IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 11, NOVEMBER 1994

[7] Y. Izui and A. Pentland, “Analysis of neural networks with redundancy,”
Neural Computation, vol. 2, pp. 226-238, 1990.

[8] C. Neti, M. Schneider, and E. Young, “Maximally fault tolerant neural
networks and nonlinear programming,” in Proc. Int. Joint Conf. on
Neural Netw., San Diego, CA, June 1990, pp. 11-483-496.

[9] J. Nijhuis, B. Hofflinger, A. van Schaik, and L. Spaanenburg, “Limits
to the fault-tolerance of a feedforward neural network with learning,”
in the Proc. 20th IEEE Fault Tolerant Computing Symp., 1990.

[10] D. B. Parker, “Learning logic,” Tech. Rep. TR-47, Center for Com-
putational Res. in Economics and Management Sci., MIT Cambridge,
MA, 1985.

[11] D. S. Phatak and 1. Koren, “A study of fault tolerance properties of
artificial neural nets,” Tech. Rep., Elec. and Comput. Eng. Dep., Univ.
of Massachusetts, Amherst, 1991.

[12] T. Poggio and F. Girosi, “Networks for approximation and learning,”
Proc. IEEE, vol. 78, pp. 1481-1497, Sept. 1990.

[13] D. E. Rumelhart and J. L. McClelland, Eds., Parallel Distributed Pro-
cessing: Explorations in the Microstructure of Cognition. Cambridge,
MA: MIT Press, 1986.

[14] D. E. Rumelhart, “Learning and generalization,” transcript of plenary
address appears in Proc. IEEE ICNN San Diego, CA, 1988.

[15] B. E. Segee and M. J. Carter, “Fault tolerance of pruned multilayer
networks,” in Proc. IJCNN, Seattle, WA, 1991, pp. 11-447-452.

[16] B. E. Segee and M. J. Carter, “Fault sensitivity and nodal relevance
relationships in multi-layer perceptrons,” Tech. Rep. ECE.IS.90.02, Dep.
of Elec. and Comput. Eng., Univ. of New Hampshire, Durham, NH,
Mar. 1990.

[17] C. H. Séquin and R. D. Clay, “Fault tolerance in artificial neural
networks,” in Proc. IJCNN, San Diego, CA, June 1990, pp. 1-703-708.

[18] R.L. Watrous, “Learning algorithms for connectionist networks: Applied
gradient methods of nonlinear optimization,” in Proc. IEEE Int. Conf.
Neural Netw., San Diego, CA, 1987, vol. II, pp. 619-627.

[19] P. J. Werbos, “Beyond regression: New tools for prediction and anal-
ysis in the behavioral sciences,” Ph.D. dissertation, Harvard Univ.,
Cambridge, MA, 1974.

Fuzzy Systems as Universal Approximators

Bart Kosko

Abstract— An additive fuzzy system can uniformly approximate any
real continuous function on a compact domain to any degree of accuracy.
An additive fuzzy system approximates the function by covering its
graph with fuzzy patches in the input-output state space and averaging
patches that overlap. The fuzzy system computes a conditional expectation
E[Y | X] if we view the fuzzy sets as random sets. Each fuzzy rule defines
a fuzzy patch and connects commonsense knowledge with state-space
geometry. Neural or statistical clustering systems can approximate the
unknown fuzzy patches from training data. These adaptive fuzzy systems
approximate a function at two levels. At the local level the neural system
approximates and tunes the fuzzy riles. At the global level the rules or
patches approximate the function.

I. Fuzzy APPROXIMATION AS A Fuzzy COVERING

A fuzzy system approximates a function by covering its graph with
fuzzy patches and averaging patches that overlap. The approximation

Manuscript received July 6, 1992; revised August 10, 1993. Earlier versions
of this work appear in Proceedings of the 1992 IEEE International Conference
on Fuzzy Systems (FUZZ-92) and Proceedings of the IICNN-92.

The author is with the Department of Electrical Engineering-Systems,
Signal and Image Processing Institute, University of Southern California, 3740
McClintock Avenue, EEB 400, Los Angeles, CA 90089-2564 USA; e-mail:
kosko@sipi.usc.edu.

IEEE Log Number 9402909.

