Deeper Bidirectional Neural Networks with
Generalized Non-Vanishing Hidden Neurons

Olaoluwa Adigun
Signal and Image Processing Institute
Department of Electrical and Computer Engineering
Los Angeles, California 90089-2564.
adigun@usc.edu

Abstract—The new NoVa hidden neurons have outperformed
ReLU hidden neurons in deep classifiers on some large image
test sets. The NoVa or nonvanishing logistic neuron additively
perturbs the sigmoidal activation function so that its derivative
is not zero. This helps avoid or delay the problem of vanishing
gradients. We here extend the NoVa to the generalized perturbed
logistic neuron and compare it to ReLU and several other hidden
neurons on large image test sets that include CIFAR-100 and
Caltech-256. Generalized NoVa classifiers allow deeper networks
with better classification on the large datasets. This deep benefit
holds for ordinary unidirectional backpropagation. It also holds
for the more efficient bidirectional backpropagation that trains
in both the forward and backward directions.

Index Terms—Bidirectional backpropagation, Logistic, ReLU,
NoVa hidden neurons, vanishing gradient.

I. BETTER HIDDEN ACTIVATIONS FOR DEEPER LEARNING

We propose the new generalized nonvanishing or G-NoVa
activation for hidden neurons in deep neural classifiers. Sim-
ulations show that it outperforms its main hidden-activation
rivals on very deep multilayer perceptron neural classifiers on
three image datasets. The comparative benefits of the G-NoVa
neurons were most pronounced for the deepest classifiers.

Figures 1 and 2 show the graphs of the activation contenders
and their first derivatives: logistic, linear (identity), ReLU,
leaky ReLLU, Swish, NoVa, and G-NoVa activations. The next
section gives their mathematical definitions.

The G-NoVa neuron is a type of perturbed logistic activa-
tion. The recent nonvanishing or NoVa neuron is an additively
perturbed logistic whose derivative does not vanish [1]. So
the NoVa neuron avoids the vanishing gradient problem that
so quickly overtakes logistic hidden neurons in deep neural
networks.

The new G-NoVa neuron is more general than the NoVa
neuron because it combines both an additive and a multiplica-
tive perturbation with the traditional logistic sigmoid. This
leads to superior classifier performance on the large image
datasets that we tested. It also suggests that the decades-old
logistic model neuron may be more biologically plausible be-
cause any such real neuron would involve noise perturbations
that are both additive and multiplicative [2], [3].

We specifically found that the G-NoVa outperformed the
popular ReLU or rectified linear unit hidden activation and
its leaky variant. The ReLU neuron has become the default
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hidden neuron for modern deep neural classifiers [4]. It is a
threshold linear neuron and dates back to at least Fukushima’s
experiments with multilayer networks or neocognitrons [5], [6]

We further found that G-NoVa deep networks outperformed
its activation rivals for the more general case of training
with bidirectional backpropagation [7], [8]. Figure 3 shows
the forward and backward probability flow in bidirectional
backpropagation (B-BP).

Ordinary backpropagation is unidirectional despite its name.
It ignores the rich associative and probabilistic information that
the multilayer network contains in its backward direction as
it trains on input-output associations. That is why running an
ordinary BP-trained network backwards from unit-bit-vector
class labels to input pixels or data registers produces only
visual noise at the input layer. Bidirectional BP or B-BP tends
to produce a centroidal estimate at the input layer of what the
network expects to see at the input given the current input
stimulation and given the input-output associations that the
network’s web of synapses has learned. B-BP incurs trivial
extra cost for training and yet fully exploits the probabilistic
information in the joint forward and backward likelihoods
(or joint posteriors) in the layered network. It resembles
Grossberg’s earlier and unsupervised ART or adaptive res-
onance theory [9], [10] in the bidirectional sense that the
network’s backward projections endow the network with a type
of attentive focus or expectation at the input layer [11], [12].

