k . EM works with
the log-likelihood ln p(x|�k) = ln p(x, z|�k) − ln p(z|x, �k). So EM estimates the
unknown variable z by conditioning on the known data x and the current parameters
�k . A basic theorem shows that maximizing the expectation of just the complete
log-likelihood term ln p(x, z|�k) with respect to the density p(z|x, �k) can only
increase the original log-likelihood at each iteration k. The result is an iterative two-
step algorithm that climbs the nearest hill of probability or log-likelihood. The EM
algorithm generalizes the backpropagation algorithm of modern neural networks37

and the k-means clustering algorithm70 along with many other iterative algorithms.
Carefully injected noise always speeds EM convergence on average36,71 with the
largest gains in the early steps up the hill of likelihood.

We assume that the vector samples (x1, y1), . . . , (xn, yn) are realizations of
some unknown vector random variable Z where ZT = [XT |YT]. The input random
variable X is a d × 1 column vector. The output random variable Y is a p × 1
column vector. So the concatenated random vector Z has dimension (d + p) × 1.

Then use separate ordinary Gaussian mixture models (GMMs) p̂(z) and p̂(x)
as in (1) to approximate the joint pdf p(y, x) and the marginal pdf p(x):

p̂(z) = p̂(x, y) =
m∑

j=1

πjfj (z) (110)

p̂(x) =
l∑

j=1

τjgj (x) (111)

for convex mixing coefficients π1, . . . , πm and τ1, . . . , τl that do not de-
pend on z or x. The j th normal random vector Z has mean vector μj =
Efj

[Z] and positive-definite (d + p) × (d + p) covariance matrix Kj = Efj
[(Z −

Efj
[Z])(Z − Efj

[Z])T]. The pdf fj is the (p + d)-dimensional multivariate normal

International Journal of Intelligent Systems DOI 10.1002/int

ADDITIVE FUZZY SYSTEMS 37

density: fj (z) = N (μj , Kj) = 1
(2π)(d+p)/2

√
D(Kj)

exp{− 1
2 (z − μj)T K−1

j (z − μj)} if

D(Kj) is the determinant of the positive-definite covariance matrix Kj . The pdf gj

is the corresponding d-dimensional multivariate normal pdf.
EM’s most popular use finds the maximum-likelihood parameters of a

GMM.31,32 Consider the GMM joint estimator p̂(x, y) in (110). EM estimates
the m mixture weights πj and the m vector means μj and covariance ma-
trices Kj of the respective m mixed Gaussian pdfs fj (x) or fj (x|μj , Kj).
Then the EM algorithm has an especially simple form.67,72 The parameter vec-
tor �k gives the current estimate at iteration k of all 3m GMM parameters:
�k = {π1(k), . . . , πm(k), μ1(k), . . . , μm(k), K1(k), . . . , Km(k)}. Then the iterations
of the GMM–EM algorithm reduce to the following update equations based on the
m posterior pdfs pW (j |z, �) that arise from the Bayes theorem corollary (25) to the
mixture density32:

πj (k + 1) = 1

m

m∑
i=1

pW (j |zi, �k) (112)

μj (k + 1) =
∑m

i=1 pW (j |zi, �k)zi∑m
i=1 pW (j |zi, �k)

(113)

Kj (k + 1) =
∑m

i=1 pW (j |zi, �k)(zi − μj (k))(zi − μj (k))T∑m
i=1 pW (j |zi, �k)

(114)

where W (z) = I1(z) + · · · + Im(z). The binary function Ij is the j th indicator-
function that codes for the j th class or subpopulation (or rule). The posterior prob-
abilities pW (j |zi, �k) have the ratio Bayesian form

pW (j |zi, �k) = πj (k)fj (zi |W = j, �k)∑m
l=1 πl(k)fl(zi |W = l, �k)

. (115)

3.4. Supervised Learning Laws for Mixtures and Fuzzy Systems

We next derive a new learning law for an additive fuzzy system’s finite mixture
density p(y|x). Then we review and extend the supervised learning laws for an
additive fuzzy system F and for higher moments. These learning laws are not
practical for the continuum-rule systems of the next section.

A supervised learning law uses gradient descent to minimize some performance
measure. The performance measure can be squared error or cross entropy or any
other function of the system variables. We will focus on the traditional measure of
squared error for simplicity. Unsupervised clustering can also intialize or otherwise
tune parameters as well.1,5

We first show how supervised learning can tune or adapt a differentiable system
mixture p(y|x). Let d(y|x) be a given desired mixture density for the fuzzy system.
The desired probability d(y|x) can be any conditional density of the form p(x,y)

p(x) .

