
Deeper Bidirectional Neural Networks with
Generalized Non-Vanishing Hidden Neurons

Olaoluwa Adigun
Signal and Image Processing Institute

Department of Electrical and Computer Engineering
Los Angeles, California 90089-2564.

adigun@usc.edu

Bart Kosko
Signal and Image Processing Institute

Department of Electrical and Computer Engineering
Los Angeles, California 90089-2564.

kosko@usc.edu

Abstract—The new NoVa hidden neurons have outperformed
ReLU hidden neurons in deep classifiers on some large image
test sets. The NoVa or nonvanishing logistic neuron additively
perturbs the sigmoidal activation function so that its derivative
is not zero. This helps avoid or delay the problem of vanishing
gradients. We here extend the NoVa to the generalized perturbed
logistic neuron and compare it to ReLU and several other hidden
neurons on large image test sets that include CIFAR-100 and
Caltech-256. Generalized NoVa classifiers allow deeper networks
with better classification on the large datasets. This deep benefit
holds for ordinary unidirectional backpropagation. It also holds
for the more efficient bidirectional backpropagation that trains
in both the forward and backward directions.

Index Terms—Bidirectional backpropagation, Logistic, ReLU,
NoVa hidden neurons, vanishing gradient.

I. BETTER HIDDEN ACTIVATIONS FOR DEEPER LEARNING

We propose the new generalized nonvanishing or G-NoVa

activation for hidden neurons in deep neural classifiers. Sim-

ulations show that it outperforms its main hidden-activation

rivals on very deep multilayer perceptron neural classifiers on

three image datasets. The comparative benefits of the G-NoVa

neurons were most pronounced for the deepest classifiers.

Figures 1 and 2 show the graphs of the activation contenders

and their first derivatives: logistic, linear (identity), ReLU,

leaky ReLU, Swish, NoVa, and G-NoVa activations. The next

section gives their mathematical definitions.

The G-NoVa neuron is a type of perturbed logistic activa-

tion. The recent nonvanishing or NoVa neuron is an additively

perturbed logistic whose derivative does not vanish [1]. So

the NoVa neuron avoids the vanishing gradient problem that

so quickly overtakes logistic hidden neurons in deep neural

networks.

The new G-NoVa neuron is more general than the NoVa

neuron because it combines both an additive and a multiplica-

tive perturbation with the traditional logistic sigmoid. This

leads to superior classifier performance on the large image

datasets that we tested. It also suggests that the decades-old

logistic model neuron may be more biologically plausible be-

cause any such real neuron would involve noise perturbations

that are both additive and multiplicative [2], [3].

We specifically found that the G-NoVa outperformed the

popular ReLU or rectified linear unit hidden activation and

its leaky variant. The ReLU neuron has become the default

hidden neuron for modern deep neural classifiers [4]. It is a

threshold linear neuron and dates back to at least Fukushima’s

experiments with multilayer networks or neocognitrons [5], [6]

We further found that G-NoVa deep networks outperformed

its activation rivals for the more general case of training

with bidirectional backpropagation [7], [8]. Figure 3 shows

the forward and backward probability flow in bidirectional

backpropagation (B-BP).

Ordinary backpropagation is unidirectional despite its name.

It ignores the rich associative and probabilistic information that

the multilayer network contains in its backward direction as

it trains on input-output associations. That is why running an

ordinary BP-trained network backwards from unit-bit-vector

class labels to input pixels or data registers produces only

visual noise at the input layer. Bidirectional BP or B-BP tends

to produce a centroidal estimate at the input layer of what the

network expects to see at the input given the current input

stimulation and given the input-output associations that the

network’s web of synapses has learned. B-BP incurs trivial

extra cost for training and yet fully exploits the probabilistic

information in the joint forward and backward likelihoods

(or joint posteriors) in the layered network. It resembles

Grossberg’s earlier and unsupervised ART or adaptive res-

onance theory [9], [10] in the bidirectional sense that the

network’s backward projections endow the network with a type

of attentive focus or expectation at the input layer [11], [12].

Figure 3 also reveals the hidden regressor in the backward

direction of every deep neural classifier. The network’s forward

direction maps an input pattern vector x to probability vector

rounded off to a unit bit vector at the output N(x). The K
output softmax neurons of the classifier give a forward-pass

likelihood p(y|x,Θ) as a one-shot multinomial probability or a

single roll of an unfair K-sided die. So the forward pass seeks

to minimize the negative log-likelihood or the cross-entropy.

