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Abstract—A bidirectional autoencoder learns or approximates
an identity mapping as it trains a single network with a version
of the new bidirectional backpropagation algorithm. Ordinary
unidirectional autoencoders find many uses in image processing
and in large language models. But they use separate networks
for encoding and decoding. Bidirectional autoencoders use the
same synaptic weights for encoding and decoding. The forward
pass encodes while the backward pass decodes. Bidirectional
autoencoders improved network performance and significantly
reduced memory usage and used fewer parameters. Simulations
compared unidirectional with bidirectional autoencoders for
image compression and denoising. The models trained on the
MNIST handwritten-digit and CIFAR-10 image datasets. The
performance measures were the peak signal-to-noise ratio and
the index of structural similarity. Bidirectional autoencoders
outperformed unidirectional autoencoders and still reduced the
number of trainable synaptic parameters by about 50%.

Index Terms—Bidirectional backpropagation, autoencoders,
bidirectional networks, large language models, bidirectional au-
toencoders, variational autoencoders.

I. BIDIRECTIONAL AUTOENCODERS

We show how the new bidirectional backpropagation algo-

rithm can train an autoencoder (AE) network. The resulting

bidirectional AE uses a single network and the same synapses

for forward and backward passes. Ordinary unidirectional AEs

use separate networks for encoding and decoding.

AE networks themselves learn or approximate identity map-

pings from unlabeled data or patterns. AEs can compress or

summarize patterns or text. This lets them generate somewhat

new patterns from old patterns. They can combine with large-

language models (LLMs) such as chat-AI GPTs to improve

the performance of LLMs [1]–[3]. AEs also apply to a wide

range of problems in data compression or dimension reduction

[4]–[6], image denoising [7]–[11], feature extraction [12],

anomaly detection [13]–[16], collaborative filtering [17], [18],

and sentiment analysis [19]–[21].

Figure 1 shows the bidirectional architecture of a bidirec-
tional AE (BAE). The BAE takes as input the noisy pattern

x and passes it through the network Nθ to produce the

encoded vector z. The decoding step passes z back through

the transposed synaptic weight matrices of Nθ.

Figure 2 compares the architecture of unidirectional AEs

with the new BAEs. A unidirectional AE needs a separate

network for decoding while a BAE uses the same network

for encoding and decoding. Figure 3 shows examples of the

discretized beta probability densities that model the output

layer of autoencoders. Algorithm 1 gives the pseudocode for

training BAEs with a simple form of the new bidirectional

backpropagation algorithm.

Bidirectional backpropagation [22], [23] maximizes a net-

work’s joint likelihood pf (y|x, θ)pb(x|y, θ). The forward

probability pf (y|x, θ) describes the forward pass of input

pattern x from the input layer to the output layer. The

backward probability pb(x|y, θ) describes the backward pass

of target y from the output layer to the input layer. BAE

training differs from bidirectional backpropagation because it

maximizes just the network’s backward likelihood.

Figure 4 shows that BAEs increase the peak signal-to-noise

ratio (PSNR) on tasks of image compression and denoising

using the MNIST handwritten digit dataset. Table I shows the

BAE gain in PSNR. BAEs reduced the parameter count by

about 50% on the image-compression task. Table II shows

the BAE gain in PSNR on denoising images corrupted with

additive noise and with multiplicative noise.

Table III compares unidirectional AEs and BAEs on image

compression with the CIFAR-10 image dataset. The table

shows that BAEs increase the PSNR, they increase the struc-

tural similarity index measure (SSIM), and they reduce the

parameter count. Table IV shows a similar bidirectional benefit

on denoising the CIFAR-10 image dataset.

Figure 5 compares the encoded or compressed features pro-

jected onto a 2D space. The projection used the t-distributed

stochastic neighboring embedding (t-SNE) method [24]. The

projected bidirectionally encoded features separated more eas-

ily into their respective categories.

Preliminary results also showed that the bidirectional back-

propagation architecture extends to variational autoencoders.

Here the forward error measures the Kullback-Leibler di-

vergence between the encoded vector z and a target prior

probability. The backward error measures the reconstruction

error. The bidirectional framework offers a simple alternative

to the reparameterization trick in variational AEs [25].

The next section presents the unidirectional AEs used in our

simulations.

730

2023 International Conference on Machine Learning and Applications (ICMLA)

1946-0759/23/$31.00 ©2023 IEEE
DOI 10.1109/ICMLA58977.2023.00107



II. UNIDIRECTIONAL AUTOENCODERS

An ordinary or unidirectional AE consists of two contiguous

networks. These are the encoder network and the decoder

network.