1329

improves as the fuzzy patches grow in number and shrink in size.
Fig. 1 shows how fuzzy patches in the input-output product space
X x Y cover the real function f : X — Y. In Fig. 1(a) a few
large patches approximate f. In Fig. 1(b) several smaller patches
better approximate f. The approximation improves as we add more
small patches but storage and complexity costs increase. This brief
contribution gives the algebraic details of the fuzzy approximation.

A fuzzy system is a set of if-then fuzzy rules that maps inputs to
outputs. Each fuzzy rule defines a fuzzy patch in the input-output
state space of the function. Fig. 2 shows the fuzzy rule “if X is
Negative Small, then Y is Positive Small” as the cartesian product
NS x PS of “fuzzy” [12] or multivalued sets NS and PS. A 3-D
plot would show the fuzzy patch NS x PS as a barn-like structure
that rises up from its rectangular base. Each input belongs to some
degree to each input fuzzy set. So each input fires all the fuzzy rules
to some degree. Experts state the fuzzy rules or a neural or statistical
system learns them from sample data. Experts and algorithms can give
different sets of fuzzy rules and so give different approximations of
the function.

Next, we show that a fuzzy system can approximate any continuous
real function defined on a compact (closed and bounded in R")
domain and show that even a bivalent expert system can uniformly
approximate a bounded measurable function. The fuzzy systems have
a feedforward architecture that resembles the feedforward multilayer
neural systems used to approximate functions [4]. The uniform
approximation of continuous functions allows us to replace each
continuous fuzzy set with a finite discretization or a point in a unit
hypercube [7] or “fuzzy cube” of high dimension.

Hornik and White [4] and others have used the Stone-Weierstrass
theorem of functional analysis [9] to show uniform convergence of
neural networks. The Stone—Weierstrass theorem states that if C'(X)
is the sup-norm space of continuous functions on a compact and
Hausdorf X and if A C C(X) is a closed algebra and if A is self-
adjoint and separates points and contains the constant functions, then
A = C(X). This gives the result but not much insight into how to
build or learn real systems. Radial basis nets sum Gaussian functions
and also uniformly approximate continuous functions on compact
sets [3]. Additive fuzzy systems [7] with Gaussian fuzzy sets [11]
define radial basis nets and so also act as uniform approximators.
The theorem below also proves so directly since it holds for all
aditive systems. The constructive proof below shows how to use
neural systems to learn rules and how to let the rules or patches
change with time to track a nonstationary function.

II. AppITIVE Fuzzy SYSTEMS

Inputs fire the if-part A, of all fuzzy rules “if X = A, then
Y = B,” and give scaled sum B’ as output. Earlier fuzzy systems
combined the output fuzzy sets BB} with pairwise maximum in accord
with the so-called “extension principle” [2]. Additive fuzzy systems
sum the outputs [7] as in Fig. 3:

B=Y w,;B; o
j=1

For now we take the adaptation weights w; as unity: w; = 1.
Different limit theorems show how the different combination
schemes behave. Sum combination often tends to give a symmetric
unimodal distribution as the output fuzzy set B. It gives the global
output centroid in (3) as the simple convex sum of set centroids in (6).

0018-9340/94304.00 © 1994 IEEE

1330

X
(a)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 11, NOVEMBER 1994

X
()

Fig. 1. (a) Four large fuzzy patches cover part of the graph of the unknown function f : X — Y. Fewer patches decrease computation and decrease
approximation accuracy. (b) More smaller fuzzy patches better cover f, but at greater computational cost. Each fuzzy rule defines a patch in the product space
X x Y. In a large but finite number of fuzzy rules or precise rules covers the graph with arbitrary accuracy. Optimal rules cover extrema of f.

If X=NS, then Y=PS

== 7))
N e

Fig. 2. Fuzzy rule as a state-space patch or cartesian product of fuzzy sets.
The product patch NS x PS stands for the fuzzy rule “if X is Negative
Small, then Y is Positive Small.” Here trapezoids and triangles define fuzzy
or multivalued sets.

