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We present a noise-injected version of the expectation–maximization (EM) algorithm:
the noisy expectation–maximization (NEM) algorithm. The NEM algorithm uses noise
to speed up the convergence of the EM algorithm. The NEM theorem shows that additive
noise speeds up the average convergence of the EM algorithm to a local maximum of the
likelihood surface if a positivity condition holds. Corollary results give special cases when
noise improves the EM algorithm. We demonstrate these noise benefits on EM algorithms
for three data models: the Gaussian mixture model (GMM), the Cauchy mixture model
(CMM), and the censored log-convex gamma model. The NEM positivity condition
simplifies to a quadratic inequality in the GMM and CMM cases. A final theorem shows
that the noise benefit for independent identically distributed additive noise decreases
with sample size in mixture models. This theorem implies that the noise benefit is most
pronounced if the data is sparse.

Keywords: Noise benefit; stochastic resonance, expectation maximization algorithm;
maximum likelihood; Gaussian mixture model; sparse data.

1. Introduction

The expectation–maximization (EM) algorithm [1–3] is an iterative statistical algo-
rithm that estimates maximum-likelihood parameters from incomplete or corrupted
data. This popular algorithm has a wide array of applications that includes data
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clustering [4,5], automated speech recognition [6,7], medical imaging [8,9], genome
sequencing [10, 11], radar denoising [12], and infectious-disease tracking [13, 14]. A
prominent mathematical modeler has even said that the EM algorithm is “as close
as data analysis algorithms come to a free lunch” [15]. But the EM algorithm can
converge slowly for high-dimensional parameter spaces or when the algorithm needs
to estimate large amounts of missing information [2, 16].

We show that careful noise injection can increase the average convergence speed
of the EM algorithm. We also derive a general sufficient condition for this EM noise
benefit. Simulations show this EM noise benefit in the ubiquitous Gaussian mixture
model (Fig. 1), the Cauchy mixture model, and the censored gamma model (Fig. 2).
The simulations in Figs. 4 and 5 also show that the noise benefit is faint or absent
if the system simply injects blind noise that ignores the sufficient condition. This
suggests that the noise-benefit sufficient condition may also be necessary for some
data models. The paper concludes with results that show that the noise benefit
tends to occur most sharply in sparse data sets.

The EM noise benefit is an example of stochastic resonance in statistical signal
processing. Stochastic resonance occurs when noise improves a signal system’s per-
formance [17–19,70,71]: small amounts of noise improve the performance while too
much noise degrades it. Much early work on noise benefits involved natural systems
in physics [20], chemistry [21,22] and biology [23–26]. This work inspired the search
for noise benefits in nonlinear signal processing and statistical estimation [27–32].
The EM noise benefit does not involve a signal threshold unlike almost all SR noise
benefits [18].

The next sections develop theorems and algorithms for noisy expectation–
maximization (NEM). Section 2 summarizes the key facts of the EM algorithm.
Section 3 introduces the theorem and corollaries that underpin the NEM algo-
rithm. Section 4 presents the NEM algorithm and some of its variants. Section 5
presents a theorem that describes how sample size affects the NEM algorithm for
mixture models when the noise is independent and identically distributed (i.i.d.).
Section 5 also shows how the NEM positivity condition arises from the central limit
theorem and the law of large numbers.

2. The EM Algorithm

The EM algorithm is an iterative maximum-likelihood estimation (MLE) method
for estimating probability-density-function (pdf) parameters from incomplete
observed data [1–3]. EM compensates for missing information by taking expec-
tations over all missing information conditioned on the observed incomplete infor-
mation and on current parameter estimates. The goal of the EM algorithm is to
find the maximum-likelihood estimate θ̂ for the pdf parameter θ when the data Y

has a parametric pdf f(y | θ). The maximum-likelihood estimate θ̂ is

θ̂ = argmax
θ

�(θ | y) (1)

where �(θ | y) = ln f(y | θ) is the log-likelihood (the log of the likelihood function).
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The EM scheme applies when we observe an incomplete data random variable
Y = r(X) instead of the complete data random variable X . The function r :X →
Y models data corruption or information loss. X = (Y, Z) can often denote the
complete data X where Z is a latent or missing random variable. Z represents any
statistical information lost during the observation mapping r(X). This corruption
makes the observed data log-likelihood �(θ | y) complicated and difficult to optimize
directly in (1).

The EM algorithm addresses this difficulty by using the simpler complete log-
likelihood �(θ | y, z) to derive a surrogate function Q(θ | θk) for �(θ | y). Q(θ | θk) is
the average of �(θ | y, z) over all possible values of the latent variable Z given the
observation Y = y and the current parameter estimate θk:

Q(θ | θk) = EZ [�(θ | y, Z) |Y = y, θk]

=
∫
Z

�(θ | y, z)f(z | y, θk)dz. (2)

Dempster et al. [1] first showed that any θ that increases Q(θ | θk) cannot reduce
the log-likelihood difference �(θ | y) − �(θk | y). This “ascent property” led to an
iterative method that performs gradient ascent on the log-likelihood �(θ | y). This
result underpins the EM algorithm and its many variants [4, 33–37].

We use the following notation for expectations to avoid cumbersome equations:

ES|t,φ[g(S, t, θ)] ≡ ES [g(S, T, θ) |T = t, φ]

=
∫

g(s, t, θ)fS|T (s | t, φ)ds,

where S and T are random variables, φ and θ are deterministic parameters, and g

is integrable with respect to the conditional pdf fS|T .
A standard EM algorithm performs the following two steps iteratively on a

vector y = (y1, . . . , yM ) of observed random samples of Y :

Algorithm 1 θ̂EM = EM-Estimate(y)
1: E-Step: Q(θ | θk)← EZ|y,θk

[ln f(y,Z | θ)]
2: M-Step: θk+1 ← argmaxθ{Q(θ | θk)}

The algorithm stops when successive estimates differ by less than a given toler-
ance: ‖θk − θk−1‖ < 10−tol or when ‖�(θk | y)− �(θk−1 | y)‖ < ε. The EM algorithm
converges to a local maximum θ∗ [38, 39]: θk → θ∗.

The EM algorithm is in fact a family of MLE methods for working with incom-
plete data models. Such incomplete data models include mixture models [40, 41],
censored exponential family models [42], and mixtures of censored models [43]. The
next subsection describes examples of such incomplete data models.

Users have a good deal of freedom when they specify the EM complete random
variables X and latent random variables Z for probabilistic models on the observed
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data Y . This freedom in model selection allows users to recast many disparate
algorithms as EM algorithms [4,44–46]. Changes to the E and M steps give another
degree of freedom for the EM scheme [1, 36, 37, 47, 48].

2.1. Incomplete data models for EM : Mixture

and censored gamma models

We now describe two general examples of incomplete data models: finite mixture
models and censored gamma models. Q-functions specify EM algorithms for the
data models. We compare the performance of the EM and NEM algorithms on
these data models later in the paper.