Figure 2 shows the architecture of such an autoencoder. The

terms θ and φ denote the respective weights of the encoder

network Nθ and the decoder network Nφ. The encoder has

output activation az = Nθ(x) where x is the input vector

or signal. The decoder has output activation ay = Nφ(a
z). It

gives the reconstructed input or signal where az is the encoded
signal.

We can model the output layer of neural networks for

image-related tasks as discretized independent beta random

variables Y1, ...., YK . Ma and Leijon [26] have found that the

beta probability density gives a reasonable model for such

image pixel values. The random variables are Yk|X=x ∼
Beta(α = 1 + yk, β = 2 − yk) where we discretize the beta

density. This choice of the two beta parameters coincides with

a continuous Bernoulli [27], [28]. This discretization models

the finite cardinality of the set of all pixel values. Yk denotes

the kth neuron or pixel at the output layer of the decoder. It has

the target pixel value yk = c
255 for some c ∈ {0, 1, ..., 255}.

The pixel values are not continuous and again the support

of the beta structure assumes discretized values. This allows

multi-level representation with 2 or more levels and assists

image representation because it gives a multi-level model for

the 256 possible values per pixel.

The decoder’s output negative log-likelihood equals the

double cross-entropy between the output activation ay and the

target y. This gives the output likelihood p(yk|x, θ, φ) as

p(yk|x,θ, φ) = Beta(ayk|α = 1 + yk, β = 2− yk) (1)

=
Γ(3)

Γ(1 + yk)Γ(2− yk)
(ayk)

(yk)(1− ayk)
(1−yk). (2)

The corresponding log-likelihood is

l(yk|x,θ, φ) = ln p(yk|x, θ, φ) (3)

= ln
2

Γ(1 + yk)Γ(2− yk)
(ayk)

(yk)(1− ayk)
(1−yk) (4)

= ln 2− ln Γ(1 + yk)− ln Γ(2− yk) + yk ln a
y
k

+ (1− yk) ln(1− ayk) (5)

= ψ(yk) + yk ln a
y
k + (1− yk) ln(1− ayk) (6)

where ψ(yk) = ln 2 − ln Γ(1 + yk) − ln Γ(2− yk). Then the

negative log-likelihood simplifies as

−l(yk|x, θ, φ) = − ln p(yk|x, θ, φ) (7)

= −ψ(yk)− yk ln a
y
k

− (1− yk) ln(1− ayk) (8)

= −ψ(yk) + E(yk, ayk, θ, φ) (9)

where E(yk, ayk, θ, φ) is the double cross-entropy between yk
and ayk.

Unidirectional or ordinary backpropagation (BP) trains the

AE. This gradient method finds the model weights θ∗ and φ∗

that locally maximize the decoder’s output likelihood. This

just minimizes the double cross-entropy:

θ∗, φ∗ = argmax
θ,φ

p(y|x, θ, φ) (10)

= argmax
θ,φ

ln p(y|x, θ, φ) (11)

= argmin
θ,φ

− ln p(y|x, θ, φ) (12)

= argmin
θ,φ

E(y, ay, θ, φ) (13)

because the logarithm is a monotonic function and because

−ψ(yk) does not depend on θ or φ.

Unidirectional BP trains on only the forward error

EM (y, ay, θ, φ) over M training samples {x(m)}Mm=1. This

forward error simplifies as

EM (y, ay, θ, φ) =

M∑
m=1

E(y(m), ay(m), θ, φ) (14)

=
M∑

m=1

K∑
k=1

E(y(m)
k , a

y(m)
k , θ, φ) (15)

= −
M∑

m=1

K∑
k=1

(
y
(m)
k ln

(
a
y(m)
k

)

+
(
1− y

(m)
k

)
ln

(
1− a

y(m)
k

))
. (16)

The corresponding log-likelihood is

ln pM (y|x, θ, φ) = ln

M∏
m=1

p(y(m)|x(m), θ, φ) (17)

=
M∑

m=1

ln
K∏

k=1

p(y
(m)
k |x(m), θ, φ) (18)

=
M∑

m=1

K∑
k=1

ln p(y
(m)
k |x(m), θ, φ) (19)

=
M∑

m=1

K∑
k=1

(
ln 2− ln Γ(1 + y

(m)
k ) + y

(m)
k ln a

y(m)
k

+ (1− y
(m)
k ) ln(1− a

y(m)
k

))
(20)

where y
(m)
k is the target at the kth output neuron and where

a
y(m)
k is the activation of the kth neuron at the output layer of

the decoder. Note that y
(m)
k = x

(m)
k because the autoencoder

approximates an identity map.