International Journal of Intelligent Systems DOI 10.1002/int

38 BART KOSKO

It need not be a mixture. Define the mixture error ε(x) as the desired outcome
d(y|x) minus the actual outcome p(y|x): ε = d(y|x) − p(y|x). This gives the scaled
squared error SE for a sampled target mixture d(y|x) as

SE = 1

2
ε2 = 1

2
(d(y|x) − p(y|x))2 (116)

for observed samples (x1, y1), (x2, y2), . . . from d(y|x). Let mj be some parameter
of the additive fuzzy system. Then the gradient descent learning law for mj at
iteration t + 1 is1,5,13

mj (t + 1) = mj (t) − μt

∂SE

∂mj

(117)

for a sequence of (usually decreasing) learning coefficients {μt }. The chain rule
factors the gradient learning term ∂SE

∂mj
as

∂SE

∂mj

= ∂SE

∂p(y|x)

∂p(y|x)

∂mj

(118)

= −ε
∂p(y|x)

∂mj

(119)

from (116) and the definition of ε. So a gradient-based mixture learning law will
have the iterative form

mj (t + 1) = mj (t) + μtεt

∂p(y|x)

∂mj

. (120)

The next theorem states the mixture learning law for the j th rule weight wj of
the j th rule in a given SAM system or the j th sub-system F j in a combined system
as in Theorem 3. The theorem shows that the crucial gradient learning term ∂p(y|x)

∂mj
in

(120) depends on the difference pBj
(y) − p(y|x) between the j th rule pdf pBj

(y) in
the mixture p(y|x) and the mixture p(y|x) itself. The local density pBj

(y) in effect
pulls against the global density p(y|x). The two terms are equal at equilibrium. This
local-versus-global structure underlies all SAM-related learning laws.

THEOREM 5. SAM Mixture Learning:

wj (t + 1) = wj (t) + μtεt

pj (x)

wj

[pBj
(y) − p(y|x)]. (121)

Proof. The quotient rule of differentiation and the SAM version (33) of (22) give

∂p(y|x)

∂wj

= ∂

∂wj

[∑m
j=1 wjaj (x)VjpBj

(y)∑m
k=1 wkak(x)Vk

]
(122)

International Journal of Intelligent Systems DOI 10.1002/int

ADDITIVE FUZZY SYSTEMS 39

= aj (x)VjpBj
(y)

∑m
k=1 wkak(x)Vk − aj (x)Vj

∑m
k=1 wkak(x)VkpBk

(y)(∑m
k=1 wkak(x)Vk

)2

(123)

= 1

wj

wjaj (x)Vj∑
k=1 wkak(x)Vk

pBj
(y)

− 1

wj

wjaj (x)Vj∑
k=1 wkak(x)Vk

∑
j=1 wjaj (x)VjpBj

(y)∑
k=1 wkak(x)Vk

(124)

= 1

wj

wjaj (x)Vj∑
k=1 wkak(x)Vk

pBj
(y) − pj (x)

wj

p(y|x) (125)

= 1

wj

pj (x)pBj
(y) − pj (x)

wj

p(y|x) (126)

= pj (x)

wj

[pBj
(y) − p(y|x)] (127)

using (63) for pj (x) and using (15) and (30) for pBj
(x). Put (127) in (120) to give

the result (121). �

An equivalent Bayesian version of (121) reveals a learning difference that
depends on the gap p(j |y, x) − pj (x) between the local posterior p(j |y, x) of
the j th rule or subsystem and the j th mixture weight pj (x). Corollary 1 gives
the equality pj (x)pBj

(y) = p(j |y, x)p(y|x). Then the learning term ∂p(y|x)
∂wj

has the
equivalent form

∂p(y|x)

∂wj

= p(y|x)

wj

[p(j |y, x) − pj (x)]. (128)

Mixture learning slows when pj (x) or p(y|x) are small. Mixture learning stops
when either pBj

(y) = p(y|x) or p(j |y, x) = pj (x) holds. All conditional moments
μ(k)(x) of p(y|x) admit similar learning laws. Their complexity increases directly
with k.

The simplest moment learning law occurs for the conditional expectation
F (x) = E[Y |X = x] when k = 1. These learning laws are the usual adaptive SAM
or ASAM learning laws.5,8,13 But they are just one of the infinitely many learning
laws that show how to adapt the moments of the general mixture density. Even the
conditional-variance learning laws are complicated. So we now present the learning
laws for only the first-moment case of k = 1.

We briefly review the ASAM learning laws as they apply to a single SAM
system F with m rules. They also apply to combined fuzzy systems. The error ε is
now the difference between the desired value of the first non-central moment and the
actual value of the first moment. The Moment Theorem implies that this is just the
difference between the sampled functional output f (x) and the actual fuzzy system

International Journal of Intelligent Systems DOI 10.1002/int

40 BART KOSKO

output F (x): ε = F (x) − f (x). Then the squared error SE in (116) becomes

SE = 1

2
(f (x) − F (x))2. (129)

The chain rule and some manipulation give the ASAM law to update the j th rule
weight wj :

wj (t + 1) = wj (t) + μtεt

pj (x)

wj

[cj − F (x)]. (130)

Learning depends on how the local rule output or centroid cj pulls against the global
system output F (x). Updating an independent then-part set volume Vj has the same
learning law as updating the rule weight wj in (130).