Figure 3 also reveals the hidden regressor in the backward
direction of every deep neural classifier. The network’s forward
direction maps an input pattern vector x to probability vector
rounded off to a unit bit vector at the output N (x). The K
output softmax neurons of the classifier give a forward-pass
likelihood p(y|x, ©) as a one-shot multinomial probability or a
single roll of an unfair K'-sided die. So the forward pass seeks
to minimize the negative log-likelihood or the cross-entropy.
But the backward pass through the transposes of the weight
matrices gives a value N7 (y) at the input layer of identity
neurons or data registers. These identity activations give the
backward likelihood p(x|y,®) as a vector normal (or vector
Laplacian) and thus the network seeks the input sample cen-
troid as it minimizes the input squared error at the input layer.
B-BP maximizes the joint likelihood p(y|x, ©)p(x|y,©) and
thus the joint log-likelihood log p(y|x, ©) +log p(x|y, ©) and



so minimizes the joint error of cross-entropy in the forward
direction and squared error in the backward direction.

The G-NoVa hidden networks still outperformed their ac-
tivation rivals when trained with B-BP. They also tended to
perform better in the bidirectional case than in the unidirec-
tional case. The classification results in Tables II - VII show
that the G-NoVa hidden neurons did best for both BP and B-BP
with more pronounced benefits for the larger image training
sets and deeper network architectures. Figures 4 - 6 show
image samples from the respective CIFAR-10, CIFAR-100,
and Caltech-256 image datasets. The singly perturbed NoVa
hidden networks were the runner-up to the G-NoVa networks.
The simple linear or identity activation a(z) = x also did
surprisingly well in these deeper network on the larger image
datasets. Figure 7 shows these results for unidirectional BP
training plotted against the number of hidden layers. Figure 7
shows the results for B-BP also plotted against the number of
hidden layers.

These classification results on the CIFAR-10, CIFAR-100,
and Caltech-256 image datasets suggest that neural engineers
should consider experimenting both with the new G-NoVa
hidden neuron and with the more general B-BP bidirectional
paradigm of supervised training. The experiments ran with
multilayer perceptron (MLP) classifiers.

II. OLD AND NEW ACTIVATION FUNCTIONS

This section reviews the main hidden activations in use as
well as the new NoVa and the even newer generalized or G-
NoVa activations. Simulations compared deep networks using
these activations on the image datasets CIFAR-10, CIFAR-100,
and Caltech-256 for both ordinary unidirectional backpropa-
gaiton and for the more general bidirectional backpropagation
training algorithm.

The term a;? denotes the activation of the 5 neuron in layer
h and 0? is the input to the neuron. The term ag-“ denotes the
corresponding derivative.

A. Logistic Sigmoid

The sigmoidal logistic activation acts as a smooth or soft
threshold. So it has served as a model neuron for decades [13],
[14]. The logistic endows a neural network with proven non-
linearity approximation power [15] and has a simple closed-
form derivative. But it suffers from the problem of vanishing
gradient [16] precisely because of the form of its derivative.

The logistic activation function involves a ratio of exponen-
tials. It describes two-hypothesis Bayesian classification as in
simple logistic regression (compared with the more general
softmax output neuron that describes multi-class Bayesian
classification or so-called multinomial regression) [17]. The
logistic has the ratio form
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So the derivative vanishes for extreme values or their machine-
word equivalents: aé“ =0ifoc=0o0roc=1.

Figures la and 2a show the respective activation and deriva-
tive for a logistic sigmoid neuron. The logistic activation is
smooth everywhere and indeed is a diffeomorphism. But in
practice it “dies” for extreme input values.

B. Leaky and Ordinary Rectified Linear Units

The leaky ReLU or LReLU activation modifies the
threshold-linear structure of the ordinary ReLU activation. It
uses the identity function a(x) = x on the positive domain
and scales the negative domain by ¢ > 0:
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The leaky ReL.U uses ¢ > 0 [18].