NL NM

Combining the scaled or “fired” consequent fuzzy sets B}, - -, B,
in Fig. 3 with pairwise maximum gives the envelope of the fuzzy
sets and tends towards the uniform distribution [5]. In general the
Borel-Cantelli Lemma of probability theory implies that the “ex-
tension principle” [2] of fuzzy theory extremizes fuzzy membership
values into binary endpoint values:

limsupiﬁmrl1 AzZ A A r’ =b,

@

which holds with probability one [5] for nondegenerate pairwise
independent sequences of i.i.d. random variables z7 that take values
in [a, b]. The symbol “A” stands for pairwise minimum. So in general
the extension principle does not “extend” a fuzzy set at all. It
defuzzifies it into a binary distribution. In practice n = 1 = b in
fuzzy systems. As the number of nonzero fuzzy-rule outputs grows,
the envelope locally grows to the constant value 1, the uniform
distribution. Globally the output grows to a rectangular pulse.

Max combination ignores overlap in the fuzzy sets B’. Sum
combination adds overlap to the peakedness of B. When the input
changes slightly, the additive output B changes slightly. The max-
combined output may ignore small input changes since for large sets
of rules most change occurs in the overlap regions of the fuzzy sets

Xi, = A

Centroidal |
Defuzzifier Yi

Fig. 3. Additive fuzzy system architecture. Real number x; defines a unit bit
vector or Dirac delta pulse that passes through the FAM system and fires each
fuzzy rule to some degree (most to zero degree). The system adds the scaled
output fuzzy sets to give B. Neural or other adaptive systems can modify the
rule weights w; (or the sets A; and B;) with sample data. The centroid of
B gives the output number y; as a convex sum of set centroids.

B!. Here the overlap problem arises since the centroid tends to stay
the same for small changes in input. But the centroid smoothly tracks
changes in the fuzzy-set sum (1) as (5) shows.

Centroid defuzzification compounds the max problem. An inte-
grable multivalued set function mg : ¥ — [0,1] gives the
centroidal output y; or F(x)as

JZ yme(y)dy
[mp(y)dy

We can replace the integral in (3) with small discrete sums indexed
only by the number of fuzzy sets that quantize the fuzzy variables
[6]. See (5) below. This eliminates both the need to approximate the
centroid and its computational burden. Digital VLSI hardware can
then implement (3) or an analog VLSI chip can implement it with a
simple follower-aggregator circuit [8]. In the limit as the number of
combined output sets B’ grows, centroidal defuzzification may tend
to coincide with mode defuzzification since the centroid and mode
coincide for a symmetric unimodal distribution.

Y = 3

III. Fuzzy FUNCTION APPROXIMATION
Sum inference reduces to the weighted sum

B:Zur,a{B,. 4)
=1

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 11, NOVEMBER 1994

Fig. 4. Sum vs. max combination of rule output sets. The max envelope
(a) tends toward a rectangle as the number of trapezoids grows. The sum
envelope (b) may tend toward a Gaussian or symmetric unimodal curve. The
centroid of the sum envelope in (b) must fall at or between the centroids of
the first and third trapezoids. The approximation theorem depends on this fact.
Centroids of max envelopes can fall outside these bounds.

where a{ is the degree to which input x; belongs to fuzzy set A; in

the rule or patch A; x B;. Additive fuzzy systems can approximate
a function f : X — Y by shrinking these patches in size and
increasing them in number [7]. For the proof we can assume no
learning and equi-credible rules: w1 = ---

Equation (4) gives a simple approximation theorem. Suppose
f : X — Y is measurable and bounded. Then we can view B
as a simple function if the fuzzy sets B; are nonfuzzy sets [7]. We
replace triangles, trapezoids, and other fuzzy sets with rectangles.
Simple functions s : X — Y map X into finitely many values
of Y. A simple function equals a finite sum of weighted indicator
functions. Choose the fit values a] as the weights and let the nonfuzzy
sets or rectangles partition X. Then [10] there is a simple function
s. epsilon close to f on X. Boundedness of f ensures a uniform
approximation. This shows that a large enough Al expert system can
approximate any bounded measurable function and reminds us that
fuzzy rules reduce in the bivalent case to expert-systems rules. It
does not show that an additive fuzzy system with multivalued sets
converges uniformly to f. So in practice the result gives no error
bound. The problem arises because triangles, trapezoids, and other
fuzzy sets need not converge uniformly to rectangles.

