
IEE
E P

ro
of

IEE
E P

ro
of

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 1

Bidirectional Backpropagation
Olaoluwa Adigun, Member, IEEE, and Bart Kosko , Fellow, IEEE

Abstract—We extend backpropagation (BP) learning from1

ordinary unidirectional training to bidirectional training of deep2

multilayer neural networks. This gives a form of backward3

chaining or inverse inference from an observed network out-4

put to a candidate input that produced the output. The trained5

network learns a bidirectional mapping and can apply to some6

inverse problems. A bidirectional multilayer neural network can7

exactly represent some invertible functions. We prove that a fixed8

three-layer network can always exactly represent any finite per-9

mutation function and its inverse. The forward pass computes10

the permutation function value. The backward pass computes the11

inverse permutation with the same weights and hidden neurons.12

A joint forward–backward error function allows BP learning in13

both directions without overwriting learning in either direction.14

The learning applies to classification and regression. The algo-15

rithms do not require that the underlying sampled function has16

an inverse. A trained regression network tends to map an output17

back to the centroid of its preimage set.18

Index Terms—Backpropagation (BP) learning, backward19

chaining, bidirectional associative memory, function approxima-20

tion, function representation, inverse problems.21

I. BIDIRECTIONAL BACKPROPAGATION22

WE EXTEND the familiar unidirectional backpropaga-23

tion (BP) algorithm [1]–[5] to the bidirectional case.24

Unidirectional BP maps an input vector to an output vector by25

passing the input vector forward through the network’s visible26

and hidden neurons and its connection weights. Bidirectional27

BP (B-BP) combines this forward pass with a backward pass28

through the same neurons and weights. It does not use two29

separate feedforward or unidirectional networks.30

B-BP training endows a multilayered neural network31

N : R
n → R

p with a form of backward inference. The for-32

ward pass gives the usual predicted neural output N(x) given33

a vector input x. The output vector value y = N(x) answers34

the what-if question that x poses: What would we observe if35

x occurred? What would be the effect? The backward pass36

answers the why question that y poses: Why did y occur?37

What type of input would cause y? Feedback convergence to38

a resonating bidirectional fixed-point attractor [6], [7] gives a39

long-term or equilibrium answer to both the what-if and why40

questions. This paper does not address the global stability of41

multilayered bidirectional networks.42

Manuscript received May 18, 2017; revised September 2, 2017; accepted
November 10, 2017. This paper was recommended by Associate Editor
G.-B. Huang. (Corresponding author: Bart Kosko.)

The authors are with the Department of Electrical and Computer
Engineering, University of Southern California, Los Angeles, CA 90089 USA
(e-mail: kosko@usc.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2019.2916096

Bidirectional neural learning applies to large-scale prob- 43

lems and big data because the BP algorithm scales linearly 44

with training data. BP has time complexity O(n) for n train- 45

ing samples because both the forward and backward passes 46

have complexity O(n). So the B-BP algorithm still has O(n) 47

complexity because O(n) + O(n) = O(n). This linear scaling 48

does not hold for most machine-learning algorithms. An exam- 49

ple is the quadratic complexity O(n2) of support-vector kernel 50

methods [8]. 51

We first show that multilayer bidirectional networks have 52

sufficient power to exactly represent permutation mappings. 53

These mappings are invertible and discrete. We then develop 54

the B-BP algorithms that can approximate these and other 55

mappings if the networks have enough hidden neurons. 56

A neural network N exactly represents a function f just in 57

case N(x) = f (x) for all input vectors x. Exact representation 58

is much stronger than the more familiar property of function 59

approximation: N(x) ≈ f (x). Feedforward multilayer neural 60

networks can uniformly approximate continuous functions on 61

compact sets [9], [10]. Additive fuzzy systems are also uniform 62

function approximators [11]. But additive fuzzy systems have 63

the further property that they can exactly represent any real 64

function if it is bounded [12]. This exact representation needs 65

only two fuzzy rules because the rules absorb the function 66

into their fuzzy sets. This holds more generally for generalized 67

probability mixtures because the fuzzy rules define the mixed 68

probability densities [13], [14]. 69

Figs. 1 and 2 show bidirectional 3-layer networks of zero- 70

threshold neurons. Both networks exactly represent the 3-bit 71

permutation function f in Table I where {−,−,+} denotes 72

{−1,−1, 1}. So f is a self-bijection that rearranges the 8 vec- 73

tors in the bipolar hypercube {−1, 1}3. This f is just one 74

of the 8! or 40 320 permutation maps or rearrangements on 75

the bipolar hypercube {−1, 1}3. The forward pass converts 76

the input bipolar vector (1, 1, 1) to the output bipolar vec- 77

tor (−1,−1, 1). The backward pass converts (−1,−1, 1) to 78

(1, 1, 1) over the same fixed synaptic connection weights. 79

These same weights and neurons similarly convert the other 80

7 input vectors in the first column of Table I to the cor- 81

responding 7 output vectors in the second column and vice 82

versa. 83

Theorem 1 states that a multilayer bidirectional network can 84

exactly represent any finite bipolar or binary permutation func- 85

tion. This result requires a hidden layer with 2n hidden neurons 86

for an n-bit permutation function on the bipolar hypercube 87

{−1, 1}n. Fig. 3 shows such a network. Using so many hidden 88

neurons is not practical or necessary in most real-world cases. 89

The exact bidirectional representation in Fig. 1 uses only 4 90

hidden threshold neurons to represent the 3-bit permutation 91

function. This was the smallest hidden layer that we found 92

2168-2216 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4745-8986


IEE
E P

ro
of

IEE
E P

ro
of

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 1. Exact bidirectional representation of a permutation map. The 3-layer
bidirectional threshold network exactly represents the invertible 3-bit bipolar
permutation function f in Table I. The network uses four hidden neurons. The
forward pass takes the input bipolar vector x at the input layer and feeds it
forward through the weighted edges and the hidden layer of threshold neurons
to the output layer. The backward pass feeds the output bipolar vector y back
through the same weights and neurons. All neurons are bipolar and use zero
thresholds. The bidirectional network computes y = f (x) on the forward pass.
It computes the inverse value f −1(y) on the backward pass.

through guesswork. Many other bidirectional representations93

also use fewer than 8 hidden neurons.94

We seek instead a practical learning algorithm that can learn95

bidirectional approximations from sample data. Fig. 2 shows96

a learned bidirectional representation of the same 3-bit per-97

mutation in Table I. It uses only 3 hidden neurons. The B-BP98

algorithm tuned the neurons’ threshold values as well as their99

connection weights. All the learned threshold values were near100

zero. We rounded them to zero to achieve the bidirectional101

representation with just 3 hidden neurons.102

The rest of this paper derives the B-BP algorithm for103

regression and classification in both directions and for mixed104

classification–regression. This takes some care because train-105

ing the weights in one direction tends to overwrite their BP106

training in the other direction. The B-BP algorithm solves this107

problem by minimizing a joint error function. The lone error108

function is cross entropy for unidirectional classification. It is109

squared error for unidirectional regression. Fig. 4 compares110

ordinary BP training and overwriting with B-BP training.111

The learned approximation tends to improve if we add more112

hidden neurons. Fig. 5 shows that the B-BP training cross-113

entropy error falls as the number of hidden neurons grows114

when learning the 5-bit permutation in Table II.115

Fig. 2. Learned bidirectional representation of the 3-bit permutation in
Table I. The bidirectional BP algorithm found this representation using the
double-classification learning laws of Section III. It used only three hid-
den neurons. All the neurons were bipolar and had zero thresholds. Zero
thresholding gave an exact representation of the 3-bit permutation.

Fig. 6 shows a deep 8-layer bidirectional approximation of 116

the nonlinear function f (x) = 0.5σ(6x + 3) + 0.5σ(4x − 1.2) 117

and its inverse. The network used 6 hidden layers with 10 118

bipolar logistic neurons per layer. A bipolar logistic activation 119

σ scales and translates an ordinary unit-interval-valued logistic 120

σ(x) = 2

1 + e−x
− 1. (1) 121

The final sections show that similar B-BP algorithms 122

hold for training double-classification networks and mixed 123

classification–regression networks. The B-BP learning laws 124

are the same for regression and classification subject to 125

these conditions: regression minimizes the squared error and 126

uses identity output neurons. Classification minimizes the 127

cross entropy and uses softmax output neurons. Both cases 128

maximize the network likelihood or log-likelihood function. 129

Logistic input and output neurons give the same B-BP learn- 130

ing laws if the network minimizes the bipolar cross entropy 131

in (114). We call this backpropagation invariance. 132

B-BP learning also approximates noninvertible functions. 133

The algorithm tends to learn the centroid of many-to-one 134

functions. Suppose that the target function f : R
n → R

p is 135

not one-to-one or injective. So it has no inverse f −1 point 136

mapping. But it does have a set-valued inverse or preimage 137

pullback mapping f −1 : 2R
p → 2R

n
such that f −1(B) = {x ∈ 138

R
n : f (x) ∈ B} for any B ⊂ R

p. Suppose that the n input 139

training samples x1, . . . , xn map to the same output training 140

sample y : f −1({y}) = {x1, . . . , xn}. Then B-BP learning tends 141

to map y to the centroid x̄ of f −1({y}) because the centroid 142

minimizes the mean-squared error of regression. 143



IEE
E P

ro
of

IEE
E P

ro
of

ADIGUN AND KOSKO: B-BP 3

TABLE I
3-BIT BIPOLAR PERMUTATION FUNCTION f

Fig. 7 shows such an approximation for the noninvertible144

target function f (x) = sin x. The forward regression approxi-145

mates sin x. The backward regression approximates the average146

or centroid of the two points in the preimage set of y = sin x.147

Then f −1({y}) = sin−1(y) = {θ, π − θ} for 0 < θ < (π/2) if148

0 < y < 1. This gives the pullback’s centroid as (π/2). The149

centroid equals −(π/2) if −1 < y < 0.150

B-BP differs from earlier neural approaches to approx-151

imating inverses. Hwang et al. [15] developed an inverse152

algorithm for query-based learning in binary classification.153

Their BP-based algorithm is not bidirectional. It instead154

exploits the data-weight inner-product input to neurons. It155

holds the weights constant while it tunes the data for a given156

output. Saad et al. [16], [17] have applied this inverse algo-157

rithm to problems in aerospace and elsewhere. B-BP also158

differs from the more recent bidirectional extreme-learning-159

machine algorithm that uses a two-stage learning process but160

in a unidirectional network [18].161

II. BIDIRECTIONAL EXACT REPRESENTATION OF162

BIPOLAR PERMUTATIONS163

This section proves that there exist multilayered neu-164

ral networks that can exactly bidirectionally represent some165

invertible functions. We first define the network variables. The166

proof uses threshold neurons. The B-BP algorithms below use167

soft-threshold logistic sigmoids for hidden neurons.168

A bidirectional neural network is a multilayer network169

N : X → Y that maps the input space X to the output space170

Y and conversely through the same set of weights. The back-171

ward pass uses the matrix transposes of the weight matrices172

that the forward pass uses. Such a network is a bidirectional173

associative memory or BAM [6], [7]. The original BAM the-174

orem [6] states that any two-layer neural network is globally175

bidirectionally stable for any sole rectangular weight matrix176

W with real entries.177

The forward pass sends the input vector x through the178

weight matrix W that connects the input layer to the hid-179

den layer. The result passes on through matrix U to the output180

layer. The backward pass sends the output y from the output181

layer back through the hidden layer to the input layer. Let182

I, J, and K denote the respective numbers of input, hidden,183

and output neurons. Then the I × J matrix W connects the184

input layer to the hidden. The J × K matrix U connects the185

hidden layer to the output layer.186

The hidden-neuron input oh
j has the affine form 187

oh
j =

I∑

i=1

wija
x
i (xi) + bh

j (2) 188

where weight wij connects the ith input neuron to the jth hid- 189

den neuron, ax
i is the activation of the ith input neuron, and 190

bh
j is the bias of the jth hidden neuron. The activation ah

j of 191

the jth hidden neuron is a bipolar threshold 192

ah
j

(
oh

j

)
=
{

−1 if oh
j ≤ 0

1 if oh
j > 0.

(3) 193

The B-BP algorithm in the next section uses soft-threshold 194

bipolar logistic functions for the hidden activations because 195

such sigmoid functions are differentiable. The proof below 196

also modifies the hidden thresholds to take on binary values 197

in (14) and to fire with a slightly different condition. 198

The input oy
k to the kth output neuron from the hidden layer 199

is also affine 200

oy
k =

J∑

j=1

ujkah
j + by

k (4) 201

where weight ujk connects the jth hidden neuron to the kth 202

output neuron. Term by
k is the additive bias of the kth output 203

neuron. The output activation vector ay gives the predicted 204

outcome or target on the forward pass. The kth output neuron 205

has bipolar threshold activation ay
k 206

ay
k

(
oy

k

) =
{−1 if oy

k ≤ 0
1 if oy

k > 0.
(5) 207

The forward pass of an input bipolar vector x from Table I 208

through the network in Fig. 1 gives an output activation vector 209

ay that equals the table’s corresponding target vector y. The 210

backward pass feeds y from the output layer back through the 211

hidden layer to the input layer. Then the backward-pass input 212

ohb
j to the jth hidden neuron is 213

ohb
j =

K∑

k=1

ujkay
k(yk) + bh

j (6) 214

where yk is the output of the kth output neuron. The term ay
k 215

is the activation of the kth output neuron. The backward-pass 216

activation of the jth hidden neuron ahb
j is 217

ahb
j

(
ohb

j

)
=
{

−1 if ohb
j ≤ 0

1 if ohb
j > 0.

