
Using Noise to Speed Up Video Classification with

Recurrent Backpropagation

Olaoluwa Adigun

Department of Electrical Engineering

University of Southern California

Los Angeles, CA 90089.

E-mail: adigun@usc.edu

Bart Kosko

Department of Electrical Engineering

University of Southern California

Los Angeles, CA 90089.

E-mail: kosko@usc.edu

Abstract—Carefully injected noise can speed the convergence
and accuracy of video classification with recurrent backprop-
agation (RBP). This noise-boost uses the recent results that
backpropagation is a special case of the generalized expectation
maximization (EM) algorithm and that careful noise injection
can always speed the average convergence of the EM algorithm
to a local maximum of the log-likelihood surface. We extend this
result to the time-varying case of recurrent backpropagation and
prove sufficient noise-benefit conditions for both classification and
regression. Injecting noise that satisfies the noisy-EM positivity
condition (NEM noise) speeds up RBP training. The classification
simulations used eleven categories of sports videos based on
standard UCF YouTube sports-action video clips. Training RBP
with NEM noise in just the output neurons led to 60% fewer
iterations in training as compared with noiseless training. This
corresponded to a 20.6% maximum decrease in training cross
entropy. NEM noise injection also outperformed simple blind
noise injection: RBP training with NEM noise gave a 15.6%
maximum decrease in training cross entropy compared with RBP
training with blind noise. Injecting NEM noise also improved the
relative classification accuracy by 5% over noiseless RBP training.
NEM noise improved the classification accuracy from 81% to 83%
on the test set.

I. NOISE BOOSTING RECURRENT BACKPROPAGATION

We show how carefully injected noise can speed up the con-

vergence of recurrent backpropagation (RBP) for classifying

time-varying patterns such as videos. Simulations used the 11

categories of sampled UCF YouTube sports videos [1], [2].

We prove a related result for speeding up RBP for regression.

These new noise-benefit results turn on the recent result

that backpropagation (BP) is a special case of the gener-

alized expectation-maximization (EM) algorithm [3]. BP is

the benchmark algorithm for training deep neural networks

[4]–[6]. EM is the standard algorithm for finding maximum-

likelihood parameters in the case of missing data or hidden

parameters [7]. BP finds the network weights and parameters

that minimize some error or other performance measure. It

equivalently maximizes the network likelihood and this per-

mits the EM connection. The error function is usually cross-

entropy for classification and squared error for regression.

The Noisy EM (NEM) Theorem [8]–[10] gives a sufficient

condition for noise to speed up the average convergence of the

EM algorithm. It holds for additive or multiplicative or any

other type of noise injection [10]. The NEM Theorem ensures

that NEM noise improves training with the EM algorithm by

ensuring that at each iteration NEM takes a larger step on

average up the nearest hill of probability or log-likelihood.

The BP algorithm is a form of maximum likelihood estimation

[11] and a special case of generalized EM algorithm. So NEM

noise also improves the convergence of BP [3]. It also tends to

improve classification accuracy because the likelihood lower-

bounds the accuracy [12]. The NEM noise benefit is a type

of of stochastic resonance where a small amount of noise

improves the performance of a nonlinear system while too

much noise harms the performance [13]–[21]. Figure 2 shows

that noise-boosted RBP took only 8 iterations to reach the

same cross-entropy value that noiseless RBP reached after 34

iterations. The noise benefit became more pronounced when

we added more internal memory neurons. Figure 3 shows

that the benefit reached diminishing returns with about 200

memory neurons. This 200-memory-neuron case produced a

5% improvement in the relative classification accuracy.

A recurrent neural network (RNN) is a neural network

whose directed graph contains cycles or feedback. This feed-

back allows an RNN to sustain an internal memory state

that can hold and reveal information about recent inputs. So

the RNN output depends not only on the input but on the

recent output and on the internal memory state. This internal

dynamical structure makes RNNs suitable for time-varying

tasks such as speech processing [5], [22] and video recognition

[23], [24]. RBP is the most common method for training RNNs

[25], [26]. We apply the NEM-based RBP algorithm below to

video recognition. The NEM noise-boost applies in principle

to any time-varying task of classification or regression.

The next section reviews the recent result that BP is a

special case of generalized EM. Then section III presents

the new noisy RBP training theorems for classification and

for regression with RNNs. We also present the noisy RBP

algorithm for training long short-term memory (LSTM) [26]

or recurrent learning from time-series data [27]. Section IV

presents the results of NEM-noise training of a LSTM RNN

for video classification.

II. BACKPROPAGATION AS GENERALIZED EXPECTATION

MAXIMIZATION

This section states the recent result that backpropagation

is a special case of the generalized Expectation-Maximization

978-1-5090-6182-2/17/$31.00 ©2017 IEEE 108

(EM) algorithm and that careful noise injection can always

speed up EM convergence. The next section states the compan-

ion result that carefully chosen noise can speed convergence

of the EM on average and thereby noise-boost BP.