A finite mixture model [40, 49] is a convex combination of a finite set of sub-
populations. The sub-population pdfs come from the same parametric family. Mix-
ture models are useful for modeling mixed populations for statistical applications
such as clustering, pattern recognition, and acceptance testing. We use the follow-
ing notation for mixture models. Y is the observed mixed random variable. K is
the number of sub-populations. Z ∈ {1, . . . , K} is the hidden sub-population index
random variable. The convex population mixing proportions α1, . . . , αK form a dis-
crete pdf for Z : P (Z = j) = αj . The pdf f(y |Z = j, θj) is the pdf of the jth
sub-population where θ1, . . . , θK are the pdf parameters for each sub-population. Θ
is the vector of all model parameters Θ = {α1, . . . , αK , θ1, . . . , θK}. The joint pdf
f(y, z |Θ) is

f(y, z |Θ) =
K∑

j=1

αj f(y | j, θj)δ[z − j] (3)

where δ is the Kronecker delta function such that δ = 1 if x = 0 and such that
δ = 0 otherwise. The marginal pdf f(y |Θ) for Y and the conditional pdf p(j | y, θ)
for Z given y are

f(y |Θ) =
∑

j

αjf(y | j, θj) (4)

and pZ(j | y, Θ) =
αjf(y |Z = j, θj)

f(y |Θ)
(5)

by Bayes theorem. We rewrite the joint pdf in exponential form for ease of analysis:

f(y, z |Θ) = exp


∑

j

[ln(αj) + ln f(y | j, θj)]δ[z − j]


. (6)

Thus

ln f(y, z |Θ) =
∑

j

δ[z − j] ln[αjf(y | j, θj)]. (7)

EM algorithms for finite mixture models estimate Θ using the sub-population
index Z as the latent variable. An EM algorithm on a finite mixture model uses (5)
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to derive the Q-function:

Q(Θ |Θk) = EZ|y,Θk
[ln f(y, Z |Θ)] (8)

=
∑

z


∑

j

δ[z − j] ln[αjf(y | j, θj)]


 pZ(z | y, Θk) (9)

=
∑

j

ln[αjf(y | j, θj)]pZ(j | y, Θk). (10)

Another incomplete data model is the censored gamma model [42, 50]. It pro-
duces censored samples y of a gamma complete random variable X . Censorship
refers to clipped or interval-limited measurement. Censored gammas can model
time-limited medical trials and product reliability [50, 51]. The complete data pdf
in this model is the gamma pdf γ(α, θ)

f(x | θ) =
xα−1 exp(−x/θ)

Γ(α)θα
. (11)

The complete data X does not admit a tractable specification for a latent variable
Z. But we can still write a Q-function by taking expectations of the complete X

given the observed Y . This is a more general formulation of the Q-function. The
E-step for estimating θ is

Q(θ | θk) = EX|y,θk
[ln f(X | θ)] (12)

= −ln(Γ(α))− α ln θ + (−θ−1 + (α− 1))EX|y,θk
[X ] (13)

where the samples y are censored observations of X .

2.2. Noise benefits in the EM algorithm

Theorem 1 below states a general sufficient condition for a noise benefit in the aver-
age convergence time or ‘ascent’ of the EM algorithm. Figure 1 shows a simulation
instance of this theorem for the important EM case of Gaussian mixture densi-
ties. Small values of the noise variance reduce convergence time while larger values
increase it. This U-shaped noise benefit is the non-monotonic signature of stochas-
tic resonance. The optimal noise speeds convergence by 27.2%. Other simulations
on multi-dimensional GMMs have shown speed increases of up to 40%.

The EM noise benefit differs from almost all SR noise benefits because it does not
involve the use of a signal threshold [18]. The EM noise benefit also differs from most
SR noise benefits because the additive noise can depend on the signal. Independent
noise can lead to weaker noise benefits than dependent noise in EM algorithms.
This also happens with enhanced convergence in noise-injected Markov chains [32].
Figure 4 shows that the proper dependent noise outperforms independent noise at
all tested sample sizes for a Gaussian mixture model. The dependent noise model
converges up to 14.5% faster than the independent noise model.
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Fig. 1. EM noise benefit for a Gaussian mixture model. The plot used the noise-annealed NEM
algorithm. Low intensity initial noise decreased convergence time while higher intensity starting
noise increased it. The optimal initial noise level had standard deviation σ∗

N = 2.5. The average
optimal NEM speed-up over the noiseless EM algorithm was 27.2%. This NEM procedure added
noise with a cooling schedule. The noise cools at an inverse-square rate. The Gaussian mixture
density was a convex combination of two normal sub-populations N1 and N2. The simulation
used 200 samples of the mixture normal distribution to estimate the standard deviations of the
two sub-populations. The additive noise used samples of zero-mean normal noise with standard
deviation σN screened through the GMM–NEM condition in (42). Each sampled point on the

curve is the average of 100 trials. The vertical bars are 95% bootstrap confidence intervals for the
mean convergence time at each noise level.

The idea behind the EM noise benefit is that sometimes noise can make the
signal data more probable. This occurs at the local level when

f(y + n | θ) > f(y | θ) (14)

for pdf f , realization y of random variable Y , realization n of random noise N , and
parameter θ. This condition holds if and only if the logarithm of the pdf ratio is
positive:

ln
(

f(y + n | θ)
f(y | θ)

)
> 0. (15)

The logarithmic condition (15) in turn occurs much more generally if it holds
only on average with respect to all the pdfs involved in the EM algorithm:

EY,Z,N |θ∗

[
ln

f(Y + N, Z | θk)
f(Y, Z | θk)

]
≥ 0 (16)
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where random variable Z represents missing data in the EM algorithm and where
θ∗ is the limit of the EM estimates θk : θk → θ∗. The positivity condition (16) is
precisely the sufficient condition for a noise benefit in Theorem 1 below. We call
this theorem the NEM or Noisy EM Theorem.

3. NEM Theorems

We define the EM noise benefit by first defining a modified surrogate log-likelihood
function

QN (θ | θk) = EZ|y,θk
[ln f(y + N, Z | θ)] (17)

and its maximizer

θk+1,N = argmax
θ

{QN(θ | θk)}.