The leaky ReLU’s nonlinear approximation power is low
because this function is the identity function over the positive
domain and is scaled linear over its negative domain. The
derivative of the leaky ReLU is not defined at 05? = 0.
Figures 1b and 2b show the respective activation function and
derivative of a leaky ReLLU neuron.

Setting ¢ = 0 gives the non-leaky or ordinary rectified linear
unit or ReLLU. This threshold-linear unit truncates or rectifies
the negative domain by setting the function equal to zero
there [19]-[21]. The derivative of a ReLU activation equals
zero over the negative domain. Deep neural networks with
hidden ReLU neurons suffer from dying neurons [20], [22],
[23]. Figures 1c and 2c show the respective activation function
and derivative of a non-leaky ReLU neuron. ReLU activation
applies to tasks in speech recognition, computer vision, and
other areas [18].

C. Swish
The Swish activation is a scaled logistic [24]:
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Figures 1d and 2d show the respective activation and derivative
of a swish neuron.
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Fig. 1: Activation functions for multilayer neural networks: logistic sigmoid, leaky rectified linear unit (LReLU), threshold linear or non-leaky
ReLU, Swish, NoVa unit, and the new generalized nonvanishing (G-NoVa) unit.
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(f) Generalized Nonvanishing Logistic

Fig. 2: Derivatives of neural activation functions : logistic sigmoid, leaky rectified linear unit (LReLU), threshold linear or non-leaky ReLU,
swish, Nonvanishing (NoVa) logistic, and the new generalized nonvanishing (G-NoVa) logistic neuron.

D. Nonvanishing (NoVa) Unit
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turbed logistic sigmoid [1] with derivative that is never zero: N
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activation and derivative of a NoVa neuron.



BIDIRECTIONAL BACKPROPAGATION
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Fig. 3: Bidirectional Backpropagation learning. B-BP maximizes the joint log-likelihood of the forward network likelihood p(y|x, ©) and
the backward likelihood py(x|y, ®). The forward likelihood is a one-shot multinomial since the output neurons have softmax activations.
The backward layer in a classifier is vector normal since the input neurons have linear or identity activations and thus B-BP reveals a hidden
regressor in the backward direction. B-BP equivalently minimizes the negative of the summed log-likelihoods. So it minimizes the sum of
a cross-entropy and a squared error. Ordinary unidirectional backpropagation minimizes only the forward cross-entropy.

E. Generalized Nonvanishing (G-NoVa) Unit

The new G-NoVa activation function is an additively and
multiiplicatively perturbed logistic sigmoid:
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with ¢ > 0 and b > 0. G-NoVa simplifies to swish function
with ¢ = 0 and b > 0. It simplifies to a linear function with
c>0and b=0.

The vanishing gradient problem results if the value of all
or most of the neuronal derivatives fall within the range of
(—1,1) but G-NoVa is not susceptible to this. This is so
because the G-NoVa parameters ¢ and b control the derivatives
outside the fractional range of (—1, 1). This allows the product
of multiple derivatives (from the chain rule of BP algorithm)
not to tend towards zero and consequently avoid vanishing
gradient. Figure 2f shows the the derivative of some G-
NoVa units and for most of the positive input (z € RT)

the derivative a/(x) > 1. This reduces the tendency of the
derivative of deep networks to tend towards zero.

III. BIDIRECTIONAL BACKPROPAGATION

Bidirectional backpropagation (B-BP) extends unidirec-
tional BP by training both the forward and backward flow of
neural signals through a multilayer deep neural network [7],
[25].

Figure 3 shows that B-BP maximizes the network’s joint
log-likelihood (or log-posterior) log p(y|x, ©)+ log p(x|y, ©)
for network parameters ©. So it equivalently minimizes the
sum of the joint errors. These are the cross-entropy in the
forward direction since p(y|x,©) is a one-shot multinomial
in the forward direction and the squared-error in the back-
ward direction since a vector normal probability describes
the identity neurons at the input layer. Thus B-BP reveals a
hidden regressor in the backward direction of a classifier. This
allows the B-BP trained network to run backward and produce
a centroidal estimate at the input layer given the current
input pattern and given the input-output associations that the
network has learned. Running an ordinary BP-trained network
backward produces only visual noise at the input. B-BP
exploits this backward information at little extra computational
cost.