The BP-as-EM theorem casts BP in terms of maximum

likelihood. Both classification and regression have the same

BP (EM) learning laws but they differ in the type of neurons

in their output layer. The output neurons of a classifier network

are softmax or Gibbs neurons. The output neurons of a

regression network are identity neurons. But the regression

case assumes that the output training vectors are the vector

population means of a multidimensional normal probability

density with an identity population covariance matrix.

We now restate the recent theorem that BP is a special

case of the generalized EM (GEM) algorithm [3].

Theorem 1: Backpropagation as Generalized Expectation

Maximization

The backpropagation update equation for a differentiable

likelihood function p(y|x,Θ) at epoch n

Θn+1 = Θn + η ▽Θ ln p(y|x,Θ)
∣

∣

∣

Θ=Θn
(1)

equals the GEM update equation at epoch n

Θn+1 = Θn + η ▽Θ Q(Θ|Θn)
∣

∣

∣

Θ=Θn
(2)

where GEM uses the differentiable Q-function

Q(Θ|Θn) = Ep(h|y,x,Θn)

{

ln p(h,y|X,Θ)
}

.

The next section shows how selective noise injection can

speed up the average convergence of the EM algorithm.

A. Noise-boosting Backpropagation via EM

The Noisy EM Theorem shows that noise injection can only

speed up the EM algorithm on average if the noise obeys the

NEM positivity condition [8], [10]. The Noisy EM Theorem

for additive noise states that a noise benefit holds at each

iteration n if the following positivity condition holds:

Ex,h,N|Θ∗

[

ln
(p(x+N,h|Θn)

p(x,h|Θn)

)]

≥ 0 . (3)

Then the EM noise benefit

Q(Θn|Θ∗) ≤ QN (Θn|Θ∗) (4)

holds on average at iteration n:

Ex,N|Θn

[

Q(Θn|Θ∗)−QN (Θn|Θ∗)
]

≤ Ex|Θn

[

Q(Θ∗|Θ∗)−Q(Θn|Θ∗)
]

where Θ∗ denotes the maximum-likelihood vector of param-

eters. The NEM positivity condition (3) has a simple form

for Gaussian mixture models [28] and for classification and

regression networks [3].

The intuition behind the NEM sufficient condition (3) is

that some noise realizations n make a signal x more probable:

f(x+n|Θ) ≥ f(x|Θ). Taking logarithms gives ln(f(x+n|θ)
f(x|θ)) ≥

0. Taking expectations gives a NEM-like positivity condition.

The actual proof of the NEM Theorem uses Kullback-Liebler

divergence to show that the noise-boosted likelihood is closer

on average at each iteration to the optimal likelihood function

than is the noiseless likelihood [10].

The NEM positivity inequality (3) is not vacuous because

the expectation conditions on the converged parameter vector

Θ∗. Vacuity would result in the usual case of averaging a

log-likelihood ratio. Take the expectation of the log-likelihood

ratio ln f(x|Θ)
g(x|Θ) with respect to the probability density func-

tion g(x|Θ) to give Eg[ln
f(x|Θ)
g(x|Θ)]. Then Jensen’s inequality

and the concavity of the logarithm give Eg[ln
f(x|Θ)
g(x|Θ)] ≤

lnEg[
f(x|Θ)
g(x|Θ)] = ln

∫

X

f(x|Θ)
g(x|Θ) g(x|Θ) dx = ln

∫

X
g(x|Θ) dx =

ln 1 = 0. So Eg[ln
f(x|θ)
g(x|θ)] ≤ 0 and thus in this case strict

positivity is impossible [10]. But the expectation in (3) does

not in general lead to this cancellation of probability densities

because the integrating density in (3) depends on the optimal

maximum-likelihood parameter Θ∗ rather than on just Θn.

So density cancellation occurs only when the NEM algorithm

has converged to a local likelihood maximum because then

Θn = Θ∗.

The NEM Theorem simplifies for a classifier network with

K softmax output neurons. Then the additive noise must lie

above the defining NEM hyperplane [3]. A similar NEM result

holds for regression except that the noise-benefit region is a

hypersphere. NEM noise can also inject into the hidden-neuron

layers in accord with their likelihood functions [12]. The next

section extends these results to recurrent BP for classification

and regression.

III. NOISE-BOOSTED RECURRENT BACKPROPAGATION

We next develop the recurrent backpropagation (RBP) al-

gorithm and then show how to noise-boost it using the NEM

Theorem. NEM noise can inject in all neurons [12]. This paper

focuses only on noise injection into the output neurons.

A. Recurrent Backpropagation

This section presents the learning algorithm for training

Long Short-Term Memory (LSTM) with RBP. The LSTM is a

deep RNN architecture suitable for problems with long time-

lag dependencies [26].

The LSTM network consists of I input neurons, J hidden

neurons, and K output neurons. We also have control gates for

the input, hidden, and output layers. The input gate controls the

input activation. The forget gate controls the hidden activation.

And the output gate controls the output activation. These

gates each have J neurons. The LSTM network captures the

dependency of the input data with respect to time. The time t

can take on any value in {1, 2, ..., T}.