The modified surrogate log-likelihood QN(θ | θk) equals the regular surrogate log-
likelihood Q(θ | θk) when N = 0. Q(θ | θ∗) is the final surrogate log-likelihood given
the optimal EM estimate θ∗. So θ∗ maximizes Q(θ | θ∗). Thus

Q(θ∗ | θ∗) ≥ Q(θ | θ∗) for all θ. (18)

An EM noise benefit occurs when the noisy surrogate log-likelihood QN (θk | θ∗)
is closer to the optimal value Q(θ∗ | θ∗) than the regular surrogate log-likelihood
Q(θk | θ∗) is. This holds when

QN (θk | θ∗) ≥ Q(θk | θ∗) (19)

or (Q(θ∗ | θ∗)−Q(θk | θ∗)) ≥ (Q(θ∗ | θ∗)−QN (θk | θ∗)). (20)

So the noisy perturbation QN (θ | θk) of the current surrogate log-likelihood Q(θ | θk)
is a better log-likelihood function for the data than Q is itself. An average noise
benefit results when we take expectations on both sides of inequality (20):

EN [Q(θ∗ | θ∗)−Q(θk | θ∗)] ≥ EN [Q(θ∗ | θ∗)−QN (θk | θ∗)]. (21)

The average noise benefit (21) occurs when the final EM pdf f(y, z | θ∗) is closer
in relative-entropy to the noisy pdf f(y + N, z | θk) than it is to the noiseless pdf
f(y, z | θk). Define the relative-entropy pseudo-distances

ck(N) = D(f(y, z | θ∗)‖f(y + N, z | θk)) (22)

ck = ck(0) = D(f(y, z | θ∗)‖f(y, z | θk)). (23)

Then noise benefits the EM algorithm when

ck ≥ ck(N) (24)

holds for the relative-entropy pseudo-distances. The relative entropy itself has the
form [52]

D(h(u, v)‖g(u, v)) =
∫
U ,V

ln
[
h(u, v)
g(u, v)

]
h(u, v)du dv (25)
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for positive pdfs h and g over the same support. Convergent sums can replace the
integrals as needed.

3.1. NEM theorem

The NEM theorem below uses the following notation. The noise random variable N

has pdf f(n | y). So the noise N can depend on the data Y . Independence implies
that the noise pdf becomes f(n | y) = fN (n). {θk} is a sequence of EM estimates for
θ. θ∗ = limk→∞ θk is the converged EM estimate for θ. Assume that the differential
entropy [52] of all random variables is finite. Assume also that the additive noise
keeps the data in the likelihood function’s support. The appendix gives the proof
of the NEM theorem and its three corollaries.

Theorem 1. Noisy expectation–maximization (NEM ). The noise benefit for an
EM estimation iteration

(Q(θ∗ | θ∗)−Q(θk | θ∗)) ≥ (Q(θ∗ | θ∗)−QN (θk | θ∗)) (26)

occurs on average if

EY,Z,N |θ∗

[
ln
(

f(Y + N, Z | θk)
f(Y, Z | θk)

)]
≥ 0. (27)

The NEM theorem also applies to EM algorithms that use the complete data
as their latent random variable. The proofs for these cases follow from the proof in
the appendix. The NEM positivity condition in these models changes to

EX,Y,N |θ∗

[
ln
(

f(X + N | θk)
f(X | θk)

)]
≥ 0. (28)

The NEM theorem implies that each iteration of a suitably noisy EM algorithm
moves closer on average toward the EM estimate θ∗ than does the corresponding
noiseless EM algorithm [53]. This holds because the positivity condition (27) implies
that EN [ck(N)] ≤ ck at each step k since ck does not depend on N from (23). The
NEM algorithm produces larger improvements of the estimate on average than does
the noiseless EM algorithm for any number k of steps.

The NEM theorem’s stepwise noise benefit leads to a noise benefit at any point
in the sequence of NEM estimates. This is because we get the following inequalities
when the expected value of inequality (19) takes the form

Q(θk | θ∗) ≤ EN [QN (θk | θ∗)] for any k. (29)

Thus

Q(θ∗ | θ∗)−Q(θk | θ∗) ≥ Q(θ∗ | θ∗)− EN [QN(θk | θ∗)] for any k. (30)

The EM (NEM) sequence converges when the left (right) side of inequality (30)
equals zero. Inequality (30) implies that the difference on the right side is closer to
zero at any step k.
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NEM sequence convergence is even stronger if the noise Nk decays to zero as the
iteration count k grows to infinity. This noise annealing implies Nk → 0 with prob-
ability one. Continuity of Q as a function of Y implies that QNk

(θ | θk)→ Q(θ | θk)
as Nk → 0. This holds because Q(θ | θk) = EZ|y,θk

[ln f(y, Z | θ)] and because the
continuity of Q implies that

lim
N→0

QN (θ | θk) = EZ|y,θk

[
ln f

(
lim

N→0
(y + N), Z | θ

)]
= EZ|y,θk

[ln f(y, Z | θ)] = Q(θ | θk). (31)

The evolution of EM algorithms guarantees that limk→∞ Q(θk | θ∗) = Q(θ∗ | θ∗).
This gives the probability-one limit

lim
k→∞

QNk
(θk | θ∗) = Q(θ∗ | θ∗). (32)

So for any ε > 0 there exists a k0 such that for all k > k0:

|Q(θk | θ∗)−Q(θ∗ | θ∗)| < ε and

|QNk
(θk | θ∗)−Q(θ∗ | θ∗)| < ε with probability one.

(33)

Inequalities (29) and (33) imply that Q(θk | θ∗) is ε-close to its upper limit Q(θ∗ | θ∗)
and

E[QNk
(θk | θ∗)] ≥ Q(θk | θ∗) and Q(θ∗ | θ∗) ≥ Q(θk | θ∗). (34)

So the NEM and EM algorithms converge to the same fixed point by (32). And the
inequalities (34) imply that NEM estimates are closer on average to optimal than
EM estimates are at any step k.

3.2. NEM : Dominated densities and mixture densities

The first corollary of Theorem 1 gives a dominated-density condition that satisfies
the positivity condition (27) in the NEM theorem. This strong pointwise condition
is a direct extension of the pdf inequality in (14) to the case of an included latent
random variable Z.

Corollary 1.

EY,Z,N |θ∗

[
ln

f(Y + N, Z | θ)
f(Y, Z | θ)

]
≥ 0 if f(y + n, z | θ) ≥ f(y, z | θ) (35)

for almost all y, z, and n.

We use Corollary 1 to derive conditions on the noise N that produce NEM
noise benefits for mixture models. NEM mixture models use two special cases of
Corollary 1. We state these special cases as Corollaries 2 and 3 below. The corollaries
use the finite mixture model notation in Sec. 2.1. Recall that the joint pdf of Y and
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Z is

f(y, z | θ) =
∑

j

αjf(y | j, θ)δ[z − j]. (36)

Define the population-wise noise likelihood difference as

∆fj(y, n) = f(y + n | j, θ)− f(y | j, θ). (37)

Corollary 1 implies that noise benefits the mixture model estimation if the
dominated-density condition holds:

f(y + n, z | θ) ≥ f(y, z | θ). (38)

This occurs if

∆fj(y, n) ≥ 0 for all j. (39)

The Gaussian mixture model (GMM) uses normal pdfs for the sub-population
pdfs [40, 54]. Corollary 2 states a simple quadratic condition that ensures that the
noisy sub-population pdf f(y +n |Z = j, θ) dominates the noiseless sub-population
pdf f(y |Z = j, θ) for GMMs. The additive noise samples n depend on the data
samples y.