III. BIDIRECTIONAL AUTOENCODERS

A bidirectional network runs forward and backward through

the same synaptic weights [23], [29]–[31]. A forward inference

passes through a given rectangular weight matrix W while the

backward inference passes through the matrix transpose WT .

A BAE Nθ learns or approximates an identity mapping

from an input pattern space to the same or similar output

pattern space. The data-encoding from the pattern x to the
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Convolutional 
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Latent variable 

Fig. 1: Image denoising with a bidirectional autoencoding network: The architecture of the new bidirectional autoencoder consists of a single bidirectional
network Nθ for encoding and decoding. The encoding and decoding use the same synaptic weights. This bidirectional network runs as an encoder in the
forward direction and as a decoder in the backward direction.

Encoder network  

Convolutional 
Fully-connected

Decoder network 

Fully-connected
Convolutional

Noisy image
Latent variable 

Denoised imageEncoding Decoding

Bidirectional AEs do not need a 

separate decoder network

Fig. 2: Image denoising with a unidirectional autoencoding network: A unidirectional autoencoding network consists of two separate sub-networks with
respective parameters θ and φ. They are the encoder network Nθ and the decoder network Nφ. The encoder maps the input space X to the latent space Z.
The decoder network maps Z to Y . Bidirectional autoencoding networks use just one network.
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(c) Discretized Beta (Xk = 128)

Fig. 3: Beta probability density function Beta(α, β): A discretized form of Beta(α = 1 + yk , β = 2 − yk) models the output layer of an autoencoder.
The discretized beta describes the probability of the output-image pixel value y given the input image x. (a) The beta densities for yk = 0.0 and yk = 0.5.
(b) Discretized beta density for the pixel value Xk = 0 for pixel values yk ∈ {0, 1, ..., 255}. The function is nonzero but the figure shows only the values
yk ∈ {0, 1, ..., 80}. (c) Discretized beta probability function for the pixel value Xk = 128 for pixel values yk ∈ {0, 1, ..., 255}. The figure shows only the
values yk ∈ {88, 89, ..., 168}.

latent variable z passes forward through the network Nθ. The

encoding of the input image gives

az = Nθ(x). (21)

The decoding from z back to x passes backwards through the

same network. So the encoded message decodes as

axb = NT
θ (az). (22)

BAE networks train with a form of the bidirectional back-

propagation algorithm [23], [30]. This training maximizes the

backward likelihood p(x|y, θ) of the bidirectional networks.

So this bidirectional structure differs in kind from the encoder-

only structure of the Bidirectional Encoder Representations

from Transformers (BERT) model [32].

The training error function EM (x, θ) equals the negative

log-likelihood of M training samples with the assumption

of independent and identical distribution. The negative log-

likelihood of Beta(α = 1 + xk, β = 2 − xk) gives the cross-

entropy:

EM (x, θ) = − 1

M

M∑
m=1

(
x(m)T ln

(
axb(m)

)

+
(
1− x(m)

)T
ln

(
1− axb(m)

))
(23)

= − 1

M

M∑
m=1

I∑
i=1

(
x
(m)
i ln

(
a
xb(m)
i

)

+
(
1− x

(m)
i

)
ln

(
1− a

xb(m)
i

))
(24)

where x
(m)
i is the ith pixel value of the mth sample. The

term a
xb(m)
i is the activation of the ith input neuron on the

backward pass of the mth sample.

Overall: BAE networks significantly reduced memory usage

because they reduced the number of synaptic parameters by

about 50%. This favors both large-scale neural models and

dedicated hardware implementations.

Algorithm 1 Training a bidirectional autoencoder with a form

of bidirectional backpropagation for image denoising.

Require: Dataset D =
{
x(i),y(i)

}Ntr

i=1
, batch size L, learning

rate η, number M of epochs, and number B of iterations

per epoch.

Require: Initialize the network parameter θ(0).
1: for m = 0 to M do
2: Select a batch of L samples from D
3: Encode the input signal or vector on the forward pass:

az(l) = Nθ

(
x(l)

)

4: Decode the latent variable on the backward pass:

ax(l) = NT
θ

(
az(l)

)

5: Compute the backward error Eb:

Eb(θ) = − 1

L

L∑
l=1

K∑
k=1

(
y
(l)
k ln a

xb(l)
k

+
(
1− y

(l)
k

)
ln

(
1− a

xb(l)
k

))

6: Update the weights:

θ(m+1) = θ(m) − η∇θ Eb(θ)
∣∣∣
θ=θ(m)

7: end for

IV. SIMULATION RESULTS

The supercomputer simulations compared the performance

of unidirectional with bidirectional AEs. They tested these

autoencoders on image compression and reconstruction and

on image denoising.