The backward pass uses the transpose matrices of the
weight matrices that the forward pass uses. The backward pass
N~(y) of output y € Y propagates the sample y from the
output layer to the input layer through the transpose matrices



that house the weights of the hidden layers [26]. N ~!(y)
approximates the inverse mapping f~!(y) = x if it exists
kosko2021bidirectional. The backward pass N7 through the
transposed weight matrices tends to map an output codeword
to the centroid of the inverse-image set {x : f(x) =y} [7].
This backward tug toward the inverse centroid acts as a type
of trained attentive focus inherent in the network’s training
from input-output associations [26].

B-BP training seeks to jointly maximize the forward like-
lihood p(y|x,©) and backward likelihood p(x|y,©). This
training algorithm finds the best weights ©* such that

p(xly, ©). (16)

0* = arg max p(y|x, ©)
Equation (16) simplifies to maximizing the sum of log-
likelihoods because the logarithm is a monotone increasing
function. So we can rewrite B-BP as maximizing the sum of
the log-likelihoods:
0F = arg max log p(y|x,©) + log p(x]y,O) . 17)
Then ©F lies between the maxima of the forward and back-
ward log-likelihoods since the logarithm is strictly concave
[26]. The negative log-likelihood equals the error function
for a classification network or a regression network [4], [17],
[27], [28]. So we can restate the goal of B-BP as solving the
minimization problem
0" = argm@in Ef+ B, (18)
because log p(y|x,©) = —E and because log p(x|y,©O) =
—Ej,. The forward error Ey measures the approximation error
between the output vector y and N (x) for a given input-output
pair (x,y). Classifiers use cross entropy in the case softmax
output activation [17], [29] or double cross entropy in the case
of logistic output activation [30], [31]. The backward error
L}, measures the approximation error between input vector x
and its backward inference N7 (y) for a given input-output
pair (x,y). It is again squared-error or absolute error for a
regression mapping. It can be double cross-entropy at the input
layer for a threshold network with steep logistics at the input
layer instead of identity neurons [12].

B-BP also extends to Bayesian B-BP for maximizing the
joint log-posterior [8]. Then the user specifies a prior for any
of the network parameters such as the first set of weights that
map the input neurons to the first hidden layer. This paper used
only joint-likelihood B-BP and so it impliedly used uniform
priors.

TABLE I: Experimental Dataset

Dataset Training Set | Testing Set | Number of Classes
CIFAR-10 50,000 10,000 10
CIFAR-100 50,000 10,000 100
Caltech-256 23,824 5,956 256

IV. SIMULATION RESULTS
A. Datasets

The simulated deep classifiers used three image datasets.
The first was the CIFAR-10 dataset and the second dataset is
the CIFAR-100. The third was the Caltech-256 image dataset.
Table I shows the sample distributions of these image datasets

1) CIFAR-10: The CIFAR-10 test set consists of 60,000
color images from 10 categories (K = 10). Each image has
size 32 x 32 x 3. The 10 pattern categories are airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck
[32]. Each class consists of 5,000 training samples and 1,000
testing samples. Figure 4 shows sample images with one image

per class.

Fig. 4: CIFAR-10 sample images: The figure shows 10 samples

from the CIFAR-10 dataset that contains 10 pattern classes and a
total of 60,000 sample images.

2) CIFAR-100: CIFAR-100 dataset is a set of 60,000 color
images with image size 32 x 32 x 3. The images are from
100 pattern classes with 600 images per class. This extends
the CIFAR-10 dataset. Each of the 10 categories of CIFAR-
10 further divides into 10 classes. Each class is made up of
500 training images and 100 testing images. Figure 5 shows
sample images with one image per class.