The volume learning law changes in the common case when the rule weight
depends on the then-part volume and vice versa. Then the partial derivative ∂F

∂Vj
in

∂SE
∂Vj

= ∂SE
∂F

∂F
∂Vj

expands as4,5

∂F

∂Vj

= μtεtpj (x)

(
1

Vj

+ 1

wj

∂wj

∂Vj

)
[cj − F (x)]. (131)

So ∂wj

∂Vj
= 0 holds when the rule weight wj does not depend on the j th rule’s then-part

set volume Vj . This case gives back the volume version of (130) where Vj every-
where replaces wj . Common practice sets the rule weights inversely proportional
to the then-part volumes: wj = 1

Vj
. Then such wider and thus less-certain then-part

sets have less overall weight in the additive combination of fired then-part sets. This
inverse weighting makes the rule weights wj cancel out the then-part volumes Vj

in the SAM convex coefficients pj (x) in (63). Then there is no learning law for the
then-part volumes. The learning term (131) confirms this because then 1

wj

∂wj

∂Vj
= − 1

Vj

in (131) and so ∂F
∂Vj

= 0. A more extreme weighting is the inverse-square weight

wj = 1
V 2

j

. Then 1
wj

∂wj

∂Vj
= −2 1

Vj
holds. So (131) gives the sign-changed learning

law

Vj (t + 1) = Vj (t) − μtεt

pj (x)

Vj

[cj − F (x)]. (132)

The ASAM learning law for the then-part centroid cj has the simplest form of
all the ASAM learning laws:

cj (t + 1) = cj (t) + μtεtpj (x). (133)

The centroid ASAM law resembles the least-mean-square learning law that underlies
the backpropagation algorithm for training multilayer neural networks.1

The ASAM learning laws for the if-part set functions aj : R
n → [0, 1] are the

most complex. They involve the bulk of the ASAM computational burden because

International Journal of Intelligent Systems DOI 10.1002/int

ADDITIVE FUZZY SYSTEMS 41

of their n-dimensional structure. Most if-part set functions factor into the n-fold
product of scalar fit values a1

j (x1) · · · an
j (xn) as in (4). Exceptions occur with non-

factorable ellipsoidal rules4 and related covariational rules based on thick-tailed
α-stable statistics.73 Entire families of metric-based rules are not factorable and
yet admit ASAM learning laws.8 We here ignore these exceptions and assume
that all if-part set functions factor in accord with (4). Each scalar if-part set function
ai

j : R → [0, 1] depends on one or more parameters mk
j such as a mean or a variance

or dispersion term. Then the key learning term ∂SE
∂mj

in the parameter learning law
(117) for the squared-error term SE in (129) involves four partial derivatives:

∂SE

∂mj

= ∂SE

∂F

∂F

∂aj

∂aj

∂ak
j

∂ak
j

∂mk
j

(134)

= ∂SE

∂F

∂F

∂aj

aj (x)

ak
j (xk)

∂ak
j

∂mk
j

(135)

because ∂aj

∂ak
j

= ∏n
l �=k al

j (xl) = aj (x)
ak

j (xk)
from the factorization (4). Then the user need

only expand the final partial derivative
∂ak

j

∂mk
j

to produce an ASAM learning law for a

factorable if-part set function aj of a given shape.
An important example for adaptive function approximation is the sinc set

function ak
j centered at mk

j with dispersion or width dk
j :ak

j (xk) = sin(
xk−mk

j

dk
j

)/(
xk−mk

j

dk
j

).

This nonmonotonic generalized set function takes values in [−.217, 1]. It also tends
to be the best shape set for function approximation given a wide range of test
functions when compared with a wide range of if-part set shapes.8 The ASAM sinc
laws5 for the two parameters mk

j and dk
j are

mk
j (t + 1) = mk

j (t) − μtεt

pj (x)

ak
j (xk)

[cj − F (x)]

(
ak

j (xk) − cos

(
xk − mk

j

dk
j

))
1

xk − mk
j

(136)

and

dk
j (t + 1) = dk

j (t) − μtεt

pj (x)

ak
j (xk)

[cj − F (x)]

(
ak

j (xk) − cos

(
xk − mk

j

dk
j

))
1

dk
j

.

(137)

There are several other ASAM learning laws.8,13 But they all involve sufficient
computational complexity to make tuning even a 4-D SAM system F : R

4 → R

difficult if not computationally infeasible. So the prospect of using such learning
laws to tune an uncountable rule continuum appears hopeless. The next section

International Journal of Intelligent Systems DOI 10.1002/int

42 BART KOSKO

uses the mixture structure of additive fuzzy systems to extend the rule base to rule
continua. It then uses Monte Carlo sampling to compute outputs.

4. FUZZY RULE CONTINUA

A simple change of rule index from the discrete index j to the continuous
index θ extends a finite or denumerable rule base to a continuum rule base or
rule continuum RB(θ). This holds for any well-behaved mixture density such as the
generalized mixture density p(y|x) in (16). Learning laws can also tune the mixture.
The discrete mixture naturally extends to an uncountable “compound”30

p(y|x) =
∫ θ=∞

θ=−∞
pθ (x) pBθ

(y|x) dθ (138)

so long as the integral exists. The integral will exist if either integrand pdf pθ or
pBθ

is bounded. We state and prove this continuous mixture result (138) below as
Theorem 6 in the special but important case of SAM rule factorization bθ (y|x) =
aθ (x)bθ (y) for real scalar rule index θ .

The scalar parameter θ picks out the rule RAθ→Bθ
as it ranges over the rule

continuum RC(θ) in the additive combination

b(y|x) =
∫

�

wθ bθ (y|x) dθ (139)

for θ ∈ � and rule weight wθ > 0. The index set � ⊂ R can be any nonempty
connected subset of the real line R or of R

n in the vector case. The vector case
requires � = (�1, . . . , �n) where �k is the scalar index for the kth integral.

