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Abstract—We extend backpropagation learning from ordi-
nary unidirectional training to bidirectional training of deep
multilayer neural networks. This gives a form of backward
chaining or inverse inference from an observed network output
to a candidate input that produced the output. The trained
network learns a bidirectional mapping and can apply to some
inverse problems. A bidirectional multilayer neural network can
exactly represent some invertible functions. We prove that a
fixed three-layer network can always exactly represent any finite
permutation function and its inverse. The forward pass computes
the permutation function value. The backward pass computes the
inverse permutation with the same weights and hidden neurons.
A joint forward-backward error function allows backpropagation
learning in both directions without overwriting learning in either
direction. The learning applies to classification and regression.
The algorithms do not require that the underlying sampled
function have an inverse. A trained regression network tends
to map an output back to the centroid of its pre-image set.

Index Terms—Backpropagation learning, backward chaining,
inverse problems, bidirectional associative memory, function
representation, and function approximation.

I. BIDIRECTIONAL BACKPROPAGATION

WE extend the familiar unidirectional backpropagation
(BP) algorithm [1]–[5] to the bidirectional case. Uni-

directional BP maps an input vector to an output vector by
passing the input vector forward through the network’s visible
and hidden neurons and its connection weights. Bidirectional
BP (B-BP) combines this forward pass with a backward pass
through the same neurons and weights. It does not use two
separate feedforward or unidirectional networks.

B-BP training endows a multilayered neural network
N : Rn → Rp with a form of backward inference. The forward
pass gives the usual predicted neural output N(x) given a
vector input x. The output vector value y = N(x) answers
the what-if question that x poses: What would we observe if
x occurred? What would be the effect? The backward pass
answers the why question that y poses: Why did y occur?
What type of input would cause y? Feedback convergence to
a resonating bidirectional fixed-point attractor [6], [7] gives a
long-term or equilibrium answer to both the what-if and why
questions. This paper does not address the global stability of
multilayered bidirectional networks.

Bidirectional neural learning applies to large-scale problems
and big data because the BP algorithm scales linearly with
training data. BP has time complexity O(n) for n training
samples because its forward pass has complexity O(1) while
its backward pass has complexity O(n). So the B-BP algo-
rithm still has O(n) complexity because O(n)+O(n) = O(n).
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Fig. 1: Exact bidirectional representation of a permutation map.
The 3-layer bidirectional threshold network exactly represents the
invertible 3-bit bipolar permutation function f in Table I. The network
uses 4 hidden neurons. The forward pass takes the input bipolar vector
x at the input layer and feeds it forward through the weighted edges
and the hidden layer of threshold neurons to the output layer. The
backward pass feeds the output bipolar vector y back through the same
weights and neurons. All neurons are bipolar and use zero thresholds.
The bidirectional network computes y = f(x) on the forward pass. It
computes the inverse value f−1(y) on the backward pass.

This linear scaling does not hold for most machine-learning
algorithms. An example is the quadratic complexity O(n2) of
support-vector kernel methods [8].

We first show that multilayer bidirectional networks have
sufficient power to exactly represent permutation mappings.
These mappings are invertible and discrete. Then we develop
the B-BP algorithms that can approximate these and other
mappings if the networks have enough hidden neurons.

A neural network N exactly represents a function f just in
case N(x) = f(x) for all input vectors x. Exact representation
is much stronger than the more familiar property of function
approximation: N(x) ≈ f(x). Feedforward multilayer neural
networks can uniformly approximate continuous functions on
compact sets [9], [10]. Additive fuzzy systems are also uniform
function approximators [11]. But additive fuzzy systems have
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the further property that they can exactly represent any real
function if it is bounded [12]. This exact representation needs
only two fuzzy rules because the rules absorb the function
into their fuzzy sets. This holds more generally for generalized
probability mixtures because the fuzzy rules define the mixed
probability densities [13], [14].

Figures 1 and 2 show bidirectional 3-layer networks of zero-
threshold neurons. Both networks exactly represent the 3-bit
permutation function f in Table I where {−,−,+} denotes
{−1,−1, 1}. So f is a self-bijection that rearranges the 8 vec-
tors in the bipolar hypercube {−1, 1}3. This f is just one of the
8! or 40,320 permutation maps or rearrangements on the bipo-
lar hypercube {−1, 1}3. The forward pass converts the input
bipolar vector (1, 1, 1) to the output bipolar vector (−1,−1, 1).
The backward pass converts (−1,−1, 1) to (1, 1, 1) over the
same fixed synaptic connection weights. These same weights
and neurons similarly convert the other 7 input vectors in the
first column of Table 1 to the corresponding 7 output vectors
in the second column and vice versa.

Theorem 1 states that a multilayer bidirectional network
can exactly represent any finite bipolar or binary permutation
function. This result requires a hidden layer with 2n hidden
neurons for an n-bit permutation function on the bipolar
hypercube {−1, 1}n. Figure 3 shows such a network. Using so
many hidden neurons is not practical or necessary in most real-
world cases. The exact bidirectional representation in Figure
1 uses only 4 hidden threshold neurons to represent the 3-
bit permutation function. This was the smallest hidden layer
that we found through guesswork. Many other bidirectional
representations also use fewer than 8 hidden neurons.

We seek instead a practical learning algorithm that can
learn bidirectional approximations from sample data. Figure
2 shows a learned bidirectional representation of the same 3-
bit permutation in Table I. It uses only 3 hidden neurons. The
B-BP algorithm tuned the neurons’ threshold values as well as
their connection weights. All the learned threshold values were
near zero. We rounded them to zero to achieve the bidirectional
representation with just 3 hidden neurons.

The rest of the paper derives the B-BP algorithm for
regression and classification in both directions and for mixed
classification-regression. This takes some care because training
the weights in one direction tends to overwrite their BP
training in the other direction. The B-BP algorithm solves this
problem by minimizing a joint error function. The lone error
function is cross entropy for unidirectional classification. It is
squared error for unidirectional regression. Figure 4 compares
ordinary BP training and overwriting with B-BP training.

The learning approximation tends to improve if we add
more hidden neurons. Figure 5 shows that the B-BP training
cross-entropy error falls as the number of hidden neurons
grows when learning the 5-bit permutation in Table 2.

Figure 6 shows a deep 8-layer bidirectional approximation
of the nonlinear function f(x) = 0.5σ(6x+3)+0.5σ(4x−1.2)
and its inverse. The network used 6 hidden layers with 10 bipo-
lar logistic neurons per layer. A bipolar logistic activation σ
scales and translates an ordinary unit-interval-valued logistic:

σ(x) =
2

1 + e−x
− 1 . (1)
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Fig. 2: Learned bidirectional representation of the 3-bit permutation
in Table I. The bidirectional backpropagation algorithm found this
representation using the double-classification learning laws of Section
3. It used only 3 hidden neurons. All the neurons were bipolar and had
zero thresholds. Zero thresholding gave an exact representation of the
3-bit permutation.