(7) 218

The backward-pass input oxb
i to the ith input neuron is 219

oxb
i =

J∑

j=1

wija
hb
j + bx

i (8) 220

where bx
i is the bias for the ith input neuron. The input-layer 221

activation ax gives the predicted value for the backward pass. 222

The ith input neuron has bipolar activation 223

axb
i

(
oxb

i

)
=
{−1 if oxb

i ≤ 0
1 if oxb

i > 0.
(9) 224



IEE
E P

ro
of

IEE
E P

ro
of

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

We can now state and prove the bidirectional representation225

theorem for bipolar permutations. The theorem also applies226

to binary permutations because the input and output neurons227

have bipolar threshold activations.228

Theorem 1 (Exact Bidirectional Representation of Bipolar229

Permutation Functions): Suppose that the invertible function230

f : {−1, 1}n → {−1, 1}n is a permutation. Then there exists a231

3-layer bidirectional neural network N : {−1, 1}n → {−1, 1}n
232

that exactly represents f in the sense that N(x) = f (x) and that233

N−1(x) = f −1(x) for all x. The hidden layer has 2n threshold234

neurons.235

Proof: The proof constructs weight matrices W and U so236

that exactly one hidden neuron fires on both the forward and237

the backward passes. Fig. 3 shows the proof technique for the238

special case of a 3-bit bipolar permutation. We structure the239

network so that an input vector x fires only one hidden neuron240

on the forward pass. The output vector y = N(x) fires only241

the same hidden neuron on the backward pass.242

The bipolar permutation f is a bijective map of the bipolar243

hypercube {−1, 1}n onto itself. The bipolar hypercube con-244

tains the 2n input bipolar column vectors x1, x2, . . . , x2n . It245

likewise contains the 2n output bipolar vectors y1, y2, . . . , y2n .246

The network uses 2n corresponding hidden threshold neurons.247

So J = 2n.248

Matrix W connects the input layer to the hidden layer.249

Matrix U connects the hidden layer to the output layer. Define250

W so that its columns list all 2n bipolar input vectors. Define251

U so that the columns of its transpose UT list all 2n transposed252

bipolar output vectors:253

W = [
x1 x2 . . . x2n

]
254

UT = [
y1 y2 . . . y2n

]
.255

We show next both that these weight matrices fire only one256

hidden neuron and that the forward pass of any input vector257

xn gives the corresponding output vector yn. Assume that each258

neuron has zero bias.259

Pick a bipolar input vector xm for the forward pass. Then the260

input activation vector ax(xm) = (ax
1(x

1
m), . . . , ax

n(x
n
m)) equals261

the input bipolar vector xm because the input activations (9) are262

bipolar threshold functions with zero threshold. So ax equals263

xm because the vector space is bipolar {−1, 1}n.264

The hidden layer input oh is the same as (2). It has the265

matrix-vector form266

oh = WTax (10)267

= WTxm (11)268

=
(

oh
1, oh

2, . . . , oh
n, . . . , oh

2n

)T
(12)269

=
(

xT
1 xm, xT

2 xm, . . . , xT
j xm, . . . , xT

2n xm

)T
(13)270

since oh
j is the inner product of the bipolar vectors xj and xm271

from the definition of W.272

The input oh
j to the jth neuron of the hidden layer obeys273

oh
j = n when j = m. It obeys oh

j < n when j �= m. This holds274

because the vectors xj are bipolar with scalar components in275

{−1, 1}. The magnitude of a bipolar vector in {−1, 1}n is
√

n.276

The inner product xT
j xm is a maximum when both vectors have277

Fig. 3. Bidirectional network structure for the proof of Theorem 1. The input
and output layers have n threshold neurons. The hidden layer has 2n neurons
with threshold values of n. The 8 fan-in 3-vectors of weights in W from the
input to the hidden layer list the 23 elements of the bipolar cube {−1, 1}3.
So they list the eight vectors in the input column of Table I. The 8 fan-in
3-vectors of weights in U from the output to the hidden layer list the eight
bipolar vectors in the output column of Table I. The threshold value for the
sixth and highlighted hidden neuron is 3. Passing the sixth input vector (−1,
1, −1) through W leads to the hidden-layer vector (0, 0, 0, 0, 0, 1, 0, 0) of
thresholded values. Passing this 8-bit vector through U produces after thresh-
olding the sixth output vector (−1, −1, −1) in Table I. Passing this output
vector back through the transpose of U produces the same unit bit vector of
thresholded hidden-unit values. Passing this vector back through the transpose
of W produces the original bipolar vector (−1, 1,−1).

the same direction. This occurs when j = m. The inner product 278

is otherwise less than n. Fig. 3 shows a bidirectional neural 279

network that fires just the sixth hidden neuron. The weights 280

for the network in Fig. 3 are 281

W =
⎡

⎣
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1

⎤

⎦ 282

UT =
⎡

⎣
−1 −1 1 1 −1 −1 1 1
−1 1 1 −1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1

⎤

⎦. 283

Now comes the key step in the proof. Define the hidden 284

activation ah
j as a binary (not bipolar) threshold function where 285

n is the threshold value 286

ah
j

(
oh

j

)
=
{

1 if oh
j ≥ n

0 if oh
j < n.

(14) 287



IEE
E P

ro
of

IEE
E P

ro
of

ADIGUN AND KOSKO: B-BP 5

Then the hidden-layer activation ah is the unit bit vector288

(0, 0, . . . , 1, . . . , 0)T, where ah
j = 1 when j = m and where289

ah
j = 0 when j �= m. This holds because all 2n bipolar vec-290

tors xm in {−1, 1}n are distinct. So exactly one of these 2n
291

vectors achieves the maximal inner-product value n = xT
mxm.292

So ah
j (o

h
j ) = 0 for j �= m and ah

m(oh
m) = 1. The bidirectional293

network in Fig. 3 represents the 3-bit bipolar permutation in294

Table I.295

The input vector oy to the output layer is296

oy = UTah (15)297

=
J∑

j=1

yj ah
j (16)298

= ym (17)299

where ah
j is the activation of the jth hidden neuron. The300

activation ay of the output layer is301

ay
(

oy
j

)
=
{

1 if oy
j ≥ 0

−1 if oy
j < 0.

(18)302

The output layer activation leaves oy unchanged because oy
303

equals ym and because ym is a vector in {−1, 1}n. So304

ay = ym. (19)305

So the forward pass of an input vector xm through the network306

yields the desired corresponding output vector ym if ym =307

f (xm) for the bipolar permutation map f .308

Consider next the backward pass through the network N.309

The backward pass propagates the output vector ym through310

the hidden layer back to the input layer. The hidden layer input311

ohb has the same inner-product form as in (6):312

ohb = U ym (20)313

where ohb = (yT
1 ym, yT

2 ym, . . . , yT
j ym, . . . , yT

2n ym)
T

.314

The input ohb
j of the jth neuron in the hidden layer equals315

the inner product of yj and ym. So ohb
j = n when j = m.316

But now ohb
j < n when j �= m. This holds because again the317

magnitude of a bipolar vector in {−1, 1}n is
√

n. The inner318

product ohb
j is a maximum when vectors ym and yj lie in the319

same direction. The activation ahb for the hidden layer has the320

same components as in (14). So the hidden-layer activation321

ahb again equals the unit bit vector (0, 0, . . . , 1, . . . , 0)T where322

ahb
j = 1 when j = m and ahb

j = 0 when j �= m.323

Then the input vector oxb for the input layer is324

oxb = W ahb (21)325

=
J∑

j=1

xj ahb (22)326

= xm. (23)327

The ith input neuron has a threshold activation that is the328

same as329

axb
i

(
oxb

i

)
=
{

1 if oxb
i ≥ 0

−1 if oxb
i < 0

(24)330

where oxb
i is the input of ith neuron in the input layer. This 331

activation leaves oxb unchanged because oxb equals xm and 332

because the vector xm lies in {−1, 1}n. So 333

axb = oxb (25) 334

= xm. (26) 335

So the backward pass of any target vector ym yields the 336

desired input vector xm if f −1(ym) = xm. This completes the 337

backward pass and the proof. 338

III. BIDIRECTIONAL BACKPROPAGATION ALGORITHMS 339

A. Double Regression 340

We now derive the first of three B-BP learning algorithms. 341

The first case is double regression where the network performs 342

regression in both directions. 343

B-BP training minimizes both the forward error Ef and 344

backward error Eb. B-BP alternates between backward train- 345

ing and forward training. Forward training minimizes Ef while 346

holding Eb constant. Backward training minimizes Eb while 347

holding Ef constant. Ef is the error at the output layer. Eb is 348

the error at the input layer. Double regression uses squared 349

error for both error functions. 350

The forward pass sends the input vector x through the hid- 351

den layer to the output layer. The network uses only one 352

hidden layer for simplicity and with no loss of generality. The 353

B-BP double-regression algorithm applies to any number of 354

hidden layers in a deep network. 355

The hidden-layer input values oh
j are the same as in (2). The 356

jth hidden activation ah
j is the binary logistic map 357

ah
j

(
oh

j

)
= 1

1 + e−oh
j

(27) 358

where (4) gives the input oy
k to the kth output neuron. The hid- 359

den activations can be logistic or any other sigmoidal function 360

so long as they are differentiable. The activation for an output 361

neuron is the identity function 362

ay
k = oy

k (28) 363

where ay
k is the activation of kth output neuron. 364

The error function Ef for the forward pass is squared error 365

Ef = 1

2

K∑

k=1

(
yk − ay

k

)2
(29) 366

where yk denotes the value of the kth neuron in the out- 367

put layer. Ordinary unidirectional BP updates the weights and 368

other network parameters by propagating the error from the 369

output layer back to the input layer. 370

The backward pass sends the output vector y through the 371

hidden layer to the input layer. The input to the jth hidden 372

neuron ohb
j is the same as in (6). The activation ahb

j for the jth 373

hidden neuron is 374

ahb
j = 1

1 + e−ohb
j

. (30) 375



IEE
E P

ro
of

IEE
E P

ro
of

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

The input ox
i for the ith input neuron is the same as (8). The376

activation at the input layer is the identity function377

axb
i

(
oxb

i

)
= oxb

i . (31)378

A nonlinear sigmoid (or Gaussian) activation can replace the379

linear function.380

The backward-pass error Eb is also squared error381

Eb = 1

2

I∑

i=1

(
xi − ax

i

)2
. (32)382

The partial derivative of the hidden-layer activation in the383

forward direction is384

∂ah
j

∂oh
j

= ∂

∂oh
j

(
1

1 + e−oh
j

)
(33)385

= e−oh
j

(
1 + e−oh

j

)2
(34)386

= 1

1 + e−oh
j

[
1 − 1

1 + e−oh
j

]
(35)387

= ah
j

(
1 − ah

j

)
. (36)388

Let ah
j
′

denote the derivative of ah
j with respect to the inner-389

product term oh
j . We again use the superscript b to denote the390

backward pass.391

The partial derivative of Ef with respect to the weight392

ujk is393

∂Ef

∂ujk
= 1

2

∂

∂ujk

K∑

k=1

(
yk − ay

k

)2
(37)394

= ∂Ef

∂ay
k

∂ay
k

∂oy
k

∂oy
k

∂ujk
(38)395

= (
ay

k − yk
)
ah

j . (39)396

The partial derivative of Ef with respect to wij is397

∂Ef

∂wij
= 1

2

∂

∂wij

K∑

k=1

(
yk − ay

k

)2
(40)398

=
(

K∑

k=1

∂Ef

∂ay
k

∂ay
k

∂oy
k

∂oy
k

∂ah
j

)
∂ah

j

∂oh
j

∂oh
j

∂wij
(41)399

=
K∑

k=1

(
ay

k − yk
)
ujk ah

j
′

xi (42)400

where ah
j
′

is the same as in (36). The partial derivative of Ef401

with respect to the bias by
k of the kth output neuron is402

∂Ef

∂by
k

= 1

2

∂

∂by
k

K∑

k=1

(
yk − ay

k

)2
(43)403

= ∂Ef

∂ay
k

∂ay
k

∂oy
k

∂oy
k

∂by
k

(44)404

= ay
k − yk. (45)405

The partial derivative of Ef with respect to the bias bh
j of 406

the jth hidden neuron is 407

∂Ef

∂bh
j

= 1

2

∂

∂bh
j

K∑

k=1

(
yk − ay

k

)2
(46) 408

=
(

K∑

k=1

∂Ef

∂ay
k

∂ay
k

∂oy
k

∂oy
k

∂ah
j

)
∂ah

j

∂oh
j

∂oh
j

∂bh
j

(47) 409

=
K∑

k=1

(
ay

k − yk
)
ujkah

j
′

(48) 410

where ah
j
′

is the same as in (36). 411

The partial derivative of the hidden-layer activation ahb
j in 412

the backward direction is 413

∂ahb
j

∂ohb
j

= ∂

∂ohb
j

(
1

1 + e−ohb
j

)
(49) 414

= e−ohb
j

(
1 + e−ohb

j

)2
(50) 415

= 1

1 + e−ohb
j

[
1 − 1

1 + e−ohb
j

]
(51) 416

= ahb
j

(
1 − ahb

j

)
. (52) 417

The partial derivative of Eb with respect to wij is 418

∂Eb

∂wij
= 1

2

∂

∂wij

K∑

k=1

(
xi − axb

i

)2
(53) 419

= ∂Eb

∂axb
i

∂axb
i

∂oxb
i

∂oxb
i

∂wij
(54) 420

=
(

axb
i − xi

)
ahb

j . (55) 421

The partial derivative of Eb with respect to ujk is 422

∂Eb

∂ujk
= 1

2

∂

∂ujk

I∑

i=1

(
xi − axb

i

)2
(56) 423

=
(

I∑

i=1

∂Eb

∂axb
i

∂axb
i

∂oxb
i

∂oxb
i

∂ahb
j

)
∂ahb

j

∂ohb
j

∂ohb
j

∂ujk
(57) 424

=
I∑

i=1

(
axb

i − xi

)
wija

hb
j

′
yk (58) 425

where ahb
j

′
is the same as in (52). 426

The partial derivative of Eb with respect to the bias bx
i of 427

ith input neuron is 428

∂Eb

∂bx
i

= 1

2

∂

∂bx
i

I∑

i=1

(
xi − axb

i

)2
(59) 429

= ∂Eb

∂axb
i

∂axb
i

∂oxb
i

∂oxb
i

∂bx
i

(60) 430

= axb
i − xi. (61) 431



IEE
E P

ro
of

IEE
E P

ro
of

ADIGUN AND KOSKO: B-BP 7

The partial derivative of Eb with respect to the bias bh
j of jth432

hidden neuron is433

∂Eb

∂bh
j

= 1

2

∂

∂bh
j

I∑

i=1

(
xi − axb

i

)2
(62)434

=
(

I∑

i=1

∂Eb

∂axb
i

∂axb
i

∂oxb
i

∂oxb
i

∂ahb
j

)
∂ahb

j

∂ohb
j

∂ohb
j

∂bh
j

(63)435

=
I∑

i=1

(
axb

i − xi

)
wija

hb
j

′
(64)436

where ahb
j

′
is the same as in (52).437

The error function at the input layer is the backward-pass438

error Eb. The error function at the output layer is the forward-439

pass error Ef .440

The above update laws for forward regression have the final441

form (for learning rate η > 0)442

u(n+1)
jk = u(n)

jk − η
(
ay

k − yk
)
ah

j (65)443

w(n+1)
ij = w(n)

ij − η

(
K∑

k=1

(
ay

k − yk
)
ujkah

j
′
xi

)
(66)444

bh
j
(n+1) = bh

j
(n) − η

(
K∑

k=1

(
ay

k − yk
)
ujkah

j
′
)

(67)445

by
k
(n+1) = by

k
(n) − η

(
ay

k − yk
)
. (68)446

The dual update laws for backward regression have the final447

form448

u(n+1)
jk = u(n)

jk − η

(
I∑

i=1

(
axb

i − xi

)
wija

hb
j

′
yk

)
(69)449

w(n+1)
ij = w(n)

ij − η
(

axb
i − xi

)
ahb

j (70)450

bx
i
(n+1) = bx

i
(n) − η

(
axb

i − xi

)
(71)451

bh
j
(n+1) = bh

j
(n) − η

(
I∑

i=1

(
axb

i − xi

)
wija

hb
j

′
)