Corollary 2. Suppose Y |Z=j ∼ N (µj , σ
2
j ) and thus f(y | j, θ) is a normal pdf. Then

∆fj(y, n) ≥ 0 (40)

holds if

n2 ≤ 2n(µj − y). (41)

Now apply the quadratic condition (41) to (39). Then f(y + n, z | θ) ≥ f(y, z | θ)
holds when

n2 ≤ 2n(µj − y) for all j. (42)

The inequality (42) gives the GMM–NEM noise benefit condition (misstated
in [55] but corrected in [56]) when the NEM algorithm more quickly esti-
mates the standard deviations σj than does noiseless EM. This can also benefit
expectation–conditional–maximization [34] methods.

Figure 1 shows a simulation instance of noise benefits for GMM parameter
estimation based on the GMM–NEM condition (42). The simulation estimates the
sub-population standard deviations σ1 and σ2 from 200 samples of a Gaussian
mixture of two 1D sub-populations with known means µ1 = −2 and µ2 = 2 and
mixing proportions α1 = 0.5 and α2 = 0.5. The true standard deviations are σ∗

1 = 2
and σ∗

2 = 2. Each EM and NEM procedure starts at the same initial point with
σ1(0) = 4.5 and σ2(0) = 5. The simulation runs NEM on 100 GMM data sets for
each noise level σN and counts the number of iterations before convergence for each
instance. The average of these iteration counts is the average convergence time at
that noise level σN . The EM and NEM simulations use the NArgMax numerical
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maximization routine in Mathematica for the M-step. Simulations (not shown) also
confirm that both the Cauchy mixture model (CMM) and non-Gaussian noise show
a similar pronounced noise benefit.

Corollary 3 gives a similar quadratic condition for the Cauchy mixture model.

Corollary 3. Suppose Y |Z=j ∼ C(mj, dj) and thus f(y | j, θ) is a Cauchy pdf. Then

∆fj(y, n) ≥ 0 (43)

holds if

n2 ≤ 2n(mj − y). (44)

Again apply the quadratic condition (44) to (39). Then f(y+n, z | θ) ≥ f(y, z | θ)
holds when

n2 ≤ 2n(mj − y) for all j. (45)

Both quadratic NEM inequality conditions in (42) and (45) reduce to the fol-
lowing inequality (replace µ with m for the CMM case):

n[n− 2(µj − y)] ≤ 0 for all j. (46)

So the noise n must fall in the set where the parabola n2 − 2n(µj − y) is negative
for all j. There are two possible solution sets for (46) depending on the values of
µj and y. These solution sets are

N−
j (y) = [2(µj − y), 0] (47)

N+
j (y) = [0, 2(µj − y)]. (48)

The goal is to find the set N(y) of n values that satisfy the inequality in (42) for
all j:

N(y) =
⋂
j

Nj(y) (49)

where Nj(y) = N+
j (y) or Nj(y) = N−

j (y). N(y) 	= {0} holds only when the sample
y lies on one side of all sub-population means (or location parameters) µj . This
holds for

y < µj for all j or y < µj for all j. (50)

The NEM noise N takes values in
⋂

j N−
j if the data sample y falls to the right

of all sub-population means (y > µj for all j). The NEM noise N takes values in⋂
j N+

j if the data sample y falls to the left of all sub-population means (y < µj for
all j). And N = 0 is the only valid value for N when y falls between sub-population
means. Thus the noise N tends to pull the data sample y away from the tails and
towards the cluster of sub-population means (or locations).
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3.3. NEM for log-convex densities

EM algorithms can satisfy the positivity condition (27) if they use the proper noise
N . They can also satisfy the condition if the data model has an amenable complete
data pdf f(x | θ). Inequalities (42) and (45) can sculpt the noise N to satisfy (27)
for Gaussian and Cauchy mixture models. The next corollary shows how the com-
plete data pdf can induce a noise benefit. The corollary states that a log-convex
complete pdf satisfies (27) when the noise is zero-mean. The corollary applies to
data models with more general complete random variables X . These include mod-
els whose complete random variables X do not decompose into the direct product
X = (Y, Z). Examples include censored models that use the unobserved complete
random variable as the latent random variable Z : Z = X [3, 43, 50].

Corollary 4. Suppose that f(x | θ) is log-convex in x, N is independent of X, and
EN [N ] = 0. Then

EX,N |θ∗

[
ln

f(X + N | θk)
f(X | θk)

]
≥ 0 (51)

and thus the noise benefit ck(N) ≤ ck holds for all k.

A related corollary gives a similar noise benefit if we replace the zero-mean
additive noise with unit-mean multiplicative noise. The noise is also independent
of the data.

The right-censored gamma data model gives a log-convex data model when the
α-parameter of its complete pdf lies in the interval (0, 1). This holds because the
gamma pdf is log-convex when 0 < α < 1. Log-convex densities often model data
with decreasing hazard rates in survival analysis applications [51,57,58]. Section 2.1
describes the gamma data model and EM algorithm. Figure 2 shows a simulation
instance of noise benefits for a log-convex model. The simulation estimates the θ

parameter from right-censored samples of a γ(0.65, 4) pdf. Samples are censored
to values below a threshold of 4.72. The average optimal NEM speed-up over the
noiseless EM algorithm is about 13.3%.

4. The NEM Algorithm

The NEM theorem and its corollaries give a general method for modifying the
noiseless EM algorithm. The NEM theorem also implies that on average these NEM
variants outperform the noiseless EM algorithm.

Algorithm 2 gives the NEM algorithm schema. The operation NEMNoiseSam-
ple(y) generates noise samples that satisfy the NEM condition for the current data
model. The noise sampling distribution depends on the vector of random samples
y in the Gaussian and Cauchy mixture models. The noise can have any value in
the NEM algorithm for censored gamma models. The E-Step takes a conditional
expectation of a function of the noisy data samples y† given the noiseless data
samples y.
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Fig. 2. EM noise benefit for a log-convex censored gamma model. This plot used the annealed-noise
NEM algorithm. The average optimal NEM speed-up over the noiseless EM algorithm is about
13.3%. Low intensity initial noise decreased convergence time while higher intensity starting noise
increased it. This NEM procedure added cooled i.i.d. normal noise that was independent of the
data. The noise cooled at an inverse-square rate. The log-convex gamma distribution was a γ(α, θ)

distribution with α < 1. The censored gamma EM estimated the θ parameter. The model used
375 censored gamma samples. Each sampled point on the curve is the mean of 100 trials. The
vertical bars are 95% bootstrap confidence intervals for the mean convergence time at each noise
level.