The final sections show that similar B-BP algorithms
hold for training double-classification networks and mixed
classification-regression networks. The B-BP learning laws
are the same for regression and classification subject to these
conditions: Regression minimizes squared error and uses iden-
tity output neurons. Classification minimizes cross entropy
and uses softmax output neurons. Both cases maximize the
network likelihood or log-likelihood function. Logistic input
and output neurons give the same B-BP learning laws if the
network minimizes the bipolar cross entropy in (114).

B-BP learning also approximates non-invertible functions.
The algorithm tends to learn the centroid of many-to-one
functions. Suppose that the target function f : Rn → Rp is
not one-to-one or injective. So it has no inverse f−1 point
mapping. But it does have a set-valued inverse or pre-image
pullback mapping f−1 : 2R

p → 2R
n

such that f−1(B) = {x ∈
Rn : f(x) ∈ B} for any B ⊂ Rp. Suppose that the n input
training samples x1, . . . , xn map to the same output training
sample y: f−1({y}) = {x1, . . . , xn}. Then B-BP learning
tends to map y to the centroid x̄ of f−1({y}) because the
centroid minimizes the mean-squared error of regression.

Figure 7 shows such an approximation for the non-invertible
target function f(x) = sinx. The forward regression ap-
proximates sinx. The backward regression approximates the
average or centroid of the two points in the pre-image set
of y = sinx. Then f−1({y}) = sin−1(y) = {θ, π − θ} for
0 < θ < π

2 if 0 < y < 1. This gives the pullback’s centroid
as π

2 . The centroid equals −π2 if −1 < y < 0.
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Bidirectional BP differs from earlier neural approaches to
approximating inverses. Marks et al. developed an inverse
algorithm for query-based learning in binary classification
[15]. Their BP-based algorithm is not bidirectional. It instead
exploits the data-weight inner-product input to neurons. It
holds the weights constant while it tunes the data for a given
output. Wunsch et al. have applied this inverse algorithm to
problems in aerospace and elsewhere [16], [17]. Bidirectional
BP also differs from the more recent bidirectional extreme-
learning-machine algorithm that uses a two-stage learning
process but in a unidirectional network [18].

II. BIDIRECTIONAL EXACT REPRESENTATION OF
BIPOLAR PERMUTATIONS

This section proves that there exists multilayered neural
networks that can exactly bidirectionally represent some in-
vertible functions. We first define the network variables. The
proof uses threshold neurons. The B-BP algorithms below use
soft-threshold logistic sigmoids for hidden neurons.

A bidirectional neural network is a multilayer network
N : X → Y that maps the input space X to the output
space Y and conversely through the same set of weights.
The backward pass uses the matrix transposes of the weight
matrices that the forward pass uses. Such a network is a
bidirectional associative memory or BAM [6], [7]. The original
BAM Theorem [6] states that any two-layer neural network is
globally bidirectionally stable for any sole rectangular weight
matrix W with real entries.

The forward pass sends the input vector x through the
weight matrix W that connects the input layer to the hidden
layer. The result passes on through matrix U to the output
layer. The backward pass sends the output y from the output
layer back through the hidden layer to the input layer. Let
I, J, and K denote the respective numbers of input, hidden,
and output neurons. Then the I × J matrix W connects the
input layer to the hidden. The J ×K matrix U connects the
hidden layer to the output layer.

TABLE I: 3-Bit Bipolar Permutation Function f

Input x Output t

[+ + +] [−−+]
[+ +−] [−++]
[+−+] [+ + +]
[+−−] [+−+]
[−++] [−+−]
[−+−] [−−−]
[−−+] [+−−]
[−−−] [+ +−]

The hidden-neuron input ohj has the affine form

ohj =

I∑
i=1

wija
x
i (xi) + bhj (2)

where weight wij connects the ith input neuron to the jth

hidden neuron, axi is the activation of the ith input neuron,
and bhj is the bias of the jth hidden neuron. The activation ahj

of the jth hidden neuron is a bipolar threshold:

ahj (ohj ) =

{
−1 if ohj ≤ 0

1 if ohj > 0 .
(3)

The B-BP algorithm in the next section uses soft-threshold
bipolar logistic functions for the hidden activations because
such sigmoid functions are differentiable. The proof below
also modifies the hidden thresholds to take on binary values
in (14) and to fire with a slightly different condition.

The input oyk to the kth output neuron from the hidden layer
is also affine:

oyk =

J∑
j=1

ujka
h
j + byk (4)

where weight ujk connects the jth hidden neuron to the kth

output neuron. Term byk is the additive bias of the kth output
neuron. The output activation vector ay gives the predicted
outcome or target on the forward pass. The kth output neuron
has bipolar threshold activation ayk:

ayk(oyk) =

{
−1 if oyk ≤ 0

1 if oyk > 0 .
(5)

The forward pass of an input bipolar vector x from Table
I through the network in Figure 1 gives an output activation
vector ay that equals the table’s corresponding target vector y.
The backward pass feeds y from the output layer back through
the hidden layer to the input layer. Then the backward-pass
input ohbj to the jth hidden neuron is

ohbj =

K∑
k=1

ujka
y
k(yk) + bhj (6)

where yk is the output of the kth output neuron. The term ayk
is the activation of the kth output neuron. The backward-pass
activation of the jth hidden neuron ahbj is

ahbj (ohbj ) =

{
−1 if ohbj ≤ 0

1 if ohbj > 0 .
(7)

The backward-pass input oxbi to the ith input neuron is

oxbi =

J∑
j=1

wija
hb
j + bxi (8)

where bxi is the bias for the ith input neuron. The input-layer
activation ax gives the predicted value for the backward pass.
The ith input neuron has bipolar activation

axbi (oxbi ) =

{
−1 if oxbi ≤ 0

1 if oxbi > 0 .
(9)

We can now state and prove the bidirectional representation
theorem for bipolar permutations. The theorem also applies
to binary permutations because the input and output neurons
have bipolar threshold activations.

Theorem 1: Exact Bidirectional Representation of Bipolar
Permutation Functions. Suppose that the invertible
function f : {−1, 1}n → {−1, 1}n is a permutation.
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Then there exists a 3-layer bidirectional neural network
N : {−1, 1}n → {−1, 1}n that exactly represents f in the
sense that N(x) = f(x) and that N−1(x) = f−1(x) for all
x. The hidden layer has 2n threshold neurons.

Proof: The proof constructs weight matrices W and U so
that exactly one hidden neuron fires on both the forward and
the backward passes. Figure 3 shows the proof technique for
the special case of a 3-bit bipolar permutation. We structure
the network so that an input vector x fires only one hidden
neuron on the forward pass. The output vector y = N(x) fires
only the same hidden neuron on the backward pass.