But the backward pass through the transposes of the weight

matrices gives a value NT (y) at the input layer of identity

neurons or data registers. These identity activations give the

backward likelihood p(x|y,Θ) as a vector normal (or vector

Laplacian) and thus the network seeks the input sample cen-

troid as it minimizes the input squared error at the input layer.

B-BP maximizes the joint likelihood p(y|x,Θ)p(x|y,Θ) and

thus the joint log-likelihood log p(y|x,Θ)+log p(x|y,Θ) and

so minimizes the joint error of cross-entropy in the forward

direction and squared error in the backward direction.

The G-NoVa hidden networks still outperformed their ac-

tivation rivals when trained with B-BP. They also tended to

perform better in the bidirectional case than in the unidirec-

tional case. The classification results in Tables II - VII show

that the G-NoVa hidden neurons did best for both BP and B-BP

with more pronounced benefits for the larger image training

sets and deeper network architectures. Figures 4 - 6 show

image samples from the respective CIFAR-10, CIFAR-100,

and Caltech-256 image datasets. The singly perturbed NoVa

hidden networks were the runner-up to the G-NoVa networks.

The simple linear or identity activation a(x) = x also did

surprisingly well in these deeper network on the larger image

datasets. Figure 7 shows these results for unidirectional BP

training plotted against the number of hidden layers. Figure 7

shows the results for B-BP also plotted against the number of

hidden layers.

These classification results on the CIFAR-10, CIFAR-100,

and Caltech-256 image datasets suggest that neural engineers

should consider experimenting both with the new G-NoVa

hidden neuron and with the more general B-BP bidirectional

paradigm of supervised training. The experiments ran with

multilayer perceptron (MLP) classifiers.

II. OLD AND NEW ACTIVATION FUNCTIONS

This section reviews the main hidden activations in use as

well as the new NoVa and the even newer generalized or G-

NoVa activations. Simulations compared deep networks using

these activations on the image datasets CIFAR-10, CIFAR-100,

and Caltech-256 for both ordinary unidirectional backpropa-

gaiton and for the more general bidirectional backpropagation

training algorithm.

The term ahj denotes the activation of the jth neuron in layer

h and ohj is the input to the neuron. The term ahj
′ denotes the

corresponding derivative.

A. Logistic Sigmoid

The sigmoidal logistic activation acts as a smooth or soft

threshold. So it has served as a model neuron for decades [13],

[14]. The logistic endows a neural network with proven non-

linearity approximation power [15] and has a simple closed-

form derivative. But it suffers from the problem of vanishing

gradient [16] precisely because of the form of its derivative.

The logistic activation function involves a ratio of exponen-

tials. It describes two-hypothesis Bayesian classification as in

simple logistic regression (compared with the more general

softmax output neuron that describes multi-class Bayesian

classification or so-called multinomial regression) [17]. The

logistic has the ratio form

ahj = σ(c ohj) =
1

1 + exp−c ohj
(1)

with derivative

ahj
′ =

dahj
dohj

= c σ(c ohj)(1− σ(c ohj)) (2)

=
c exp−c ohj(

1 + exp−c ohj
)2 . (3)

So the derivative vanishes for extreme values or their machine-

word equivalents: ahj
′ = 0 if σ = 0 or σ = 1.

Figures 1a and 2a show the respective activation and deriva-

tive for a logistic sigmoid neuron. The logistic activation is

smooth everywhere and indeed is a diffeomorphism. But in

practice it “dies” for extreme input values.

B. Leaky and Ordinary Rectified Linear Units

The leaky ReLU or LReLU activation modifies the

threshold-linear structure of the ordinary ReLU activation. It

uses the identity function a(x) = x on the positive domain

and scales the negative domain by c ≥ 0:

ahj = LReLU(ohj) =

{
c ohj , ohj ≤ 0

ohj , ohj > 0
(4)

with derivative

ahj
′ =

dahj
dohj

=

{
c, ohj < 0

1, ohj > 0
. (5)

The leaky ReLU uses c > 0 [18].

The leaky ReLU’s nonlinear approximation power is low

because this function is the identity function over the positive

domain and is scaled linear over its negative domain. The

derivative of the leaky ReLU is not defined at ohj = 0.

Figures 1b and 2b show the respective activation function and

derivative of a leaky ReLU neuron.