The J × I matrix Wx connects the hidden neurons to the

input neurons. The K × J matrix Uy connects the output

neurons to the hidden neurons. Superscripts x , h, and y denote

the respective input, hidden, and output layers. The J × I

matrix Wγ connects the input gates to the input neurons

and J ×K matrix Vγ connects the input gates to the output

109

neurons. The J×I matrix Wφ connects the forget gates to the

input neurons and J×K matrix Vφ connects the forget gate to

the output neurons. The J ×I matrix Wω connects the output

gates to the input neurons and J ×K matrix Vω connects the

output gates to the output neurons. Superscripts γ, φ, and ω

denote the respective input, forget, and output gates.

The training involves the forward pass of the input vector

and the backward pass of the error. The forward pass propa-

gates the input vector from the input layer to the output layer

that has output activation ay . The backward pass propagates

the error from the output and hidden layers back to the input

layer and updates the network’s weights. We alternate these

two passes starting with the forward pass until the network

converges. RBP seeks those weights that minimize the error

function E (Θ)–or maximize the likelihood L(Θ).

The forward pass initializes the internal memory h
(0)
j to 0

for all values of j . The output activation a
y(0)
k is 0 for all

values of k . We then compute a
y(t)
k for t = 1 , 2 , ..., and T .

The input vector x(t) has I input neuron values. The input

neurons have identity activations: a
x(t)
i = x

(t)
i where a

x(t)
i

denotes the activation for the j th input neuron due to the input

vector x(t) at time t . The term o
x(t)
j denotes the j th value for

the transformation from the input space to the hidden state:

o
x(t)
j =

I
∑

i=1

wx
jia

x(t)
i + bxj (5)

where bxj is the bias for the j th hidden neuron due to the

input activation. This transformation is the logistic sigmoidal

activation function.

The term a
x(t)
j denotes the activation of the j th hidden

neuron with respect to the input-space transformation of xt:

a
x(t)
j =

1

1 + e−o
x(t)
j

(6)

The term o
γ(t)
j is the input to the j th input gate at time t :

o
γ(t)
j =

I
∑

i=1

w
γ
jia

x(t)
i +

K
∑

k=1

v
γ
jka

y(t−1)
k + b

γ
j (7)

where b
γ
j is the bias for the j th input gate and a

y(t−1)
k is the

output activation for time t − 1 .

The activation a
γ(t)
j for the j th input gate at time t also

uses the logistic sigmoid:

a
γ(t)
j =

1

1 + e−o
γ(t)
j

. (8)

The term o
h(t)
j denotes the input to the j th hidden neuron at

time t :

o
h(t)
j = a

x(t)
j ◦ a

γ(t)
j (9)

where ◦ denotes Hadamard product. The term o
φ(t)
j denotes

the input to the j th forget gate. It has the form

o
φ(t)
j =

I
∑

i=1

w
φ
jia

x(t)
i +

K
∑

k=1

v
φ
jka

y(t−1)
k + b

φ
j (10)

where b
φ
j is the bias for the j th forget gate.

The term s
(t)
j denotes the state of the j th internal memory

at time time t :

s
(t)
j = o

h(t)
j +

(

s
(t−1)
j ◦ a

γ(t)
j

)

(11)

where s
(t−1)
j is the state of j th internal memory at time t−1 .

The activation a
s(t)
j of the j th internal memory is also logistic:

a
s(t)
j =

1

1 + e−s
(t)
j

(12)

where superscript s denotes the internal memory. The term

o
ω(t)
j denotes the input to the j th output gate. It has the form

o
ω(t)
j =

I
∑

i=1

wω
jia

x(t)
i +

K
∑

k=1

vωjka
y(t−1)
k + bωj (13)

where bωj is the bias for the j th output gate. The term a
ω(t)
j

is the activation for the j th output gate at time t . The output

gate also uses the logistic sigmoid

a
ω(t)
j =

1

1 + e−o
ω(t)
j

. (14)

The activation a
h(t)
j for the j th output neuron at time t obeys

a
h(t)
j = a

s(t)
j ◦ a

ω(t)
j (15)

where a
s(t)
j and a

ω(t)
j are from (12) and (14). The term o

y(t)
k

is the input to the k th output neuron at time t :

o
y(t)
k =

J
∑

j=1

ux
kja

h(t)
j + b

y
k (16)

where b
y
k is the bias for k th output neuron.

The output-layer neurons use softmax activations because

this is a classification network [3], [11]. The kth output neuron

a
y(t)
k for k th has the softmax form

a
y(t)
k =

exp(o
y(t)
k)

∑K
l=1 exp(o

y(t)
l)

. (17)

The backward pass computes the error and its derivative

with respect to the weights. The error function E (t) is the

cross-entropy because this is a classifier network [11]:

E(Θ) =

T
∑

t=1

E(t)

=
T
∑

t=1

(

K
∑

k=1

y
(t)
k ln(a

y(t)
k)

)

(18)

.