Uniform convergence holds if we work with continuity instead of
measurability. The theorem below requires that f : X — Y is
continuous and that X is compact (closed and bounded) in R™. The
theorem shows that in principle an additive fuzzy system with finite
fuzzy rules can approximate any continuous function to any degree
of accuracy. It includes the Gaussian result in [11] as a special case.

Theorem: An additive fuzzy system F' uniformly approximates
f: X — Y if X is compact and f is continuous.

Proof: Pick any small constant ¢ > 0. We must show that
|F(z) — f(z)| < € for all z € X. X is a compact subset of R".
F(z) is the centroidal output (3) or (6) of the additive fuzzy system
F in (4).

Continuity of f on compact X gives uniform continuity. So there is
a fixed distance 6 such that, for all z and = in X, |f(z)— f(2)| < £/4
if |z — z| < 6. We can construct a set of open cubes M, -, Mm
that cover X and that have ordered overlap in their n coordinates so
that each cube corner lies at the midpoint ¢; of its neighbors M. Pick
symmetric output fuzzy sets B; centered on f(c;). So the centroid
of B; is f(c;).

Pick v € X . Then by construction u lies in at most 2" overlapping
open cubes M;. Pick any w in the same set of cubes. If v € M;
and w € My, then for all v € M; N M, : |u — v| < 6 and
|v — w| < é. Uniform continuity implies that |f(u) — f(w)| <
|f(u) = f(v)| + |f(v) = f(w)] < £/2. So for cube centers c; and
cks [f(ej) = flen)l < g/f2.

Pick # € X. Then x too lies in at most 2" open cubes with
centers c; and |f(c;) — f(x)] < /2. Along the kth coordinate
of the range space RP the kth component of the additive system

= wm = 1.

1331

centroid F(z) lies as in (6) on or between the kth components of
the centroids of the B; sets. So, since |f(c;) — f(cx)| < €/2 for all
f(ei) |F(z)—f(e5)| < £/2. Then |F(z)—f(2)| < |F(z)=fle;)l+
If(c;) = f(x)| <e/2+e/2=¢. m

The proof may require symmetric output fuzzy sets B; if
correlation-minimum encodes [6] the rules A; x B;. Correlation-
product encoding does not require symmetry since a;B; has the
same centroid as B; if a; > 0.

The proof shows that we can replace the fuzzy sets A; and B
with finite discretizations or fit vectors (a],- - -, al) and (b3, --,b}).
The discrete version of B; must have a centroid at or close to the
centroid of B;. So we can always work with large-dimensional unit
hypercubes and view fuzzy rules or patches as matrix mappings (or
fuzzy associative memories [7]) between hypercubes or as points in
even larger hypercubes.

The proof fails for max-combined sets B. The proof traps the
centroidal output C'(B) or y; in (3) between the centroids C(B1)
and C(B..) if C(B1) < C(B2) < -+ < C(Bm)

e, A(B;) C(By)

C(B)= o 3)
B == A®)
=Y ¢, C(B;) ©®)
Jj=1
for volume or area A(B;) = [, mp(z)dz and for convex area

coefficients ¢1, - -, cm. Wang [11] renames these terms “fuzzy basis
functions.” The proof works for any combined output set B =
é(Bi,-++,By) such that C(B;) < ¢ < C(Bwm). In general the
max combination \/j_, B; does not obey C(B1) < C(V,; B;) <
C(B). This inequality holds in the trivial case when sum = max.
Since ¢ + y = min(z,y) + max(z,y),z + y = max(z,y) iff
z = 0 or y = O iff the combined sets By, -, B, are disjoint.
The proof also works for noncentroidal defuzzifiers D(B) that obey
C(B;) < D(B) < C(Bm). In general the supremum or max-
membership defuzzifier does not obey this inequality.

IV. Fuzzy SYSTEMS AS CONDITIONAL EXPECTATIONS

How “fuzzy” is the approximation theorem? How “fuzzy” is a
fuzzy system? Pure fuzziness stems from the overlap of a thing or
set A and its opposite A°. A is fuzzy iff AN A° # @ [7]. Fuzzy
systems need not be fuzzy in this pure sense. The finite area A(B)
of the output set B means that A(B) normalizes B to give B’ as the
conditional probability density p(y | z):

,_ B
=A®) M
=p(Y | X =z). ®

We can view the fuzzy sets A; and B; as random sets or as loci
of two-point conditional probability densities. The set degree m 4 ()
equals P(A|X = z), the probability of event A given that random
variable X takes on the domain or index value z. So we can view
the fit value mpas(z) as the probability that X is Positive Medium
if X is x. Then X = PM means the random variable X takes on
the entire random set Positive Medium as a random-set value. Then
for input = each rule fires with some conditional probability. The
system emits each output y with some conditional probability. The
output equals the local average or conditional mean. If the output is
the maximum probability value, the system computes a maximum a
posteriori or MAP estimate.