Setting c = 0 gives the non-leaky or ordinary rectified linear

unit or ReLU. This threshold-linear unit truncates or rectifies

the negative domain by setting the function equal to zero

there [19]–[21]. The derivative of a ReLU activation equals

zero over the negative domain. Deep neural networks with

hidden ReLU neurons suffer from dying neurons [20], [22],

[23]. Figures 1c and 2c show the respective activation function

and derivative of a non-leaky ReLU neuron. ReLU activation

applies to tasks in speech recognition, computer vision, and

other areas [18].

C. Swish

The Swish activation is a scaled logistic [24]:

ahj = ohj σ(b ohj) =
ohj

1 + exp−(b ohj)
(6)

and the corresponding derivative is

ahj
′ = σ(b ohj)

(
1 + (b ohj)(1− σ(b ohj))

)
(7)

=
1 + exp−(b ohj)

(
1 + (b ohj)

)
(
1 + exp−(b ohj)

)2 . (8)

Figures 1d and 2d show the respective activation and derivative

of a swish neuron.

−6 −4 −2 0 2 4 6
x

0.0

0.2

0.4

0.6

0.8

1.0
a
(x
)

c = 0.5

c = 1.0

c = 2.0

(a) Logistic Sigmoid

−6 −4 −2 0 2 4 6
x

−2

0

2

4

6

a
(x
)

c = 0.2

c = 0.5

(b) Leaky Rectified Linear Unit

−6 −4 −2 0 2 4 6
x

0

2

4

6

a
(x
)

(c) Rectified Linear Unit (ReLU)

−6 −4 −2 0 2 4 6
x

0

2

4

6

8

10

a
(x
)

b = 0.5

b = 1.0

b = 1.5

(d) Swish

−3 −2 −1 0 1 2 3
x

−2

0

2

a
(x
)

c = 1.0, b = 5.0

c = 0.1, b = 3.0

c = 0.5, b = 3.0

(e) Nonvanishing (NoVa) units

−6 −4 −2 0 2 4 6
x

−3

0

3

6

9

a
(x
)

c = 0.1, b = 1.0

c = 0.3, b = 1.0

c = 0.5, b = 2.0

(f) Generalized Nonvanishing Logistic

Fig. 1: Activation functions for multilayer neural networks: logistic sigmoid, leaky rectified linear unit (LReLU), threshold linear or non-leaky
ReLU, Swish, NoVa unit, and the new generalized nonvanishing (G-NoVa) unit.

−6 −4 −2 0 2 4 6
x

0.0

0.2

0.4

0.6

a
′ (x

)

c = 0.5

c = 1.0

c = 2.0

(a) Logistic Sigmoid

−6 −4 −2 0 2 4 6
x

0.2

0.4

0.6

0.8

1.0

a
′ (x

)

c = 0.2

c = 0.5

(b) Leaky Rectified Linear Unit

−6 −4 −2 0 2 4 6
x

0.0

0.2

0.4

0.6

0.8

1.0

a
′ (
x
)

(c) Rectified Linear Unit

−6 −4 −2 0 2 4 6
x

0.0

0.4

0.8

1.2

1.6

a
′ (x

)

b = 0.5

b = 1.0

b = 1.5

(d) Swish

−3 −2 −1 0 1 2 3
x

1

2

3

4

a
′ (x

)

c = 1.0, b = 5.0

c = 0.1, b = 3.0

c = 0.5, b = 3.0

(e) Nonvanishing Logistic

−6 −4 −2 0 2 4 6
x

0.0

0.6

1.2

1.8

2.4

a
′ (x

)

c = 0.1, b = 1.0

c = 0.3, b = 1.0

c = 0.5, b = 2.0

(f) Generalized Nonvanishing Logistic

Fig. 2: Derivatives of neural activation functions : logistic sigmoid, leaky rectified linear unit (LReLU), threshold linear or non-leaky ReLU,
swish, Nonvanishing (NoVa) logistic, and the new generalized nonvanishing (G-NoVa) logistic neuron.