. (72)452

B-BP training minimizes Ef while holding Eb con-453

stant. It then minimizes Eb while holding Ef constant.454

Equations (65)–(68) state the update rules for forward train-455

ing. Equations (69)–(72) state the update rules for backward456

training. Each training iteration involves forward training and457

then backward training.458

Algorithm 1 summarizes the B-BP algorithm. It shows how459

to combine forward and backward training in B-BP. Fig. 6460

shows how double-regression B-BP approximates the invert-461

ible function f (x) = 0.5σ(6x + 3) + 0.5σ(4x − 1.2) if σ(x)462

denotes the bipolar logistic function in (1). The approximation463

used a deep 8-layer network with six layers of ten bipo-464

lar logistic neurons each. The input and output layer each465

contained only a single identity neuron.466

B. Double Classification467

We now derive a B-BP algorithm where the network’s for-468

ward pass acts as a classifier network and so does its backward469

pass. We call this double classification.470

We present the derivation in terms of cross entropy for 471

the sake of simplicity. Our double-classification simulations 472

used the slightly more general form of cross entropy in (114) 473

that we call logistic cross entropy. The simpler cross-entropy 474

derivation applies to softmax input neurons and output neurons 475

(with implied 1-in-K coding). Logistic input and output neu- 476

rons require logistic cross entropy for the same BP derivation 477

because then the same final BP partial derivatives result. 478

The simplest double-classification network uses Gibbs or 479

softmax neurons at both the input and output layers. This cre- 480

ates a winner-take-all structure at those layers. Then the kth 481

softmax neuron in the output layer codes for the kth input 482

pattern. The output layer represents the pattern as a K-length 483

unit bit vector with a “1” in the kth slot and a “0” in the 484

other K − 1 slots [3], [19]. The same 1-in-I binary encoding 485

holds for the ith neuron at the input layer. The softmax struc- 486

ture implies that the input and output fields each compute a 487

discrete probability distribution for each input. 488

Classification networks differ from regression networks in 489

another key aspect: they do not minimize squared error. They 490

instead minimize the cross entropy of the given target vec- 491

tor and the softmax activation values of the output or input 492

layers [3]. Equation (79) states the forward cross entropy at 493

the output layer if yk is the desired or target value of the 494

kth output neuron. Then ay
k is its actual softmax activation 495

value. The entropy structure applies because both the target 496

vector and the input and output vectors are probability vectors. 497

Minimizing the cross entropy maximizes the Kullback–Leibler 498

divergence [20] and vice versa [19]. 499

The classification BP algorithm depends on another 500

optimization equivalence: minimizing the cross entropy is 501

equivalent to maximizing the network’s likelihood or log- 502

likelihood [19]. We will establish this equivalence because it 503

implies that the BP learning laws have the same form for 504

both classification and regression. We will prove the equiv- 505

alence for only the forward direction. It applies equally in 506

the backward direction. The result unifies the BP learning 507

laws. It also allows carefully selected noise to enhance the 508

network likelihood because BP is a special case [19], [21] of 509

the expectation–maximization algorithm for iteratively maxi- 510

mizing a likelihood with missing data or hidden variables [22]. 511

Denote the network’s forward probability density function 512

as pf (y|x,�). The vector � lists all parameters in the network. 513

The input vector x passes through the multilayer network and 514

produces the output vector y. Then the network’s forward like- 515

lihood Lf (�) is the natural logarithm of the forward network 516

probability: Lf (�) = ln pf (y|x,�). 517

We will show that pf (y|x,�) = exp{−Ef (�)}. So BP’s for- 518

ward pass computes the forward cross entropy as it maximizes 519

the likelihood [19]. 520

The key assumption is that output softmax neurons in a clas- 521

sifier network are independent because there are no intralayer 522

connections among them. Then the network probability den- 523

sity pf (y|x,�) factors into a product of K-many marginals [3]: 524

pf (y|x,�) = ∏K
k=1 pf (yk|x,�). This gives 525

Lf (�) = ln pf (y|x,�) (73) 526



IEE
E P

ro
of

IEE
E P

ro
of

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

= ln
K∏

k=1

pf (yk|x,�) (74)527

= ln
K∏

k=1

(
ay

k

)yk (75)528

=
K∑

k=1

yk ln ay
k (76)529

= −Ef (�) (77)530

from (79) since y is a 1-in-K-encoded unit bit vector. Then531

exponentiation gives pf (y|x,�) = exp{−Ef (�)}. Minimizing532

the forward cross entropy Ef is equivalent to maximizing the533

negative cross entropy −Ef . So minimizing Ef maximizes the534

forward network likelihood L and vice versa.535

The third equality (75) holds because the kth marginal factor536

pf (yk|x,�) in a classifier network equals the exponentiated537

softmax activation (at
k)

yk . This holds because yk = 1 if k is538

the correct class label for the input pattern x and yk = 0539

otherwise. This discrete probability vector defines an output540

categorical distribution. It is a single-sample multinomial.541

We now derive the B-BP algorithm for double classifica-542

tion. The algorithm minimizes the error functions separately543

where Ef (�) is the forward cross entropy in (75) and Eb(�)544

is the backward cross entropy in (81). We first derive the for-545

ward B-BP classifier algorithm. We then derive the backward546

portion of the B-BP double-classification algorithm.547

The forward pass sends the input vector x through the hid-548

den layer or layers to the output layer. The input activation549

vector ax is the vector x.550

We assume only one hidden layer for simplicity. The deriva-551

tion applies to deep networks with any number of hidden552

layers. The input to the jth hidden neuron oh
j has the same553

linear form as in (2). The jth hidden activation ah
j is the554

same ordinary unit-interval-valued logistic function in (27).555

The input oy
k to the kth output neuron is the same as in (4). The556

hidden activations can also be ReLU or hyperbolic tangents557

or many other functions.558

The forward classifier’s output-layer neurons use Gibbs or559

softmax activations560

ay
k = e(oy

k)

∑K
l=1 e(oy

l )
(78)561

where ay
k is the activation of the kth output neuron. Then the562

forward error Ef is the cross entropy563

Ef = −
K∑

k=1

yk ln ay
k (79)564

between the binary target values yk and the actual output565

activations ay
k.566

We next describe the backward pass through the classifier567

network. The backward pass sends the output target vector568

y through the hidden layer to the input layer. So the initial569

activation vector ay equals the target vector y. The input to570

the jth neuron of the hidden layer ohb
j has the same linear571

form as (6). The activation of the jth hidden neuron is the572

same as (30).573

The backward-pass input to the ith input neuron is also the 574

same as (8). The input activation is Gibbs or softmax 575

axb
i = e

(
oxb

i

)

∑I
l=1 e

(
oxb

i

) (80) 576

where axb
i is the backward-pass activation for the ith neuron 577

of the input neuron. Then the backward error Eb is the cross 578

entropy 579

Eb = −
I∑

i=1

xi ln axb
i (81) 580

where xi is the target value of the ith input neuron. 581

The partial derivatives of the hidden activation ah
j and ahb

j 582

are the same as in (36) and (52). 583

The partial derivative of the output activation ay
k for the 584

forward classification pass is 585

∂ay
k

∂oy
k

= ∂

∂oy
k

(
e(oy

k)

∑K
l=1 e(oy

l )

)
(82) 586

=
eoy

k

(∑K
l=1 e(oy

l )
)

− eoy
k eoy

k

(∑K
l=1 e(oy

l )
)2

(83) 587

=
eoy

k

(∑K
l=1 e(oy

l ) − eoy
k

)

(∑K
l=1 e(oy

l )
)2

(84) 588

= ay
k

(
1 − ay

k

)
. (85) 589

The partial derivative when l �= k is 590

∂ay
k

∂oy
l

= ∂

∂oy
l

(
e(oy

k)

∑K
m=1 e(oy

m)

)
(86) 591

= −eoy
k eoy

l

(∑K
l=1 e(oy

l )
)2

(87) 592

= −ay
k ay

l . (88) 593

So the partial derivative of ay
k with respect to ok

l is 594

∂ay
k

∂oy
l

=
{−ay

k ay
l if l �= k

ay
k

(
1 − ay

k

)
if l = k.

(89) 595

Denote this derivative as ay
k
′
. The derivative axb

i
′

of the back- 596

ward classification pass has the same form because both sets 597

of classifier neurons have softmax activations. 598

The partial derivative of the forward cross entropy Ef with 599

respect to ujk is 600

∂Ef

∂ujk
= − ∂

∂ujk

K∑

k=1

yk ln ay
k (90) 601

=
K∑

k=1

(
∂Ef

∂ay
k

∂ay
k

∂oy
k

∂oy
k

∂ujk

)
(91) 602

= −
⎛

⎝ yk

ay
k

(
1 − ay

k

)
ay

k −
K∑

l �=k

yl

ay
l

ay
kay

l

⎞

⎠ah
j (92) 603

= (
ay

k − yk
)
ah

j . (93) 604



IEE
E P

ro
of

IEE
E P

ro
of

ADIGUN AND KOSKO: B-BP 9

The partial derivative of the forward cross entropy Ef with605

respect to the bias by
k of the kth output neuron is606

∂Ef

∂by
k

= ∂

∂by
k

K∑

k=1

yk ln ay
k (94)607

=
K∑

k=1

(
∂Ef

∂ay
k

∂ay
k

∂oy
k

∂oy
k

∂by
k

)
(95)608

= −
⎛

⎝ yk

ay
k

(
1 − ay

k

)
ay

k −
K∑

l �=k

yl

ay
l

ay
kay

l

⎞

⎠ (96)609

= ay
k − yk. (97)610

Equations (93) and (97) show that the derivatives of Ef with611

respect to ujk and by
k for double classification are the same as612

for double regression in (39) and (45). The activations of the613

hidden neurons are the same as for double regression. So the614

derivatives of Ef with respect to wij and bh
j are the same as615

the respective ones in (42) and (48).616

The partial derivative of Eb with respect to wij is617

∂Eb

∂wij
= − ∂

∂wij

I∑

i=1

xi ln axb
i (98)618

=
I∑

i=1

(
∂Eb

∂axb
i

∂axb
i

∂oxb
i

∂oxb
i

∂wij

)
(99)619

= −
⎛

⎝ xi

axb
i

(
1 − axb

i

)
axb

i −
I∑

l �=i

xl

axb
l

axb
i axb

l

⎞

⎠ahb
j (100)620

=
(

axb
i − xi

)
ahb

j . (101)621

The partial derivative of Eb with respect to the bias bx
i of622

the ith input neuron is623

∂Eb

∂bx
i

= − ∂

∂bxb
i

I∑

i=1

xi ln axb
i (102)624

=
I∑

i=1

(
∂Eb

∂axb
i

∂axb
i

∂oxb
i

∂oxb
i

∂bx
i

)
(103)625

= −
⎛

⎝ xi

axb
i

(
1 − axb

i

)
axb

i −
I∑

l �=i

xl

axb
l

axb
i axb

l

⎞

⎠ (104)626

= axb
i − xi. (105)627

Equations (101) and (105) likewise show that the derivatives628

of Eb with respect to wij and bx
i for double classification are the629

same as for double regression in (53) and (59). The activations630

of the hidden neurons are the same as for double regression.631

So the derivatives of Eb with respect to ujk and bh
j are the632

same as the respective ones in (58) and (64).633

B-BP training for double classification also alternates634

between minimizing Ef while holding Eb constant and min-635

imizing Eb while holding Ef constant. The forward and636

backward errors are again cross entropies.637

The update laws for forward classification have the final 638

form 639

u(n+1)
jk = u(n)

jk − η
((

ay
k − yk

)
ah

j

)
(106) 640

w(n+1)
ij = w(n)

ij − η

(
K∑

k=1

(
ay

k − yk
)
ujkah

j
′
xi

)
(107) 641

bh
j
(n+1) = bh

j
(n) − η

(
K∑

k=1

(
ay

k − yk
)
ujkah

j
′
)

(108) 642

by
k
(n+1) = by

k
(n) − η

(
ay

k − yk
)
. (109) 643

The dual update laws for backward classification have the 644

final form 645

u(n+1)
jk = u(n)

jk − η

(
I∑

i=1

(
axb

i − xi

)
wija

hb
j

′
yk

)
(110) 646

w(n+1)
ij = w(n)

ij − η
((

axb
i − xi

)
ahb

j

)
(111) 647

bx
i
(n+1) = bx

i
(n) − η

(
axb

i − xi

)
(112) 648

bh
j
(n+1) = bh

j
(n) − η

(
I∑

i=1

(
axb

i − xi

)
wija

hb
j

′
)

. (113) 649

The derivation shows that the update rules for double classifi- 650

cation are the same as the update rules for double regression. 651

B-BP training minimizes Ef while holding Eb con- 652

stant. It then minimizes Eb while holding Ef constant. 653

Equations (106)–(109) are the update rules for forward train- 654

ing. Equations (110)–(113) are the update rules for backward 655

training. Each training iteration involves first running forward 656

training and then running backward training. Algorithm 1 657

again summarizes the B-BP algorithm. 658

The more general case of double classification uses logistic 659

neurons at the input and output layer. Then the BP deriva- 660

tion requires the slightly more general logistic cross-entropy 661

performance measure. We used the logistic cross-entropy Elog 662

for double classification training because the input and output 663

neurons were logistic (rather than softmax) 664

Elog = −
K∑

k=1

yk ln ay
k −

K∑

k=1

(1 − yk) ln
(
1 − ay

k

)
. (114) 665

Partially differentiating Elog for logistic input and output 666

neurons gives back the same B-BP learning laws as does 667

differentiating cross entropy for softmax input and output 668

neurons. 669

C. Mixed Case: Classification and Regression 670

We last derive the B-BP learning algorithm for the mixed 671

case of a neural classifier network in the forward direction and 672

a regression network in the backward direction. 673

This mixed case describes the common case of neural 674

image classification. The user needs only add backward- 675

regression training to allow the same classifier net to predict 676

which image input produced a given output classification. 677

Backward regression estimates this answer as the centroid 678

of the inverse set-theoretic mapping or preimage. The B-BP 679



IEE
E P

ro
of

IEE
E P

ro
of

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

algorithm achieves this by alternating between minimizing Ef680

and minimizing Eb. The forward error Ef is the same as the681

cross entropy in the double-classification network above. The682

backward error Eb is the same as the squared error in double683

regression.684

The input space is likewise the I-dimensional real space R
I

685

for regression. The output space uses 1-in-K binary encoding686

for classification. The output neurons of regression networks687

use identity functions as activations. The output neurons of688

classifier networks use softmax activations.689

The forward pass sends the input vector x through the hid-690

den layer to the output layer. The input activation vector ax
691

equals x. We again consider only a single hidden layer for692

simplicity. The input oh
j to the jth hidden neuron is the same693

as in (2). The activation ah
j of the jth hidden layer is the ordi-694

nary logistic activation in (27). Equation (4) defines the input695

oy
k to the kth output neuron. The output activation is softmax.696

So the output activation ay
k is the same as in (78). The for-697

ward error Ef is the cross entropy in (79). The forward pass698

in this mixed case is the same as the forward pass for double699

classification. So (42), (48), (93), and (97) give the respective700

derivatives of the forward error Ef with respect to wij, bh
j , ujk,701

and bk
y.702

The backward pass propagates the 1-in-K vector y from the703

output through the hidden layer to the input layer. The output704

layer activation vector ay equals y. The input ohb
j to the jth705

hidden neuron for the backward pass is the same as in (6).706

Equation (30) gives the activation ahb
j for the jth hidden unit707

in the backward pass. Equation (8) gives the input oxb
i for the708

ith input neuron. The activation axb
i of the ith input neuron for709

the backward pass is the same as in (31). The backward error710

Eb is the squared error in (32).711

The backward pass in this mixed case is the same as the712

backward pass for double regression. So (55), (58), (61),713

and (64) give the respective derivatives of the backward error714

Eb with respect to wij, bx
i , ujk, and bh

j .715

The update laws for forward classification–regression train-716

ing have the final form717

u(n+1)
jk = u(n)

jk − η
(
ay

k − yk
)
ah

j (115)718

w(n+1)
ij = w(n)

ij − η

(
K∑

k=1

(
ay

k − yk
)
ujkah

j
′
xi

)
(116)719

bh
j
(n+1) = bh

j
(n) − η

(
K∑

k=1

(
ay

k − yk
)
ujkah

j
′
)