The derivative of the error term E (t) with respect to u
y
kj

for t = T ,T − 1 , ..., and 1 is

∂E(t)

∂u
y
kj

=
∂E(t)

∂a
y(t)
k

∂a
y(t)
k

∂o
y(t)
k

∂o
y(t)
k

∂u
y
kj

= (a
y(t)
k − y

(t)
k)a

h(t)
j . (19)

110

The partial derivative of the E (t) with respect to the b
y
k is

∂E(t)

∂b
y
k

=
∂E(t)

∂a
y(t)
k

∂a
y(t)
k

∂o
y(t)
k

∂o
y(t)
k

∂b
y
k

= (a
y(t)
k − y

(t)
k) . (20)

Let E (t)′ denote the derivative of E (t) with respect to a
h(t)
j .

Then

E(t)′ =
∂E(t)

∂a
h(t)
j

=
(

K
∑

k=1

(a
y(t)
k − y

(t)
k)uy

kj

)

. (21)

We now list the many other partial derivatives in the RPP

algorithm.

The derivative of E (t) with respect to wω
ji is

∂E(t)

∂wω
ji

=
∂E(t)

∂a
h(t)
j

∂a
h(t)
j

∂a
ω(t)
j

∂a
ω(t)
j

∂o
ω(t)
j

∂o
ω(t)
j

∂wω
ji

= E(t)′ a
s(t)
j a

ω(t)
j (1− a

ω(t)
j)a

x(t)
i . (22)

The derivative of E (t) with respect to vω
kj is

∂E(t)

∂vωkj
=

∂E(t)

∂a
h(t)
j

∂a
h(t)
j

∂a
ω(t)
j

∂a
ω(t)
j

∂o
ω(t)
j

∂o
ω(t)
j

∂vωkj

= E(t)′ a
s(t)
j a

ω(t)
j (1− a

ω(t)
j)a

y(t−1)
i . (23)

The derivative of E (t) with respect to bωj is

∂E(t)

∂bωj
=

∂E(t)

∂a
h(t)
j

∂a
h(t)
j

∂a
ω(t)
j

∂a
ω(t)
j

∂o
ω(t)
j

∂o
ω(t)
j

∂bωj

= E(t)′a
s(t)
j a

ω(t)
j (1− a

ω(t)
j) . (24)

The derivative of E (t) with respect to s
(t)
j is

∂E(t)

∂s
(t)
j

=
∂E(t)

∂a
h(t)
j

∂a
h(t)
j

∂s
(t)
j

= E(t)′ a
ω(t)
j ◦ a

s(t)
j (1− a

s(t)
j) . (25)

Let a
φ(t)′

j denote the derivative of a
φ(t)
j with respect to

o
φ(t)
j . The derivative of a

φ(t)
j with respect to o

φ(t)
j is

a
φ(t)′

j =
∂a

φ(t)
j

∂o
φ(t)
j

= a
φ(t)
j (1− a

φ(t)
j) . (26)

The derivative of E (t) with respect to w
φ
ji is

∂E(t)

∂w
φ
ji

=
T
∑

n=1

(

T
∏

m=n+1

a
φ(m+1)
j

)

s
(n−1)
j a

φ(n)′

j a
x(n)
i . (27)

The derivative of E (t) with respect to v
φ
jk is

∂E(t)

∂v
φ
jk

=

T
∑

n=1

(

T
∏

m=n+1

a
φ(m+1)
j

)

s
(n−1)
j a

φ(n)′

j a
y(n−1)
k . (28)

The derivative of E (t) with respect to b
φ
j is

∂E(t)

∂b
φ
j

=

T
∑

n=1

(

T
∏

m=n+1

a
φ(m+1)
j

)

s
(n−1)
j a

φ(n)′

j . (29)

So the derivative of E (t) with respect to a
γ(t)
j is

∂E(t)

∂a
γ(t)
j

=
∂E(t)

∂s
(t)
j

∂s
(t)
j

∂o
h(t)
j

∂o
h(t)
j

∂a
γ(t)
j

=
(

E(t)′ a
ω(t)
j ◦ a

s(t)
j (1− a

s(t)
j)

)

a
x(t)
j . (30)

The derivative of E (t) with respect to w
γ
ji is

∂E(t)

∂w
γ
ji

=
∂E(t)

∂a
γ(t)
j

∂a
γ(t)
j

∂o
γ(t)
j

∂o
γ(t)
j

∂w
γ
ji

=
∂E(t)

∂a
γ(t)
j

a
γ(t)
j (1− a

γ(t)
j)a

x(t)
i . (31)

The derivative of E (t) with respect to v
γ
jk is

∂E(t)

∂v
γ
jk

=
∂E(t)

∂a
γ(t)
j

∂a
γ(t)
j

∂o
γ(t)
j

∂o
γ(t)
j

∂v
γ
jk

=
∂E(t)

∂a
γ(t)
j

a
γ(t)
j (1− a

γ(t)
j)a

y(t−1)
k . (32)