The bipolar permutation f is a bijective map of the
bipolar hypercube {−1, 1}n onto itself. The bipolar hy-
percube contains the 2n input bipolar column vectors
x1,x2, . . . ,x2n . It likewise contains the 2n output bipolar
vectors y1,y2, . . . ,y2n . The network uses 2n corresponding
hidden threshold neurons. So J = 2n.

Matrix W connects the input layer to the hidden layer.
Matrix U connects the hidden layer to the output layer.
Define W so that its columns list all 2n bipolar input vectors.
Define U so that the columns of its transpose UT list all 2n

transposed bipolar output vectors:

W =
[
x1 x2 . . . x2n

]

UT =
[
y1 y2 . . . y2n

]
.

We show next both that these weight matrices fire only one
hidden neuron and that the forward pass of any input vector xn

gives the corresponding output vector yn. Assume that each
neuron has zero bias.

Pick a bipolar input vector xm for the forward pass. Then
the input activation vector ax(xm) = (ax1(x1m), . . . , axn(xnm))
equals the input bipolar vector xm because the input activa-
tions (9) are bipolar threshold functions with zero threshold.
So ax equals xm because the vector space is bipolar {−1, 1}n.

The hidden layer input oh is the same as (2). It has the
matrix-vector form

oh = WTax (10)

= WTxm (11)

= (oh1 , o
h
2 , ..., o

h
n, ..., o

h
2n)

T
(12)

= (xT1 xm, xT2 xm, . . . , xTj xm, ..., xT2nxm)
T

(13)

since ohj is the inner product of the bipolar vectors xj and xm
from the definition of W.

The input ohj to the jth neuron of the hidden layer obeys
ohj = n when j = m . It obeys ohj < n when j 6= m . This holds
because the vectors xj are bipolar with scalar components
in {−1, 1}. The magnitude of a bipolar vector in {−1, 1}n
is
√
n. The inner product xTj xm is a maximum when both

vectors have the same direction. This occurs when j = m .
The inner product is otherwise less than n . Figure 3 shows
a bidirectional neural network that fires just the sixth hidden

neuron. The weights for the network in Figure 3 are

W =

1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1



UT =

−1 −1 1 1 −1 −1 1 1
−1 1 1 −1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1


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Fig. 3: Bidirectional network structure for the proof of Theorem 1.
The input and output layers have n threshold neurons. The hidden layer
has 2n neurons with threshold values of n. The 8 fan-in 3-vectors of
weights in W from the input to the hidden layer list the 23 elements
of the bipolar cube {−1, 1}3. So they list the 8 vectors in the input
column of Table I. The 8 fan-in 3-vectors of weights in U from the
output to the hidden layer list the 8 bipolar vectors in the output column
of Table I. The threshold value for the sixth and highlighted hidden
neuron is 3. Passing the sixth input vector (-1, 1, -1) through W leads
to the hidden-layer vector (0, 0, 0, 0, 0, 1, 0, 0) of thresholded values.
Passing this 8-bit vector through U produces after thresholding the
sixth output vector (-1, -1, -1) in Table I. Passing this output vector
back through the transpose of U produces the same unit bit vector of
thresholded hidden-unit values. Passing this vector back through the
transpose of W produces the original bipolar vector (−1, 1,−1).

Now comes the key step in the proof. Define the hidden
activation ahj as a binary (not bipolar) threshold function where
n is the threshold value:

ahj (ohj ) =

{
1 if ohj ≥ n

0 if ohj < n .
(14)
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Then the hidden-layer activation ah is the unit bit vector
(0, 0, ..., 1, ..., 0)

T where ahj = 1 when j = m and where
ahj = 0 when j 6= m . This holds because all 2n bipolar vectors
xm in {−1, 1}n are distinct. So exactly one of these 2n vectors
achieves the maximal inner-product value n = xTmxm. So
ahj (ohj ) = 0 for j 6= m and ahm(ohm) = 1. The bidirectional
network in Figure 3 represents the 3-bit bipolar permutation
in Table I.

The input vector oy to the output layer is

oy = UT ah (15)

=

J∑
j=1

yj a
h
j (16)

= ym (17)

where ahj is the activation of the jth hidden neuron. The
activation ay of the output layer is

ay(oyj ) =

{
1 if oyj ≥ 0
−1 if oyj < 0 .

(18)

The output layer activation leaves oy unchanged because
oy equals ym and because ym is a vector in {−1, 1}n. So

ay = ym . (19)

So the forward pass of an input vector xm through the network
yields the desired corresponding output vector ym if ym =
f(xm) for the bipolar permutation map f .

Consider next the backward pass through the network N .
The backward pass propagates the output vector ym through
the hidden layer back to the input layer. The hidden layer input
ohb has the same inner-product form as in (6):

ohb = U ym (20)

where ohb = (yT1 ym, yT2 ym, ..., yTj ym, ..., yT2nym)
T .

The input ohbj of the jth neuron in the hidden layer equals
the inner product of yj and ym. So ohbj = n when j = m .
But now ohbj < n when j 6= m . This holds because again the
magnitude of a bipolar vector in {−1, 1}n is

√
n. The inner

product ohbj is a maximum when vectors ym and yj lie in the
same direction. The activation ahb for the hidden layer has the
same components as in (14). So the hidden-layer activation
ahb again equals the unit bit vector (0, 0, ..., 1, ..., 0)

T

where ahbj = 1 when j = m and ahbj = 0 when j 6= m .

Then the input vector oxb for the input layer is

oxb = W ahb (21)

=

J∑
j=1

xj ahb (22)

= xm . (23)

The ith input neuron has a threshold activation that is the
same as

axbi (oxbi ) =

{
1 if oxbi ≥ 0
−1 if oxbi < 0

(24)

where oxbi is the input of ith neuron in the input layer. This
activation leaves oxb unchanged because oxb equals xm and
because the vector xm lies in {−1, 1}n. So

axb = oxb (25)
= xm . (26)

So the backward pass of any target vector ym yields the
desired input vector xm if f−1(ym) = xm. This completes
the backward pass and the proof. �

III. BIDIRECTIONAL BACKPROPAGATION
ALGORITHMS

A. Double Regression

We now derive the first of three bidirectional BP learning
algorithms. The first case is double regression where the
network performs regression in both directions.

Bidirectional BP training minimizes both the forward error
Ef and backward error Eb. B-BP alternates between backward
training and forward training. Forward training minimizes Ef
while holding Eb constant. Backward training minimizes Eb
while holding Ef constant. Ef is the error at the output layer.
Eb is the error at the input layer. Double regression uses
squared error for both error functions.

The forward pass sends the input vector x through the
hidden layer to the ouput layer. The network uses only one
hidden layer for simplicity and with no loss of generality. The
B-BP double-regression algorithm applies to any number of
hidden layers in a deep network.

