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Abstract— The Ito calculus shows that noise benefits can
occur in common models of continuous neurons and in ran-
dom spiking neurons cast as stochastic differential equations.
Additive Gaussian noise perturbs the neural dynamical systems
as additive Brownian diffusions. The first of two theorems uses a
global Lipschitz continuity condition to characterize a stochastic
resonance (SR) noise benefit in models of continuous neurons
that receive random subthreshold inputs. Brownian diffusions
produce an SR noise benefit in the sense that they increase the
neuron’s mutual information or bit count if the noise mean
falls within an interval that depends on model parameters. The
second theorem extends an earlier SR result for the random
spiking FitzHugh-Nagumo neuron model by replacing a firing-
rate approximation with exact stochastic dynamics. This gives
an interval-based sufficient condition for an SR noise benefit.

I. STOCHASTIC RESONANCE IN BROWNIAN NEURAL

MODELS

Stochastic resonance (SR) occurs in a nonlinear sys-
tem when injected noise benefits the system’s performance.
Several researchers have demonstrated SR effects in many
neuron models [2], [3], [5], [8], [12], [23], [24], [25],
[27], [28], [29], [30], [33], [38], [39]. Figure 1 shows an
SR noise benefit in a bistable neuron whose noisy input
activation defines a scaled Brownian diffusion process. The
input is a random bipolar Bernoulli sequence. The output
is the neuron’s thresholded activation potential. The right
amount of noise makes the neurons output cohere with or
approximately match the Bernoulli input.

We recently showed [33] that most models of random
spiking retinal neurons benefit from some level of noise
for all possible finite-variance noise and for the wide class
of infinite-variance stable noise [16], [23], [25], [35], [36].
That paper in turn extended the recent ‘forbidden interval’
theorems for SR in [24], [25]. These theorems state that an
SR noise benefit occurs in simple threshold neurons if and
only if the noise mean E(n) or location parameter does not
lie in the interval (T – A, T + A) where −A < A < T for
bipolar subthreshold signal ±A and threshold T . The proof
strategy shows that a noise benefit occurs if the positive
mutual information goes to zero as the noise variance or
dispersion goes to zero. We apply that strategy again here
using the Ito stochastic calculus for more sophisticated neural
dynamics.

We consider the noisy dynamical neuron models of the
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general form

ẋ = −x(t) + f(x(t)) + s(t) + n(t) (1)

y(t) = g(x(t)) (2)

with initial condition x(t0) = x0. Here s(t) is the additive
forcing input signal—either s1 or s2, n(t) is the additive
Gaussian white noise of the neuron, g is a static (usually
threshold) transformation function, and y(t) is the neuron’s
output. The neuron feeds its activation or membrane potential
signal x(t) back to itself through −x(t)+f(x(t)) and emits
the thresholded signal y(t) as output. We can rewrite (1)-(2)
as the formal Ito stochastic differential equations [9]

dXt = b(t,Xt)dt + σ(t,Xt)dBt (3)

Yt = g(Xt) (4)

for initial condition Xt0 = X0 where b(t,Xt) = −Xt+f(Xt)
+St is a global or local Lipschitz drift term and where
σ(t,Xt) is a constant diffusion term. Bt is the standard
Wiener process or Brownian motion such that the stochastic
differential dBt corresponds to additive white Gaussian
noise n(t). The solution Xt of (3) is a stochastic process
and its distribution derivation can be complicated. We
exploit the pathwise uniqueness property [9] of Xt to prove
Lemma 1 and Lemma 2. We then use these two lemmas to
prove Theorem 1 and Theorem 2 respectively.

II. SR IN NOISY CONTINUOUS NEURON MODELS

We will prove that an SR noise benefit holds for many
types of noisy continuous neurons by using a limiting
argument and the stochastic calculus. The results hold
for the additive continuous neuron model (1)-(2) with a
neuronal signal function f(x) of quite general form that can
include the following common signal functions:

• Logistic. The logistic signal function [22] is sigmoidal
and strictly increasing

f(x) =
1

1 + e−cx
(5)

for scaling constant c > 0. This signal function gives a
bistable additive neuron model.

• Hyperbolic Tangent. This signal function is also sig-
moidal and gives a bistable additive neuron model. [1], [2],
[4], [18], [19], [22]

f(x) = 2 tanh x (6)
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Fig. 1. Stochastic resonance in a Brownian bistable neuron (3)-(4) and (6). The output of the neuron should cohere with the input signal. (a) Bernoulli
input signal S as a function of time t. (b) Additive Gaussian white noise n(t) with variance σ2 = 1. (c) Noisy Brownian membrane potential of the neuron.
(d) SR effect: The neuron’s thresholded output approximately matches the Bernoulli input signal. (e) Output signal in the absence of noise. (f) Too much
noise distorts the output signal.

• Linear Threshold. This linear-threshold signal has the
form [22]:

f(x) =




cx |cx| < 1
1 cx > 1

−1 cx < −1
(7)

for constant c > 0.