The derivative of E (t) with respect to b
γ
j is

∂E(t)

∂b
γ
j

=
∂E(t)

∂a
γ(t)
j

∂a
γ(t)
j

∂o
γ(t)
j

∂o
γ(t)
j

∂b
γ
k

=
∂E(t)

∂a
γ(t)
j

a
γ(t)
j (1− a

γ(t)
j) . (33)

The derivative of E (t) with respect to a
x(t)
j is

∂E(t)

∂a
x(t)
j

=
∂E(t)

∂s
(t)
j

∂s
(t)
j

∂o
h(t)
j

∂o
h(t)
j

∂a
x(t)
j

=
(

E(t)′ a
ω(t)
j ◦ a

s(t)
j (1− a

s(t)
j)

)

a
γ(t)
j . (34)

The derivative of E (t) with respect to wx
ji is

∂E(t)

∂wx
ji

=
∂E(t)

∂a
x(t)
j

∂a
x(t)
j

∂o
x(t)
j

∂o
x(t)
j

∂wx
ji

=
∂E(t)

∂a
x(t)
j

a
x(t)
i (1− a

γ(t)
j)a

x(t)
i . (35)

111

The derivative of E (t) with respect to the bxj is

∂E(t)

∂bxj
=

∂E(t)

∂a
x(t)
j

∂a
x(t)
j

∂o
x(t)
j

∂o
x(t)
j

∂bxj

=
∂E(t)

∂a
x(t)
j

a
x(t)
i (1− a

γ(t)
j) . (36)

These partial derivatives form the update rules for training

the RNN with the RBP algorithm.

B. Noisy EM Theorems for RBP

We can now state and prove the new NEM RBP theorems

for a classifier RNN and for a regression RNN. We start with

the classifier result.

Theorem 2: RBP Noise Benefit for RNN Classification

The NEM positivity condition (3) holds for the maximum

likelihood training of a classifier recurrent neural network with

noise injection in the output softmax neurons if the following

hyperplane condition holds :

Ey,h,n|x,Θ∗

{

T
∑

t=1

n(t)T ln ay(t)
}

≥ 0 . (37)

Proof : We first show that the cross entropy E(Θ) equals the

sum of the negative log-likelihood functions over time t =
1 , 2 , ..., and T . The error E (Θ) is the cross entropy for a

classifier network:

E(Θ) =

T
∑

t=1

E(t) (38)

= −
T
∑

t=1

K
∑

k=1

y
(t)
k ln a

y(t)
k (39)

= −
T
∑

t=1

ln
[

K
∏

k=1

(a
y(t)
k)

y
(t)
k
]

(40)

= −
T
∑

t=1

ln
[

K
∏

k=1

pk(y
(t) = y

(t)
k |x,Θ)

]

(41)

= −
T
∑

t=1

ln p(y(t)|x,Θ) (42)

= −ln

T
∏

t=1

p(y(t)|x,Θ) (43)

= −L(Θ) (44)

So minimizing the cross entropy E (Θ) maximizes the log-

likehood function L(Θ): p(y|x,Θ) = e−E(Θ).

The NEM sufficient condition (3) simplifies to the product

of exponentiated output activations over time t and each with

K output neurons. Then additive noise injection gives

p(n+ y,h|x,Θ)

p(y,h|x,Θ)
=

T
∏

t=1

p(n(t) + y(t),h|x,Θ) p(h|x,Θ)

p(h|x,Θ) p(y(t),h|x,Θ)

=

T
∏

t=1

p(n(t) + y(t)|h,x,Θ)

p(y(t)|h,x,Θ)
(45)

=

T
∏

t=1

[

K
∏

k=1

(a
y(t)
k)n

(t)
k

+y
(t)
k

(a
y(t)
k)y

(t)
k

]

(46)

=

T
∏

t=1

[

K
∏

k=1

(a
y(t)
k)n

(t)
k

]

. (47)

Then the NEM positivity condition in (3) becomes

Ey,h,N|x,Θ∗

{

ln

T
∏

t=1

[

K
∏

k=1

(a
y(t)
k)n

(t)
k

]}

≥ 0 . (48)

This simplifies to the inequality

Ey,h,N|x,Θ∗

{

T
∑

t=1

[

K
∑

k=1

n
(t)
k ln(a

y(t)
k)

]}

≥ 0 . (49)

The inner summation represents the inner-product of n(t)

with ln ay(t). Then we can rewrite (49) as the hyperplane

inequality

Ey,h,N|x,Θ∗

{

T
∑

t=1

n(t)T ln ay(t)
}

≥ 0 . (50)

�

We next state and prove the NEM RBP theorem for regres-

sion networks.