The centroid (3) gives the same result as (8) and implies that the
fuzzy system output F(z) equals a realization of the conditional
expectation:

F(z) = E[Y | X = al. ©

1332

NL NM NS ZE PS PM PL
X

()

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 11, NOVEMBER 1994

NL
* L
3
NM ol 0 i
NS . L]
L]
ZE ®
L] L]
y Ps * %% ® NN .
. . . °
M [o |° % J[* e e *
L] 3 Y
P L]
PL
L
NL NM NS ZE PS PM PL
X

(b)

Fig. 5. Product space clustering with vector quantization. (a) Small dots show the observed sample data. (b) Larger dots shows how the quantization vectors
distribute after learning. The weight w;; of fuzzy rule “if X = A;, then Y = B;” grows as the A; X B; patch’s count of quantization vectors grows.

On this view a fuzzy system is a probability system. It computes the
random variable E{Y | X] or E[Y | X = NL,NM,---, PL].

The summed patches give a model-free estimate of f : X — Y.
This conditional mean is the mean-squared optimum among all
nonlinear estimates of f that depend on the input “sets” or densities
NL,NM,---,PL. The approximation theorem says that additive
fuzzy systems form an e-bundle around f. They form an s-bundle
of conditional means around f.

V. ADAPTIVE Fuzzy SYSTEMS

An adaptive fuzzy system is a fuzzy system that changes with
time. The sets or rules change in shape or number. A learning system
changes the fuzzy-rule weights wi,---,wn, as it samples input-
output data (z1,y1), (z2,y2),---. In practice [7], we threshold the
weights w; to 0 or 1. If the weight w; equals or exceeds the threshold,
put w; = 1 and add the fuzzy rule to the fuzzy system or “knowledge
base.” If w; falls below the threshold, w; = 0 and ignore the jth
fuzzy rule and do not include it in the fuzzy system.

Adaptive fuzzy systems estimate fuzzy rules from sample data.
This reduces to patch or cluster estimation in X x Y called product
space clustering [7]. Neural or statistical clustering algorithms convert
the sample data (z;, y:) into cluster estimates. An expert or physical
process gives the sample data. Clustering algorithms search for the
implicit fuzzy rules that the expert or physical process “used” to
generate the data.

Vector quantization estimates clusters. A fixed set of quantization
vectors my, - - -, m,, tracks the distribution of sample data. In neural
systems each quantization vector m; defines a fan-in synaptic vector
to a neuron that competes in a winner-take-all network. The neural
system learns or adapts if and only if the quantization/synaptic vector
m; moves in the input-output state space X x Y. In effect each
quantization vector m; estimates a local cluster in X x Y and,
in optimal mean-squared-error learning, converges to the cluster’s
centroid exponentially quickly [6]. Globally the quantization vectors
estimate the unknown joint probability density p(z, y) that gives rise
to the observed data pairs (z, ¥:). The v quantization vectors estimate
the probability of any region C' as n./v, the number of quantization
vectors in C divided by the total number of quantization vectors.

Clusters of quantization vectors estimate fuzzy patches. At any
time in the learning process each fuzzy patch A; x B; contains
n. quantization vectors. This gives rise to an adaptive histogram or
frequency distribution of quantization vectors in the rs overlapping
fuzzy patches or cells. In practice we may count a cell as sufficiently
occupied (w; = 1) if it contains any quantization vectors. For

in general sample data greatly outnumbers the fixed quantization
vectors. In the extreme case, we can count each sample as a
quantization vector [11]. This unbounded cases does not filter noise or
compress the sample data. Fig. 5 shows product space clustering with
vector quantization after learning has slowed or stopped. The small
dots in Fig. 5(a) are the observed samples (z;,y;). The large dots
in Fig. 5(b) are the quantization vectors m;. If we set a threshold
of two quantization vectors per cell, then product space clustering
yields 10 fuzzy rules or patches. Other learning schemes can change
the cluster regions by grouping the covariance ellipsoids [1] of the
quantization vectors and thus can change the shape of rules and sets.