Algorithm 2 θ̂NEM = NEM-Estimate(y)
Require: y = (y1, . . . , yM ) : vector of observed incomplete data
Ensure: θ̂NEM : NEM estimate of parameter θ

1: while (‖θk − θk−1‖ ≥ 10−tol) do
2: NS-Step: n← k−τ× NEMNoiseSample(y)
3: NA-Step: y† ← y + n
4: E-Step: Q(θ | θk)← EZ|y,θk

[ln f(y†,Z | θ)]
5: M-Step: θk+1 ← argmax

θ
{Q(θ | θk)}

6: k ← k + 1
7: end while
8: θ̂NEM ← θk
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A deterministic decay factor k−τ scales the noise on the kth iteration. τ is the
noise decay rate. The decay factor k−τ reduces the noise at each new iteration. This
factor drives the noise Nk to zero as the iteration step k increases. The simulations
in this paper use τ = 2 for demonstration. Values between τ = 1 and τ = 3 also
work. Nk still needs to satisfy the NEM condition for the data model. The cooling
factor k−τ must not cause the noise samples to violate the NEM condition. This
usually means that 0 < k−τ ≤ 1 and that the NEM condition solution set is closed
with respect to contractions.

The decay factor reduces the NEM estimator’s jitter around its final value.
This is important because the EM algorithm converges to fixed points. So excessive
estimator jitter prolongs convergence time even when the jitter occurs near the
final solution. The simulations in this paper use polynomial decay factors instead
of logarithmic cooling schedules found in annealing applications [59–63].

The NEM algorithm inherits some variants from the classical EM algorithm
schema. A NEM adaptation to the generalized expectation–maximization (GEM)
algorithm is one of the simpler variations. The GEM algorithm replaces the EM
maximization step with a gradient ascent step. The noisy generalized expectation–
maximization (NGEM) algorithm (Algorithm 3) uses the same M-step. The NEM
algorithm schema also allows for some variations outside the scope of the EM algo-
rithm. These involve modifications to the noise sampling step NS-Step or to the
noise addition step NA-Step.

One such modification does not require an additive noise term ni for each yi.
This is useful when the NEM condition is stringent because then noise sampling
can be time intensive. This variant changes the NS-Step by picking a random
or deterministic sub-selection of the y vector that the noise will modify. Then it
samples the noise subject to the NEM condition for those sub-selected samples.
This is the partial noise addition NEM (PNA-NEM).

The NEM noise generating procedure NEMNoiseSample(y) returns a NEM-
compliant noise sample n at a given noise level σN for each data sample y. This
procedure changes with the EM data model. The noise generating procedure for

Algorithm 3 Modified M-Step for NGEM:

1: M-Step: θk+1 ← θ̃ such that Q(θ̃ | θk) ≥ Q(θk | θk)

Algorithm 4 Modified NS-Step for PNA-NEM
I ← {1 . . .M}
J ← SubSelection(I)
for all ι ∈ J do

nι ← k−τ× NEMNoiseSample(yι)
end for
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the GMMs and CMMs comes from Corollaries 2 and 3. We used the following 1D
noise generating procedure for the GMM simulations:

NEMNoiseSample for GMM–NEM and CMM–NEM
Require: y and σN : current data sample and noise level
Ensure: n : noise sample satisfying NEM condition

N(y)← ⋂
j Nj(y)

n is a sample from the distribution TN(0, σN |N(y))

where TN(0, σN |N(y)) is the normal distribution N(0, σN ) truncated to the sup-
port set N(y). The set N(y) is the interval intersection from (49). Multi-dimensional
versions of the generator can apply the procedure component-wise.

5. NEM Sample Size Effects: Gaussian and
Cauchy Mixture Models

The noise-benefit effect depends on the size of the GMM data set. Analysis of this
effect depends on the probabilistic event that the noise satisfies the GMM–NEM
condition for the entire sample set. This analysis also applies to the Cauchy mixture
model because its NEM condition is the same as the GMM’s. Define Ak as the event
that the noise N satisfies the GMM–NEM condition for the kth data sample:

Ak = {N2 ≤ 2N(µj − yk) | ∀ j}. (52)

Then define the event AM that noise random variable N satisfies the GMM–NEM
condition for each data sample as

AM =
M⋂
k

Ak (53)

= {N2 ≤ 2N(µj − yk) | ∀ j and ∀ k}. (54)

This construction is useful for analyzing NEM when we use independent and iden-
tically distributed (i.i.d.) noise Nk

d= N for all yk while still enforcing the NEM
condition.

5.1. Large sample size effects

The next theorem shows that the set AM shrinks to the singleton set {0} as the
number M of samples in the data set grows. So the probability of satisfying the NEM
condition with i.i.d. noise samples goes to zero as M →∞ with probability one.

Theorem 2. Large Sample GMM–NEM and CMM–NEM.
Assume that the noise random variables are i.i.d. Then the set of noise values

AM = {N2 ≤ 2N(µj − yk) | ∀ j and ∀ k} (55)

1350012-15



4th Reading

September 23, 2013 16:48 WSPC/S0219-4775 167-FNL 1350012

O. Osoba, S. Mitaim & B. Kosko

that satisfy the Gaussian NEM condition for all data samples yk decreases with
probability one to the set {0} as M →∞:

P
(

lim
M→∞

AM = {0}
)

= 1. (56)

The proof shows that larger sample sizes M place tighter bounds on the size of
AM with probability one. The bounds shrink AM all the way down to the singleton
set {0} as M →∞. AM is the set of values that identically distributed noise N can
take to satisfy the NEM condition for all yk. AM = {0} means that Nk must be
zero for all k because the Nk are identically distributed. This corresponds to cases
where the NEM theorem cannot guarantee improvement over the regular EM using
just i.i.d. noise. So identically distributed noise has limited use in the GMM–NEM
and CMM–NEM frameworks.

Theorem 2 is a “probability-one” result. But it also implies the following weaker
convergence-in-probability result. Suppose Ñ is an arbitrary continuous random
variable. Then the probability P (Ñ ∈ AM ) that Ñ satisfies the NEM condition for
all samples falls to P (Ñ ∈ {0}) = 0 as M → ∞. Figure 3 shows a Monte Carlo
simulation of how P (Ñ ∈ AM ) varies with M .

Fig. 3. Probability of satisfying the NEM sufficient condition with different sample sizes M and
for different noise standard deviations σN . The Gaussian mixture density had mean µ = [0, 1],
standard deviations σN = [1, 1], and weights α = [0.5, 0.5]. The number M of data samples varied
from M = 1 to M = 60. Noise standard deviation varied from σN = 0.1 (top curve) to σN = 1.0
(bottom curve) at 0.1 incremental step. Monte Carlo simulation computed the probability P (AM )

in Eq. (54) from 106 samples.
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Using non-identically distributed noise Nk avoids the reduction in the proba-
bility of satisfying the NEM-condition for large M . The NEM condition still holds
when Nk ∈ Ak for each k even if Nk /∈ AM =

⋂
k Ak. This noise sampling model

adapts the kth noise random variable Nk to the kth data sample yk. This is the
general NEM noise model. Figures 1 and 2 use the NEM noise model. This model
is equivalent to defining the global NEM event ÃM as a Cartesian product of
sub-events ÃM =

∏M
k Ak instead of the intersection of sub-events AM =

⋂
k Ak.

Thus the bounds of ÃM and its coordinate projections no longer depend on sample
size M .