D. Nonvanishing (NoVa) Unit

Th recent NoVa activation function is an additively per-

turbed logistic sigmoid [1] with derivative that is never zero:

ahj = c ohj + σ(b ohj) =
1 + c ohj (1 + exp−b (ohj))

1 + exp−(b ohj)
(9)

with derivative

ahj
′ =

dahj
dohj

= c+ σ(b ohj)
(
1− σ(b ohj)

)
(10)

= c+
b exp−(b ohj)(

1 + exp−(b ohj)
)2 (11)

where c ≥ 0 and b ≥ 0. Figures 1e and 2e show the respective

activation and derivative of a NoVa neuron.

Forward Pass

Backward Pass

Input layer Output layer

Backward likelihood Forward likelihood

BIDIRECTIONAL BACKPROPAGATION

Fig. 3: Bidirectional Backpropagation learning. B-BP maximizes the joint log-likelihood of the forward network likelihood pf (y|x,Θ) and
the backward likelihood pb(x|y,Θ). The forward likelihood is a one-shot multinomial since the output neurons have softmax activations.
The backward layer in a classifier is vector normal since the input neurons have linear or identity activations and thus B-BP reveals a hidden
regressor in the backward direction. B-BP equivalently minimizes the negative of the summed log-likelihoods. So it minimizes the sum of
a cross-entropy and a squared error. Ordinary unidirectional backpropagation minimizes only the forward cross-entropy.

E. Generalized Nonvanishing (G-NoVa) Unit

The new G-NoVa activation function is an additively and
multiiplicatively perturbed logistic sigmoid:

ahj = c ohj + ohj σ(b ohj) (12)

=
c ohj (1 + ohj + exp−(b ohj))

1 + exp−(b ohj)
(13)

with derivative

ahj
′ =

dahj
dohj

= c+ σ(b ohj)
(
1 + b ohj (1− σ(b ohj))

)
(14)

= c+
1 + exp−(b ohj)

(
1 + (b ohj)

)
(
1 + exp−(b ohj)

)2 (15)

with c ≥ 0 and b ≥ 0. G-NoVa simplifies to swish function

with c = 0 and b > 0. It simplifies to a linear function with

c ≥ 0 and b = 0.

The vanishing gradient problem results if the value of all

or most of the neuronal derivatives fall within the range of

(−1, 1) but G-NoVa is not susceptible to this. This is so

because the G-NoVa parameters c and b control the derivatives

outside the fractional range of (−1, 1). This allows the product

of multiple derivatives (from the chain rule of BP algorithm)

not to tend towards zero and consequently avoid vanishing

gradient. Figure 2f shows the the derivative of some G-

NoVa units and for most of the positive input (x ∈ R
+)

the derivative a′(x) ≥ 1. This reduces the tendency of the

derivative of deep networks to tend towards zero.

III. BIDIRECTIONAL BACKPROPAGATION

Bidirectional backpropagation (B-BP) extends unidirec-

tional BP by training both the forward and backward flow of

neural signals through a multilayer deep neural network [7],

[25].

Figure 3 shows that B-BP maximizes the network’s joint

log-likelihood (or log-posterior) log p(y|x,Θ)+ log p(x|y,Θ)
for network parameters Θ. So it equivalently minimizes the

sum of the joint errors. These are the cross-entropy in the

forward direction since p(y|x,Θ) is a one-shot multinomial

in the forward direction and the squared-error in the back-

ward direction since a vector normal probability describes

the identity neurons at the input layer. Thus B-BP reveals a

hidden regressor in the backward direction of a classifier. This

allows the B-BP trained network to run backward and produce

a centroidal estimate at the input layer given the current

input pattern and given the input-output associations that the

network has learned. Running an ordinary BP-trained network

backward produces only visual noise at the input. B-BP

exploits this backward information at little extra computational

cost.

The backward pass uses the transpose matrices of the

weight matrices that the forward pass uses. The backward pass

N−1(y) of output y ∈ Y propagates the sample y from the

output layer to the input layer through the transpose matrices

that house the weights of the hidden layers [26]. N−1(y)
approximates the inverse mapping f−1(y) = x if it exists

kosko2021bidirectional. The backward pass N T through the

transposed weight matrices tends to map an output codeword

to the centroid of the inverse-image set {x : f(x) = y} [7].

This backward tug toward the inverse centroid acts as a type

of trained attentive focus inherent in the network’s training

from input-output associations [26].