(117)720

by
k
(n+1) = by

k
(n) − η

(
ay

k − yk
)
. (118)721

The update laws for backward classification–regression722

training have the final form723

u(n+1)
jk = u(n)

jk − η

(
I∑

i=1

(
axb

i − xi

)
wija

hb
j

′
yk

)
(119)724

w(n+1)
ij = w(n)

ij − η
(

axb
i − xi

)
ahb

j (120)725

bx
i
(n+1) = bx

i
(n) − η

(
axb

i − xi

)
(121)726

TABLE II
5-BIT BIPOLAR PERMUTATION FUNCTION

TABLE III
FORWARD-PASS CROSS ENTROPY Ef

bh
j
(n+1) = bh

j
(n) − η

(
I∑

i=1

(
axb

i − xi

)
wija

hb
j

′
)

. (122) 727

B-BP training minimizes Ef while holding Eb con- 728

stant. It then minimizes the Eb while holding Ef constant. 729

Equations (115)–(118) state the update rules for forward train- 730

ing. Equations (119)–(122) state the update rules for backward 731

training. Algorithm 1 shows how forward learning combines 732

with backward learning in B-BP. 733

IV. SIMULATION RESULTS 734

We tested the B-BP algorithm for double classification on 735

a 5-bit permutation function. We used 3-layer networks with 736

different numbers of hidden neurons. The neurons used bipolar 737

logistic activations. The performance measure was the logistic 738

cross entropy in (114). The B-BP algorithm produced either 739

an exact representation or an approximation. The permuta- 740

tion function bijectively mapped the 5-bit bipolar vector space 741

{−1, 1}5 of 32 bipolar vectors onto itself. Table II displays 742

the permutation test function. We compared the forward and 743

backward forms of unidirectional BP with B-BP. We also 744

tested whether adding more hidden neurons improved network 745

approximation accuracy. 746

The forward pass of standard BP used logistic cross entropy 747

as its error function. The backward pass did as well. B-BP 748

summed the forward and backward errors for its joint error. We 749

computed the test error for the forward and backward passes. 750

Each plotted error value averaged 20 runs. 751



IEE
E P

ro
of

IEE
E P

ro
of

ADIGUN AND KOSKO: B-BP 11

Fig. 4. Logistic-cross-entropy learning for double classification using 100
hidden neurons with forward BP training, backward BP training, and B-BP
training. The trained network represents the 5-bit permutation function in
Table II. (a) Forward BP tuned the network with respect to logistic cross
entropy for the forward pass using Ef only. (b) Backward BP training tuned
the network with respect to logistic cross entropy for the backward pass using
Eb only. (c) B-BP training summed the logistic cross entropies for both the
forward-pass error term Ef and the backward-pass error term Eb to update
the network parameters.

Fig. 4 shows the results of running the three types of752

BP learning for classification on a 3-layer network with 100753

hidden neurons. The values of Ef and Eb decrease with an754

increase in the training iterations for B-BP. This was not the755

case for the unidirectional cases of forward BP and backward756

BP training. Forward and backward training performed well757

only for function approximation in their respective training758

direction. Neither performed well in the opposite direction.759

Fig. 5. B-BP training error for the 5-bit permutation in Table II using
different numbers of hidden neurons. Training used the double-classification
B-BP algorithm. The two curves describe the logistic cross entropy for the
forward and backward passes through the 3-layer network. Each test used 640
samples. The number of hidden neurons increased from 5, 10, 20, 50, to 100.

Fig. 6. B-BP double-regression approximation of the invertible function
f (x) = 0.5σ(6x + 3) + 0.5σ(4x − 1.2) using a deep 8-layer network with
six hidden layers. The function σ denotes the bipolar logistic function in (1).
Each hidden layer contained ten bipolar logistic neurons. The input and out-
put layers each used a single neuron with an identity activation function.
The forward pass approximated the forward function f . The backward pass
approximated the inverse function f −1.

Table III shows the forward-pass cross entropy Ef for learn- 760

ing 3-layer classification neural networks as the number of 761

hidden neurons grows. We again compared the three forms of 762

BP for the network training: two forms of unidirectional BP 763

and B-BP. The forward-pass error for forward BP fell substan- 764

tially as the number of hidden neurons grew. The forward-pass 765

error of backward BP decreased slightly as the number of 766

hidden neurons grew. It gave the worst performance. B-BP 767

performed well on the test set. Its forward-pass error also 768



IEE
E P

ro
of

IEE
E P

ro
of

12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 7. B-BP double-regression learning of the noninvertible target func-
tion f (x) = sin x. (a) Forward pass learned the function y = f (x) = sin x.
(b) Backward pass approximated the centroid of the values in the set-theoretic
preimage f −1({y}) for y values in (−1, 1). The two centroids were −(π/2)

and (π/2).

TABLE IV
BACKWARD-PASS CROSS ENTROPY Eb

fell substantially as the number of hidden neurons grew.769

Table IV shows similar error-versus-hidden-neuron results for770

the backward-pass cross entropy Eb.771

The two tables jointly show that the unidirectional forms of772

BP for regression performed well only in one direction. The773

B-BP algorithm performed well in both directions.774

We tested the B-BP algorithm for double regression with the775

invertible function f (x) = 0.5σ(6x + 3) + 0.5σ(4x − 1.2) for776

values of x ∈ [−1.5, 1.5]. We used a deep 8-layer network with777

6 hidden layers for this approximation. Each hidden layer had778

10 bipolar logistic neurons. There was only a single identity779

neuron in the input and output layers. The error functions Ef780

and Eb were ordinary squared error. Fig. 6 compares the B-BP781

approximation with the target function for both the forward782

pass and the backward pass.783

Algorithm 1 B-BP Algorithm

We also tested the B-BP double-regression algorithm on 784

the noninvertible function f (x) = sin x for x ∈ [−π, π ]. The 785

forward mapping f (x) = sin x is a well-defined point func- 786

tion. The backward mapping y = sin−1(f (x)) is not. It defines 787

instead a set-based pullback or preimage f −1(y) = f −1({y}) = 788

{x ∈ R : f (x) = y} ⊂ R. The B-BP-trained neural network 789

tends to map each output point y to the centroid of its preim- 790

age f −1(y) on the backward pass because centroids minimize 791

squared error and because backward-regression training uses 792

squared error as its performance measure. Fig. 7 shows that 793

forward regression learns the target function sin x while back- 794

ward regression approximates the centroids −(π/2) and (π/2) 795

of the two preimage sets. 796

V. CONCLUSION 797

Unidirectional BP learning extends to B-BP learning if 798

the algorithm uses the appropriate joint error function for 799



IEE
E P

ro
of

IEE
E P

ro
of

ADIGUN AND KOSKO: B-BP 13

both forward and backward passes. This bidirectional exten-800

sion applies to classification networks as well as to regres-801

sion networks and to their combinations. Most classification802

networks can easily acquire a backward-inference capability803

if they include a backward-regression step in their training.804

So most networks simply ignore this inverse property of their805

weight structure.806

Theorem 1 shows that a bidirectional multilayer threshold807

network can exactly represent a permutation mapping if the808

hidden layer contains an exponential number of hidden thresh-809

old neurons. An open question is whether these bidirectional810

networks can represent an arbitrary invertible mapping with far811

fewer hidden neurons. A simpler question holds for the weaker812

case of uniform approximation of invertible mappings.813

Another open question deals with noise: to what extent does814

carefully injected noise speed B-BP convergence and accu-815

racy? There are two bases for this question. The first is that816

the likelihood structure of BP implies that BP is itself a spe-817

cial case of the expectation–maximization algorithm [19]. The818

second basis is that appropriate noise can boost the EM fam-819

ily of hill-climbing algorithms on average because such noise820

makes signals more probable on average [21], [23].821

REFERENCES822

[1] P. J. Werbos, “Beyond regression: New tools for prediction and analysis823

in the behavioral sciences,” Ph.D. Dissertation, Appl. Math., Harvard824

Univ., Cambridge, MA, USA, 1974.825

[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-826

sentations by back-propagating errors,” Nature, vol. 323, pp. 323–533,827

Oct. 1986.828

[3] C. M. Bishop, Pattern Recognition and Machine Learning. New York,829

NY, USA: Springer, 2006.830

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,831

pp. 436–444, May 2015.832

[5] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, per-833

spectives, and prospects,” Science, vol. 349, no. 6245, pp. 255–260,834

2015.835

[6] B. Kosko, “Bidirectional associative memories,” IEEE Trans. Syst., Man,836

Cybern., Syst., vol. 18, no. 1, pp. 49–60, Jan./Feb. 1988.837

[7] B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems838

Approach to Machine Intelligence. Englewood Cliffs, NJ, USA:839

Prentice-Hall, 1991.840

[8] S. Y. Kung, Kernel Methods and Machine Learning. Cambridge, U.K.:841

Cambridge Univ. Press, 2014.842

[9] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”843

Math. Control Signals Syst., vol. 2, no. 4, pp. 303–314, 1989.844

[10] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward845

networks are universal approximators,” Neural Netw., vol. 2, no. 5,846

pp. 359–366, 1989.847

[11] B. Kosko, “Fuzzy systems as universal approximators,” IEEE Trans.848

Comput., vol. 43, no. 11, pp. 1329–1333, Nov. 1994.849

[12] F. Watkins, “The representation problem for additive fuzzy systems,” in850

Proc. Int. Conf. Fuzzy Syst. (IEEE FUZZ), 1995, pp. 117–122.851

[13] B. Kosko, “Generalized mixture representations and combinations for852

additive fuzzy systems,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN),853

2017, pp. 3761–3768.854

[14] B. Kosko, “Additive fuzzy systems: From generalized mixtures to rule855

continua,” Int. J. Intell. Syst., vol. 33, no. 8, pp. 1573–1623, 2017.856

[15] J.-N. Hwang, J. J. Choi, S. Oh, and R. J. Marks, “Query-based learning857

applied to partially trained multilayer perceptrons,” IEEE Trans. Neural858

Netw., vol. 2, no. 1, pp. 131–136, Jan. 1991.859

[16] E. W. Saad, J. J. Choi, J. L. Vian, and D. C. Wunsch, “Query-based 860

learning for aerospace applications,” IEEE Trans. Neural Netw., vol. 14, 861

no. 6, pp. 1437–1448, Nov. 2003. 862

[17] E. W. Saad and D. C. Wunsch, “Neural network explanation using 863

inversion,” Neural Netw., vol. 20, no. 1, pp. 78–93, 2007. 864

[18] Y. Yang, Y. Wang, and X. Yuan, “Bidirectional extreme learning machine 865

for regression problem and its learning effectiveness,” IEEE Trans. 866

Neural Netw. Learn. Syst., vol. 23, no. 9, pp. 1498–1505, Sep. 2012. 867

[19] K. Audhkhasi, O. Osoba, and B. Kosko, “Noise-enhanced convolutional 868

neural networks,” Neural Netw., vol. 78, pp. 15–23, Jun. 2016. 869

[20] S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann. 870

Math. Stat., vol. 22, no. 1, pp. 79–86, 1951. 871

[21] O. Osoba and B. Kosko, “The noisy expectation-maximization algorithm 872

for multiplicative noise injection,” Fluctuation Noise Lett., vol. 15, no. 4, 873

2016, Art. no. 1650007. 874

[22] R. V. Hogg, J. McKean, and A. T. Craig, Introduction to Mathematical 875

Statistics. Boston, MA, USA: Pearson, 2013. 876

[23] O. Osoba, S. Mitaim, and B. Kosko, “The noisy expectation– 877

maximization algorithm,” Fluctuation Noise Lett., vol. 12, no. 3, 2013, 878

Art. no. 1350012. 879

Olaoluwa (Oliver) Adigun received the Bachelor of 880

Science degree in electronic and electrical engineer- 881

ing from Obafemi Awolowo University, Ife, Nigeria. 882

He is currently pursuing the Ph.D. degree with the 883

Department of Electrical and Computer Engineering, 884

Signal and Image Processing Institute, University of 885

Southern California, Los Angeles, CA, USA. 886

He has been an Intern with Google AI, Mountain 887

View, CA, USA, and with the Machine Learning 888

Group, Amazon, Seattle, WA, USA. 889

Mr. Adigun shared the Best Paper Award for his 890

research on noise-boosted recurrent backpropagation at the 2017 International 891

Joint Conference on Neural Networks. 892

Bart Kosko (M’85–SM’07–F’10) received the 893

degrees in philosophy, economics, applied mathe- 894

matics, electrical engineering, and law. 895

He is a Professor of Department of Electrical 896

and Computer Engineering and Law and the Past 897

Director of Signal and Image Processing Institute 898

with the University of Southern California, Los 899

Angeles, CA, USA, and a Licensed Attorney. He has 900

published the textbooks entitled Neural Networks 901

and Fuzzy Systems and Fuzzy Engineering, the trade 902

books entitled Fuzzy Thinking, Heaven in a Chip, 903

and Noise, the edited volume Neural Networks and Signal Processing, the 904

co-edited volume Intelligent Signal Processing, the novel Nanotime, and the 905

upcoming novel Cool Earth. 906

Dr. Kosko was a co-recipient of the Best Paper Award at the 2017 907

International Joint Conference on Neural Networks. 908



IEE
E P

ro
of

IEE
E P

ro
of

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 1

Bidirectional Backpropagation
Olaoluwa Adigun, Member, IEEE, and Bart Kosko , Fellow, IEEE