The hidden-layer input values ohj are the same as in (2).
The jth hidden activation ahj is the binary logistic map:

ahj (ohj ) =
1

1 + e−o
h
j

(27)

where (4) gives the input oyk to the kth output neuron. The
hidden activations can be logistic or any other sigmoidal
function so long as they are differentiable. The activation for
an output neuron is the identity function:

ayk = oyk (28)

where ayk is the activation of kth output neuron.
The error function Ef for the forward pass is squared error:

Ef =
1

2

K∑
k=1

(yk − ayk)2 (29)

where yk denotes the value of the kth neuron in the output
layer. Ordinary unidirectional BP updates the weights and
other network parameters by propagating the error from the
output layer back to the input layer.

The backward pass sends the output vector y through the
hidden layer to the input layer. The input to the jth hidden
neuron ohbj is the same as in (6). The activation ahbj for the
jth hidden neuron is

ahbj =
1

1 + e−o
hb
j

. (30)
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The input oxi for the ith input neuron is the same as (8). The
activation at the input layer is the identity function:

axbi (oxbi ) = oxbi . (31)

A nonlinear sigmoid (or Gaussian) activation can replace the
linear function.

The backward-pass error Eb is also squared error:

Eb =
1

2

I∑
i=1

(xi − axi )2 . (32)

The partial derivative of the hidden-layer activation in the
forward direction is

∂ahj
∂ohj

=
∂

∂ohj

( 1

1 + e−o
h
j

)
(33)

=
e−o

h
j

(1 + e−o
h
j )2

(34)

=
1

1 + e−o
h
j

[
1− 1

1 + e−o
h
j

]
(35)

= ahj (1− ahj ) . (36)

Let ahj
′

denote the derivative of ahj with respect to the inner-
product term ohj . We again use the superscript b to denote the
backward pass.

The partial derivative of Ef with respect to the weight ujk
is

∂Ef
∂ujk

=
1

2

∂

∂ujk

K∑
k=1

(yk − ayk)2 (37)

=
∂Ef
∂ayk

∂ayk
∂oyk

∂oyk
∂ujk

(38)

= (ayk − yk)ahj . (39)

The partial derivative of Ef with respect to wij is

∂Ef
∂wij

=
1

2

∂

∂wij

K∑
k=1

(yk − ayk)2 (40)

=
( K∑
k=1

∂Ef
∂ayk

∂ayk
∂oyk

∂oyk
∂ahj

) ∂ahj
∂ohj

∂ohj
∂wij

(41)

=

K∑
k=1

(ayk − yk)ujk a
h
j

′

xi (42)

where ah
j

′

is the same as in (36). The partial derivative of Ef
with respect to the bias byk of the kth output neuron is

∂Ef
∂byk

=
1

2

∂

∂byk

K∑
k=1

(yk − ayk)2 (43)

=
∂Ef
∂ayk

∂ayk
∂oyk

∂oyk
∂byk

(44)

= ayk − yk . (45)

The partial derivative of Ef with respect to the bias bhj of
the jth hidden neuron is

∂Ef
∂bhj

=
1

2

∂

∂bhj

K∑
k=1

(yk − ayk)2 (46)

=
( K∑
k=1

∂Ef
∂ayk

∂ayk
∂oyk

∂oyk
∂ahj

) ∂ahj
∂ohj

∂ohj
∂bhj

(47)

=

K∑
k=1

(ayk − yk)ujka
h
j

′

(48)

where ah
j

′

is the same as in (36).
The partial derivative of the hidden-layer activation ahbj in

the backward direction is

∂ahbj
∂ohbj

=
∂

∂ohbj

( 1

1 + e−o
hb
j

)
(49)

=
e−o

hb
j

(1 + e−o
hb
j )2

(50)

=
1

1 + e−o
hb
j

[
1− 1

1 + e−o
hb
j

]
(51)

= ahbj (1− ahbj ) . (52)

The partial derivative of Eb with respect to wij is

∂Eb
∂wij

=
1

2

∂

∂wij

K∑
k=1

(xi − axbi )2 (53)

=
∂Eb
∂axbi

∂axbi
∂oxbi

∂oxbi
∂wij

(54)

= (axbi − xi)ahbj . (55)

The partial derivative of Eb with respect to ujk is

∂Eb
∂ujk

=
1

2

∂

∂ujk

I∑
i=1

(xi − axbi )2 (56)

=
( I∑
i=1

∂Eb
∂axbi

∂axbi
∂oxbi

∂oxbi
∂ahbj

) ∂ahbj
∂ohbj

∂ohbj
∂ujk

(57)

=

I∑
i=1

(axbi − xi)wijahbj
′

yk (58)

where ahb
j

′

is the same as in (52).
The partial derivative of Eb with respect to the bias bxi of

ith input neuron is

∂Eb
∂bxi

=
1

2

∂

∂bxi

I∑
i=1

(xi − axbi )2 (59)

=
∂Eb
∂axbi

∂axbi
∂oxbi

∂oxbi
∂bxi

(60)

= axbi − xi . (61)

The partial derivative of Eb with respect to the bias bhj of jth
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hidden neuron is

∂Eb
∂bhj

=
1

2

∂

∂bhj

I∑
i=1

(xi − axbi )2 (62)

=
( I∑
i=1

∂Eb
∂axbi

∂axbi
∂oxbi

∂oxbi
∂ahbj

) ∂ahbj
∂ohbj

∂ohbj
∂bhj

(63)

=

I∑
i=1

(axbi − xi)wijahbj
′

(64)

where ahb
j

′

is the same as in (52).
The error function at the input layer is the backward-pass

error Eb. The error function at the output layer is the forward-
pass error Ef .

The above update laws for forward regression have the final
form (for learning rate η > 0):

u
(n+1)
jk = u

(n)
jk − η(ayk − yk)ahj (65)

w
(n+1)
ij = w

(n)
ij − η

( K∑
k=1

(ayk − yk)ujka
h
j

′

xi

)
(66)

bhj
(n+1)

= bhj
(n) − η

( K∑
k=1

(ayk − yk)ujka
h
j

′)
(67)

byk
(n+1)

= byk
(n) − η(ayk − yk) . (68)

The dual update laws for backward regression have the final
form:

u
(n+1)
jk = u

(n)
jk − η

( I∑
i=1

(axbi − xi)wijahbj
′

yk

)
(69)

w
(n+1)
ij = w

(n)
ij − η(axbi − xi)a

yb
j (70)

bxi
(n+1) = bxi

(n) − η(axbi − xi) (71)

bhj
(n+1)

= bhj
(n) − η

( I∑
i=1

(axbi − xi)wijahbj
′)
. (72)

B-BP training minimizes Ef while holding Eb constant.
It then minimizes Eb while holding Ef constant. Equations
(65)−(68) state the update rules for forward training. Equa-
tions (69)−(72) state the update rules for backward training.
Each training iteration involves forward training and then
backward training.