The above uniform approximation theorem implies that a finite
number of quantization vectors m,, -+, m, can learn any sampled
continuous function if the learning system samples enough function
samples (z;, f(x;)) and if the quantization vectors converge to
local centroids. Several types of competitive learning ensure this
convergence [6]. In general, this requires learning with a prohibitively
large number of quantization vectors. In the small-sample case it
shows that we can shrink the appropriate fuzzy patches and increase
their number as we sample more data and increase the number v of
adaptive quantization vectors.

V1. CONCLUSION

A fuzzy system or approximator reduces to a graph cover with
local averaging. That is not unique. An additive fuzzy system with
Gaussian sets reduces to a radial basis network [3] and that too is
but one of many graph coverings. The “fuzziness” or multivalence of
sets comes into play when patches or output sets overlap. Nonfuzzy
sets can also weight or average the overlap. A fuzzy system is unique
in that it ties vague words like “small” and “medium” to the math of
curves and fit vectors (points in unit cubes). So it ties natural language
and commonsense rules to state-space geometry. But the “fuzzy”
sets are equivalent to random sets or loci of two-point conditional
probabilities. The fuzzy systems give a model-free estimate of some
unknown conditional expectation E[Y | X]. The approximation
power of fuzzy systems lies more in their model freedom than in
their fuzzy interpretation. Nonfuzzy sets and rule patches also lead
to model-free universal approximators.

ACKNOWLEDGMENT

The author thanks Dr. F. Watkins for insights on the analysis and
application of fuzzy systems.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 11, NOVEMBER 1994

REFERENCES

[1] J. A. Dickerson and B. Kosko, “Fuzzy Function approximation with
supervised ellipsoidal learning,” in Proc. World Congress on Neural
Nerw. (INNS WCNN-93), vol. 2, July 1993, pp. 9-17.

[2] D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applica-
tions . Orlando, FL: Academic Press, 1980.

[3] E. Hartman, J. D. Keeler, and J. Kowalski, “Layered neural networks
with gaussian hidden units as universal approximators,” Neural Compu-
tat., vol. 2, pp. 210-215, 1990.

{4] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward net-
works are universal approximators,” Neural Netw., vol. 2, pp. 359-366,
1989.

[5] B. Kosko, “Fuzzy knowledge combination,” Int. J. Intell. Syst., vol. 1,
pp. 293-320, 1986.
[6] , “Stochastic competitive learning,” IEEE Trans. Neural Netw.,

vol. 2, no. 5, pp. 522-529, Sept. 1991.

[7} ——, Neural Networks and Fuzzy Systems: A Dynamical Systems Ap-
proach to Machine Intelligence . Englewood Cliffs, NJ: Prentice Hall,
1991.

[8] C. Mead, Analog VLSI and Neural Systems .
Wesley, 1989.

[91 W. Rudin, Functional Analysis .

(10]

Reading, MA: Addison-

New York: McGraw-Hill, 1973.

, Real and Complex Analysis, second ed. New York: McGraw-
Hill, 1974.

L. Wang and J. M. Mendel, “Fuzzy basis functions, universal approxima-
tion, and orthogonal least-squares learning,” /EEE Trans. Neural Netw.,
vol. 3, no. 5, pp. 807-814, Sept. 1992.

L. A. Zadeh, “Fuzzy sets,” Inform. Contr., vol. 8, pp. 338-353, 1965.

(i

[12]

Optimal Centralized Algorithms for Store-and-Forward
Deadlock Avoidance

J. Blazewicz, D. P. Bovet, J. Brzezinski, G. Gambosi,
and M. Talamo

Abstract—In this brief contribution, a problem of deadlock avoidance
in store-and-forward networks with at least two buffers per node is
considered for fixed as well as dynamic routing. For both cases polynomial
time, centralized deadlock aveidance algorithms are proposed and shown
to be optimal in a sense of possible buffer utilization. When the number
of buffers is equal to one for each node the problem is known to be
NP-complete, thus, unlikely to admit a polynomial-time algorithm. The
presented results may be also interesting for other applications, some
massively parallel computer systems being one of the examples.