Theorem 3: RBP Noise Benefit for RNN Regression

The NEM positivity condition (3) holds for the maximum

likelihood training of a regression RNN with Gaussian target

vector y∼ N (y|ay, I) if the following inequality condition

holds:

Ey,h,N|x,Θ∗

{

T
∑

t=1

||(y(t) + n(t) − ay(t)||
2
}

− Ey,h,N|x,Θ∗

{

T
∑

t=1

||y(t) − ay(t)||
2
}

≤ 0 . (51)

Proof: The error function E (Θ) is the squared error for a

regression network [3]. We first show that minimizing the

squared error E (Θ) is the same as maximizing the likelihood

function L(Θ):

112

Fig. 1: The first 5 frames from a UCF YouTube video sample of juggling a soccer ball. Such soccer videos were from the 6th of 11 categories
in the classification experiment. So the target output for this sampled video clip was the 1-in-K-coded bit vector [0 0 0 0 0 1 0 0 0 0 0].

E(Θ) =
T
∑

t=1

E(t) (52)

= −
T
∑

t=1

−
||y(t) − ay(t)||2

2
(53)

= −
T
∑

t=1

ln
[

exp
{

−
||y(t) − ay(t)||2

2

}]

(54)

− T ln(2π)−
K
2 + T ln(2π)−

K
2 (55)

= −ln
[

T
∏

t=1

p(y = y(t)|x,Θ)
]

+ T ln(2π)−
K
2

= −L(Θ) + T ln(2π)−
K
2 (56)

where the network’s output probability density function p(y =
y(t)|x,Θ) is the vector normal density N (y(t)|a(t),Θ). So

minimizing the squared error E(Θ) maximizes the likelihood

L(Θ) because the last term in (56) does not depend on Θ.

Injecting additive noise into the output neurons gives

p(n+ y,h|x,Θ)

p(y,h|x,Θ)
=

T
∏

t=1

p(n(t) + y(t),h|x,Θ) p(h|x,Θ)

p(h|x,Θ) p(y(t),h|x,Θ)

=

T
∏

t=1

p(n(t) + y(t)|h,x,Θ)

p(y(t)|h,x,Θ)
(57)

=

T
∏

t=1

exp
(

1
2 ||(y

(t) − ay(t)||
2
)

exp
(

1
2 ||(y

(t) + n(t) − ay(t)||
2) .

(58)

Then the NEM positivity condition in (3) simplifies to

Ey,h,N|x,Θ∗

{

ln

T
∏

t=1

exp(12 ||(y
(t) − ay(t)||

2
)

exp(12 ||(y
(t) + n(t) − ay(t)||

2
)

}

≥ 0 .

(59)

This positivity condition simplifies to the hyperspherical

inequality

Ey,h,N|x,Θ∗

{

T
∑

t=1

||(y(t) + n(t) − ay(t)||
2
}

− Ey,h,N|x,Θ∗

{

T
∑

t=1

||y(t) − ay(t)||
2
}

≤ 0 . (60)

�

These NEM theorems extend directly to other RNN archi-

tectures such as those with gated recurrent units and Elman

RNNs [29].

Equation (61) below gives the update rule for training a

RNN with BP through time. It applies to both classification

and regression networks. The update rule for the nth training

iteration is

Θ(n+1) = Θ(n) + η ▽Θ L(Θ)
∣

∣

∣

Θ=Θ(n)
(61)

= Θ(n) − η ▽Θ E(Θ)
∣

∣

∣

Θ=Θ(n)
(62)

for Θ ∈ {uy
kj , b

k
y , w

ω
ji, v

ω
jk, b

ω
j , w

φ
ji, v

φ
jk, b

φ
j , w

γ
ji, v

γ
jk, b

γ
j , w

x
ji, b

x
j }

and η is the learning rate.

The partial derivatives in the gradient of (62) come from

(19), (20), (22)−(24), (27)−(29), (31)−(33), (35), and (36).

Algorithm 1 states the details of the Noisy RBP algorithm

with a LSTM architecture and for softmax output activation.

A related algorithm injects noise into the hidden units as well

[3]. This produces further speed-ups in general.

IV. VIDEO CLASSIFICATION SIMULATION RESULTS

We injected additive NEM noise during the RBP training

of a LSTM-RNN video classifier. We used 80:20 splits for

training and test sets. We extracted 26,000 training instances

from the standard UCF sports action YouTube videos [1], [2].

We used 6,700 video-clip samples for testing the network after

training. Each training instance had 12 image frames sampled

uniformly from a sports-action video at the rate of 6 frames

per second. Each image frame in the dataset had 72×96 pixels.

Each pixel value was between 0 and 1.