Algorithm 1 summarizes the B-BP algorithm. It shows how
to combine forward and backward training in B-BP. Figure 6
shows how double-regression B-BP approximates the invert-
ible function f(x) = 0.5σ(6x + 3) + 0.5σ(4x − 1.2) if σ(x)
denotes the bipolar logistic function in (1). The approximation
used a deep 8-layer network with 6 layers of 10 bipolar logistic
neurons each. The input and output layer each contained only
a single identity neuron.

B. Double Classification

We now derive a B-BP algorithm where the network’s
forward pass acts as a classifier network and so does its
backward pass. We call this double classification.

We present the derivation in terms of cross entropy for
the sake of simplicity. Our double-classification simulations

used the slightly more general form of cross entropy in
(114) that we call logistic cross entropy. The simpler cross-
entropy derivation applies to softmax input neurons and output
neurons (with implied 1-in-K coding). Logistic input and
output neurons require logistic cross entropy for the same BP
derivation because then the same final BP partial derivatives
result.

The simplest double-classification network uses Gibbs or
softmax neurons at both the input and output layers. This
creates a winner-take-all structure at those layers. Then the
kth softmax neuron in the output layer codes for the kth input
pattern. The output layer represents the pattern as a K-length
unit bit vector with a ‘1’ in the kth slot and a ‘0’ in the other
K − 1 slots [3], [19]. The same 1-in-I binary encoding holds
for the ith neuron at the input layer. The softmax structure
implies that the input and output fields each compute a discrete
probability distribution for each input.

Classification networks differ from regression networks in
another key aspect: They do not minimize squared error. They
instead minimize the cross entropy of the given target vector
and the softmax activation values of the output or input layers
[3]. Equation (79) states the forward cross entropy at the output
layer if yk is the desired or target value of the kth output
neuron. Then ayk is its actual softmax activation value. The
entropy structure applies because both the target vector and the
input and output vectors are probability vectors. Minimizing
the cross entropy maximizes the Kullback-Leibler divergence
[20] and vice versa [19].

The classification BP algorithm depends on another opti-
mization equivalence: Minimizing the cross entropy is equiva-
lent to maximizing the network’s likelihood or log-likelihood
[19]. We will establish this equivalence because it implies that
the BP learning laws have the same form for both classification
and regression. We will prove the equivalence for only the
forward direction. It applies equally in the backward direction.
The result unifies the BP learning laws. It also allows carefully
selected noise to enhance the network likelihood because BP
is a special case [19], [21] of the Expectation-Maximization
algorithm for iteratively maximizing a likelihood with missing
data or hidden variables [22].

Denote the network’s forward probability density function
as pf (y|x,Θ). The vector Θ lists all parameters in the
network. The input vector x passes through the multilayer
network and produces the output vector y. Then the network’s
forward likelihood Lf (Θ) is the natural logarithm of the
forward network probability: Lf (Θ) = ln pf (y|x,Θ).

We will show that pf (y|x,Θ) = exp{−Ef (Θ)}. So BP’s
forward pass computes the forward cross entropy as it maxi-
mizes the likelihood [19].

The key assumption is that output softmax neurons in a clas-
sifier network are independent because there are no intra-layer
connections among them. Then the network probability density
pf (y|x,Θ) factors into a product of K-many marginals [3]:
pf (y|x,Θ) =

∏K
k=1 pf (yk|x,Θ). This gives



8

Lf (Θ) = ln pf (y|x,Θ) (73)

= ln

K∏
k=1

pf (yk|x,Θ) (74)

= ln

K∏
k=1

(ayk)yk (75)

=

K∑
k=1

yk ln ayk (76)

= −Ef (Θ) (77)

from (79) since y is a 1-in-K-encoded unit bit vector. Then
exponentiation gives pf (y|x,Θ) = exp{−Ef (Θ)}. Minimiz-
ing the forward cross entropy Ef is equivalent to maximizing
the negative cross entropy −Ef . So minimizing Ef maximizes
the forward network likelihood L and vice versa.

The third equality (75) holds because the kth marginal factor
pf (yk|x,Θ) in a classifier network equals the exponentiated
softmax activation (atk)yk . This holds because yk = 1 if k
is the correct class label for the input pattern x and yk = 0
otherwise. This discrete probability vector defines an output
categorical distribution. It is a single-sample multinomial.

We now derive the B-BP algorithm for double classification.
The algorithm minimizes the error functions separately where
Ef (Θ) is the forward cross entropy in (75) and Eb(Θ) is the
backward cross entropy in (81). We first derive the forward B-
BP classifier algorithm. We then derive the backward portion
of the B-BP double-classification algorithm.

The forward pass sends the input vector x through the
hidden layer or layers to the output layer. The input activation
vector ax is the vector x.

We assume only one hidden layer for simplicity. The
derivation applies to deep networks with any number of hidden
layers. The input to the j th hidden neuron oh

j has the same
linear form as in (2). The j th hidden activation ah

j is the
same ordinary unit-interval-valued logistic function in (27).
The input oyk to the kth output neuron is the same as in (4).
The hidden activations can also be hyperbolic tangents or any
other bounded monotone nondecreasing functions.

The forward classifier’s output-layer neurons use Gibbs or
softmax activations:

ayk =
e(o

y
k)∑K

l=1 e
(oyl )

(78)

where ay
k is the activation of the k th output neuron. Then the

forward error Ef is the cross entropy

Ef = −
K∑
k=1

yk ln ayk (79)

between the binary target values yk and the actual output
activations ayk.

We next describe the backward pass through the classifier
network. The backward pass sends the output target vector
y through the hidden layer to the input layer. So the initial
activation vector ay equals the target vector y. The input to

the j th neuron of the hidden layer ohb
j has the same linear

form as (6). The activation of the j th hidden neuron is the
same as (30).

The backward-pass input to the i th input neuron is also the
same as (8). The input activation is Gibbs or softmax:

axbi =
e(o

xb
i )∑I

l=1 e
(oxb

i )
(80)

where axb
i is the backward-pass activation for the i th neuron

of the input neuron. Then the backward error Eb is the cross
entropy

Eb = −
I∑
i=1

xi ln axbi (81)

where xi is the target value of the i th input neuron.
The partial derivatives of the hidden activation ahj and ahbj

are the same as in (36) and (52).
The partial derivative of the output activation ayk for the

forward classification pass is

∂ayk
∂oyk

=
∂

∂oyk

( e(o
y
k)∑K

l=1 e
(oyl )

)
(82)

=
e−o

y
k(
∑K
l=1 e

(oyl ))− e−o
y
ke−o

y
k

(
∑K
l=1 e

(oyl ))2
(83)

=
e−o

y
k(
∑K
l=1 e

(oyl ) − e−o
y
k)

(
∑K
l=1 e

(oyl ))2
(84)

= ayk(1− ayk) . (85)

The partial derivative when l 6= k is

∂ayk
∂oyl

=
∂

∂oyl

( e(o
y
k)∑K

m=1 e
(oym)

)
(86)

=
−e−o

y
ke−o

y
l

(
∑K
l=1 e

(oyl ))2
(87)

= −ayk a
y
l . (88)

So the partial derivative of ay
k with respect to ok

l is

∂ayk
∂oyl

=

{
−ayk a

y
l if l 6= k

ayk(1− ayk) if l = k .
(89)

Denote this derivative as ayk
′
. The derivative axbi

′

of the
backward classification pass has the same form because both
sets of classifier neurons have softmax activations.