B-BP training seeks to jointly maximize the forward like-

lihood p(y|x,Θ) and backward likelihood p(x|y,Θ). This

training algorithm finds the best weights Θ∗ such that

Θ∗ = argmax
Θ

p(y|x,Θ) p(x|y,Θ). (16)

Equation (16) simplifies to maximizing the sum of log-

likelihoods because the logarithm is a monotone increasing

function. So we can rewrite B-BP as maximizing the sum of

the log-likelihoods:

Θ∗ = argmax
Θ

log p(y|x,Θ) + log p(x|y,Θ) . (17)

Then Θ∗ lies between the maxima of the forward and back-

ward log-likelihoods since the logarithm is strictly concave

[26]. The negative log-likelihood equals the error function

for a classification network or a regression network [4], [17],

[27], [28]. So we can restate the goal of B-BP as solving the

minimization problem

Θ∗ = argmin
Θ

Ef + Eb (18)

because log p(y|x,Θ) = −Ef and because log p(x|y,Θ) =
−Eb. The forward error Ef measures the approximation error

between the output vector y and N (x) for a given input-output

pair (x,y). Classifiers use cross entropy in the case softmax

output activation [17], [29] or double cross entropy in the case

of logistic output activation [30], [31]. The backward error

Eb measures the approximation error between input vector x
and its backward inference N T (y) for a given input-output

pair (x,y). It is again squared-error or absolute error for a

regression mapping. It can be double cross-entropy at the input

layer for a threshold network with steep logistics at the input

layer instead of identity neurons [12].

B-BP also extends to Bayesian B-BP for maximizing the

joint log-posterior [8]. Then the user specifies a prior for any

of the network parameters such as the first set of weights that

map the input neurons to the first hidden layer. This paper used

only joint-likelihood B-BP and so it impliedly used uniform

priors.

TABLE I: Experimental Dataset

Dataset Training Set Testing Set Number of Classes

CIFAR-10 50,000 10,000 10
CIFAR-100 50,000 10,000 100
Caltech-256 23,824 5,956 256

IV. SIMULATION RESULTS

A. Datasets

The simulated deep classifiers used three image datasets.

The first was the CIFAR-10 dataset and the second dataset is

the CIFAR-100. The third was the Caltech-256 image dataset.

Table I shows the sample distributions of these image datasets

1) CIFAR-10: The CIFAR-10 test set consists of 60,000

color images from 10 categories (K = 10). Each image has

size 32 × 32 × 3. The 10 pattern categories are airplane,

automobile, bird, cat, deer, dog, frog, horse, ship, and truck

[32]. Each class consists of 5,000 training samples and 1,000

testing samples. Figure 4 shows sample images with one image

per class.

Fig. 4: CIFAR-10 sample images: The figure shows 10 samples
from the CIFAR-10 dataset that contains 10 pattern classes and a
total of 60,000 sample images.

2) CIFAR-100: CIFAR-100 dataset is a set of 60,000 color

images with image size 32 × 32 × 3. The images are from

100 pattern classes with 600 images per class. This extends

the CIFAR-10 dataset. Each of the 10 categories of CIFAR-

10 further divides into 10 classes. Each class is made up of

500 training images and 100 testing images. Figure 5 shows

sample images with one image per class.

3) Caltech-256: This dataset has 30,607 images from

256 pattern classes. Each class has 80 or more images.

The 256 classes consist of the two superclasses animate
and inanimate. The animate superclass contains 69 pattern

classes. The inanimate superclass contains 187 pattern classes

[33].

We removed the cluttered images and reduced the size

of the dataset to 29,780 images. We split the dataset into

23,824 training images and 5,956 test images. The images had

different dimensions. We resized each image to 100 × 100 ×
3. Figure 6 shows sample images with one image per class.

B. Network Description and Training Parameters

The deep neural classifiers trained on CIFAR-10, CIFAR-

100, and Caltech-256 with ordinary and bidirectional back-

propagation.

Each classifier network used 500 neurons per hidden layer

and used softmax output activations. We varied the size of

the hidden layers and the type of hidden activation. The

depth or number of hidden layers varied as the values in

{1, 3, 5, 7, ..., 21}. The competing hidden activations were

logistic, linear, ReLU, leaky ReLU, Swish, NoVa unit, and

G-NoVa unit.

Fig. 5: CIFAR-100 sample images: This figure shows 100 samples
from the CIFAR-100 dataset that contains 100 pattern classes with
600 images per class. CIFAR-100 consists of 20 super-classes with
5 classes per super-class.

Fig. 6: Caltech-256 sample images: This figure shows 256 samples
from the Caltech-256 dataset made up of 256 pattern classes.