Abstract—We extend backpropagation (BP) learning from1

ordinary unidirectional training to bidirectional training of deep2

multilayer neural networks. This gives a form of backward3

chaining or inverse inference from an observed network out-4

put to a candidate input that produced the output. The trained5

network learns a bidirectional mapping and can apply to some6

inverse problems. A bidirectional multilayer neural network can7

exactly represent some invertible functions. We prove that a fixed8

three-layer network can always exactly represent any finite per-9

mutation function and its inverse. The forward pass computes10

the permutation function value. The backward pass computes the11

inverse permutation with the same weights and hidden neurons.12

A joint forward–backward error function allows BP learning in13

both directions without overwriting learning in either direction.14

The learning applies to classification and regression. The algo-15

rithms do not require that the underlying sampled function has16

an inverse. A trained regression network tends to map an output17

back to the centroid of its preimage set.18

Index Terms—Backpropagation (BP) learning, backward19

chaining, bidirectional associative memory, function approxima-20

tion, function representation, inverse problems.21

I. BIDIRECTIONAL BACKPROPAGATION22

WE EXTEND the familiar unidirectional backpropaga-23

tion (BP) algorithm [1]–[5] to the bidirectional case.24

Unidirectional BP maps an input vector to an output vector by25

passing the input vector forward through the network’s visible26

and hidden neurons and its connection weights. Bidirectional27

BP (B-BP) combines this forward pass with a backward pass28

through the same neurons and weights. It does not use two29

separate feedforward or unidirectional networks.30

B-BP training endows a multilayered neural network31

N : R
n → R

p with a form of backward inference. The for-32

ward pass gives the usual predicted neural output N(x) given33

a vector input x. The output vector value y = N(x) answers34

the what-if question that x poses: What would we observe if35

x occurred? What would be the effect? The backward pass36

answers the why question that y poses: Why did y occur?37

What type of input would cause y? Feedback convergence to38

a resonating bidirectional fixed-point attractor [6], [7] gives a39

long-term or equilibrium answer to both the what-if and why40

questions. This paper does not address the global stability of41

multilayered bidirectional networks.42

Manuscript received May 18, 2017; revised September 2, 2017; accepted
November 10, 2017. This paper was recommended by Associate Editor
G.-B. Huang. (Corresponding author: Bart Kosko.)

The authors are with the Department of Electrical and Computer
Engineering, University of Southern California, Los Angeles, CA 90089 USA
(e-mail: kosko@usc.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2019.2916096

Bidirectional neural learning applies to large-scale prob- 43

lems and big data because the BP algorithm scales linearly 44

with training data. BP has time complexity O(n) for n train- 45

ing samples because both the forward and backward passes 46

have complexity O(n). So the B-BP algorithm still has O(n) 47

complexity because O(n) + O(n) = O(n). This linear scaling 48

does not hold for most machine-learning algorithms. An exam- 49

ple is the quadratic complexity O(n2) of support-vector kernel 50

methods [8]. 51

We first show that multilayer bidirectional networks have 52

sufficient power to exactly represent permutation mappings. 53

These mappings are invertible and discrete. We then develop 54

the B-BP algorithms that can approximate these and other 55

mappings if the networks have enough hidden neurons. 56

A neural network N exactly represents a function f just in 57

case N(x) = f (x) for all input vectors x. Exact representation 58

is much stronger than the more familiar property of function 59

approximation: N(x) ≈ f (x). Feedforward multilayer neural 60

networks can uniformly approximate continuous functions on 61

compact sets [9], [10]. Additive fuzzy systems are also uniform 62

function approximators [11]. But additive fuzzy systems have 63

the further property that they can exactly represent any real 64

function if it is bounded [12]. This exact representation needs 65

only two fuzzy rules because the rules absorb the function 66

into their fuzzy sets. This holds more generally for generalized 67

probability mixtures because the fuzzy rules define the mixed 68

probability densities [13], [14]. 69

Figs. 1 and 2 show bidirectional 3-layer networks of zero- 70

threshold neurons. Both networks exactly represent the 3-bit 71

permutation function f in Table I where {−,−,+} denotes 72

{−1,−1, 1}. So f is a self-bijection that rearranges the 8 vec- 73

tors in the bipolar hypercube {−1, 1}3. This f is just one 74

of the 8! or 40 320 permutation maps or rearrangements on 75

the bipolar hypercube {−1, 1}3. The forward pass converts 76

the input bipolar vector (1, 1, 1) to the output bipolar vec- 77

tor (−1,−1, 1). The backward pass converts (−1,−1, 1) to 78

(1, 1, 1) over the same fixed synaptic connection weights. 79

These same weights and neurons similarly convert the other 80

7 input vectors in the first column of Table I to the cor- 81

responding 7 output vectors in the second column and vice 82

versa. 83

Theorem 1 states that a multilayer bidirectional network can 84

exactly represent any finite bipolar or binary permutation func- 85

tion. This result requires a hidden layer with 2n hidden neurons 86

for an n-bit permutation function on the bipolar hypercube 87

{−1, 1}n. Fig. 3 shows such a network. Using so many hidden 88

neurons is not practical or necessary in most real-world cases. 89

The exact bidirectional representation in Fig. 1 uses only 4 90

hidden threshold neurons to represent the 3-bit permutation 91

function. This was the smallest hidden layer that we found 92

2168-2216 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



IEE
E P

ro
of

IEE
E P

ro
of

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 1. Exact bidirectional representation of a permutation map. The 3-layer
bidirectional threshold network exactly represents the invertible 3-bit bipolar
permutation function f in Table I. The network uses four hidden neurons. The
forward pass takes the input bipolar vector x at the input layer and feeds it
forward through the weighted edges and the hidden layer of threshold neurons
to the output layer. The backward pass feeds the output bipolar vector y back
through the same weights and neurons. All neurons are bipolar and use zero
thresholds. The bidirectional network computes y = f (x) on the forward pass.
It computes the inverse value f −1(y) on the backward pass.

through guesswork. Many other bidirectional representations93

also use fewer than 8 hidden neurons.94

We seek instead a practical learning algorithm that can learn95

bidirectional approximations from sample data. Fig. 2 shows96

a learned bidirectional representation of the same 3-bit per-97

mutation in Table I. It uses only 3 hidden neurons. The B-BP98

algorithm tuned the neurons’ threshold values as well as their99

connection weights. All the learned threshold values were near100

zero. We rounded them to zero to achieve the bidirectional101

representation with just 3 hidden neurons.102

The rest of this paper derives the B-BP algorithm for103

regression and classification in both directions and for mixed104

classification–regression. This takes some care because train-105

ing the weights in one direction tends to overwrite their BP106

training in the other direction. The B-BP algorithm solves this107

problem by minimizing a joint error function. The lone error108

function is cross entropy for unidirectional classification. It is109

squared error for unidirectional regression. Fig. 4 compares110

ordinary BP training and overwriting with B-BP training.111

The learned approximation tends to improve if we add more112

hidden neurons. Fig. 5 shows that the B-BP training cross-113

entropy error falls as the number of hidden neurons grows114

when learning the 5-bit permutation in Table II.115

Fig. 2. Learned bidirectional representation of the 3-bit permutation in
Table I. The bidirectional BP algorithm found this representation using the
double-classification learning laws of Section III. It used only three hid-
den neurons. All the neurons were bipolar and had zero thresholds. Zero
thresholding gave an exact representation of the 3-bit permutation.

Fig. 6 shows a deep 8-layer bidirectional approximation of 116

the nonlinear function f (x) = 0.5σ(6x + 3) + 0.5σ(4x − 1.2) 117

and its inverse. The network used 6 hidden layers with 10 118

bipolar logistic neurons per layer. A bipolar logistic activation 119

σ scales and translates an ordinary unit-interval-valued logistic 120

σ(x) = 2

1 + e−x
− 1. (1) 121

The final sections show that similar B-BP algorithms 122

hold for training double-classification networks and mixed 123

classification–regression networks. The B-BP learning laws 124

are the same for regression and classification subject to 125

these conditions: regression minimizes the squared error and 126

uses identity output neurons. Classification minimizes the 127

cross entropy and uses softmax output neurons. Both cases 128

maximize the network likelihood or log-likelihood function. 129

Logistic input and output neurons give the same B-BP learn- 130

ing laws if the network minimizes the bipolar cross entropy 131

in (114). We call this backpropagation invariance. 132

B-BP learning also approximates noninvertible functions. 133

The algorithm tends to learn the centroid of many-to-one 134

functions. Suppose that the target function f : R
n → R

p is 135

not one-to-one or injective. So it has no inverse f −1 point 136

mapping. But it does have a set-valued inverse or preimage 137

pullback mapping f −1 : 2R
p → 2R

n
such that f −1(B) = {x ∈ 138

R
n : f (x) ∈ B} for any B ⊂ R

p. Suppose that the n input 139

training samples x1, . . . , xn map to the same output training 140

sample y : f −1({y}) = {x1, . . . , xn}. Then B-BP learning tends 141

to map y to the centroid x̄ of f −1({y}) because the centroid 142

minimizes the mean-squared error of regression. 143



IEE
E P

ro
of

IEE
E P

ro
of

ADIGUN AND KOSKO: B-BP 3

TABLE I
3-BIT BIPOLAR PERMUTATION FUNCTION f

Fig. 7 shows such an approximation for the noninvertible144

target function f (x) = sin x. The forward regression approxi-145

mates sin x. The backward regression approximates the average146

or centroid of the two points in the preimage set of y = sin x.147

Then f −1({y}) = sin−1(y) = {θ, π − θ} for 0 < θ < (π/2) if148

0 < y < 1. This gives the pullback’s centroid as (π/2). The149

centroid equals −(π/2) if −1 < y < 0.150

B-BP differs from earlier neural approaches to approx-151

imating inverses. Hwang et al. [15] developed an inverse152

algorithm for query-based learning in binary classification.153

Their BP-based algorithm is not bidirectional. It instead154

exploits the data-weight inner-product input to neurons. It155

holds the weights constant while it tunes the data for a given156

output. Saad et al. [16], [17] have applied this inverse algo-157

rithm to problems in aerospace and elsewhere. B-BP also158

differs from the more recent bidirectional extreme-learning-159

machine algorithm that uses a two-stage learning process but160

in a unidirectional network [18].161

II. BIDIRECTIONAL EXACT REPRESENTATION OF162

BIPOLAR PERMUTATIONS163

This section proves that there exist multilayered neu-164

ral networks that can exactly bidirectionally represent some165

invertible functions. We first define the network variables. The166

proof uses threshold neurons. The B-BP algorithms below use167

soft-threshold logistic sigmoids for hidden neurons.168

A bidirectional neural network is a multilayer network169

N : X → Y that maps the input space X to the output space170

Y and conversely through the same set of weights. The back-171

ward pass uses the matrix transposes of the weight matrices172

that the forward pass uses. Such a network is a bidirectional173

associative memory or BAM [6], [7]. The original BAM the-174

orem [6] states that any two-layer neural network is globally175

bidirectionally stable for any sole rectangular weight matrix176

W with real entries.177

The forward pass sends the input vector x through the178

weight matrix W that connects the input layer to the hid-179

den layer. The result passes on through matrix U to the output180

layer. The backward pass sends the output y from the output181

layer back through the hidden layer to the input layer. Let182

I, J, and K denote the respective numbers of input, hidden,183

and output neurons. Then the I × J matrix W connects the184

input layer to the hidden. The J × K matrix U connects the185

hidden layer to the output layer.186

The hidden-neuron input oh
j has the affine form 187

oh
j =

I∑

i=1

wija
x
i (xi) + bh

j (2) 188

where weight wij connects the ith input neuron to the jth hid- 189

den neuron, ax
i is the activation of the ith input neuron, and 190

bh
j is the bias of the jth hidden neuron. The activation ah

j of 191

the jth hidden neuron is a bipolar threshold 192

ah
j

(
oh

j

)
=
{

−1 if oh
j ≤ 0

1 if oh
j > 0.

(3) 193

The B-BP algorithm in the next section uses soft-threshold 194

bipolar logistic functions for the hidden activations because 195

such sigmoid functions are differentiable. The proof below 196

also modifies the hidden thresholds to take on binary values 197

in (14) and to fire with a slightly different condition. 198

The input oy
k to the kth output neuron from the hidden layer 199

is also affine 200

oy
k =

J∑

j=1

ujkah
j + by

k (4) 201

where weight ujk connects the jth hidden neuron to the kth 202

output neuron. Term by
k is the additive bias of the kth output 203

neuron. The output activation vector ay gives the predicted 204

outcome or target on the forward pass. The kth output neuron 205

has bipolar threshold activation ay
k 206

ay
k

(
oy

k

) =
{−1 if oy

k ≤ 0
1 if oy

k > 0.
(5) 207

The forward pass of an input bipolar vector x from Table I 208

through the network in Fig. 1 gives an output activation vector 209

ay that equals the table’s corresponding target vector y. The 210

backward pass feeds y from the output layer back through the 211

hidden layer to the input layer. Then the backward-pass input 212

ohb
j to the jth hidden neuron is 213

ohb
j =

K∑

k=1

ujkay
k(yk) + bh

j (6) 214

where yk is the output of the kth output neuron. The term ay
k 215

is the activation of the kth output neuron. The backward-pass 216

activation of the jth hidden neuron ahb
j is 217

ahb
j

(
ohb

j

)
=
{

−1 if ohb
j ≤ 0

1 if ohb
j > 0.