Index Terms—Stored-and-forward networks, deadlock aveidance, cen-
tralized approach, buffer utilization, complexity analysis.

I. INTRODUCTION

The concept of store-and-forward packet-switching is commonly
used in computer and telecommunication networks as well as in some

Manuscript received July 8, 1992; revised January 13, 1993 and August 15,
1993.

J. Blazewicz and J. Brzeziniski are with the Instytut Informatyki, Politech-
nika Poznariska—ul. Piotrowo 3a, 60-965 Poznaii, Poland.

D. P. Bovet is with the Dipartimento di Scienza dell’ Informazione,
Universita di Roma “La Sapienza”, Via Salariz 113, 00198 Roma, Italy.

G. Gambosi is with the Universitd di Roma “Tor Vergata”, Via della Ricerca
Scientifica, 00173 Roma, Italy.

M. Talamo is with the Dipartimento di Informatica e Sistemistica, Univer-
sitadi Roma “La Sapienza”, Via Salaria 113, 00198 Roma, Italy.

IEEE Log Number 9402912.

1333

massively parallel systems such as hypercubes or transputer based
machines. One of the most important issues arising in these systems
is deadlock avoidance. To solve this problem several interesting
distributed algorithms have been already proposed [2]-{13], [15],
[16], [201, [21], [24], [26], [27], but till now this area offers a great
opportunity for improvement ([25]). Distributed algorithms can be
rather easily implemented in existing networks. However, it is also
clear that none of them is optimal with respect to buffer utilization
and to the number of safe states allowed. This is because they are too
restrictive, since they cannot use the full knowledge of the network
state which would be available in a centralized approach. Thus the
latter, if optimal, can be useful as a valuable benchmark for all
existing distributed algorithms. Moreover, this optimal approach may
also form a base for a construction of new, more efficient, distributed
algorithms. Such an adaptation of centralized algorithms to distributed
context has been commonly used in practice, and many interesting
solutions have been obtained in this way (see e.g., [1]1-[19], [22]).

A more theoretical reason for studying centralized deadlock avoid-
ance algorithms follows from the fact that a store-and-forward
network may be considered as a special case of a centralized computer
system, in which resources are required and then released in a
prespecified order for each process (message) in the system [14]. Such
a situation has not been investigated yet and the complexity of the
corresponding deadlock avoidance problem remained open, except
for networks containing nodes with one buffer. This last problem has
been proved to be NP-complete [1].

The aim of the present paper follows from the above discussion and
may be stated as finding an optimal (from the point of view of buffer
utilization) and efficient (polynomial time) centralized algorithm for
store-and-forward deadlock avoidance. In Section II, a model of a
store-and-forward network is presented. Section III presents a cen-
tralized store-and-forward deadlock avoidance algorithm, assuming
dynamic routing and more than one buffer per node. In Section IV,
fixed routing is considered and corresponding results are presented.

II. THE MODEL

A store-and-forward transmission network can be defined as
quadruple SF = {V, E, BN, B}, where V = {v1,---,vn} is a set
of nodes, E is a set of (bidirectional) links, BN is a set of buffers
and B : V' — N7 is a function such that }°"_, B(v;) =| BN |,
which associates with each node the number of buffers it contains. It
is assumed that all buffers have the same sizes and that each buffer
can be allocated to one message at a time.

Denote as Gsr = (V, E) the graph underlying network SF.

Messages have to be transmitted between contiguous nodes along
routes R,, i.e., finite paths (v; ,---.v;) in Gsp. Let us denote as
fixed routing the case in which the route of a message is known in
advance; let us moreover denote as dynamic routing the case in which
for each message, only the next node along its route is given at any
time. Message transmission is performed according to the following
assumptions:

1) Message m originates in node s(m) (the source of m) if there
exists at least one free buffer in v = s(m), i.e., a buffer not
already assigned to any message. Such buffer can be assigned
to m.

2) With each message m contained in node v, there is associated
node next(m) contiguous to v, representing the next node to
which m has to be transmitted.

0018-9340/94$04.00 © 1994 IEEE