Unidirectional BP minimized the cross entropy at the output

layer of softmax neurons. B-BP used the same activations

and error function at the output layer. But it minimized the

squared-error in the backward direction because the terminal

input neurons have identity activations and so define a back-

ward regressor. The neural classifiers trained over 100 epochs

with stochastic gradient descent with learning rate α = 0.001
and batch size B = 64.

1 5 9 13 17 21
Number of hidden layers

0

10

20

30

40

50

60

C
la
ss
ifi
ca
ti
on

ac
cu
ra
cy

Logistic

Linear

ReLU

L-ReLU

Swish

NoVa

G-NoVa

(a) CIFAR-10 Dataset

1 5 9 13 17 21
Number of hidden layers

0

5

10

15

20

25

C
la
ss
ifi
ca
ti
on

ac
cu
ra
cy

Logistic

Linear

ReLU

L-ReLU

Swish

NoVa

G-NoVa

(b) CIFAR-100 Dataset

1 5 9 13 17 21
Number of hidden layers

0

5

10

15

20

C
la
ss
ifi
ca
ti
on

ac
cu
ra
cy

Logistic

Linear

ReLU

L-ReLU

Swish

NoVa

G-NoVa

(c) Caltech-256 Dataset

Fig. 7: Benefit of hidden G-NoVa neurons in deep neural classifiers
using unidirectional or ordinary BP: The models trained over 100
epochs with 500 neurons per hidden layer. The G-NoVa activation
a(x) = c x + xσ(b x) with c = 0.5 and b = 1.0 outperformed
other activation functions where σ denotes logistic sigmoid. The
comparative benefit of using hidden G-NoVa neurons increased as
the depth of the neural classifiers increased.

C. Results and Discussion

Figure 7 shows the classification-accuracy curves from

simulations on the three datasets CIFAR-10, CIFAR-100,

and Caltech-256. The neural classifiers trained with ordinary

unidirectional BP. The models that used G-NoVa significantly

outperformed leaky ReLU and other activations.

The benefit of G-NoVa grew as the depth of the network

1 5 9 13 17 21
Number of hidden layers

0

10

20

30

40

50

60
C
la
ss
ifi
ca
ti
on

ac
cu
ra
cy

Logistic

Linear

ReLU

L-ReLU

Swish

NoVa

G-NoVa

(a) CIFAR-10 Dataset

1 5 9 13 17 21
Number of hidden layers

0

5

10

15

20

25

30

C
la
ss
ifi
ca
ti
on

ac
cu
ra
cy

Logistic

Linear

ReLU

L-ReLU

Swish

NoVa

G-NoVa

(b) CIFAR-100 Dataset

1 5 9 13 17 21
Number of hidden layers

0

5

10

15

20

25

C
la
ss
ifi
ca
ti
on

ac
cu
ra
cy

Logistic

Linear

ReLU

L-ReLU

Swish

NoVa

G-NoVa

(c) Caltech-256 Dataset

Fig. 8: Benefit of hidden G-NoVa neurons in deep neural classifiers
using bidirectional BP: The models trained over 100 epochs using 500
neurons per hidden layer. G-NoVa activation a(x) = c x+ xσ(b x)
with c = 0.5 and b = 1.0 outperformed other activation functions
where σ denotes logistic sigmoid. The comparative benefit of using
hidden G-NoVa neurons increased as the depth of the neural classifies
increased.

increased. The consistent performance of G-NoVa is similar

to what we noticed with the linear activation. The G-NoVa

benefit tended to increase with big-K dataset images such as

CIFAR-100 and Caltech-256 with respective K = 100 and

K = 256. Tables II-IV show the same winning trend for G-

NoVa networks.