(7) 218

The backward-pass input oxb
i to the ith input neuron is 219

oxb
i =

J∑

j=1

wija
hb
j + bx

i (8) 220

where bx
i is the bias for the ith input neuron. The input-layer 221

activation ax gives the predicted value for the backward pass. 222

The ith input neuron has bipolar activation 223

axb
i

(
oxb

i

)
=
{−1 if oxb

i ≤ 0
1 if oxb

i > 0.
(9) 224



IEE
E P

ro
of

IEE
E P

ro
of

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

We can now state and prove the bidirectional representation225

theorem for bipolar permutations. The theorem also applies226

to binary permutations because the input and output neurons227

have bipolar threshold activations.228

Theorem 1 (Exact Bidirectional Representation of Bipolar229

Permutation Functions): Suppose that the invertible function230

f : {−1, 1}n → {−1, 1}n is a permutation. Then there exists a231

3-layer bidirectional neural network N : {−1, 1}n → {−1, 1}n
232

that exactly represents f in the sense that N(x) = f (x) and that233

N−1(x) = f −1(x) for all x. The hidden layer has 2n threshold234

neurons.235

Proof: The proof constructs weight matrices W and U so236

that exactly one hidden neuron fires on both the forward and237

the backward passes. Fig. 3 shows the proof technique for the238

special case of a 3-bit bipolar permutation. We structure the239

network so that an input vector x fires only one hidden neuron240

on the forward pass. The output vector y = N(x) fires only241

the same hidden neuron on the backward pass.242

The bipolar permutation f is a bijective map of the bipolar243

hypercube {−1, 1}n onto itself. The bipolar hypercube con-244

tains the 2n input bipolar column vectors x1, x2, . . . , x2n . It245

likewise contains the 2n output bipolar vectors y1, y2, . . . , y2n .246

The network uses 2n corresponding hidden threshold neurons.247

So J = 2n.248

Matrix W connects the input layer to the hidden layer.249

Matrix U connects the hidden layer to the output layer. Define250

W so that its columns list all 2n bipolar input vectors. Define251

U so that the columns of its transpose UT list all 2n transposed252

bipolar output vectors:253

W = [
x1 x2 . . . x2n

]
254

UT = [
y1 y2 . . . y2n

]
.255

We show next both that these weight matrices fire only one256

hidden neuron and that the forward pass of any input vector257

xn gives the corresponding output vector yn. Assume that each258

neuron has zero bias.259

Pick a bipolar input vector xm for the forward pass. Then the260

input activation vector ax(xm) = (ax
1(x

1
m), . . . , ax

n(x
n
m)) equals261

the input bipolar vector xm because the input activations (9) are262

bipolar threshold functions with zero threshold. So ax equals263

xm because the vector space is bipolar {−1, 1}n.264

The hidden layer input oh is the same as (2). It has the265

matrix-vector form266

oh = WTax (10)267

= WTxm (11)268

=
(

oh
1, oh

2, . . . , oh
n, . . . , oh

2n

)T
(12)269

=
(

xT
1 xm, xT

2 xm, . . . , xT
j xm, . . . , xT

2n xm

)T
(13)270

since oh
j is the inner product of the bipolar vectors xj and xm271

from the definition of W.272

The input oh
j to the jth neuron of the hidden layer obeys273

oh
j = n when j = m. It obeys oh

j < n when j �= m. This holds274

because the vectors xj are bipolar with scalar components in275

{−1, 1}. The magnitude of a bipolar vector in {−1, 1}n is
√

n.276

The inner product xT
j xm is a maximum when both vectors have277

Fig. 3. Bidirectional network structure for the proof of Theorem 1. The input
and output layers have n threshold neurons. The hidden layer has 2n neurons
with threshold values of n. The 8 fan-in 3-vectors of weights in W from the
input to the hidden layer list the 23 elements of the bipolar cube {−1, 1}3.
So they list the eight vectors in the input column of Table I. The 8 fan-in
3-vectors of weights in U from the output to the hidden layer list the eight
bipolar vectors in the output column of Table I. The threshold value for the
sixth and highlighted hidden neuron is 3. Passing the sixth input vector (−1,
1, −1) through W leads to the hidden-layer vector (0, 0, 0, 0, 0, 1, 0, 0) of
thresholded values. Passing this 8-bit vector through U produces after thresh-
olding the sixth output vector (−1, −1, −1) in Table I. Passing this output
vector back through the transpose of U produces the same unit bit vector of
thresholded hidden-unit values. Passing this vector back through the transpose
of W produces the original bipolar vector (−1, 1,−1).

the same direction. This occurs when j = m. The inner product 278

is otherwise less than n. Fig. 3 shows a bidirectional neural 279

network that fires just the sixth hidden neuron. The weights 280

for the network in Fig. 3 are 281

W =
⎡

⎣
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1

⎤

⎦ 282

UT =
⎡

⎣
−1 −1 1 1 −1 −1 1 1
−1 1 1 −1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1

⎤

⎦. 283

Now comes the key step in the proof. Define the hidden 284

activation ah
j as a binary (not bipolar) threshold function where 285

n is the threshold value 286

ah
j

(
oh

j

)
=
{

1 if oh
j ≥ n

0 if oh
j < n.

(14) 287



IEE
E P

ro
of

IEE
E P

ro
of

ADIGUN AND KOSKO: B-BP 5

Then the hidden-layer activation ah is the unit bit vector288

(0, 0, . . . , 1, . . . , 0)T, where ah
j = 1 when j = m and where289

ah
j = 0 when j �= m. This holds because all 2n bipolar vec-290

tors xm in {−1, 1}n are distinct. So exactly one of these 2n
291

vectors achieves the maximal inner-product value n = xT
mxm.292

So ah
j (o

h
j ) = 0 for j �= m and ah

m(oh
m) = 1. The bidirectional293

network in Fig. 3 represents the 3-bit bipolar permutation in294

Table I.295

The input vector oy to the output layer is296

oy = UTah (15)297

=
J∑

j=1

yj ah
j (16)298

= ym (17)299

where ah
j is the activation of the jth hidden neuron. The300

activation ay of the output layer is301

ay
(

oy
j

)
=
{

1 if oy
j ≥ 0

−1 if oy
j < 0.

(18)302

The output layer activation leaves oy unchanged because oy
303

equals ym and because ym is a vector in {−1, 1}n. So304

ay = ym. (19)305

So the forward pass of an input vector xm through the network306

yields the desired corresponding output vector ym if ym =307

f (xm) for the bipolar permutation map f .308

Consider next the backward pass through the network N.309

The backward pass propagates the output vector ym through310

the hidden layer back to the input layer. The hidden layer input311

ohb has the same inner-product form as in (6):312

ohb = U ym (20)313

where ohb = (yT
1 ym, yT

2 ym, . . . , yT
j ym, . . . , yT

2n ym)
T

.314

The input ohb
j of the jth neuron in the hidden layer equals315

the inner product of yj and ym. So ohb
j = n when j = m.316

But now ohb
j < n when j �= m. This holds because again the317

magnitude of a bipolar vector in {−1, 1}n is
√

n. The inner318

product ohb
j is a maximum when vectors ym and yj lie in the319

same direction. The activation ahb for the hidden layer has the320

same components as in (14). So the hidden-layer activation321

ahb again equals the unit bit vector (0, 0, . . . , 1, . . . , 0)T where322

ahb
j = 1 when j = m and ahb

j = 0 when j �= m.323

Then the input vector oxb for the input layer is324

oxb = W ahb (21)325

=
J∑

j=1

xj ahb (22)326

= xm. (23)327

The ith input neuron has a threshold activation that is the328

same as329

axb
i

(
oxb

i

)
=
{

1 if oxb
i ≥ 0

−1 if oxb
i < 0

(24)330

where oxb
i is the input of ith neuron in the input layer. This 331

activation leaves oxb unchanged because oxb equals xm and 332

because the vector xm lies in {−1, 1}n. So 333

axb = oxb (25) 334

= xm. (26) 335

So the backward pass of any target vector ym yields the 336

desired input vector xm if f −1(ym) = xm. This completes the 337

backward pass and the proof. 338

III. BIDIRECTIONAL BACKPROPAGATION ALGORITHMS 339

A. Double Regression 340

We now derive the first of three B-BP learning algorithms. 341

The first case is double regression where the network performs 342

regression in both directions. 343

B-BP training minimizes both the forward error Ef and 344

backward error Eb. B-BP alternates between backward train- 345

ing and forward training. Forward training minimizes Ef while 346

holding Eb constant. Backward training minimizes Eb while 347

holding Ef constant. Ef is the error at the output layer. Eb is 348

the error at the input layer. Double regression uses squared 349

error for both error functions. 350

The forward pass sends the input vector x through the hid- 351

den layer to the output layer. The network uses only one 352

hidden layer for simplicity and with no loss of generality. The 353

B-BP double-regression algorithm applies to any number of 354

hidden layers in a deep network. 355

The hidden-layer input values oh
j are the same as in (2). The 356

jth hidden activation ah
j is the binary logistic map 357

ah
j

(
oh

j

)
= 1

1 + e−oh
j

(27) 358

where (4) gives the input oy
k to the kth output neuron. The hid- 359

den activations can be logistic or any other sigmoidal function 360

so long as they are differentiable. The activation for an output 361

neuron is the identity function 362

ay
k = oy

k (28) 363

where ay
k is the activation of kth output neuron. 364

The error function Ef for the forward pass is squared error 365

Ef = 1

2

K∑

k=1

(
yk − ay

k

)2
(29) 366

where yk denotes the value of the kth neuron in the out- 367

put layer. Ordinary unidirectional BP updates the weights and 368

other network parameters by propagating the error from the 369

output layer back to the input layer. 370

The backward pass sends the output vector y through the 371

hidden layer to the input layer. The input to the jth hidden 372

neuron ohb
j is the same as in (6). The activation ahb

j for the jth 373

hidden neuron is 374

ahb
j = 1

1 + e−ohb
j

. (30) 375



IEE
E P

ro
of

IEE
E P

ro
of

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

The input ox
i for the ith input neuron is the same as (8). The376

activation at the input layer is the identity function377

axb
i

(
oxb

i

)
= oxb

i . (31)378

A nonlinear sigmoid (or Gaussian) activation can replace the379

linear function.380

The backward-pass error Eb is also squared error381

Eb = 1

2

I∑

i=1

(
xi − ax

i

)2
. (32)382

The partial derivative of the hidden-layer activation in the383

forward direction is384

∂ah
j

∂oh
j

= ∂

∂oh
j

(
1

1 + e−oh
j

)
(33)385

= e−oh
j

(
1 + e−oh

j

)2
(34)386

= 1

1 + e−oh
j

[
1 − 1

1 + e−oh
j

]
(35)387

= ah
j

(
1 − ah

j

)
. (36)388

Let ah
j
′

denote the derivative of ah
j with respect to the inner-389

product term oh
j . We again use the superscript b to denote the390

backward pass.391

The partial derivative of Ef with respect to the weight392

ujk is393

∂Ef

∂ujk
= 1

2

∂

∂ujk

K∑

k=1

(
yk − ay

k

)2
(37)394

= ∂Ef

∂ay
k

∂ay
k

∂oy
k

∂oy
k

∂ujk
(38)395

= (
ay

k − yk
)
ah

j . (39)396

The partial derivative of Ef with respect to wij is397

∂Ef

∂wij
= 1

2

∂

∂wij

K∑

k=1

(
yk − ay

k

)2
(40)398

=
(

K∑

k=1

∂Ef

∂ay
k

∂ay
k

∂oy
k

∂oy
k

∂ah
j

)
∂ah

j

∂oh
j

∂oh
j

∂wij
(41)399

=
K∑

k=1

(
ay

k − yk
)
ujk ah

j
′

xi (42)400

where ah
j
′

is the same as in (36). The partial derivative of Ef401

with respect to the bias by
k of the kth output neuron is402

∂Ef

∂by
k

= 1

2

∂

∂by
k

K∑

k=1

(
yk − ay

k

)2
(43)403

= ∂Ef

∂ay
k

∂ay
k

∂oy
k

∂oy
k

∂by
k

(44)404

= ay
k − yk. (45)405

The partial derivative of Ef with respect to the bias bh
j of 406

the jth hidden neuron is 407

∂Ef

∂bh
j

= 1

2

∂

∂bh
j

K∑

k=1

(
yk − ay

k

)2
(46) 408

=
(

K∑

k=1

∂Ef

∂ay
k

∂ay
k

∂oy
k

∂oy
k

∂ah
j

)
∂ah

j

∂oh
j

∂oh
j

∂bh
j

(47) 409

=
K∑

k=1

(
ay

k − yk
)
ujkah

j
′

(48) 410

where ah
j
′

is the same as in (36). 411

The partial derivative of the hidden-layer activation ahb
j in 412

the backward direction is 413

∂ahb
j

∂ohb
j

= ∂

∂ohb
j

(
1

1 + e−ohb
j

)
(49) 414

= e−ohb
j

(
1 + e−ohb

j

)2
(50) 415

= 1

1 + e−ohb
j

[
1 − 1

1 + e−ohb
j

]
(51) 416

= ahb
j

(
1 − ahb

j

)
. (52) 417

The partial derivative of Eb with respect to wij is 418

∂Eb

∂wij
= 1

2

∂

∂wij

K∑

k=1

(
xi − axb

i

)2
(53) 419

= ∂Eb

∂axb
i

∂axb
i

∂oxb
i

∂oxb
i

∂wij
(54) 420

=
(

axb
i − xi

)
ahb

j . (55) 421

The partial derivative of Eb with respect to ujk is 422

∂Eb

∂ujk
= 1

2

∂

∂ujk

I∑

i=1

(
xi − axb

i

)2
(56) 423

=
(

I∑

i=1

∂Eb

∂axb
i

∂axb
i

∂oxb
i

∂oxb
i

∂ahb
j

)
∂ahb

j

∂ohb
j

∂ohb
j

∂ujk
(57) 424

=
I∑

i=1

(
axb

i − xi

)
wija

hb
j

′
yk (58) 425

where ahb
j

′
is the same as in (52). 426

The partial derivative of Eb with respect to the bias bx
i of 427

ith input neuron is 428

∂Eb

∂bx
i

= 1

2

∂

∂bx
i

I∑

i=1

(
xi − axb

i

)2
(59) 429

= ∂Eb

∂axb
i

∂axb
i

∂oxb
i

∂oxb
i

∂bx
i

(60) 430

= axb
i − xi. (61) 431



IEE
E P

ro
of

IEE
E P

ro
of

ADIGUN AND KOSKO: B-BP 7

The partial derivative of Eb with respect to the bias bh
j of jth432

hidden neuron is433

∂Eb

∂bh
j

= 1

2

∂

∂bh
j

I∑

i=1

(
xi − axb

i

)2
(62)434

=
(

I∑

i=1

∂Eb

∂axb
i

∂axb
i

∂oxb
i

∂oxb
i

∂ahb
j

)
∂ahb

j

∂ohb
j

∂ohb
j

∂bh
j

(63)435

=
I∑

i=1

(
axb

i − xi

)
wija

hb
j

′
(64)436

where ahb
j

′
is the same as in (52).437

The error function at the input layer is the backward-pass438

error Eb. The error function at the output layer is the forward-439

pass error Ef .440

The above update laws for forward regression have the final441

form (for learning rate η > 0)442

u(n+1)
jk = u(n)

jk − η
(
ay

k − yk
)
ah

j (65)443

w(n+1)
ij = w(n)

ij − η

(
K∑

k=1

(
ay

k − yk
)
ujkah

j
′
xi

)
(66)444

bh
j
(n+1) = bh

j
(n) − η

(
K∑

k=1

(
ay

k − yk
)
ujkah

j
′
)

(67)445

by
k
(n+1) = by

k
(n) − η

(
ay

k − yk
)
. (68)446

The dual update laws for backward regression have the final447

form448

u(n+1)
jk = u(n)

jk − η

(
I∑

i=1

(
axb

i − xi

)
wija

hb
j

′
yk

)
(69)449

w(n+1)
ij = w(n)

ij − η
(

axb
i − xi

)
ahb

j (70)450

bx
i
(n+1) = bx

i
(n) − η

(
axb

i − xi

)
(71)451

bh
j
(n+1) = bh

j
(n) − η

(
I∑

i=1

(
axb

i − xi

)
wija

hb
j

′
)