3) Caltech-256: This dataset has 30,607 images from
256 pattern classes. Each class has 80 or more images.
The 256 classes consist of the two superclasses animate
and inanimate. The animate superclass contains 69 pattern
classes. The inanimate superclass contains 187 pattern classes
[33].

We removed the cluttered images and reduced the size
of the dataset to 29,780 images. We split the dataset into
23,824 training images and 5,956 test images. The images had
different dimensions. We resized each image to 100 x 100 x
3. Figure 6 shows sample images with one image per class.

B. Network Description and Training Parameters

The deep neural classifiers trained on CIFAR-10, CIFAR-
100, and Caltech-256 with ordinary and bidirectional back-
propagation.

Each classifier network used 500 neurons per hidden layer
and used softmax output activations. We varied the size of
the hidden layers and the type of hidden activation. The
depth or number of hidden layers varied as the values in
{1,3,5,7,...,21}. The competing hidden activations were
logistic, linear, ReLU, leaky ReLU, Swish, NoVa unit, and
G-NoVa unit.
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Fig. 5: CIFAR-100 sample images: This figure shows 100 samples
from the CIFAR-100 dataset that contains 100 pattern classes with
600 images per class. CIFAR-100 consists of 20 super-classes with
5 classes per super-class.
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Fig. 6: Caltech-256 sample images: This figure shows 256 samples
from the Caltech-256 dataset made up of 256 pattern classes.

Unidirectional BP minimized the cross entropy at the output
layer of softmax neurons. B-BP used the same activations
and error function at the output layer. But it minimized the
squared-error in the backward direction because the terminal
input neurons have identity activations and so define a back-
ward regressor. The neural classifiers trained over 100 epochs
with stochastic gradient descent with learning rate o = 0.001
and batch size B = 64.
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Fig. 7: Benefit of hidden G-NoVa neurons in deep neural classifiers
using unidirectional or ordinary BP: The models trained over 100
epochs with 500 neurons per hidden layer. The G-NoVa activation
a(z) = ¢ x + zo(b z) with ¢ = 0.5 and b = 1.0 outperformed
other activation functions where o denotes logistic sigmoid. The
comparative benefit of using hidden G-NoVa neurons increased as
the depth of the neural classifiers increased.

C. Results and Discussion

Figure 7 shows the classification-accuracy curves from
simulations on the three datasets CIFAR-10, CIFAR-100,
and Caltech-256. The neural classifiers trained with ordinary
unidirectional BP. The models that used G-NoVa significantly
outperformed leaky ReLU and other activations.

The benefit of G-NoVa grew as the depth of the network
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Fig. 8: Benefit of hidden G-NoVa neurons in deep neural classifiers
using bidirectional BP: The models trained over 100 epochs using 500
neurons per hidden layer. G-NoVa activation a(z) = ¢ 4+ zo(b x)
with ¢ = 0.5 and b = 1.0 outperformed other activation functions
where o denotes logistic sigmoid. The comparative benefit of using
hidden G-NoVa neurons increased as the depth of the neural classifies
increased.

increased. The consistent performance of G-NoVa is similar
to what we noticed with the linear activation. The G-NoVa
benefit tended to increase with big-/K dataset images such as
CIFAR-100 and Caltech-256 with respective K = 100 and
K = 256. Tables II-IV show the same winning trend for G-
NoVa networks.