Figure 8 shows the classification-accuracy curves from sim-

TABLE II: Classification accuracy: Training deep neural classifiers
with unidirectional BP algorithm on CIFAR-10 image dataset

Hidden Activation 3 Layers 11 Layers 21 Layers

Sigmoid 41.11% 10.00% 10.00%
Linear 35.24% 34.57% 34.87%
ReLU 50.36% 46.82% 26.74%
Leaky ReLU 49.61% 47.88% 29.22%
Swish 48.54% 17.04% 10.00%
NoVa 48.08% 48.16% 46.05%
G-NoVa 51.80% 52.59% 51.55%

TABLE III: Classification accuracy: Training deep neural classifiers
with unidirectional BP algorithm on CIFAR-100 image dataset

Hidden Activation 3 Layers 11 Layers 21 Layers

Sigmoid 11.46% 1.00% 1.00%
Linear 14.25% 13.86% 14.07%
ReLU 20.60% 12.19% 2.00%
Leaky ReLU 20.29% 15.82% 1.75%
Swish 21.01% 2.36% 1.00%
NoVa 19.60% 19.86% 18.25%
G-NoVa 24.86% 25.93% 24.41%

TABLE IV: Classification accuracy: Training deep neural classifiers
with unidirectional BP algorithm on Caltech-256 image dataset

Hidden Activation 3 Layers 11 Layers 21 Layers

Sigmoid 8.46% 2.72% 2.72%
Linear 12.59% 12.29% 11.85%
ReLU 15.98% 11.82% 7.22%
Leaky ReLU 16.17% 15.68% 12.73%
Swish 16.32% 15.78% 12.53%
NoVa 14.71% 15.14% 13.62%
G-NoVa 17.33% 17.90% 16.75%

TABLE V: Classification accuracy: Training deep neural classifiers
with bidirectional BP algorithm on CIFAR-10 image dataset

Hidden Activation 3 Layers 11 Layers 21 Layers

Sigmoid 33.81% 10.00% 10.00%
Linear 42.09% 41.96% 41.96%
ReLU 57.67% 54.71% 34.89%
Leaky ReLU 57.52% 56.99% 38.83%
Swish 55.30% 27.54% 10.00%
NoVa 55.63% 58.91% 53.38%
G-NoVa 57.79% 58.91% 57.59%

ulations on the three datasets using B-BP training algorithm.

G-NoVa also outperformed other hidden activation functions.

The models that used G-NoVa significantly outperformed

leaky ReLU and other activations. G-NoVa benefit grows as

the number of hidden layers increases. The G-NoVa benefit

also tended to increase with big-K dataset images such as

CIFAR-100 and Caltech-256 with respectivepattern numbers

K = 100 and K = 256. Tables V-VII show the same trend.

TABLE VI: Classification accuracy: Training deep neural classifiers
with bidirectional BP algorithm on CIFAR-100 image dataset

Hidden Activation 3 Layers 11 Layers 21 Layers

Sigmoid 6.31% 1.00% 1.00%
Linear 19.37% 18.97% 17.99%
ReLU 27.06% 17.07% 2.17%
Leaky ReLU 26.90% 22.07% 3.13%
Swish 26.13% 1.00% 1.00%
NoVa 25.01% 25.48% 18.21%
G-NoVa 29.08% 31.46% 28.69%

TABLE VII: Classification accuracy: Training deep neural classi-
fiers with bidirectional BP algorithm on Caltech-256 image dataset

Hidden Activation 3 Layers 11 Layers 21 Layers

Sigmoid 8.38% 2.72% 2.72%
Linear 16.62% 15.26% 13.70%
ReLU 20.63% 13.80% 6.09%
Leaky ReLU 20.53% 17.53% 6.98%
Swish 19.98% 8.68% 2.72%
NoVa 18.23% 19.51% 14.74%
G-NoVa 23.81% 24.17% 21.21%

V. CONCLUSIONS

The new generalized nonvanishing (G-NoVa) hidden activa-

tion is a generalized perturbed logistic sigmoid whose deriva-

tive does not vanish. Simulations showed that it outperformed

the simpler NoVa hidden neuron as well as the popular ReLU

activation and its main variants. This comparative benefit in

classification accuracy was most pronounced in the deepest

networks. It held for both ordinary unidirectional and the

newer bidirectional forms of backpropagation training. Future

work will focus on testing G-NoVa hidden neurons on large

datasets and convolutional models.

REFERENCES

[1] O. Adigun and B. Kosko, “Deeper neural networks with non-vanishing
logistic hidden units: Nova vs. relu neurons,” in 2021 20th IEEE Inter-
national Conference on Machine Learning and Applications (ICMLA),
2021, pp. 1407–1412.

[2] J. Bauermann and B. Lindner, “Multiplicative noise is beneficial for the
transmission of sensory signals in simple neuron models,” Biosystems,
vol. 178, pp. 25–31, 2019.