Figures 4 and 5 compare the performance of the NEM algorithm with a sim-
ulated annealing version of the EM algorithm. This version of EM adds annealed
i.i.d. noise to data samples y without screening the noise through the NEM con-
dition. We can thus call it blind noise injection. Figure 4 shows that the NEM
outperforms blind noise injection at all tested sample sizes M . The average conver-
gence time is about 15% lower for the NEM noise model than for the blind noise

Fig. 4. Plot comparing the effect of the noise sampling model GMM–NEM at different sample
sizes M . The NEM noise model used the NEM condition. The blind noise model did not check the
NEM condition. So blind noise model had a lower probability of satisfying the NEM condition for
all values of M . The plot showed that the NEM noise model outperformed the blind noise model
at all sample sizes M . The NEM noise model converged in about 15% fewer steps than the blind
noise model for large M . This Gaussian mixture density had sub-population means µ = [0, 1],
standard deviations σ = [1, 1], and weights α = [0.5, 0.5]. The NEM procedure used the annealed
Gaussian noise with initial noise power at σN = 0.17.
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Fig. 5. Comparing the effects of noise injection with and without the NEM sufficient condition. The
data model is a GMM with sample size M = 225. The blind noise model added annealed noise
without checking the NEM condition. The plot shows that NEM noise injection outperformed
the blind noise injection. NEM converged up to about 20% faster than the blind noise injection
for this model. And blind noise injection produced no reduction in average convergence time.
The Gaussian mixture density had mean µ = [0, 1], standard deviations σ = [1, 1], and weights
α = [0.5, 0.5] with M = 225 samples.

model at large values of M . The two methods are close in performance only at
small sample sizes. This is a corollary effect of Theorem 2 from Sec. 5.2. Figure 5
shows that NEM outperforms blind noise injection at a single sample size M = 225.
But it also shows that blind noise injection may fail to give any benefit even when
NEM achieves faster average EM convergence for the same set of samples. Thus
blind noise injection (or simple simulated annealing) performs worse than NEM
and sometimes performs worse than EM itself.

5.2. Small sample size: Sparsity effect

The i.i.d. noise model in Theorem 2 has an important corollary effect for sparse
data sets. The size of AM decreases monotonically with M because AM =

⋂M
k Ak.

Then for M0 < M1:

P (N ∈ AM0 ) ≥ P (N ∈ AM1) (57)

since M0 < M1 implies that AM1 ⊂ AM0 . Thus arbitrary noise N (i.i.d. and inde-
pendent of Yk) is more likely to satisfy the NEM condition and produce a noise ben-
efit for smaller samples sizes M0 than for larger samples sizes M1. The probability
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Fig. 6. Noise benefits and sparsity effects in the Gaussian mixture NEM for different sample sizes
M . The Gaussian mixture density had sub-populations mean µ1 = 0 and µ2 = 1 and standard
deviations σ1 = σ2 = 1. The number M of data samples varied from M = 20 (top curve)
to M = 1000 (bottom curve). The noise standard deviation varied from σN = 0 (no noise or
standard EM) to σN = 1 at 0.1 incremental steps. The plot shows the average relative entropy
D(f∗‖fNEM) over 50 trials for each noise standard deviation σN . f∗ = f(x | θ) is the true pdf and
fNEM = f(x | θNEM) is the pdf of NEM-estimated parameters.

that N ∈ AM falls to zero as M →∞. So the strength of the i.i.d. noise benefit falls
as M →∞. Figure 6 shows this sparsity effect. The improvement of relative entropy
D(f ∗ ‖fNEM) decreases as the number of samples increases: the noise-benefit effect
is more pronounced when the data is sparse. Noise appears to act as a type of
statistically representative pseudo-data in the sparse case.

5.3. Asymptotic NEM analysis

We show last how the NEM noise benefit arises by way of the strong law of large
numbers and the central limit theorem. This asymptotic analysis uses the sample
mean WM :

WM =
1
M

M∑
m=1

Wm. (58)

The M i.i.d. terms Wm have the logarithmic form

Wm = ln
f(Ym + Nm, Zm | θk)

f(Ym, Zm | θk)
. (59)

The Wm terms are independent because functions of independent random vari-
ables are independent. The random sampling framework of the EM algorithm just
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means that the underlying random variables are themselves i.i.d. Each Wm term
gives a sampling version of the left-hand side of (15) and thus of the condition that
the added noise makes the signal value more probable.

We observe first that either the strong or weak law of large numbers [64] applies
to the sample mean WM . The i.i.d. terms Wm have population mean µW = E[W ]
and finite population variance σ2

W = V [W ]. Then the strong (weak) law of large
numbers states that the sample mean WM converges to the population mean µW :

WM → µW (60)

with probability one (in probability) [64–66].
The population mean µW differs from µ∗

W in general for a given k because θk

need not equal θ∗ until convergence. This difference arises because the expectation
µW integrates against the pdf f(y, z, n | θk) while the expectation µ∗

W integrates
against the pdf f(y, z, n | θ∗). But µW → µ∗

W as θk → θ∗. So the law of large
numbers implies that

WM → µ∗
W (61)

with probability one (in probability). So the sample mean converges to the expec-
tation in the positivity condition (27).

The central limit theorem (CLT) applies to the sample mean WM for large
sample size M . The CLT states that the standardized sample mean of i.i.d. random
variables with finite variance converges in distribution to a standard normal random
variable Z ∼ N(0, 1) [64]. A noise benefit occurs when the noise makes the signal
more probable and thus when WM > 0. Then standardizing WM gives the following
approximation for large sample size M :

P (WM > 0) = P

(
WM − µW

σW /
√

M
> − µW

σW /
√

M

)
(62)

≈ P

(
Z > −

√
MµW

σW

)
by the CLT (63)

= Φ

(√
MµW

σW

)
(64)

where Φ is the cumulative distribution function of the standard normal random
variable Z. So P (WM > 0) > 1

2 if µW > 0 and P (WM > 0) < 1
2 if µW < 0.

Suppose the positivity condition (16) holds such that µ∗
W > 0. Then this probability

P (WM > 0) goes to one as the sample size M goes to infinity and as θk converges
to θ∗:

lim
M→∞

P (WM > 0) = 1. (65)

The same argument and (64) show that

lim
M→∞

P (WM > 0) = 0 (66)

if the positivity condition (16) fails such that µ∗
W < 0.
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6. Conclusion

Careful noise injection can speed up the average convergence time of the EM algo-
rithm. The various sufficient conditions for such a noise benefit involve a direct
or average effect where the noise makes the signal data more probable. Special
cases include mixture density models and log-convex probability density models.
Noise injection for the Gaussian and Cauchy mixture models improves the aver-
age EM convergence speed when the noise satisfies a simple quadratic condition.
Even blind noise injection can sometimes benefit these systems when the data set is
sparse. But NEM noise injection still outperforms blind noise injection in all data
models tested. An asymptotic argument also shows that the sample-mean version
of the EM noise-benefit condition obeys a similar positivity condition. Future work
should assess noise benefits in other EM variants and develop methods for finding
optimal noise levels for NEM algorithms.