The partial derivative of the forward cross entropy Ef with
respect to ujk is

∂Ef
∂ujk

= − ∂

∂ujk

K∑
k=1

yk ln ayk (90)

=

K∑
k=1

(∂Ef
∂ayk

∂ayk
∂oyk

∂oyk
∂ujk

)
(91)

= −
(yk
ayk

(1− ayk)ayk −
K∑
l 6=k

yl
ayl
ayka

y
l

)
ahj (92)

= (ayk − yk)ahj . (93)
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The partial derivative of the forward cross entropy Ef with
respect to the bias byk of the kth output neuron is

∂Ef
∂byk

=
∂

∂byk

K∑
k=1

yk ln ayk (94)

=

K∑
k=1

(∂Ef
∂ayk

∂ayk
∂oyk

∂oyk
∂byk

)
(95)

= −
(yk
ayk

(1− ayk)ayk −
K∑
l 6=k

yl
ayl
ayka

y
l

)
(96)

= ayk − yk . (97)

Equations (93) and (97) show that the derivatives of Ef with
respect to ujk and byk for double classification are the same as
for double regression in (39) and (45). The activations of the
hidden neurons are the same as for double regression. So the
derivatives of Ef with respect to wij and bhj are the same as
the respective ones in (42) and (48).

The partial derivative of Eb with respect to wij is

∂Eb
∂wij

= − ∂

∂wij

I∑
i=1

xi ln a
xb
i (98)

=

I∑
i=1

( ∂Eb
∂axbi

∂axbi
∂oxbi

∂oxbi
∂wij

)
(99)

= −
( xi
axbi

(1− axbi )axbi −
I∑
l 6=i

xl
axbl

axbi a
xb
l

)
ahbj (100)

= (axbi − xi)ahbj . (101)

The partial derivative of Eb with respect to the bias bxi of
the ith input neuron is

∂Eb
∂bxi

= − ∂

∂bxbi

I∑
i=1

xi ln a
xb
i (102)

=

I∑
i=1

( ∂Eb
∂axbi

∂axbi
∂oxbi

∂oxbi
∂bxi

)
(103)

= −
( xi
axbi

(1− axbi )axbi −
I∑
l 6=i

xl
axbl

axbi a
xb
l

)
(104)

= axbi − xi . (105)

Equations (101) and (105) likewise show that the derivatives
of Eb with respect to wij and bxi for double classification
are the same as for double regression in (53) and (59). The
activations of the hidden neurons are the same as for double
regression. So the derivatives of Eb with respect to ujk and
bhj are the same as the respective ones in (58) and (64).

Bidirectional BP training for double classification also al-
ternates between minimizing Ef while holding Eb constant
and minimizing Eb while holding Ef constant. The forward
and backward errors are again cross entropies.

The update laws for forward classification have the final

form:

u
(n+1)
jk = u

(n)
jk − η

(
(ayk − yk)ahj

)
(106)

w
(n+1)
ij = w

(n)
ij − η

( K∑
k=1

(ayk − yk)ujka
h
j

′

xi

)
(107)

bhj
(n+1)

= bhj
(n) − η

( K∑
k=1

(ayk − yk)ujka
h
j

′)
(108)

byk
(n+1)

= byk
(n) − η(ayk − yk) . (109)

The dual update laws for backward classification have the
final form:

u
(n+1)
jk = u

(n)
jk − η

( I∑
i=1

(axbi − xi)wijahbj
′

yk

)
(110)

w
(n+1)
ij = w

(n)
ij − η

(
(axbi − xi)a

yb
j

)
(111)

bxi
(n+1) = bxi

(n) − η(axbi − xi) (112)

bhj
(n+1)

= bhj
(n) − η

( I∑
i=1

(axbi − xi)wijahbj
′)
. (113)

The derivation shows that the update rules for double classifi-
cation are the same as the update rules for double regression.

B-BP training minimizes Ef while holding Eb constant.
It then minimizes Eb while holding Ef constant. Equations
(106)−(109) are the update rules for forward training. Equa-
tions (110)−(113) are the update rules for backward training.
Each training iteration involves first running forward training
and then running backward training. Algorithm 1 again sum-
marizes the B-BP algorithm.

The more general case of double classification uses logistic
neurons at the input and output layer. Then the BP deriva-
tion requires the slightly more general logistic cross-entropy
performance measure. We used the logistic cross-entropy Elog
for double classification training because the input and output
neurons were logistic (rather than softmax):

Elog = −
K∑
k=1

yk ln ayk −
K∑
k=1

(1− yk) ln(1− ayk). (114)

Partially differentiating Elog for logistic input and output
neurons gives back the same B-BP learning laws as does
differentiating cross entropy for softmax input and output
neurons.

C. Mixed Case: Classification and Regression

We last derive the B-BP learning algorithm for the mixed
case of a neural classifier network in the forward direction and
a regression network in the backward direction.

This mixed case describes the common case of neural image
classification. The user need only add backward-regression
training to allow the same classifier net to predict which image
input produced a given output classification. Backward regres-
sion estimates this answer as the centroid of the inverse set-
theoretic mapping or pre-image. The B-BP algorithm achieves
this by alternating between minimizing Ef and minimizing
Eb. The forward error Ef is the same as the cross entropy in
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the double-classification network above. The backward error
Eb is the same as the squared error in double regression.

The input space is likewise the I -dimensional real space RI
for regression. The output space uses 1-in-K binary encoding
for classification. The output neurons of regression networks
use identity functions as activations. The output neurons of
classifier networks use softmax activations.

The forward pass sends the input vector x through the
hidden layer to the output layer. The input activation vector
ax equals x. We again consider only a single hidden layer
for simplicity. The input oh

j to the j th hidden neuron is the
same as in (2). The activation ah

j of the j th hidden layer is
the ordinary logistic activation in (27). Equation (4) defines
the input oyk to the kth output neuron. The output activation
is softmax. So the output activation ay

k is the same as in (78).
The forward error Ef is the cross entropy in (79). The forward
pass in this mixed case is the same as the forward pass for
double classification. So (42), (48), (93), and (97) give the
derivatives of the forward error Ef with respect to wij , bhj ,
ujk , and bky .