. (72)452

B-BP training minimizes Ef while holding Eb con-453

stant. It then minimizes Eb while holding Ef constant.454

Equations (65)–(68) state the update rules for forward train-455

ing. Equations (69)–(72) state the update rules for backward456

training. Each training iteration involves forward training and457

then backward training.458

Algorithm 1 summarizes the B-BP algorithm. It shows how459

to combine forward and backward training in B-BP. Fig. 6460

shows how double-regression B-BP approximates the invert-461

ible function f (x) = 0.5σ(6x + 3) + 0.5σ(4x − 1.2) if σ(x)462

denotes the bipolar logistic function in (1). The approximation463

used a deep 8-layer network with six layers of ten bipo-464

lar logistic neurons each. The input and output layer each465

contained only a single identity neuron.466

B. Double Classification467

We now derive a B-BP algorithm where the network’s for-468

ward pass acts as a classifier network and so does its backward469

pass. We call this double classification.470

We present the derivation in terms of cross entropy for 471

the sake of simplicity. Our double-classification simulations 472

used the slightly more general form of cross entropy in (114) 473

that we call logistic cross entropy. The simpler cross-entropy 474

derivation applies to softmax input neurons and output neurons 475

(with implied 1-in-K coding). Logistic input and output neu- 476

rons require logistic cross entropy for the same BP derivation 477

because then the same final BP partial derivatives result. 478

The simplest double-classification network uses Gibbs or 479

softmax neurons at both the input and output layers. This cre- 480

ates a winner-take-all structure at those layers. Then the kth 481

softmax neuron in the output layer codes for the kth input 482

pattern. The output layer represents the pattern as a K-length 483

unit bit vector with a “1” in the kth slot and a “0” in the 484

other K − 1 slots [3], [19]. The same 1-in-I binary encoding 485

holds for the ith neuron at the input layer. The softmax struc- 486

ture implies that the input and output fields each compute a 487

discrete probability distribution for each input. 488

Classification networks differ from regression networks in 489

another key aspect: they do not minimize squared error. They 490

instead minimize the cross entropy of the given target vec- 491

tor and the softmax activation values of the output or input 492

layers [3]. Equation (79) states the forward cross entropy at 493

the output layer if yk is the desired or target value of the 494

kth output neuron. Then ay
k is its actual softmax activation 495

value. The entropy structure applies because both the target 496

vector and the input and output vectors are probability vectors. 497

Minimizing the cross entropy maximizes the Kullback–Leibler 498

divergence [20] and vice versa [19]. 499

The classification BP algorithm depends on another 500

optimization equivalence: minimizing the cross entropy is 501

equivalent to maximizing the network’s likelihood or log- 502

likelihood [19]. We will establish this equivalence because it 503

implies that the BP learning laws have the same form for 504

both classification and regression. We will prove the equiv- 505

alence for only the forward direction. It applies equally in 506

the backward direction. The result unifies the BP learning 507

laws. It also allows carefully selected noise to enhance the 508

network likelihood because BP is a special case [19], [21] of 509

the expectation–maximization algorithm for iteratively maxi- 510

mizing a likelihood with missing data or hidden variables [22]. 511

Denote the network’s forward probability density function 512

as pf (y|x,�). The vector � lists all parameters in the network. 513

The input vector x passes through the multilayer network and 514

produces the output vector y. Then the network’s forward like- 515

lihood Lf (�) is the natural logarithm of the forward network 516

probability: Lf (�) = ln pf (y|x,�). 517

We will show that pf (y|x,�) = exp{−Ef (�)}. So BP’s for- 518

ward pass computes the forward cross entropy as it maximizes 519

the likelihood [19]. 520

The key assumption is that output softmax neurons in a clas- 521

sifier network are independent because there are no intralayer 522

connections among them. Then the network probability den- 523

sity pf (y|x,�) factors into a product of K-many marginals [3]: 524

pf (y|x,�) = ∏K
k=1 pf (yk|x,�). This gives 525

Lf (�) = ln pf (y|x,�) (73) 526



IEE
E P

ro
of

IEE
E P

ro
of

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

= ln
K∏

k=1

pf (yk|x,�) (74)527

= ln
K∏

k=1

(
ay

k

)yk (75)528

=
K∑

k=1

yk ln ay
k (76)529

= −Ef (�) (77)530

from (79) since y is a 1-in-K-encoded unit bit vector. Then531

exponentiation gives pf (y|x,�) = exp{−Ef (�)}. Minimizing532

the forward cross entropy Ef is equivalent to maximizing the533

negative cross entropy −Ef . So minimizing Ef maximizes the534

forward network likelihood L and vice versa.535

The third equality (75) holds because the kth marginal factor536

pf (yk|x,�) in a classifier network equals the exponentiated537

softmax activation (at
k)

yk . This holds because yk = 1 if k is538

the correct class label for the input pattern x and yk = 0539

otherwise. This discrete probability vector defines an output540

categorical distribution. It is a single-sample multinomial.541

We now derive the B-BP algorithm for double classifica-542

tion. The algorithm minimizes the error functions separately543

where Ef (�) is the forward cross entropy in (75) and Eb(�)544

is the backward cross entropy in (81). We first derive the for-545

ward B-BP classifier algorithm. We then derive the backward546

portion of the B-BP double-classification algorithm.547

The forward pass sends the input vector x through the hid-548

den layer or layers to the output layer. The input activation549

vector ax is the vector x.550

We assume only one hidden layer for simplicity. The deriva-551

tion applies to deep networks with any number of hidden552

layers. The input to the jth hidden neuron oh
j has the same553

linear form as in (2). The jth hidden activation ah
j is the554

same ordinary unit-interval-valued logistic function in (27).555

The input oy
k to the kth output neuron is the same as in (4). The556

hidden activations can also be ReLU or hyperbolic tangents557

or many other functions.558

The forward classifier’s output-layer neurons use Gibbs or559

softmax activations560

ay
k = e(oy

k)

∑K
l=1 e(oy

l )
(78)561

where ay
k is the activation of the kth output neuron. Then the562

forward error Ef is the cross entropy563

Ef = −
K∑

k=1

yk ln ay
k (79)564

between the binary target values yk and the actual output565

activations ay
k.566

We next describe the backward pass through the classifier567

network. The backward pass sends the output target vector568

y through the hidden layer to the input layer. So the initial569

activation vector ay equals the target vector y. The input to570

the jth neuron of the hidden layer ohb
j has the same linear571

form as (6). The activation of the jth hidden neuron is the572

same as (30).573

The backward-pass input to the ith input neuron is also the 574

same as (8). The input activation is Gibbs or softmax 575

axb
i = e

(
oxb

i

)

∑I
l=1 e

(
oxb

i

) (80) 576

where axb
i is the backward-pass activation for the ith neuron 577

of the input neuron. Then the backward error Eb is the cross 578

entropy 579

Eb = −
I∑

i=1

xi ln axb
i (81) 580

where xi is the target value of the ith input neuron. 581

The partial derivatives of the hidden activation ah
j and ahb

j 582

are the same as in (36) and (52). 583

The partial derivative of the output activation ay
k for the 584

forward classification pass is 585

∂ay
k

∂oy
k

= ∂

∂oy
k

(
e(oy

k)

∑K
l=1 e(oy

l )

)
(82) 586

=
eoy

k

(∑K
l=1 e(oy

l )
)

− eoy
k eoy

k

(∑K
l=1 e(oy

l )
)2

(83) 587

=
eoy

k

(∑K
l=1 e(oy

l ) − eoy
k

)

(∑K
l=1 e(oy

l )
)2

(84) 588

= ay
k

(
1 − ay

k

)
. (85) 589

The partial derivative when l �= k is 590

∂ay
k

∂oy
l

= ∂

∂oy
l

(
e(oy

k)

∑K
m=1 e(oy

m)

)
(86) 591

= −eoy
k eoy

l

(∑K
l=1 e(oy

l )
)2

(87) 592

= −ay
k ay

l . (88) 593

So the partial derivative of ay
k with respect to ok

l is 594

∂ay
k

∂oy
l

=
{−ay

k ay
l if l �= k

ay
k

(
1 − ay

k

)
if l = k.

(89) 595

Denote this derivative as ay
k
′
. The derivative axb

i
′

of the back- 596

ward classification pass has the same form because both sets 597

of classifier neurons have softmax activations. 598

The partial derivative of the forward cross entropy Ef with 599

respect to ujk is 600

∂Ef

∂ujk
= − ∂

∂ujk

K∑

k=1

yk ln ay
k (90) 601

=
K∑

k=1

(
∂Ef

∂ay
k

∂ay
k

∂oy
k

∂oy
k

∂ujk

)
(91) 602

= −
⎛

⎝ yk

ay
k

(
1 − ay

k

)
ay

k −
K∑

l �=k

yl

ay
l

ay
kay

l

⎞

⎠ah
j (92) 603

= (
ay

k − yk
)
ah

j . (93) 604



IEE
E P

ro
of

IEE
E P

ro
of

ADIGUN AND KOSKO: B-BP 9

The partial derivative of the forward cross entropy Ef with605

respect to the bias by
k of the kth output neuron is606

∂Ef

∂by
k

= ∂

∂by
k

K∑

k=1

yk ln ay
k (94)607

=
K∑

k=1

(
∂Ef

∂ay
k

∂ay
k

∂oy
k

∂oy
k

∂by
k

)
(95)608

= −
⎛

⎝ yk

ay
k

(
1 − ay

k

)
ay

k −
K∑

l �=k

yl

ay
l

ay
kay

l

⎞

⎠ (96)609

= ay
k − yk. (97)610

Equations (93) and (97) show that the derivatives of Ef with611

respect to ujk and by
k for double classification are the same as612

for double regression in (39) and (45). The activations of the613

hidden neurons are the same as for double regression. So the614

derivatives of Ef with respect to wij and bh
j are the same as615

the respective ones in (42) and (48).616

The partial derivative of Eb with respect to wij is617

∂Eb

∂wij
= − ∂

∂wij

I∑

i=1

xi ln axb
i (98)618

=
I∑

i=1

(
∂Eb

∂axb
i

∂axb
i

∂oxb
i

∂oxb
i

∂wij

)
(99)619

= −
⎛

⎝ xi

axb
i

(
1 − axb

i

)
axb

i −
I∑

l �=i

xl

axb
l

axb
i axb

l

⎞

⎠ahb
j (100)620

=
(

axb
i − xi

)
ahb

j . (101)621

The partial derivative of Eb with respect to the bias bx
i of622

the ith input neuron is623

∂Eb

∂bx
i

= − ∂

∂bxb
i

I∑

i=1

xi ln axb
i (102)624

=
I∑

i=1

(
∂Eb

∂axb
i

∂axb
i

∂oxb
i

∂oxb
i

∂bx
i

)
(103)625

= −
⎛

⎝ xi

axb
i

(
1 − axb

i

)
axb

i −
I∑

l �=i

xl

axb
l

axb
i axb

l

⎞

⎠ (104)626

= axb
i − xi. (105)627

Equations (101) and (105) likewise show that the derivatives628

of Eb with respect to wij and bx
i for double classification are the629

same as for double regression in (53) and (59). The activations630

of the hidden neurons are the same as for double regression.631

So the derivatives of Eb with respect to ujk and bh
j are the632

same as the respective ones in (58) and (64).633

B-BP training for double classification also alternates634

between minimizing Ef while holding Eb constant and min-635

imizing Eb while holding Ef constant. The forward and636

backward errors are again cross entropies.637

The update laws for forward classification have the final 638

form 639

u(n+1)
jk = u(n)

jk − η
((

ay
k − yk

)
ah

j

)
(106) 640

w(n+1)
ij = w(n)

ij − η

(
K∑

k=1

(
ay

k − yk
)
ujkah

j
′
xi

)
(107) 641

bh
j
(n+1) = bh

j
(n) − η

(
K∑

k=1

(
ay

k − yk
)
ujkah

j
′
)

(108) 642

by
k
(n+1) = by

k
(n) − η

(
ay

k − yk
)
. (109) 643

The dual update laws for backward classification have the 644

final form 645

u(n+1)
jk = u(n)

jk − η

(
I∑

i=1

(
axb

i − xi

)
wija

hb
j

′
yk

)
(110) 646

w(n+1)
ij = w(n)

ij − η
((

axb
i − xi

)
ahb

j

)
(111) 647

bx
i
(n+1) = bx

i
(n) − η

(
axb

i − xi

)
(112) 648

bh
j
(n+1) = bh

j
(n) − η

(
I∑

i=1

(
axb

i − xi

)
wija

hb
j

′
)

. (113) 649

The derivation shows that the update rules for double classifi- 650

cation are the same as the update rules for double regression. 651

B-BP training minimizes Ef while holding Eb con- 652

stant. It then minimizes Eb while holding Ef constant. 653

Equations (106)–(109) are the update rules for forward train- 654

ing. Equations (110)–(113) are the update rules for backward 655

training. Each training iteration involves first running forward 656

training and then running backward training. Algorithm 1 657

again summarizes the B-BP algorithm. 658

The more general case of double classification uses logistic 659

neurons at the input and output layer. Then the BP deriva- 660

tion requires the slightly more general logistic cross-entropy 661

performance measure. We used the logistic cross-entropy Elog 662

for double classification training because the input and output 663

neurons were logistic (rather than softmax) 664

Elog = −
K∑

k=1

yk ln ay
k −

K∑

k=1

(1 − yk) ln
(
1 − ay

k

)
. (114) 665

Partially differentiating Elog for logistic input and output 666

neurons gives back the same B-BP learning laws as does 667

differentiating cross entropy for softmax input and output 668

neurons. 669

C. Mixed Case: Classification and Regression 670

We last derive the B-BP learning algorithm for the mixed 671

case of a neural classifier network in the forward direction and 672

a regression network in the backward direction. 673

This mixed case describes the common case of neural 674

image classification. The user needs only add backward- 675

regression training to allow the same classifier net to predict 676

which image input produced a given output classification. 677

Backward regression estimates this answer as the centroid 678

of the inverse set-theoretic mapping or preimage. The B-BP 679



IEE
E P

ro
of

IEE
E P

ro
of

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

algorithm achieves this by alternating between minimizing Ef680

and minimizing Eb. The forward error Ef is the same as the681

cross entropy in the double-classification network above. The682

backward error Eb is the same as the squared error in double683

regression.684

The input space is likewise the I-dimensional real space R
I

685

for regression. The output space uses 1-in-K binary encoding686

for classification. The output neurons of regression networks687

use identity functions as activations. The output neurons of688

classifier networks use softmax activations.689

The forward pass sends the input vector x through the hid-690

den layer to the output layer. The input activation vector ax
691

equals x. We again consider only a single hidden layer for692

simplicity. The input oh
j to the jth hidden neuron is the same693

as in (2). The activation ah
j of the jth hidden layer is the ordi-694

nary logistic activation in (27). Equation (4) defines the input695

oy
k to the kth output neuron. The output activation is softmax.696

So the output activation ay
k is the same as in (78). The for-697

ward error Ef is the cross entropy in (79). The forward pass698

in this mixed case is the same as the forward pass for double699

classification. So (42), (48), (93), and (97) give the respective700

derivatives of the forward error Ef with respect to wij, bh
j , ujk,701

and bk
y.702

The backward pass propagates the 1-in-K vector y from the703

output through the hidden layer to the input layer. The output704

layer activation vector ay equals y. The input ohb
j to the jth705

hidden neuron for the backward pass is the same as in (6).706

Equation (30) gives the activation ahb
j for the jth hidden unit707

in the backward pass. Equation (8) gives the input oxb
i for the708

ith input neuron. The activation axb
i of the ith input neuron for709

the backward pass is the same as in (31). The backward error710

Eb is the squared error in (32).711

The backward pass in this mixed case is the same as the712

backward pass for double regression. So (55), (58), (61),713

and (64) give the respective derivatives of the backward error714

Eb with respect to wij, bx
i , ujk, and bh

j .715

The update laws for forward classification–regression train-716

ing have the final form717

u(n+1)
jk = u(n)

jk − η
(
ay

k − yk
)
ah

j (115)718

w(n+1)
ij = w(n)

ij − η

(
K∑

k=1

(
ay

k − yk
)
ujkah

j
′
xi

)
(116)719

bh
j
(n+1) = bh

j
(n) − η

(
K∑

k=1

(
ay

k − yk
)
ujkah

j
′
)