Appendix A. Proof of Theorems

Theorem 1. Noisy Expectation–Maximization (NEM ).
An EM estimation iteration noise benefit

(Q(θ∗ | θ∗)−Q(θk | θ∗)) ≥ (Q(θ∗ | θ∗)−QN (θk | θ∗)) (A.1)

occurs on average if

EY,Z,N |θ∗

[
ln
(

f(Y + N, Z | θk)
f(Y, Z | θk)

)]
≥ 0. (A.2)

Proof. We show first that each expectation of Q-function differences in (21) is a
distance pseudo-metric. Rewrite Q as an integral:∫

Z

ln[f(y, z | θ)]f(z | y, θk)dz. (A.3)

ck = D(f(y, z|θ∗)‖f(y, z | θk)) is the expectation over Y because

ck =
∫∫

[ln(f(y, z | θ∗))− ln f(y, z | θk)]f(y, z | θ∗)dz dy (A.4)

=
∫∫

[ln(f(y, z | θ∗))− ln f(y, z | θk)]f(z | y, θ∗)f(y | θ∗)dz dy (A.5)

= EY |θk
[Q(θ∗ | θ∗)−Q(θk | θ∗)]. (A.6)

ck(N) is likewise the expectation over Y :

ck(N) =
∫∫

[ln(f(y, z | θ∗))− ln f(y + N, z | θk)]f(y, z | θ∗)dz dy (A.7)

=
∫∫

[ln(f(y, z | θ∗))− ln f(y + N, z | θk)]f(z | y, θ∗)f(y | θ∗)dz dy (A.8)

= EY |θk
[Q(θ∗ | θ∗)−QN (θk | θ∗)]. (A.9)
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Take the noise expectation of ck and ck(N):

EN [ck] = ck (A.10)

EN [ck(N)] = EN [ck(N)]. (A.11)

So the distance inequality

ck ≥ EN [ck(N)] (A.12)

guarantees that noise benefits occur on average:

EN,Y |θk
[Q(θ∗ | θ∗)−Q(θk | θ∗)] ≥ EN,Y |θk

[Q(θ∗ | θ∗)−QN (θk | θ∗)]. (A.13)

We use the inequality condition (A.12) to derive a more useful sufficient
condition for a noise benefit. Expand the difference of relative entropy terms
ck − ck(N):

ck − ck(N)

=
∫∫

Y,Z

(
ln
[
f(y, z | θ∗)
f(y, z | θk)

]
− ln

[
f(y, z | θ∗)

f(y + N, z | θk)

])
f(y, z | θ∗)dy dz (A.14)

=
∫∫

Y,Z

(
ln
[
f(y, z | θ∗)
f(y, z | θk)

]
+ ln

[
f(y + N, z | θk)

f(y, z | θ∗)
])

f(y, z | θ∗)dy dz (A.15)

=
∫∫

Y,Z

ln
[
f(y, z | θ∗)f(y + N, z | θk)

f(y, z | θk)f(y, z | θ∗)
]
f(y, z | θ∗)dy dz (A.16)

=
∫∫

Y,Z

ln
[
f(y + N, z | θk)

f(y, z | θk)

]
f(y, z | θ∗)dy dz. (A.17)

Take the expectation with respect to the noise term N :

EN [ck − ck(N)] = ck − EN [ck(N)] (A.18)

=
∫

N

∫∫
Y,Z

ln
[
f(y + n, z | θk)

f(y, z | θk)

]
f(y, z | θ∗)f(n | y)dy dz dn (A.19)

=
∫∫

Y,Z

∫
N

ln
[
f(y + n, z | θk)

f(y, z | θk)

]
f(n | y)f(y, z | θ∗)dn dy dz (A.20)

= EY,Z,N |θ∗

[
ln

f(Y + N, Z | θk)
f(Y, Z | θk)

]
. (A.21)

The assumption of finite differential entropy for Y and Z ensures that
ln f(y, z | θ)f(y, z | θ∗) is integrable. Thus the integrand is integrable. So Fubini’s
theorem [67] permits the change in the order of integration in (A.21):

ck ≥ EN [ck(N)] iff EY,Z,N |θ∗

[
ln
(

f(Y + N, Z | θk)
f(Y, Z | θk)

)]
≥ 0. (A.22)
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Then an EM noise benefit occurs on average if

EY,Z,N |θ∗

[
ln
(

f(Y + N, Z | θk)
f(Y, Z | θk)

)]
≥ 0. (A.23)

Corollary 1. EY,Z,N |θ∗ [ln
f(Y +N,Z | θ)

f(Y,Z | θ) ] ≥ 0 if

f(y + n, z | θ) ≥ f(y, z | θ) (A.24)

for almost all y, z, and n.

Proof. The following inequalities need hold only for almost all y, z and n:

f(y + n, z | θ) ≥ f(y, z | θ) (A.25)

iff ln[f(y + n, z | θ)] ≥ ln[f(y, z | θ)] (A.26)

iff ln[f(y + n, z | θ)]− ln[f(y, z | θ)] ≥ 0 (A.27)

iff ln[
f(y + n, z | θ)

f(y, z | θ) ] ≥ 0. (A.28)

Thus

EY,Z,N |θ∗

[
ln

f(Y + N, Z | θ)
f(Y, Z | θ)

]
≥ 0. (A.29)

Corollary 2. Suppose Y |Z=j ∼ N (µj , σ
2
j ) and thus f(y | j, θ) is a normal pdf. Then

∆fj(y, n) ≥ 0 (A.30)

holds if

n2 ≤ 2n(µj − y). (A.31)

Proof. The proof compares the noisy and noiseless normal pdfs. The normal pdf is

f(y | θ) =
1

σj

√
2π

exp

[
− (y − µj)2

2σ2
j

]
. (A.32)

So f(y + n | θ) ≥ f(y | θ)

iff exp

[
− (y + n− µj)2

2σ2
j

]
≥ exp

[
− (y − µj)2

2σ2
j

]
(A.33)

iff −
(

y + n− µj

σj

)2

≥ −
(

y − µj

σj

)2

(A.34)

iff −(y − µj + n)2 ≥ −(y − µj)2. (A.35)
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Inequality (A.35) holds because σj is strictly positive. Expand the left-hand side to
get (A.31):

(y − µj)2 + n2 + 2n(y − µj) ≤ (y − µj)2 (A.36)

iff n2 + 2n(y − µj) ≤ 0 (A.37)

iff n2 ≤ −2n(y − µj) (A.38)

iff n2 ≤ 2n(µj − y). (A.39)

Corollary 3. Suppose Y |Z=j ∼ C(mj, dj) and thus f(y | j, θ) is a Cauchy pdf. Then

∆fj(y, n) ≥ 0 (A.40)

holds if

n2 ≤ 2n(mj − y). (A.41)