A. Model Architecture

We tested two types of autoencoders. The AEs were either

fully connected or convolutional. The models used the new

logistic nonvanishing (NoVa) hidden neurons [33], [34] be-

cause NoVa neurons outperformed rectified linear unit (ReLU)
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Fig. 4: Image compression and image denoising with fully connected autoencoders on the MNIST handwritten digit dataset: BAEs always outperformed
the corresponding unidirectional AEs on these tasks. The AEs each used a latent variable of dimension 256. The plots show the peak signal-to-noise ration
(PSNR) after training. The AEs each trained over 200 epochs. (a) Data compression and reconstruction. (b) Denoising additive Gaussian noise. (c) Denoising
multiplicative Gaussian (speckle) noise.

TABLE I: Image compression and reconstruction of the MNIST handwritten digit dataset with fully connected autoencoders: Bidirectional
AEs always reduced the number of parameters by about 50% and outperformed the corresponding unidirectional AEs. The AEs trained over
200 epochs.

Dimension of Latent Variable
Peak Signal-to-Noise Ratio (PSNR) ↑ # of Parameters ↓

Unidirectional AE Bidirectional AE Unidirectional AE Bidirectional AE

64 21.75 ± 0.22 23.59 ± 0.07 5,145,696 2,572,848
144 22.68 ± 0.14 24.49 ± 0.06 5,225,856 2,612,928
256 23.37 ± 0.07 25.05 ± 0.12 5,338,080 2,669,040
400 23.74 ± 0.07 25.40 ± 0.05 5,482,368 2,741,184

neurons and many others. The NoVa activation perturbs a

logistic where the activation a(x) from input x is

a(x) = bx+ xσ(cx) = bx+
x

1 + exp (−cx)
. (25)

We used b = 0.3 and c = 2.0.

1) Fully Connected Autoencoder: The unidirectional AEs

with fully connected layers each used one encoder network and

one decoder network. Each encoder used four fully connected

hidden layers. The first two hidden layers used 1000 neurons

per layer and the other two used 500 neurons per layer. The

encoder used identity input activations and sigmoid outputs.

Each decoder network mirrored the encoder and used four

fully connected hidden layers. The first two hidden layers used

500 neurons per layer and the other two used 1000 neurons

per layer.

BAEs with fully connected layers each used one bidirec-

tional network. Each bidirectional network used four fully

connected hidden layers. The first two hidden layers used 1000

neurons per layer and the other two used 500 neurons per layer.

2) Convolutional Autoencoders: The unidirectional convo-

lutional AEs each used a convolutional encoder network and

a convolutional decoder network. Each convolutional encoder

network used five convolutional layers and two fully connected

layers for encoding. The dimensions of the respective input

channels and output channels of the convolutional layers were

(3, 32, 64, 128, 256) and (32, 64, 128, 256, 512). The two

fully connected layers used 2048 neurons and 1024 neurons.

The convolutional decoder network used five convolutional

layers and two fully connected layers for decoding. The di-

mensions of the respective input channels and output channels

of the convolutional layers were (512, 256, 128, 64, 32) and

(256, 128, 64, 32, 3). The two fully connected layers used

2048 neurons and 1024 neurons.

The bidirectional convolutional AEs used a bidirectional

convolutional network for encoding and decoding. Each BAE

used five convolutional layers and two fully connected layers.

The dimensions of the respective input channels and output

channels of the convolutional layers were (3, 32, 64, 128,

256) and (32, 64, 128, 256, 512). The two fully connected

layers used 2048 neurons and 1024 neurons. The convolutional

autoencoders trained over 300 epochs.

B. Datasets

We compared AEs and BAEs on the MNIST handwritten

digit and the CIFAR-10 image dataset [35]. The MNIST

handwritten digit dataset contained the 10 classes of the

handwritten digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. This dataset set

consisted of 60,000 training samples with 6,000 samples per

class and 10,000 test samples with 1,000 samples per class.

The CIFAR-10 test set consists of 60,000 color images from

10 categories (K = 10). Each image had size 32 × 32 × 3.