(117)720

by
k
(n+1) = by

k
(n) − η

(
ay

k − yk
)
. (118)721

The update laws for backward classification–regression722

training have the final form723

u(n+1)
jk = u(n)

jk − η

(
I∑

i=1

(
axb

i − xi

)
wija

hb
j

′
yk

)
(119)724

w(n+1)
ij = w(n)

ij − η
(

axb
i − xi

)
ahb

j (120)725

bx
i
(n+1) = bx

i
(n) − η

(
axb

i − xi

)
(121)726

TABLE II
5-BIT BIPOLAR PERMUTATION FUNCTION

TABLE III
FORWARD-PASS CROSS ENTROPY Ef

bh
j
(n+1) = bh

j
(n) − η

(
I∑

i=1

(
axb

i − xi

)
wija

hb
j

′
)

. (122) 727

B-BP training minimizes Ef while holding Eb con- 728

stant. It then minimizes the Eb while holding Ef constant. 729

Equations (115)–(118) state the update rules for forward train- 730

ing. Equations (119)–(122) state the update rules for backward 731

training. Algorithm 1 shows how forward learning combines 732

with backward learning in B-BP. 733

IV. SIMULATION RESULTS 734

We tested the B-BP algorithm for double classification on 735

a 5-bit permutation function. We used 3-layer networks with 736

different numbers of hidden neurons. The neurons used bipolar 737

logistic activations. The performance measure was the logistic 738

cross entropy in (114). The B-BP algorithm produced either 739

an exact representation or an approximation. The permuta- 740

tion function bijectively mapped the 5-bit bipolar vector space 741

{−1, 1}5 of 32 bipolar vectors onto itself. Table II displays 742

the permutation test function. We compared the forward and 743

backward forms of unidirectional BP with B-BP. We also 744

tested whether adding more hidden neurons improved network 745

approximation accuracy. 746

The forward pass of standard BP used logistic cross entropy 747

as its error function. The backward pass did as well. B-BP 748

summed the forward and backward errors for its joint error. We 749

computed the test error for the forward and backward passes. 750

Each plotted error value averaged 20 runs. 751



IEE
E P

ro
of

IEE
E P

ro
of

ADIGUN AND KOSKO: B-BP 11

Fig. 4. Logistic-cross-entropy learning for double classification using 100
hidden neurons with forward BP training, backward BP training, and B-BP
training. The trained network represents the 5-bit permutation function in
Table II. (a) Forward BP tuned the network with respect to logistic cross
entropy for the forward pass using Ef only. (b) Backward BP training tuned
the network with respect to logistic cross entropy for the backward pass using
Eb only. (c) B-BP training summed the logistic cross entropies for both the
forward-pass error term Ef and the backward-pass error term Eb to update
the network parameters.

Fig. 4 shows the results of running the three types of752

BP learning for classification on a 3-layer network with 100753

hidden neurons. The values of Ef and Eb decrease with an754

increase in the training iterations for B-BP. This was not the755

case for the unidirectional cases of forward BP and backward756

BP training. Forward and backward training performed well757

only for function approximation in their respective training758

direction. Neither performed well in the opposite direction.759

Fig. 5. B-BP training error for the 5-bit permutation in Table II using
different numbers of hidden neurons. Training used the double-classification
B-BP algorithm. The two curves describe the logistic cross entropy for the
forward and backward passes through the 3-layer network. Each test used 640
samples. The number of hidden neurons increased from 5, 10, 20, 50, to 100.

Fig. 6. B-BP double-regression approximation of the invertible function
f (x) = 0.5σ(6x + 3) + 0.5σ(4x − 1.2) using a deep 8-layer network with
six hidden layers. The function σ denotes the bipolar logistic function in (1).
Each hidden layer contained ten bipolar logistic neurons. The input and out-
put layers each used a single neuron with an identity activation function.
The forward pass approximated the forward function f . The backward pass
approximated the inverse function f −1.

Table III shows the forward-pass cross entropy Ef for learn- 760

ing 3-layer classification neural networks as the number of 761

hidden neurons grows. We again compared the three forms of 762

BP for the network training: two forms of unidirectional BP 763

and B-BP. The forward-pass error for forward BP fell substan- 764

tially as the number of hidden neurons grew. The forward-pass 765

error of backward BP decreased slightly as the number of 766

hidden neurons grew. It gave the worst performance. B-BP 767

performed well on the test set. Its forward-pass error also 768



IEE
E P

ro
of

IEE
E P

ro
of

12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 7. B-BP double-regression learning of the noninvertible target func-
tion f (x) = sin x. (a) Forward pass learned the function y = f (x) = sin x.
(b) Backward pass approximated the centroid of the values in the set-theoretic
preimage f −1({y}) for y values in (−1, 1). The two centroids were −(π/2)

and (π/2).

TABLE IV
BACKWARD-PASS CROSS ENTROPY Eb

fell substantially as the number of hidden neurons grew.769

Table IV shows similar error-versus-hidden-neuron results for770

the backward-pass cross entropy Eb.771

The two tables jointly show that the unidirectional forms of772

BP for regression performed well only in one direction. The773

B-BP algorithm performed well in both directions.774

We tested the B-BP algorithm for double regression with the775

invertible function f (x) = 0.5σ(6x + 3) + 0.5σ(4x − 1.2) for776

values of x ∈ [−1.5, 1.5]. We used a deep 8-layer network with777

6 hidden layers for this approximation. Each hidden layer had778

10 bipolar logistic neurons. There was only a single identity779

neuron in the input and output layers. The error functions Ef780

and Eb were ordinary squared error. Fig. 6 compares the B-BP781

approximation with the target function for both the forward782

pass and the backward pass.783

Algorithm 1 B-BP Algorithm

We also tested the B-BP double-regression algorithm on 784

the noninvertible function f (x) = sin x for x ∈ [−π, π ]. The 785

forward mapping f (x) = sin x is a well-defined point func- 786

tion. The backward mapping y = sin−1(f (x)) is not. It defines 787

instead a set-based pullback or preimage f −1(y) = f −1({y}) = 788

{x ∈ R : f (x) = y} ⊂ R. The B-BP-trained neural network 789

tends to map each output point y to the centroid of its preim- 790

age f −1(y) on the backward pass because centroids minimize 791

squared error and because backward-regression training uses 792

squared error as its performance measure. Fig. 7 shows that 793

forward regression learns the target function sin x while back- 794

ward regression approximates the centroids −(π/2) and (π/2) 795

of the two preimage sets. 796

V. CONCLUSION 797

Unidirectional BP learning extends to B-BP learning if 798

the algorithm uses the appropriate joint error function for 799



IEE
E P

ro
of

IEE
E P

ro
of

ADIGUN AND KOSKO: B-BP 13

both forward and backward passes. This bidirectional exten-800

sion applies to classification networks as well as to regres-801

sion networks and to their combinations. Most classification802

networks can easily acquire a backward-inference capability803

if they include a backward-regression step in their training.804

So most networks simply ignore this inverse property of their805

weight structure.806

Theorem 1 shows that a bidirectional multilayer threshold807

network can exactly represent a permutation mapping if the808

hidden layer contains an exponential number of hidden thresh-809

old neurons. An open question is whether these bidirectional810

networks can represent an arbitrary invertible mapping with far811

fewer hidden neurons. A simpler question holds for the weaker812

case of uniform approximation of invertible mappings.813

Another open question deals with noise: to what extent does814

carefully injected noise speed B-BP convergence and accu-815

racy? There are two bases for this question. The first is that816

the likelihood structure of BP implies that BP is itself a spe-817

cial case of the expectation–maximization algorithm [19]. The818

second basis is that appropriate noise can boost the EM fam-819

ily of hill-climbing algorithms on average because such noise820

makes signals more probable on average [21], [23].821

REFERENCES822

[1] P. J. Werbos, “Beyond regression: New tools for prediction and analysis823

in the behavioral sciences,” Ph.D. Dissertation, Appl. Math., Harvard824

Univ., Cambridge, MA, USA, 1974.825

[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-826

sentations by back-propagating errors,” Nature, vol. 323, pp. 323–533,827

Oct. 1986.828

[3] C. M. Bishop, Pattern Recognition and Machine Learning. New York,829

NY, USA: Springer, 2006.830

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,831

pp. 436–444, May 2015.832

[5] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, per-833

spectives, and prospects,” Science, vol. 349, no. 6245, pp. 255–260,834

2015.835

[6] B. Kosko, “Bidirectional associative memories,” IEEE Trans. Syst., Man,836

Cybern., Syst., vol. 18, no. 1, pp. 49–60, Jan./Feb. 1988.837

[7] B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems838

Approach to Machine Intelligence. Englewood Cliffs, NJ, USA:839

Prentice-Hall, 1991.840

[8] S. Y. Kung, Kernel Methods and Machine Learning. Cambridge, U.K.:841

Cambridge Univ. Press, 2014.842

[9] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”843

Math. Control Signals Syst., vol. 2, no. 4, pp. 303–314, 1989.844

[10] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward845

networks are universal approximators,” Neural Netw., vol. 2, no. 5,846

pp. 359–366, 1989.847

[11] B. Kosko, “Fuzzy systems as universal approximators,” IEEE Trans.848

Comput., vol. 43, no. 11, pp. 1329–1333, Nov. 1994.849

[12] F. Watkins, “The representation problem for additive fuzzy systems,” in850

Proc. Int. Conf. Fuzzy Syst. (IEEE FUZZ), 1995, pp. 117–122.851

[13] B. Kosko, “Generalized mixture representations and combinations for852

additive fuzzy systems,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN),853

2017, pp. 3761–3768.854

[14] B. Kosko, “Additive fuzzy systems: From generalized mixtures to rule855

continua,” Int. J. Intell. Syst., vol. 33, no. 8, pp. 1573–1623, 2017.856

[15] J.-N. Hwang, J. J. Choi, S. Oh, and R. J. Marks, “Query-based learning857

applied to partially trained multilayer perceptrons,” IEEE Trans. Neural858

Netw., vol. 2, no. 1, pp. 131–136, Jan. 1991.859

[16] E. W. Saad, J. J. Choi, J. L. Vian, and D. C. Wunsch, “Query-based 860

learning for aerospace applications,” IEEE Trans. Neural Netw., vol. 14, 861

no. 6, pp. 1437–1448, Nov. 2003. 862

[17] E. W. Saad and D. C. Wunsch, “Neural network explanation using 863

inversion,” Neural Netw., vol. 20, no. 1, pp. 78–93, 2007. 864

[18] Y. Yang, Y. Wang, and X. Yuan, “Bidirectional extreme learning machine 865

for regression problem and its learning effectiveness,” IEEE Trans. 866

Neural Netw. Learn. Syst., vol. 23, no. 9, pp. 1498–1505, Sep. 2012. 867

[19] K. Audhkhasi, O. Osoba, and B. Kosko, “Noise-enhanced convolutional 868

neural networks,” Neural Netw., vol. 78, pp. 15–23, Jun. 2016. 869

[20] S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann. 870

Math. Stat., vol. 22, no. 1, pp. 79–86, 1951. 871

[21] O. Osoba and B. Kosko, “The noisy expectation-maximization algorithm 872

for multiplicative noise injection,” Fluctuation Noise Lett., vol. 15, no. 4, 873

2016, Art. no. 1650007. 874

[22] R. V. Hogg, J. McKean, and A. T. Craig, Introduction to Mathematical 875

Statistics. Boston, MA, USA: Pearson, 2013. 876

[23] O. Osoba, S. Mitaim, and B. Kosko, “The noisy expectation– 877

maximization algorithm,” Fluctuation Noise Lett., vol. 12, no. 3, 2013, 878

Art. no. 1350012. 879

Olaoluwa (Oliver) Adigun received the Bachelor of 880

Science degree in electronic and electrical engineer- 881

ing from Obafemi Awolowo University, Ife, Nigeria. 882

He is currently pursuing the Ph.D. degree with the 883

Department of Electrical and Computer Engineering, 884

Signal and Image Processing Institute, University of 885

Southern California, Los Angeles, CA, USA. 886

He has been an Intern with Google AI, Mountain 887

View, CA, USA, and with the Machine Learning 888

Group, Amazon, Seattle, WA, USA. 889

Mr. Adigun shared the Best Paper Award for his 890

research on noise-boosted recurrent backpropagation at the 2017 International 891

Joint Conference on Neural Networks. 892

Bart Kosko (M’85–SM’07–F’10) received the 893

degrees in philosophy, economics, applied mathe- 894

matics, electrical engineering, and law. 895

He is a Professor of Department of Electrical 896

and Computer Engineering and Law and the Past 897

Director of Signal and Image Processing Institute 898

with the University of Southern California, Los 899

Angeles, CA, USA, and a Licensed Attorney. He has 900

published the textbooks entitled Neural Networks 901

and Fuzzy Systems and Fuzzy Engineering, the trade 902

books entitled Fuzzy Thinking, Heaven in a Chip, 903

and Noise, the edited volume Neural Networks and Signal Processing, the 904

co-edited volume Intelligent Signal Processing, the novel Nanotime, and the 905

upcoming novel Cool Earth. 906

Dr. Kosko was a co-recipient of the Best Paper Award at the 2017 907

International Joint Conference on Neural Networks. 908