[3] A. Patel and B. Kosko, “Stochastic resonance in continuous and spiking
neuron models with levy noise,” IEEE Transactions on Neural Networks,
vol. 19, no. 12, pp. 1993–2008, 2008.

[4] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[5] K. Fukushima, “Visual feature extraction by a multilayered network of
analog threshold elements,” IEEE Transactions on Systems Science and
Cybernetics, vol. 5, no. 4, pp. 322–333, 1969.

[6] ——, “Cognitron: A self-organizing multilayered neural network,” Bio-
logical cybernetics, vol. 20, no. 3, pp. 121–136, 1975.

[7] O. Adigun and B. Kosko, “Bidirectional backpropagation,” IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 5, pp.
1982–1994, 2019.

[8] ——, “Bayesian bidirectional backpropagation learning,” in 2021 Inter-
national Joint Conference on Neural Networks (IJCNN). IEEE, 2021,
pp. 1–7.

[9] S. Grossberg, “Adaptive resonance theory: How a brain learns to
consciously attend, learn, and recognize a changing world,” Neural
networks, vol. 37, pp. 1–47, 2013.

[10] L. E. B. da Silva, I. Elnabarawy, and D. C. Wunsch II, “A survey
of adaptive resonance theory neural network models for engineering
applications,” Neural Networks, vol. 120, pp. 167–203, 2019.

[11] O. Adigun and B. Kosko, “Noise-boosted bidirectional backpropagation
and adversarial learning,” Neural Networks, vol. 120, pp. 9–31, 2019.

[12] B. Kosko, “Bidirectional associative memories: unsupervised hebbian
learning to bidirectional backpropagation,” IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems, vol. 51, no. 1, pp. 103–115, 2021.

[13] S. Grossberg, “Nonlinear neural networks: Principles, mechanisms, and
architectures,” Neural networks, vol. 1, no. 1, pp. 17–61, 1988.

[14] B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems
Approach to Machine Intelligence. USA: Prentice-Hall, Inc., 1992.

[15] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of control, signals and systems, vol. 2, no. 4, pp. 303–314,
1989.

[16] J. Han and C. Moraga, “The influence of the sigmoid function pa-
rameters on the speed of backpropagation learning,” in International
workshop on artificial neural networks. Springer, 1995, pp. 195–201.

[17] C. M. Bishop, Pattern recognition and machine learning. springer,
2006.

[18] A. L. Maas, A. Y. Hannun, A. Y. Ng et al., “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. icml, vol. 30, no. 1.
Citeseer, 2013, p. 3.

[19] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proceedings of the fourteenth international conference on
artificial intelligence and statistics. JMLR Workshop and Conference
Proceedings, 2011, pp. 315–323.

[20] A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv
preprint arXiv:1803.08375, 2018.

[21] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in ICML, 2010.

[22] L. Lu, “Dying relu and initialization: Theory and numerical examples,”
Communications in Computational Physics, vol. 28, no. 5, pp. 1671–
1706, 2020.

[23] L. Trottier, P. Giguere, and B. Chaib-Draa, “Parametric exponential
linear unit for deep convolutional neural networks,” in 2017 16th
IEEE International Conference on Machine Learning and Applications
(ICMLA). IEEE, 2017, pp. 207–214.

[24] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” arXiv preprint arXiv:1710.05941, 2017.

[25] O. Adigun and B. Kosko, “Bidirectional representation and backpropa-
gation learning,” in International Joint Conference on Advances in Big
Data Analytics, 2016, pp. 3–9.

[26] ——, “Training generative adversarial networks with bidirectional back-
propagation,” in 2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA). IEEE, 2018, pp. 1178–1185.

[27] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, 2015.

[28] K. P. Murphy, Machine learning: a probabilistic perspective. MIT
press, 2012.

[29] I. Goodfellow, Y. Bengio, and A. Courville, “Softmax units for multi-
noulli output distributions. deep learning,” 2016.

[30] O. Adigun and B. Kosko, “Bidirectional backpropagation for high-
capacity blocking networks,” in 2021 20th IEEE International Confer-
ence on Machine Learning and Applications (ICMLA). IEEE, 2021,
pp. 704–709.

[31] ——, “High capacity neural block classifiers with logistic neurons and
random coding,” in 2020 International Joint Conference on Neural
Networks (IJCNN). IEEE, 2020, pp. 1–9.

[32] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Citeseer, Tech. Rep., 2009.

[33] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category
dataset,” 2007.