Figure 8 shows the classification-accuracy curves from sim-

TABLE II: Classification accuracy: Training deep neural classifiers
with unidirectional BP algorithm on CIFAR-10 image dataset

Hidden Activation | 3 Layers | 11 Layers | 21 Layers
Sigmoid 41.11% 10.00% 10.00%
Linear 35.24% 34.57% 34.87%
ReLU 50.36% 46.82% 26.74%
Leaky ReLU 49.61% 47.88% 29.22%
Swish 48.54% 17.04% 10.00%
NoVa 48.08% 48.16% 46.05%
G-NoVa 51.80% 52.59% 51.55%

TABLE III: Classification accuracy: Training deep neural classifiers
with unidirectional BP algorithm on CIFAR-100 image dataset

Hidden Activation | 3 Layers | 11 Layers | 21 Layers
Sigmoid 11.46% 1.00% 1.00%
Linear 14.25% 13.86% 14.07%
ReLU 20.60% 12.19% 2.00%
Leaky ReLU 20.29% 15.82% 1.75%
Swish 21.01% 2.36% 1.00%
NoVa 19.60% 19.86% 18.25%
G-NoVa 24.86 % 25.93% 24.41%

TABLE IV: Classification accuracy: Training deep neural classifiers
with unidirectional BP algorithm on Caltech-256 image dataset

Hidden Activation | 3 Layers | 11 Layers | 21 Layers
Sigmoid 8.46% 2.72% 2.72%
Linear 12.59% 12.29% 11.85%
ReLU 15.98% 11.82% 7.22%
Leaky ReLU 16.17% 15.68% 12.73%
Swish 16.32% 15.78% 12.53%
NoVa 14.71% 15.14% 13.62%
G-NoVa 17.33% 17.90% 16.75%

TABLE V: Classification accuracy: Training deep neural classifiers
with bidirectional BP algorithm on CIFAR-10 image dataset

Hidden Activation | 3 Layers | 11 Layers | 21 Layers
Sigmoid 33.81% 10.00% 10.00%
Linear 42.09% 41.96% 41.96%
ReLU 57.67% 54.71% 34.89%
Leaky ReLU 57.52% 56.99% 38.83%
Swish 55.30% 27.54% 10.00%
NoVa 55.63% 58.91% 53.38%
G-NoVa 57.79% 58.91% 57.59%

ulations on the three datasets using B-BP training algorithm.
G-NoVa also outperformed other hidden activation functions.
The models that used G-NoVa significantly outperformed
leaky ReLU and other activations. G-NoVa benefit grows as
the number of hidden layers increases. The G-NoVa benefit
also tended to increase with big-K dataset images such as
CIFAR-100 and Caltech-256 with respectivepattern numbers
K =100 and K = 256. Tables V-VII show the same trend.



TABLE VI: Classification accuracy: Training deep neural classifiers
with bidirectional BP algorithm on CIFAR-100 image dataset

Hidden Activation | 3 Layers | 11 Layers | 21 Layers
Sigmoid 6.31% 1.00% 1.00%
Linear 19.37% 18.97% 17.99%
ReLU 27.06% 17.07% 2.17%
Leaky ReLU 26.90% 22.07% 3.13%
Swish 26.13% 1.00% 1.00%
NoVa 25.01% 25.48% 18.21%
G-NoVa 29.08 % 31.46 % 28.69 %

TABLE VII: Classification accuracy: Training deep neural classi-
fiers with bidirectional BP algorithm on Caltech-256 image dataset

Hidden Activation | 3 Layers | 11 Layers | 21 Layers
Sigmoid 8.38% 2.72% 2.72%
Linear 16.62% 15.26% 13.70%
ReLU 20.63% 13.80% 6.09%
Leaky ReLU 20.53% 17.53% 6.98%
Swish 19.98% 8.68% 2.72%
NoVa 18.23% 19.51% 14.74%
G-NoVa 23.81% 24.17 % 21.21%

V. CONCLUSIONS

The new generalized nonvanishing (G-NoVa) hidden activa-
tion is a generalized perturbed logistic sigmoid whose deriva-
tive does not vanish. Simulations showed that it outperformed
the simpler NoVa hidden neuron as well as the popular ReLU
activation and its main variants. This comparative benefit in
classification accuracy was most pronounced in the deepest
networks. It held for both ordinary unidirectional and the
newer bidirectional forms of backpropagation training. Future
work will focus on testing G-NoVa hidden neurons on large
datasets and convolutional models.
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