The SAM rule firing bθ (y|x) still expands as in (10): bθ (y|x) = bθ (y)aθ (x)
where bθ : R → [0, 1] is the set function of the then-part fuzzy set Bθ ⊂ R and
aθ : R

n → [0, 1] is the set function of the if-part fuzzy set Aθ ⊂ R
n. So the fuzzy

structure remains and only the index changes.
We now show how to define a fuzzy rule continuum.
Consider a normal or Gaussian rule continuum GRB(θ) for a scalar parameter

θ . The rule RAθ→Bθ
has a vector-Gaussian if-part set function aθ : R

n → [0, 1] and
a scalar-Gaussian then-part set function bθ : R → R: aθ (·) = N (θ • 1, Kθ) and
bθ (y) = N (θ, σ 2). The term θ • 1 denotes the n-vector with all elements equal to
θ . Kθ is an n-by-n covariance matrix: Kθ = E[(x − E[x])(x − E[x])T] for column
vector x ∈ R

n. It equals the identity matrix in the simplest or “white” case.
Another way to define a rule continuum is to define the generalized mixture

p(y|x) that defines the continuous additive fuzzy system. We will show below how
to use this indirect approach to compute actual outputs F (x).

We first state and prove the basic mixture result for a SAM rule continuum.
The proof closely tracks the proof of Theorem 1 because it replaces the discrete rule
index j with the continuous rule index θ . The proof assumes that all integrals exist.
Then Fubini’s Theorem permits commutating the probabilistic integrals because the

International Journal of Intelligent Systems DOI 10.1002/int

ADDITIVE FUZZY SYSTEMS 43

integrands are nonnegative. All else is direct expansion and rearrangement as in the
finite case.

THEOREM 6. Generalized Mixture Theorem for a SAM Rule Continuum. Additive rule
combination (139) and SAM rule-firing factorization bθ (y|x) = aθ (x)bθ (y) define a
continuum mixture probability density p(y|x):

p(y|x) =
∫

�

pθ (x) pBθ
(y) dθ (140)

where the generalized mixture weights pθ (x) have the ratio form

pθ (x) = wθ Vθ aθ (x)∫
�

wλ Vλ aλ(x) dλ
. (141)

Proof. Normalize the additive rule firing b(y|x) in (139) by its finite integral and
expand:

p(y|x) = b(y|x)∫
R

b(y|x) dy
(142)

=
∫
�

wθ bθ (y|x) dθ∫
R

∫
�

wλ bλ(y|x) dλ dy
(143)

=
∫
�

wθ bθ (y|x) dθ∫
�

wλ

∫
R

bλ(y|x) dy dλ
(144)

=
∫
�

wθ aθ (x) bθ (y) dθ∫
�

wλ aλ(x)
∫

R
bλ(y) dy dλ

(145)

=
∫
�

wθ Vθ aθ (x)
(

bθ (y)
Vθ

)
dθ∫

�
wλ Vλ aλ(x)

∫
R

bλ(y)
Vλ

dy dλ
(146)

=
∫
�

wθ aθ (x) pBθ
(y) dθ∫

�
wλ Vλ aλ(x)

(∫
R

pBλ
(y) dy

)
dλ

(147)

=
∫

�

(
wθ Vθ aθ (x)∫

�
wλ Vλ aλ(x) dλ

)
pBθ

(y) dθ (148)

=
∫

�

pθ (x) pBθ
(y) dθ. (149)

�

The same argument extends the Moment Theorem (52) to the case of a rule

International Journal of Intelligent Systems DOI 10.1002/int

44 BART KOSKO

continuum for the kth central moment μ(k):

μ(k)(x) =
∫

�

pθ (x)
k∑

l=0

(
k

l

)
EBθ (x)[(Y − cθ (x))l] [cθ (x) − F (x)]k−l dθ (150)

if we replace the generalized mixture density p(y|x) in the expansion

μ(k) =
∫

R

(y − F (x))k p(y|x) dy (151)

with its rule-continuum version in (140). A related result holds for non-central
conditional moments.

Replacing the finite sums in the proof of Theorem 5 with finite integrals likewise
gives the rule-continuum version of the mixture supervised learning law for the rule
weights:

wθ (t + 1) = wθ (t) + μtεt

pθ (x)

wθ

[pBθ
(y) − p(y|x)] (152)

where once again the continuum-many convex coefficients pθ (x) obey the corre-
sponding rule-continuum version of (63). The same argument similarly extends the
supervised learning laws for the other parameters of the if-part and then-part fuzzy
sets in the rule base.

The mixture learning law (152) raises the basic problem of working with rule
continua: How can a practical system use such a learning law to tune the continuum-
many rules of the fuzzy system?

The normalizing integral in the convex coefficient pθ alone runs through the
entire rule continuum RB(θ) to compute the coefficient’s value for just one input x.
Such a system would have to approximate the integral and other terms as well as face
the inherent curse of dimensionality that affects all such learning laws. The same
problem holds for the ASAM laws that tune the parameters of the fuzzy system F
itself. The SAM learning laws (130)–(133) and (136)–(137) all require computing
the fuzzy-system output F (x) for each x. This computation is trivial in the finite
case but not so in the continuum case.