We fed the pixel values into the input neurons of the LSTM-

RNN and tried different numbers of hidden neurons. The

113

10 20 30 40 50 60 70 80 90 100

Training Iterations

2.5

3

3.5

4

4.5

C
ro

s
s
 E

n
tr

o
p

y
Noise Benefit with RBP Training

No Noise

 Blind Noise

NEM Noise

Fig. 2: Noise benefit comparisons. NEM Noise benefit from noise
injection into the output layer of a LSTM RNN. Adding NEM noise
to the output neurons of the LSTM RNN improved the performance
of RBP training. Training RBP with NEM noise in just the 11 output
softmax neurons led to 60% fewer iterations to reach a common low
value of cross entropy. Noise-boosted RBP took 8 iterations to reach
the cross-entropy value 2.7 while ordinary noiseless RBP took 34
iterations to reach the same cross entropy value. There was a 20.6 %
maximum decrease in cross-entropy. NEM noise can also inject into
the hidden neurons. Blind noise gave little improvement.

input, forget, and output gates all had the same number of

neurons. The output layer had 11 neurons that represented the

11 categories of sports actions in the dataset. These sport ac-

tions were basketball shooting, biking, diving, golf swinging,

horseback riding, soccer juggling, swinging, tennis swinging,

trampoline jumping, volleyball spiking, and walking. Figure

1 shows 5 sampled consecutive frames from a video in the

soccer-juggling category. We fed the frames into the LTSM

network as a sequence of data over time.

The RNN used 11 softmax neurons at the output layer

because the LSTM-RNN was a classification network. The

other layers and the gates used logistic neurons as discussed

above. Then the noise benefit tapered off. We used uniform

noise from U(0, 0.1) with annealing factor 1. This scaled down

the noise by n−1 as the iteration number n grew. The Adaptive

Moment Estimation optimizer picked the learning rate as n

grew. The initial learning rate was η = 0.001.

We compared the training performance over 200 iterations

and found that the best noise benefit occurred with 200

internal memory neurons. Figure 2 shows the cross entropy

for different RBP training regimens and the resulting NEM-

RBP speed-up of convergence. Simply injecting faint blind

(uniform) noise into the output neurons performed slightly

better than no noise injection but not nearly as well as NEM

noise injection. The figure also shows that noiseless RBP

took 26 more iterations to reach the same cross-entropy value

of 2.7. So NEM-boosted RBP needed 60% fewer training

iterations to converge to the same low cross-entropy value as

did noiseless RBP.

The injection of NEM noise also improved the classification

accuracy on the video-clip test set. This apparently occurred

because the network likelihood lower-bounds the classification

accuracy as we have shown elsewhere [12]. We compared the

classification accuracy of NEM-noise RBP training with the

Data: 0 input sets <:5á ä ä ä á:Ç=� where each input set :á L

< á:5;á ä ä ä á á:Í;�= . 0 target sets <;5á ä ä ä á;Ç= where target

set ;á L <!á:5;á ä ä ä á !á:Í;�=. Number of epochs for running

backpropagation through-time 4.

Result: Trained RNN weights.

Initialize the network weights #.

while: epoch N ÷ s� \ ��4�����

 while training input set J ÷ s� \ ��0����

 FEEDFORWARD

while P ÷ s� \ 6����

x Compute the activation of input, forget, and

output gates from á
:ç;

 and !á
:ç?5;

.

x Compute the memory cell activation �á
:ç;

 and

output activation 	á
ì:ç;

.

end

 ADD NOISE

while P ÷ s� \ 6����

x Generate noise vector �:

if @������ @	áì:ç;A �R ��rA

x Add the noise: !á
:ç;
�Z !á

:ç;
E ���

else

x Do nothing

 end

end

 BACKPROPAGATE ERROR THOUGH TIME

Initialize: Ï�':#; �L r

while P ÷ 6� \ s����

x Compute the cross-entropy 'ç:#;.
x Compute cross-entropy gradient Ï�'

ç:#;
x Update the gradient Ï�':#; L ��Ï�':#;E
�Ï�'

ç:#;
end

x Update the parameters # using gradient descent:

L �# F �ß�Ï�':#;
end

end

Algorithm 1: Noisy RBP algorithm for training a classifier

RNN with an LSTM architecture.

accuracy for noiseless RBP training. The accuracy measure

counted all true positives. NEM noise produced a 2% relative

gain in classification accuracy. The noiseless RBP training

gave 81% classification accuracy on the test set. The injection

of NEM noise gave 83% classification accuracy on the test

set. This represents 134 more correct classifications than we

found for noiseless RBP training. We ran the simulation on a

114

10 20 30 40 50 60 70 80 90 100

Training Iterations

2.5

3

3.5

4

C
ro

s
s
 E

n
tr

o
p

y
Noisy RBP (50 Hidden Neurons)

No Noise

Blind Noise

NEM Noise

10 20 30 40 50 60 70 80 90 100

Training Iterations

2.5

3

3.5

4

4.5

C
ro

s
s
 E

n
tr

o
p

y

Noisy RBP (150 Hidden Neurons)

No Noise

Blind Noise

NEM Noise

10 20 30 40 50 60 70 80 90 100

Training Iterations

2.5

3

3.5

4

4.5

C
ro

s
s
 E

n
tr

o
p

y

Noisy RBP (200 Hidden Neurons)

No Noise

 Blind Noise

NEM Noise

Fig. 3: Hidden neuron memory-size effects on injecting noise into
the output neurons of the RNN. The NEM noise benefit became more
pronounced as the number of hidden neurons increased. The best noise
effect occurred with 200 memory neurons and tapered off thereafter.