Proof. The proof compares the noisy and noiseless Cauchy pdfs. The Cauchy pdf is

f(y | θ) =
1

πdj [1 + (y−mj

dj
)2]

. (A.42)

Then f(y + n | θ) ≥ f(y | θ)

iff
1

πdj

[1 + (y+n−mj

dj
)2]
≥

1
πdj

[1 + (y−mj

dj
)2]

(A.43)

iff

[
1 +

(
y −mj

dj

)2
]
≥
[
1 +

(
y + n−mj

dj

)2
]

(A.44)

iff
(

y −mj

dj

)2

≥
(

y + n−mj

dj

)2

. (A.45)

Proceed as in the last part of the Gaussian case:(
y −mj

dj

)2

≥
(

y −mj + n

dj

)2

(A.46)

iff (y −mj)2 ≥ (y −mj + n)2 (A.47)

iff (y −mj)2 ≥ (y −mj)2 + n2 + 2n(y −mj) (A.48)

iff 0 ≥ n2 + 2n(y −mj) (A.49)

iff n2 ≤ 2n(mj − y). (A.50)
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Corollary 4. Suppose that f(y, z | θ) is log-convex in y and N is independent of
Y . Suppose also that EN [N ] = 0. Then

EY,Z,N |θ∗

[
ln

f(Y + N, Z | θk)
f(Y, Z | θk)

]
≥ 0. (A.51)

Proof. (The same argument applies if we use f(x | θ) instead of f(y, z | θ) and if
f(x | θ) is log-convex in x.)
f(y, z | θ) is log-convex in y and EN [y + N ] = y. So

EN [ln f(y + N, z | θk)] ≥ ln f(EN [y + N ], z | θk). (A.52)

The right-hand side becomes

ln f(EN [y + N ], z | θk) = ln f(y + EN [N ], z | θk) (A.53)

= ln f(y, z | θk) (A.54)

because E[N ] = 0. So

EN [ln f(y + N, z | θk)] ≥ ln f(y, z | θk) (A.55)

iff (EN [ln f(y + N, z | θk)]− ln f(y, z | θk)) ≥ 0 (A.56)

iff (EN [ln f(y + N, z | θk)− ln f(y, z | θk))] ≥ 0 (A.57)

iff EY,Z|θ∗ [EN [ln f(Y + N, Z | θk)− ln f(Y, Z | θk)]] ≥ 0 (A.58)

iff EY,Z,N |θ∗

[
ln

f(Y + N, Z | θk)
f(Y, Z | θk)

]
≥ 0. (A.59)

Inequality (A.59) follows because N is independent of θ∗.

Theorem 2. Large Sample GMM– and CMM–NEM.
The set AM of i.i.d. noise values that satisfy the Gaussian (Cauchy) NEM condition
for all data samples yk decreases with probability one to the set {0} as M →∞:

P
(

lim
M→∞

AM = {0}
)

= 1. (A.60)

Proof. Define the NEM-condition event Ak for a single sample yk as

Ak = {N2 ≤ 2N(µj − yk) | ∀ j}. (A.61)

N2 ≤ 2N(µj − yk) for all j if N satisfies the NEM condition (N ∈ Ak). So

N2 − 2N(µj − yk) ≤ 0 for all j (A.62)

and N(N − 2(µj − yk)) ≤ 0 for all j. (A.63)

This quadratic inequality’s solution set (aj , bj) for j is

Ij = [aj , bj ] =




[0, 2(µj − yk)] if yk < µj

[2(µj − yk), 0] if yk > µj

{0} if yk ∈ [minµj , maxµj ]

. (A.64)
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Define b+
k and b−k as b+

k = 2 minj(µj − yk) and b−k = 2 maxj(µj − yk). Then the
maximal solution set Ak = [a, b] over all j is

Ak =
J⋂
j

Ij =




[0, b+
k ] if yk < µj ∀ j

[b−k , 0] if yk > µj ∀ j

{0} if yk ∈ [minµj , maxµj ]

(A.65)

where J is the number of sub-populations in the mixture density. There is a sorting
such that the Ij are nested for each sub-case in (A.65). So the nested interval
theorem [68] (or Cantor’s intersection theorem [69]) implies that Ak is not empty
because it is the intersection of nested bounded closed intervals.

Ak = {0} holds if the NEM condition fails for that value of yk This happens
when some Ij sets are positive and other Ij sets are negative. The positive and
negative Ij sets intersect only at zero. No non-zero value of N will produce a
positive average noise benefit. The additive noise N must be zero.

Write AM as the intersection of the Ak sub-events:

AM = {N2 ≤ 2N(µj − yk) | ∀ j and ∀ k} (A.66)

=
M⋂
k

Ak (A.67)

=




[0, mink b+
k ] if yk < µj ∀ j, k

[maxk b−k , 0] if yk > µj ∀ j, k

{0} if ∃ k : yk ∈ [minµj , maxµj ]

. (A.68)

Thus a second application of the nested interval property implies that AM is not
empty.

We now characterize the asymptotic behavior of the set AM . AM depends on
the locations of the samples yk relative to the sub-population means µj . Then
AM = {0} if there exists some k0 such that minµj ≤ yk0 ≤ max µj . Define the
set S = [min µj , maxµj ]. Then by the Lemma below limM→∞ #M (Yk ∈ S) > 0
holds with probability one. So there exists with probability one a k0 ∈ {1 . . .M}
such that yk0 ∈ S as M → ∞. Then Ak0 = {0} by equation (A.68). Then with
probability one:

lim
M→∞

AM = Ak0 ∩ lim
M→∞

M⋂
k �=k0

Ak (A.69)

= {0} ∩ lim
M→∞

M⋂
k �=k0

Ak. (A.70)

So

lim
M→∞

AM = {0} with probability one (A.71)

since AM is not empty by the nested intervals property and since 0 ∈ Ak for all k.
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Lemma 1. Suppose that S ⊂ R is Borel-measurable and that R is the support of
the pdf of the random variable Y . Let M be the number of random samples of Y .
Then as M →∞:

#M (Yk ∈ S)
M

→ P (Y ∈ S) with probability one (A.72)

where #M (Yk ∈ S) is of the number of random samples y1, . . . , yM of Y that fall
in S.

Proof. Define the indicator function random variable IS(Y ) as

IS(Y ) =

{
1 Y ∈ S

0 Y /∈ S
. (A.73)

The strong law of large numbers implies that the sample mean IS

IS =
∑M

k IS(Yk)
M

=
#M (Yk ∈ S)

M
(A.74)

converges to E[IS ] with probability one. Here #M (Yk ∈ S) is the number of random
samples Y1, . . . , YM that fall in the set S. But E[IS ] = P (Y ∈ S). So with probability
one:

#M (Yk ∈ S)
M

→ P (Y ∈ S) (A.75)

as claimed.
Then P (S) > 0 implies that

lim
M→∞

#M (Yk ∈ S)
M

> 0 (A.76)

and limM→∞ #M (Yk ∈ S) > 0 with probability one since M > 0.
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