This raises the more immediate problem that we now address: How do we
compute the output value F (x) of a rule-continuum fuzzy system?

The fuzzy output F (x) depends on two finite integrals over the rule continuum
RB(θ):

F (x) =
∫

�

pθ (x) cθ dθ (153)

International Journal of Intelligent Systems DOI 10.1002/int

ADDITIVE FUZZY SYSTEMS 45

and

p(x) = aθ (x)wθVθ∫
�

aθ (x)wθ Vθ dθ
(154)

or as just the centroidal weighted average

F (x) =
∫
�

aθ (x)wθVθcθ dθ∫
�

aθ (x)wθ Vθ dθ
. (155)

The ratio (155) shows that computing a single output F (x) requires evaluating and
combining as many fuzzy-rule parameters as there are real numbers. This complexity
forces the use of approximation techniques in practice.

Monte Carlo simulation offers a practical way to compute the output expec-
tation Epθ (x)[�] for a given input x. This stochastic-estimation technique relies on
the weak law of large numbers (WLLN). The WLLN states that the sample-mean
random variable Xn = 1

n

∑n
k=1 Xk of independent and identically distributed finite-

variance random variables X1, X2, . . . converges in probability measure to the pop-
ulation mean E[X]: limn→∞ P (|Xn − E[X]| > ε) = 0 for all ε > 0. Monte Carlo
simulation interprets an ordinary definite integral

∫ b

a
g(x) dx as the expectation of

a random variable X that has a uniform distribution over (a, b)30:

∫ b

a

g(x) dx = (b − a)
∫ b

a

g(x)
dx

b − a
(156)

= (b − a)E[X] (157)

for X ∼ U (a, b). This famous trick of Von Neumann and Ulam74 avoids integrating
the integrand g(x). It requires computing only values of (b − a)g(xk) for random
uniform draws xk from (a, b). The random draws can come from any uniform
random number generator or from other pdfs in importance sampling. Then the
WLLN ensures that

1

n

n∑
k=1

(b − a)g(xk) ≈ (b − a)E[X] (158)

=
∫ b

a

g(x) dx (159)

for enough random draws xk . The variance in the WLLN estimate decreases linearly
with the number n of draws. So the standard error in the estimate decreases fairly
slowly with the inverse of the square root

√
n.75

Monte Carlo simulation can estimate the ratio of integrals involved in com-
puting the fuzzy system output F (x) in (153). Importance sampling replaces the
expectation of g(x) with respect to the pdf f with the expectation of g(x) f (x)

q(x) with
respect to some convenient positive pdf q. A more advanced technique is Markov

International Journal of Intelligent Systems DOI 10.1002/int

46 BART KOSKO

chain Monte Carlo or MCMC that works with correlated samples. MCMC estimates
F (x) by sampling from a reversible Markov chain whose equilibrium pdf has a first
moment that corresponds to the deterministic integral in question.75,76 Carefully
injected noise can speed up MCMC convergence just as it can speed up convergence
of the EM algorithm.54

We next present a related way to use Monte Carlo estimation to compute F (x)
in (153). This approach uses the additive fuzzy system’s generalized mixture p(y|x)
and inserts it into the non-central version of the moment integral in (151). Then

F (x) =
∫

R

y p(y|x) dy (160)

=
∫

R

y

∫
�

pθ (x) pBθ
(y) dθ dy (161)

=
∫

�

pθ (x)

[∫
R

y pBθ
(y) dy

]
dθ (162)

=
∫

�

pθ (x) cθ dθ (163)

=
∫

�

θ pθ (x) dθ (164)

= Epθ (x)[�] (165)

from (140) and (153) if θ = cθ in the rule continuum. This lets us sidestep the con-
tinuum complexity by using Monte Carlo to estimate (160) if we have an appropriate
closed form generalized mixture p(y|x).

Suppose we want to find the Gaussian rule continuum RB(θ) for a continuous
additive fuzzy system F so that F approximates the function f (x) = sin x. This can
be a daunting task if we must pick or tune all the rules in the continuum. We already
showed that a Watkins representation can exactly represent sin x with just two rules.
But we now want to approximate it by drawing rules from the virtual rule continuum.
Theorem 4 and (160)–(165) let us use ordinary Monte Carlo approximation of the
integral (160) for a given input x if we have an appropriate generalized mixture
density p(y|x).

Consider again the target function sin x. The bounded real function sin x has
infimum −1 and supremum 1. So we can mix two Gaussian pdfs centered at −1
and 1 in (92) and the make simple change of variable θ = cθ . This gives the exact
mixture representation for f (x) = sin x as

p(y|x) = 1 − sin x

2
pB1 (y) + sin x + 1

2
pB2 (y) (166)

= 1 − sin x

2

1√
2π

exp

[
− (y + 1)2

2

]
International Journal of Intelligent Systems DOI 10.1002/int

ADDITIVE FUZZY SYSTEMS 47

+ sin x + 1

2

1√
2π

exp

[
− (y − 1)2

2

]
(167)

for the two mixed unit-variance normal then-part pdfs pB1 (y) = N (−1, 1) and
pB2 (y) = N (1, 1).