Google cloud instance with 8 vCPUs, 30GB RAM, and 50GB

system disk.

V. CONCLUSION

Careful noise injection speeded up convergence of the

recurrent backpropagation (RBP) algorithm for video samples.

The key insight in the noise boost is that ordinary BP is a

special case of the generalized EM algorithm. Then noise-

boosting EM leads to noise-boosting BP and its recurrent

versions for both classification and regression. Simulations

showed that noise-boosted RBP training substantially

outperformed noiseless RBP for classifying the UCF sports

action Youtube video clips. Further noise benefits should

result for noise injection into the hidden neurons and the use

of convolutional masks [3].

REFERENCES

[1] J. A. Mikel D. Rodriguez and M. Shah, “Action mach: A spatio-temporal
maximum average correlation height filter for action recognition,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2008.
[2] K. Soomro and A. R. Zamir, “Action recognition in realistic sports

videos,” in Computer Vision in Sports. Springer, 2014, pp. 181–208.
[3] K. Audhkhasi, O. Osoba, and B. Kosko, “Noise-enhanced convolutional

neural networks,” Neural Networks, vol. 78, pp. 15–23, 2016.
[4] D. Rumelhart, G. Hinton, and R. Williams, “Learning representations

by back-propagating errors,” Nature, pp. 323–533, 1986.
[5] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,

pp. 436–444, 2015.
[6] M. Jordan and T. Mitchell, “Machine learning: trends, perspectives, and

prospects,” Science, vol. 349, pp. 255–260, 2015.
[7] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood

from incomplete data via the em algorithm,” Journal of the royal

statistical society. Series B (methodological), pp. 1–38, 1977.
[8] O. Osoba, S. Mitaim, and B. Kosko, “The noisy expectation–

maximization algorithm,” Fluctuation and Noise Letters, vol. 12, no. 03,
p. 1350012, 2013.

[9] O. Osoba and B. Kosko, “Noise-Enhanced Clustering and Competitive
Learning Algorithms,” Neural Networks, Jan. 2013.

[10] ——, “The noisy expectation-maximization algorithm for multiplicative
noise injection,” Fluctuation and Noise Letters, p. 1650007, 2016.

[11] C. M. Bishop, Pattern recognition and machine learning. springer,
2006.

[12] B. Kosko, K. Audhkhasi, and O. Osoba, “Noise can speed backpropa-
gation learning and deep bidirectional pretraining,” in review.

[13] B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems

Approach to Machine Intelligence. Prentice Hall, 1991.
[14] P. Hänggi, “Stochastic resonance in biology,” ChemPhysChem, vol. 3,

no. 3, pp. 285–290, 2002.
[15] B. Kosko, Noise. Penguin, 2006.
[16] A. Patel and B. Kosko, “Stochastic resonance in continuous and spiking

neuron models with Levy noise,” IEEE Transactions on Neural Net-

works, vol. 19, no. 12, pp. 1993–2008, 2008.
[17] M. McDonnell, N. Stocks, C. Pearce, and D. Abbott, Stochastic res-

onance: from suprathreshold stochastic resonance to stochastic signal

quantization. Cambridge University Press, 2008.
[18] M. Wilde and B. Kosko, “Quantum forbidden-interval theorems for

stochastic resonance,” Journal of Physical A: Mathematical Theory,
vol. 42, no. 46, 2009.

[19] A. Patel and B. Kosko, “Error-probability noise benefits in threshold
neural signal detection,” Neural Networks, vol. 22, no. 5, pp. 697–706,
2009.

[20] B. Franzke and B. Kosko, “Using noise to speed up Markov chain Monte
Carlo estimation,” Procedia Computer Science, vol. 53, pp. 113–120,
2015.

[21] L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, “Stochastic
Resonance,” Reviews of Modern Physics, vol. 70, no. 1, pp. 223–287,
January 1998.

[22] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in 2013 IEEE international conference

on acoustics, speech and signal processing. IEEE, 2013, pp. 6645–
6649.

[23] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional
networks for visual recognition and description,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2015,
pp. 2625–2634.

[24] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals,
R. Monga, and G. Toderici, “Beyond short snippets: Deep networks
for video classification,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2015, pp. 4694–4702.
[25] P. J. Werbos, “Backpropagation through time: what it does and how to

do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.
[26] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[27] A.-r. M. Alex Graves and G. Hinton, “Speech recognition with deep

recurrent neural networks,” Proceedings of International Conference on

Acoustic, Speech and Signal Processing, pp. 6645–6649, 2013.
[28] K. Audhkhasi, O. Osoba, and B. Kosko, “Noisy hidden Markov models

for speech recognition,” in Proceedings of the 2013 International Joint

Conference on Neural Networks. IEEE, 2013, pp. 1–6.
[29] P. Rodriguez, J. Wiles, and J. L. Elman, “A recurrent neural network

that learns to count,” Connection Science, vol. 11, no. 1, pp. 5–40, 1999.

115

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20170330081459
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryList_V1
 qi2base