The 10 pattern categories were airplane, automobile, bird, cat,

deer, dog, frog, horse, ship, and truck. Each class consisted of

5,000 training samples and 1,000 testing samples.
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TABLE II: Image denoising on the MNIST handwritten digit dataset with fully connected autoencoders: BAEs always outperformed their
corresponding unidirectional AEs. The AEs trained on additive noise and separately on multiplicative (speckle) noise. The AEs used a latent
variable of dimension 256 and trained over 200 epochs. The unidirectional AEs each used 5.3M trainable parameters while the BAEs each
used 2.7M trainable parameters.

Peak Signal-to-Noise Ratio (PSNR) ↑

Standard deviation Additive Noise Multiplicative (Speckle) Noise
of noise σ

Unidirectional AE Bidirectional AE Unidirectional AE Bidirectional AE

0.05 22.20 ± 0.03 23.56 ± 0.08 23.25 ± 0.06 24.99 ± 0.14
0.1 20.89 ± 0.04 22.32 ± 0.04 23.00 ± 0.07 24.74 ± 0.12
0.2 18.83 ± 0.07 19.77 ± 0.14 22.22 ± 0.10 23.80 ± 0.17
0.3 16.35 ± 0.06 16.86 ± 0.06 21.35 ± 0.09 22.74 ± 0.26

TABLE III: Image compression and reconstruction with convolutional autoencoders on the CIFAR-10 image dataset: Bidirectional AEs
with convolutional layers always significantly reduced the number of trainable synaptic parameters by about 50% and slightly outperformed
their corresponding unidirectional AEs. These AEs trained over 300 epochs.

Peak Signal-to-Noise Ratio (PSNR) ↑ Structural Similarity (SSIM) ↑ # of Parameters ↓Dimension of
Latent Variable Unidirectional AE Bidirectional AE Unidirectional AE Bidirectional AE Unidirectional AE Bidirectional AE

64 20.78 ± 0.04 21.13 ± 0.10 0.618 ± 0.002 0.637 ± 0.004 7,470,339 3,735,907
128 23.32 ± 0.03 23.48 ± 0.03 0.770 ± 0.001 0.778 ± 0.001 7,601,539 3,801,507
324 26.80 ± 0.15 27.00 ± 0.13 0.892 ± 0.002 0.896 ± 0.003 8,003,339 4,002,407
512 27.12 ± 0.02 27.66 ± 0.01 0.899 ± 0.001 0.910 ± 0.001 8,388,739 4,195,107

The denoising experiments used noise-corrupted input im-

ages. The additive-noise denoising used noisy input images

x = y + n where n that came from the Gaussian probability

density N (μ = 0, σ) for clean image y. The multiplicative

(speckle) noise denoising models used the noisy input image

x = y ∗ n where n came from N (μ = 1, σ).

C. Results

BAEs outperformed unidirectional AEs on image compres-

sion and image denoising. BAEs also reduced the number

of parameters by about 50%. The simulations used two

performance metrics: peak signal-to-noise ratio (PSNR) and

structural similarity index measure (SSIM) [36].

The simulations showed that fully connected BAEs outper-

formed fully connected unidirectional AEs on both metrics.

BAEs also reduced the number of trainable parameters by

about 50%. The simulations found these bidirectional bene-

fits for image compression on the digit MNIST handwritten

dataset. Figure 4 shows the bidirectional benefits of an increase

in PSNR on image compression and image denoising (additive

and multiplicative). The simulations used four different dimen-

sions for the latent variable. Figure 4a compares the BAEs with

unidirectional AEs. Table I shows the bidirectional benefits

in PSNR and in the reduced number of network parameters.

These bidirectional benefits also extended to image denoising.

Figure 4b shows that BAEs performed better than unidirec-

tional AEs on denoising additive Gaussian noise. Figure 4c

shows a similar bidirectional benefit for denoising when the

contaminating noise was multiplicative Gaussian noise. Figure

5 shows that we can more easily separate the compressed

features from BAEs than those from unidirectional AEs.