Figure 3 shows three Monte Carlo approximations of the continuous additive
fuzzy system F that results from uniformly sampling from the sin x-based mixture
p(y|x) in (167). The target function sin x has domain [0, 2π]. The simulation dis-
cretizes [0, 2π] in increments of 0.01. Each simulation panel shows 629 values of
x in [0, 2π]. The first panel shows the results of picking 100 values of y at ran-
dom from the uniform distribution over (−1, 1) for each value of x. Monte Carlo
then takes the sample mean of these 100 sample values. The plot itself shows these
629 sample means. The second panel shows the same thing for 1,000 uniform ran-
dom samples. The third panel shows the finer approximation that results for 10,000
uniform samples at each of the 629 values of x. The final panel shows the slow
square-root decay of the average squared error. Each plotted value takes the average
of 10 runs for a given number of random draws. So each plotted value is just the
biased sample variance because it takes the average of 10 squared terms of the form
(F (x) − sin x)2.

The Monte Carlo approach does not depend on the source of the mixture. A user
can also create the controlling mixture p(y|x) from the EM GMM estimation tech-
nique in (110)–(114) or by informed guesswork. The key point is that Monte Carlo
techniques can estimate the output F (x) because the output equals an expectation.

The EM-GMM approach found only a crude approximation of sin x compared
with the Monte Carlo approximation in Figure 3. Simulations showed that the EM
estimates often suffered from overfitting with too many mixed Gaussian pdfs. The
best results used only 6 mixed Gaussian pdfs and thus used a number of mixed pdfs
that roughly corresponded to the main turning points or extrema of the approximand
f (x) = sin x. This also roughly resembled the optimal rule placement strategy that
“patches the bumps” or covers the extrema of the approximand f (x) with finite
rule patches. But the EM-GMM approach used only blind samples from sin x. The
approach did not require prior knowledge of the closed form of the approximand sin x
itself. This cruder mixture approximation scheme may be sufficient for applications
when the user has some sample data from the approximand f (x) but does not know
the form of the approximand f (x). It may even be sufficient when the user does not
know its general contours or the approximate location of its extrema and inflection
points.

Informed guesswork guides much of knowledge engineering. It may be the
only technique available when there is little or no representative sample data. Fuzzy
engineers often center input and output fuzzy sets where they want specific types
of control or system performance. The same technique applies to centering the
mixed pdfs of the mixture density p(y|x). The engineer might center the mixed pdfs
closer together in regions of the input space where he desires more precise control.
The fuzzy truck-backer-upper77 was an early example of such proximity control
using thin and wide fuzzy sets. It placed a small number of wide or narrow fuzzy
rule patches over the presumed system input-output function. The truck-and-trailer

International Journal of Intelligent Systems DOI 10.1002/int

48 BART KOSKO

system backed up to a loading dock in a parking lot. Closer and narrower if-part
sets near the loading dock gave finer control in the approach to the loading dock.
Only a few wide if-part sets covered the rest of the parking lot. These then-part sets
implicitly defined a generalized mixture density p(y|x) upon normalization by the
corresponding then-part set areas.

Casting rules in terms of mixed pdfs can mitigate rule explosion. The mixed
densities pBj

(y|x) act as meta-rules for the fuzzy system. But building the mixed
densities coordinate-wise with fuzzy sets results in the same rule explosion in the
input dimension n as results with building an ordinary rule base of if-then rules by
quantizing each of the n axes into two or more fuzzy sets or linguistic variables.

The fuzzy engineer can instead program the fuzzy system directly by picking or
estimating the generalized mixture p(y|x) to achieve some desired control effect or
local approximation as with the earlier truck backer-upper. The number m of mixed
densities need not grow exponentially with n. The number of mixed densities need
only grow as some polynomial of n. The number of mixed densities may grow only
linearly with n in practice in the GMM case of mixing multidimensional Gaussian
pdfs and then using EM to tune them.

The main complexity comes from the Monte Carlo approximation involved in
computing the outputs F (x). A sufficiently fine approximation may involve using so
many sampled rules from the rule continuum that the result is close to an exponential
rule explosion. Coarser approximations of F (x) should use fewer such rules. Clever
types of importance sampling should use fewer rules still. Whether this tradeoff
between the number m of mixed pdfs and the number of sampled rules from the
rule continuum is favorable will also depend both on the quality of the governing
mixture density p(y|x) and on the efficiency of the virtual-rule sampling scheme.