The backward pass propagates the 1-in-K vector y from the
output through the hidden layer to the input layer. The output
layer activation vector ay equals y. The input ohb

j to the j th

hidden neuron for the backward pass is the same as in (6).
Equation (30) gives the activation ahb

j for the j th hidden unit
in the backward pass. Equation (8) gives the input oxb

i for the
i th input neuron. The activation axb

i of the i th input neuron
for the backward pass is the same as in (31). The backward
error Eb is the squared error in (32).

The backward pass in this mixed case is the same as the
backward pass for double regression. So (55), (58), (61), and
(64) give the derivatives of the backward error Eb with respect
to wij , bxi , ujk , and bhj .

The update laws for forward classification-regression train-
ing have the final form:

u
(n+1)
jk = u

(n)
jk − η(ayk − yk)ahj (115)

w
(n+1)
ij = w

(n)
ij − η

( K∑
k=1

(ayk − yk)ujka
h
j

′

xi

)
(116)

bhj
(n+1)

= bhj
(n) − η

( K∑
k=1

(ayk − yk)ujka
h
j

′)
(117)

byk
(n+1)

= byk
(n) − η(ayk − yk) . (118)

The update laws for backward classification-regression
training have the final form:

u
(n+1)
jk = u

(n)
jk − η

( I∑
i=1

(axbi − xi)wijahbj
′

yk

)
(119)

w
(n+1)
ij = w

(n)
ij − η(axbi − xi)a

yb
j (120)

bxi
(n+1) = bxi

(n) − η(axbi − xi) (121)

bhj
(n+1)

= bhj
(n) − η

( I∑
i=1

(axbi − xi)wijahbj
′)
. (122)

B-BP training minimizes Ef while holding Eb constant.
It then minimizes the Eb while holding Ef constant. Equa-
tions (115)−(118) state the update rules for forward training.

Equations (119)−(122) state the update rules for backward
training. Algorithm 1 shows how forward learning combines
with backward learning in B-BP.

TABLE II: 5-Bit Bipolar Permutation Function

Input x Output t

[−−−−−] [+ +−++]
[−−−−+] [−−+−−]
[−−−+−] [−−−+−]
[−−−++] [+ + +−+]
[−−+−−] [+ +−+−]
[−−+−+] [+−−++]
[−−++−] [−++−+]
[−−+++] [−−+++]
[−+−−−] [+−+++]
[−+−−+] [+−−−+]
[−+−+−] [+−++−]
[−+−++] [−++−−]
[−++−−] [−+++−]
[−++−+] [+ +−−−]
[−+++−] [+−+−+]
[−++++] [−−−−+]

Input x Output t

[+−−−−] [−++++]
[+−−−+] [−+−−−]
[+−−+−] [+−−+−]
[+−−++] [−−+−+]
[+−+−−] [−+−++]
[+−+−+] [+ +−−+]
[+−++−] [+ + +++]
[+−+++] [−−++−]
[+ +−−−] [+ + +−−]
[+ +−−+] [−+−+−]
[+ +−+−] [+−−−−]
[+ +−++] [−−−++]
[+ + +−−] [−−−−−]
[+ + +−+] [−+−−+]
[+ + ++−] [+ + ++−]
[+ + +++] [+−+−−]

IV. SIMULATION RESULTS

We tested the B-BP algorithm for double classification on
a 5-bit permutation function. We used 3-layer networks with
different numbers of hidden neurons. The neurons used bipolar
logistic activations. The performance measure was the logistic
cross entropy in (114). The B-BP algorithm produced either
an exact representation or an approximation. The permutation
function bijectively mapped the 5-bit bipolar vector space
{−1, 1}5 of 32 bipolar vectors onto itself. Table II displays the
the permutation test function. We compared the forward and
backward forms of unidirectional BP with bidirectional BP.
We also tested whether adding more hidden neurons improved
network approximation accuracy.

The forward pass of standard BP used logistic cross entropy
as its error function. The backward pass did as well. Bidirec-
tional BP summed the forward and backward errors for its
joint error. We computed the test error for the forward and
backward passes. Each plotted error value averaged 20 runs.

TABLE III: Forward-Pass Cross Entropy Ef

Backpropagation Training

Hidden Neurons Forward Backward Bidirectional

5 0.4222 1.4534 0.4729
10 0.0881 1.8173 0.3045
20 0.0132 4.7554 0.0539
50 0.0037 4.4039 0.0034

100 0.0014 5.8473 0.0029

Figure 4 shows the results of running the three types
of BP learning for classification on a 3-layer network with
100 hidden neurons. The values of Ef and Eb decrease
with an increase in the training iterations for bidirectional
BP. This was not the case for the unidirectional cases of
forward BP and backward BP training. Forward and backward
training performed well only for function approximation in
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(a)

(b)

(c)

Fig. 4: Logistic-cross-entropy learning for double classification using
100 hidden neurons with forward BP training, backward BP training,
and bidirectional BP training. The trained network represents the 5-bit
permutation function in Table II. (a) Forward BP tuned the network
with respect to logistic cross entropy for the forward pass using
Ef only. (b) Backward BP training tuned the network with respect
to logistic cross entropy for the backward pass using Eb only. (c)
Bidirectional BP training summed the logistic cross entropies for both
the forward-pass error term Ef and the backward-pass error term Eb
to update the network parameters

their respective training direction. Neither performed well in
the opposite direction.

Table III shows the forward-pass cross entropy Ef for
learning 3-layer classification neural networks as the number
of hidden neurons grows. We again compared the three forms
of BP for the network training: two forms of unidirectional
BP and bidirectional BP. The forward-pass error for forward
BP fell substantially as the number of hidden neurons grew.

Fig. 5: B-BP training error for the 5-bit permutation in Table II
using different numbers of hidden neurons. Training used the double-
classification B-BP algorithm. The two curves describe the logistic
cross entropy for the forward and backward passes through the 3-layer
network. Each test used 640 samples. The number of hidden neurons
increased from 5, 10, 20, 50, to 100.

Fig. 6: B-BP double-regression approximation of the invertible func-
tion f(x) = 0.5σ(6x + 3) + 0.5σ(4x − 1.2) using a deep 8-layer
network with 6 hidden layers. The function σ denotes the bipolar
logistic function in (1). Each hidden layer contained 10 bipolar logistic
neurons. The input and output layers each used a single neuron with
an identity activation function. The forward pass approximated the
forward function f . The backward pass approximated the inverse
function f−1.

TABLE IV: Backward-Pass Cross Entropy Eb

Backpropagation Training

Hidden Neurons Forward Backward Bidirectional

5 2.9370 0.3572 0.4692
10 2.4920 0.1053 0.3198
20 4.6432 0.0149 0.0542
50 7.0921 0.0027 0.0040

100 7.1414 0.0013 0.0032
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(a)

(b)

Fig. 7: Bidirectional backpropagation double-regression learning of
the non-invertible target function f(x) = sinx. (a) The forward pass
learned the function y = f(x) = sinx. (b) The backward pass
approximated the centroid of the values in the set-theoretic pre-image
f−1({y}) for y values in (−1, 1). The two centroids were−π

2
and π

2
.