This favors BAEs for extracting discriminative features for

recognition or classification.
We used the t-distributed stochastic neighbor embedding (t-

SNE) method to visualize the encoded features. This method

uses a statistical approach to map the high-dimensional repre-

sentation of data
{
xi

}N

i=1
to their respective low-dimensional

representation
{
yi

}N

i=1
based on the similarity of the data-

points [24]. It is a two-step method. The first step defines

the conditional probability pj|i and the joint probability pij
over the high-dimensional space. The conditional probability

is proportional to the similarity between xi and xj . It uses a

Gaussian probability density with mean xi:

pj|i =
exp

(− ||xi − xj ||2/2σ2
i

)
∑

k �=i exp
(− ||xi − xk||2/2σ2

i )
(26)

for all j �= i where σi is the variance of the Gaussian with

mean xi. The term pi|i = 0. The joint probability is

pij =
pj|i + pi|j

2N
(27)

where N is the number of datapoints.
The second step maps the high-dimensional representation

xi to its corresponding low-dimensional representation yi in

R
d (d is typically 2 or 3). It uses a heavy-tailed student’s-t

density with one-degree of freedom (which equals the Cauchy

density) to model the low-dimensional joint distribution. So

the joint probability qij of the low-dimensional representations

yi and yj has the form

qij =

(
1 + ||yi − yj ||2)−1

∑
k

∑
l �=k

(
1 + ||yk − yl||2

)−1 (28)
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TABLE IV: Image denoising with convolutional autoencoders on the CIFAR-10 image dataset: Bidirectional AEs always slightly
outperformed their corresponding unidirectional AEs. We tested the AEs on additive noise and on multiplicative (speckle) noise. The
AEs used a latent variable of dimension 324. These AEs trained over 300 epochs. The unidirectional AEs each used 8M trainable parameters
and the bidirectional AEs each used 4M trainable parameters.

Metric
Additive Noise Multiplicative (Speckle) Noise

Standard deviation
of noise σ Unidirectional AE Bidirectional AE Unidirectional AE Bidirectional AE

0.05 26.25 ± 0.12 26.44 ± 0.09 26.59 ± 0.10 26.82 ± 0.11
Peak-Signal-to-Noise-Ratio 0.1 25.21 ± 0.06 25.39 ± 0.06 26.15 ± 0.11 26.37 ± 0.11

(PSNR) ↑ 0.3 21.81 ± 0.03 22.08 ± 0.02 24.10 ± 0.08 24.23 ± 0.06
0.5 20.01 ± 0.01 20.17 ± 0.01 22.48 ± 0.09 22.57 ± 0.03

0.05 0.874 ± 0.003 0.878 ± 0.002 0.885 ± 0.002 0.891 ± 0.003
Structural Similarity 0.1 0.838 ± 0.002 0.843 ± 0.002 0.873 ± 0.003 0.878 ± 0.003

Measure (SSIM) ↑ 0.3 0.680 ± 0.002 0.697 ± 0.002 0.803 ± 0.002 0.807 ± 0.002
0.5 0.567 ± 0.001 0.582 ± 0.001 0.733 ± 0.002 0.737 ± 0.002

Digits

(a) Unidirectional autoencoder features

Digits

(b) Bidirectional autoencoder features

Fig. 5: t-distributed Stochastic Neighbor Embedding (t-SNE) features with autoencoder compression on MNIST handwritten digits: The compressed features
from BAEs separate more easily than do those from unidirectional AEs. The figure shows the 2D projection of the latent-space representation of the compressed
features with autoencoder networks. The dimension of the latent space was 144. The transformed features from the BAE separated better than did those for
the unidirectional AE. (a) Unidirectional autoencoder features. (b) Bidirectional autoencoder features.

for all i �= j and qii = 0. The location of the low-dimension

representation comes from minimizing the Kullback-Leibler

divergence

KL(P ||Q) =
∑
i�=j

pij log
pij
qij

. (29)

The t-SNE algorithm uses gradient descent to iteratively find

the value of yi that minimizes the KL(P ||Q).
Simulations also showed that convolutional BAEs outper-

formed convolutional unidirectional AEs on the CIFAR-10

dataset. Table III shows that convolutional BAEs slightly

outperformed their corresponding unidirectional architecture

for image compression. This included a slight increase in the

PSNR and the SSIM as well as a reduction of about 50% in the

number of parameters. Table IV shows a similar bidirectional

benefit of a slight increase in the PSNR and a slight increase

in the SSIM for the image denoising task.

V. CONCLUSIONS

Bidirectional autoencoders offer an efficient way to learn

autoencoder mappings. The new bidirectional backpropagation

algorithm allows a single network to perform encoding and

decoding. The bidirectional architecture improved network

performance and substantially reduced computing memory

because it cut in half the number of trainable synaptic parame-

ters. So it should have more pronounced bidirectional benefits

on larger-scale models and aid hardware implementations.

Preliminary simulations also found that these bidirectional

benefits extended to variational autoencoders.
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