References

1. Kosko B. Neural networks and fuzzy systems. Prentice-Hall; 1991.
2. Kosko B. Fuzzy systems as universal approximators. IEEE T Comput 1994;43(11):1329–

1333.
3. Kosko B. Optimal fuzzy rules cover extrema. Int J Intell Syst 1995;10(2):249–255.
4. Dickerson JA, Kosko B. Fuzzy function approximation with ellipsoidal rules. IEEE T Syst

Man Cy B 1996;26(4):542–560.
5. Kosko B. Fuzzy engineering. Prentice-Hall; 1996.
6. Kosko B. Global stability of generalized additive fuzzy systems. IEEE T Syst Man Cy C

1998;28(3):441–452.
7. Kosko B, Isaka S. Fuzzy logic. Sci Am 1993;269(11):62–67.
8. Mitaim S, Kosko B. The shape of fuzzy sets in adaptive function approximation. IEEE T

Fuzzy Syst 2001;9(1):637–656.
9. Lee I, Kosko B, Anderson WF. Modeling gunshot bruises in soft body armor with an

adaptive fuzzy system. IEEE T Syst Man Cy B 2005;35(4):1374–1390.
10. Zadeh LA. Fuzzy sets. Inform Control 1965;8(3):338–353.
11. Zadeh LA. Outline of a new approach to the analysis of complex systems and decision

analysis. IEEE T Syst Man Cy 1973;3(1):28–44.
12. Zadeh LA. The concept of a linguistic variable and its application to approximate reasoning.

Inform Sciences 1975;8:199–249.
13. Osoba O, Mitaim S, Kosko B. Bayesian inference with adaptive fuzzy priors and likelihoods.

IEEE T Syst Man Cy B 2011;41(5):1183–1197.

International Journal of Intelligent Systems DOI 10.1002/int

ADDITIVE FUZZY SYSTEMS 49

14. Osoba O, Mitaim S, Kosko B. Triply fuzzy function approximation for hierarchical bayesian
inference. Fuzzy Optimization Decision Making 2012;11(3):241–268.

15. Jang J-S, Sun C-T. Functional equivalence between radial basis function networks and fuzzy
inference systems. IEEE T Neural Networ 1993;4(1):156–159.

16. Kosko B. Fuzzy associative memories. In: Fuzzy Expert Syst. CRC Press; 1991.
17. Lakkaraju H, Bach SH, Leskovec J. Interpretable decision sets: A joint framework for

description and prediction. In: Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. ACM; 2016. pp 1675–1684.

18. Sugeno M. An introductory survey of fuzzy control. Inform Sciences 1985;36(1):59–83.
19. Kahraman C, Gülbay M, Kabak Ö. Applications of fuzzy sets in industrial engineering: a

topical classification. In: Fuzzy applications in industrial engineering. Springer; 2006. pp
1–55.

20. Feng G. A survey on analysis and design of model-based fuzzy control systems. Fuzzy Syst,
IEEE T 2006;14(5):676–697.

21. Liao S-H. Expert system methodologies and applications: a decade review from 1995 to
2004. Expert Syst Appl 2005;28(1):93–103.

22. Kong S-G, Kosko B. Adaptive fuzzy systems for backing up a truck-and-trailer. Neural
Networ, IEEE T 1992;3(2):211–223.

23. Yager RR, Filev DP. Approximate clustering via the mountain method. Syst, Man and Cy,
IEEE T 1994;24(8):1279–1284.

24. Watkins FA. Fuzzy engineering. Ph.D. dissertation, University of California at Irvine; 1994.
25. Watkins F. The representation problem for additive fuzzy systems. In: Proceedings of the

International Conference on Fuzzy Systems (IEEE FUZZ-95); 1995. pp 117–122.
26. Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and

control. IEEE T Syst Man Cy 1985;1:116–132.
27. Sugeno M, Kang G. Structure identification of fuzzy model. Fuzzy Set Syst 1988;28(1):15–

33.
28. Redner RA, Walker HF. Mixture densities, maximum likelihood and the EM algorithm.

SIAM Review 1984;26(2):195–239.
29. McLachlan GJ, Peel D. Finite Mixture Models. ser. Wiley series in probability and statistics:

Applied probability and statistics. Wiley; 2004.
30. Hogg RV, McKean J, Craig AT. Introduction to mathematical statistics. Pearson; 2013.
31. Xu L, Jordan MI. On convergence properties of the em algorithm for gaussian mixtures.

Neural Computat 1996;8(1):129–151.
32. Moon TK. The expectation-maximization algorithm. IEEE Signal Proc Mag 1996;

13(6):47–60.
33. Russell SJ, Norvig P. Artificial intelligence: A modern approach. Prentice Hall; 2010.
34. Osoba O, Mitaim S, Kosko B. The noisy expectation–maximization algorithm. Fluctuat

Noise Lett 2013;12(3):1 350 012-1–1 350 012-30.
35. Audhkhasi K, Osoba O, Kosko B. “Noise benefits in backpropagation and deep bidirectional

pre-training. In: Proceedings of the 2013 International Joint Conference on Neural Networks
(IJCNN-2013), IEEE; 2013. pp 2254–2261.

36. Osoba O, Kosko B. The noisy expectation-maximization algorithm for multiplicative noise
injection. Fluctuat Noise Lett 2016;1650007.

37. Audhkhasi K, Osoba O, Kosko B. Noise-enhanced convolutional neural networks. Neural
Networ 2016;78:15–23.

38. Bandler W, Kohout L. Fuzzy power sets and fuzzy implication operators. Fuzzy Set Syst
1980;4(1):13–30.

39. Goguen JA. The logic of inexact concepts. Synthese 1969;19(3):325–373.
40. Gaines BR. Foundations of fuzzy reasoning. Int J Man-Mach Stud 1976;8:623–688.
41. Dubois D, Prade H. Fuzzy sets in approximate reasoning, part 1: Inference with possibility

distributions. Fuzzy Set Syst 1999;100:73–132.
42. Kandel A. Fuzzy mathematical techniques with applications. Addison-Wesley; 1986.
43. Klir GJ, Folger TA. Fuzzy sets, uncertainty, and information. Prentice Hall; 1988.