The forward-pass error of backward BP decreased slightly
as the number of hidden neurons grew. It gave the worst
performance. Bidirectional BP performed well on the test set.
Its forward-pass error also fell substantially as the number
of hidden neurons grew. Table IV shows similar error-versus-
hidden-neuron results for the backward-pass cross entropy Eb.

The two tables jointly show that the unidirectional forms of
BP for regression performed well only in one direction. The
B-BP algorithm performed well in both directions.

We tested the B-BP algorithm for double regression with the
invertible function f(x) = 0.5σ(6x+ 3) + 0.5σ(4x− 1.2) for
values of x ∈ [−1.5, 1.5]. We used a deep 8-layer network with
6 hidden layers for this approximation. Each hidden layer had
10 bipolar logistic neurons. There was only a single identity
neuron in the input and output layers. The error functions Ef
and Eb were ordinary squared error. Figure 6 compares the B-
BP approximation with the target function for both the forward
pass and the backward pass.

We also tested the B-BP double-regression algorithm on
the non-invertible function f(x) = sinx for x ∈ [−π, π].
The forward mapping f(x) = sinx is a well-defined point
function. The backward mapping y = sin−1(f(x)) is not. It
defines instead a set-based pullback or pre-image f−1(y) =
f−1({y}) = {x ∈ R : f(x) = y} ⊂ R. The B-BP-

 Data:          𝑻 input vectors {𝐱(1), 𝐱(2) , . . . , 𝐱(T)} and  corresponding output vectors { 𝐲 (1), 
𝐲 (2) , . . . , 𝐲 (T)} such that 𝑓(𝐱(𝒍) ) = 𝐲 (𝒍) . Number of hidden neurons .  Batch 
size   and number of epochs . Choose the learning rate .  

Result:       Bidirectional neural network representation for function .  

Initialize:  Randomly select the initial weights 𝑾(0) and 𝑼(0). Randomly pick the bias weights  
                   for input, hidden, and output neurons {𝒃𝑥(0), 𝒃ℎ(0), 𝒃𝑦(0)}.  
 

while    epoch    : 𝟎              do    

Select    random samples from the training dataset.  

Initialize: Δ𝑾 = 0, Δ𝑼 = 0, Δ𝒃𝑥 = 0, Δ𝒃ℎ = 0, Δ𝒃𝑦 = 0.   

FORWARD TRAINING  

while   batch_size  𝒍 : 1           

• Randomly pick input vector 𝐱(𝒍)   and its corresponding output vector 𝐲 (𝒍)  

• Compute hidden layer input 𝐨ℎ and the corresponding hidden activation 𝐚ℎ  

• Compute output layer input 𝐨𝑦 and the corresponding output activation 𝐚𝑦  

• Compute the forward error  𝐸𝒇   

• Compute the following derivatives: ∇𝑾𝐸𝒇, ∇𝑼𝐸𝒇, ∇𝒃𝒉𝐸𝒇,  and  ∇𝒃𝒚𝐸𝒇  

• Update :  Δ𝑾 = Δ𝑾 + ∇𝑾𝐸𝒇 ;         Δ𝒃ℎ = Δ𝒃ℎ + ∇𝒃𝒉𝐸𝒇        

                  Δ𝑼 = Δ𝑼  + ∇U𝐸𝒇 ;         Δ𝒃𝑦 = Δ𝒃𝑦 + ∇𝒃𝒚𝐸𝒇  

End  

 

    BACKWARD TRAINING    

while   batch_size  𝒍 : 1           

• Pick input vector 𝐱(𝒍)  and its corresponding output vector 𝐲 (𝒍).  

• Compute hidden layer input 𝐨ℎ𝑏 and hidden activation 𝐚ℎ𝑏.  

• Compute input 𝐨𝑥𝑏at the input layer and input activation 𝐚𝑥𝑏.    

• Compute the backward error  𝐸𝒃   

• Compute the following derivatives: ∇𝑾𝐸𝒃, ∇𝑼𝐸𝒃, ∇𝒃𝒉𝐸𝒃,  and  ∇𝒃𝒙𝐸𝒃  

• Update :  Δ𝑾 = Δ𝑾 + ∇𝑾𝐸𝒃 ;         Δ𝒃ℎ = Δ𝒃ℎ + ∇𝒃𝒉𝐸𝒃        

                         Δ𝑼 = Δ𝑼 + ∇U 𝐸𝒃 ;           Δ𝒃𝑥 = Δ𝒃𝑥 + ∇𝒃𝒙𝐸𝒃  

End  

Update:    

• 𝑾(𝑟+1) = 𝑾(𝒓) − 𝜂Δ𝑾       

• 𝑼(𝑟+1) = 𝑼(𝒓) – 𝜂𝚫𝑼         

• 𝒃𝑥(𝑟+1) = 𝒃𝑥(𝑟) − 𝜂Δ𝒃𝑥                                  

• 𝒃ℎ(𝑟+1) = 𝒃ℎ(𝑟) −  𝜂Δ𝒃ℎ  

• 𝒃y(𝑟+1) = 𝒃y(𝑟) − 𝜂Δ𝒃y                                  

End  
  

Algorithm 1: The Bidirectional Backpropagation Algorithm

trained neural network tends to map each output point y to
the centroid of its pre-image f−1(y) on the backward pass
because centroids minimize squared error and because back-
ward regression training uses squared error as its performance
measure. Figure 7 shows that forward regression learns the
target function sinx while backward regression approximates
the centroids −π2 and π

2 of the two pre-image sets.

V. CONCLUSION

Unidirectional backpropagation learning extends to bidi-
rectional backpropagation learning if the algorithm uses the
appropriate joint error function for both forward and backward
passes. This bidirectional extension applies to classification
networks as well as to regression networks and to their
combinations. Most classification networks can easily acquire
a backward-inference capability if they include a backward-
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regression step in their training. So most networks simply
ignore this inverse property of their weight structure.

Theorem 1 shows that a bidirectional multilayer threshold
network can exactly represent a permutation mapping if the
hidden layer contains an exponential number of hidden thresh-
old neurons. An open question is whether these bidirectional
networks can represent an arbitrary invertible mapping with far
fewer hidden neurons. A simpler question holds for the weaker
case of uniform approximation of invertible mappings.

Another open question deals with noise: To what extent
does carefully injected noise speed B-BP convergence and
accuracy? There are two bases for this question. The first is
that the likelihood structure of BP implies that BP is itself
a special case of the Expectation-Maximization algorithm
[19]. The second basis is that appropriate noise can boost the
EM family of hill-climbing algorithms on average because
such noise makes signals more probable on average. [21], [23].
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