International Journal of Intelligent Systems DOI 10.1002/int

50 BART KOSKO

44. Zimmermann H-J. Fuzzy set theory and its applications. Springer Science & Business
Media; 2011.

45. Yager RR. On ordered weighted averging aggregation operators in multicriteria decision
making. IEEE T Syst Man Cy 1988;18(1):183–190.

46. Klement EP, Mesiar R, Pap E. “Triangular norms. position paper i: basic analytical and
algebraic properties. Fuzzy Set Syst 2004;143(1):5–26.

47. Terano T, Asai K, Sugeno M. Fuzzy systems theory and its applications. Academic Press
Professional, Inc.; 1992.

48. Anderson JA. A memory storage model utilizing spatial correlation functions. Kybernetik
1968;5(3):113–119.

49. Kohonen T. Correlation matrix memories. Comput, IEEE T 1972;100(4):353–359.
50. Anderson JA, Silverstein JW, Ritz SA, Jones RS. Distinctive features, categorical perception,

and probability learning: Some applications of a neural model. Psychol Rev 1977;84(5):413.
51. Kosko B. Bidirectional associative memories. Syst Man Cy IEEE T 1988;18(1):49–60.
52. Hopfield JJ. Neural networks and physical systems with emergent collective computational

abilities. P Natl Acad Sci 1982;79(8):2554–2558.
53. Brooks S, Gelman A, Jones G, Meng X-L. Handbook of Markov Chain Monte Carlo. CRC

Press; 2011.
54. Franzke B, Kosko B. Using noise to speed up markov chain monte carlo estimation. Procedia

Comput Sci 2015;53:113–120.
55. Kosko B. Fuzzy knowledge combination. Int J Intell Syst 1986;1(4):293–320.
56. Kreinovich V, Mouzouris GC, Nguyen HT. Fuzzy rule based modeling as a universal

approximation tool. In: Fuzzy systems. Springer; 1998. pp 135–195.
57. Munkres J. Topology, 2nd ed. Prentice Hall, Inc; 2000.
58. Kosko B. Fuzzy knowledge combination. Int J Intell Syst 1986;1(4):293–320.
59. Kosko B. Fuzzy cognitive maps. Int J Man-Mach Stud 1986;24(1):65–75.
60. Glykas M. editor. Fuzzy cognitive maps. Springer; 2010.
61. Papageorgiou E. Fuzzy Cognitive Maps for Applied Sciences and Engineering:

From Fundamentals to Extensions and Learning Algorithms. ser. Intelligent Sys-
tems Reference Library. Springer Berlin Heidelberg; 2013. [Online]. Available:
https://books.google.com/books?id=S3LGBAAAQBAJ

62. Osoba O, Kosko B. Fuzzy cognitive maps of public support for insurgency and terrorism. J
Defense Model Simulat 2017;14(1):17–32.

63. Rogova G. Combining the results of several neural network classifiers. Neural Networ
1994;7(5):777–781.

64. Kittler J, Hatef M, Duin RP, Matas J. On combining classifiers. IEEE T Pattern Anal
1998;20(3):226–239.

65. Tumer K, Ghosh J. Analysis of decision boundaries in linearly combined neural classifiers.
Pattern Recogn 1996;29(2):341–348.

66. Jordan MI, Jacobs RA. Hierarchical mixtures of experts and the em algorithm. Neural
Comput 1994;6(2):181–214.

67. Bishop CM. Pattern recognition and machine learning. Springer; 2006.
68. Masoudnia S, Ebrahimpour R. Mixture of experts: a literature survey. Artif Intell Rev

2014;42(2):275–293.
69. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the em

algorithm. J Roy Stat Soc B Met 1977;1–38.
70. Osoba O, Kosko B. Noise-enhanced clustering and competitive learning algorithms. Neural

Networ 2013;37:132–140.
71. Osoba O, Mitaim S, Kosko B. The noisy expectation–maximization algorithm. Fluctuat

Noise Lett 2013;12.
72. Duda RO, Hart PE, Stork DG. Pattern classification. John Wiley & Sons; 2012.
73. Kim HM, Kosko B. Fuzzy prediction and filtering in impulsive noise. Fuzzy Set Syst

1996;77(1):15–33.
74. von Neumann J, Ulam S. Monte Carlo method. National Bureau of Standards Applied

Mathematics Series 1951;12:36.

International Journal of Intelligent Systems DOI 10.1002/int

ADDITIVE FUZZY SYSTEMS 51

75. Brooks S, Gelman A, Jones G, Meng X-L. Handbook of Markov Chain Monte Carlo. CRC
Press; 2011.

76. Robert CP, Casella G. Monte Carlo statistical methods (Springer texts in statistics), 2nd ed.
Springer-Verlag; 2005.

77. Kong S-G, Kosko B. Adaptive fuzzy systems for backing up a truck-and-trailer. IEEE T
Neural Networ 1992;3(2):211–223.

International Journal of Intelligent Systems DOI 10.1002/int