• Exponential. This signal function is asymmetric and has
the form [22]

f(x) =
{

1 − exp{−cx} if x > 0
0 else

(8)

for constant c > 0.

• Gaussian. The Gaussian or “radial basis” signal function
[22] differs from the other signal functions above because it
is nonmonotonic:

f(x) = exp{−cx2} (9)

for constant c > 0.

The above neuron models can have one-to-three fixed
points depending on the input signal and the model para-
meters. The input signal is subthreshold in the sense that
switching it from s1 to s2 or vice versa does not change
the output Yt of (4). There exist θ1 and θ2 such that the
input S is subthreshold whenever θ1 ≤ s1 < s2 ≤ θ2.
The values of θ1 and θ2 depend on the model parameters.
Consider the bistable potential neuron model (1)-(2) and (6).
A simple calculation shows that if the input signal S ∈
{s1, s2} satisfies −0.5329 < s1 < s2 < 0.5329 then the
bistable potential neuron has two stable fixed points (one
positive and the other negative) and has one unstable fixed
point between them. Then the input is subthreshold because
switching it from s1 to s2 or vice versa does not change the
output Yt.

A. Mutual Information and SR

Mutual information [7] can measure the stochastic reso-
nance (SR) effect [3], [8], [15], [21], [26], [34], [37]. The
Shannon mutual information of the discrete input random
variable S and the output random variable Y is the difference
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between its unconditional and conditional entropy:

I(S, Y ) = H(Y ) − H(Y |S) (10)

= −
∑

y

PY (y) log PY (y)

+
∑

s

∑
y

PSY (s, y) log PY |S(y|s) (11)

= −
∑

y

PY (y) log PY (y)

+
∑

s

P (s)
∑

y

P (y|s) log P (y|s) (12)

=
∑
s,y

PSY (s, y) log
PSY (s, y)

PS(s)PY (y)
(13)

We can view the mutual information as the expectation of
the random variable log PSY (s,y)

PS(s)PY (y) :

I(S, Y ) = E
[
log

PSY (s, y)
PS(s)PY (y)

]
(14)

Here PS(s) is the probability density of the input S, PY (y)
is the probability density of the output Y , PY |S(y|s) is the
conditional density of the output Y given the input S, and
PSY (s, y) is joint density of the input S and the output Y .
Jensen’s inequality implies that I(S, Y ) ≥ 0 [7]. Random
variables S and Y are statistically independent if and only
if I(S, Y ) = 0. Hence I(S, Y ) > 0 implies some degree
of dependence. This implies that the system exhibits the SR
noise benefit if I(S, Y ) > 0 for some noise intensity σ and
I(S, Y ) → 0 as σ → 0.

We will use the following technical lemma to prove
the mutual information-based SR result for the continuous
neuron models (3)-(4) and (5)-(9). The proof is lengthy and
we omit it for space reasons.

Lemma 1: Let b : R+×Rn → Rn and σ : Rn×Rm → Rn

in (3) be measurable functions that satisfy

n∑
i=1

{2xibi(t, x) + aii(t, x)} ≤ K(1 + ||x||2) (15)

for every x ∈ Rn and a global Lipschitz condition

||σ(t, x) − σ(t, y)|| + ||b(t, x) − b(t, y)|| ≤ D||x − y|| (16)

for all x, y ∈ Rn for some constant D > 0. Here a = σσT

and ||x||2 = xT x.

Suppose dXt = b(t,Xt)dt + σdBt (17)

dX̂t = b(t, X̂t)dt. (18)

Then for every T ∈ R+ and for every ε > 0:

E[ sup
0≤t≤T

||Xt − X̂t|| > ε] → 0 as σ → 0

and hence

P [ sup
0≤t≤T

||Xt − X̂t|| > ε] → 0 as σ → 0. (19)

Lemma 1 holds for any continuous neuron model that has
a neuronal signal function f(x) of the form (5)-(9) because
its respective drift term b(t,Xt) in (3) is globally Lipschitz
in accord with (15)-(16). For example:

b(t,Xt) = − Xt + 2 tanh(Xt) + St (20)

for the bistable potential neuron. Then b′(t,Xt) = −1 +
2 tanh2(Xt) and so b(t,Xt) is C1(R). Now Zt > Yt holds
without loss of generality. Then the mean-value theorem
gives |b(t, Zt) − b(t, Yt)| = |b′(ξt)||Zt − Yt| for some
ξt ∈ (Yt, Zt). Thus b(t,Xt) satisfies the global Lipschitz
condition because b′(Xt) is bounded on R. The linear-
threshold neuron model gives

b(t,Xt) = − Xt + f(Xt) + St (21)

where

f(Xt) =




cXt |cXt| < 1
1 cXt > 1

−1 cXt < −1
(22)

for constant c > 0. Then |b(t, Zt)−b(t, Yt)| ≤ (1+c)|Zt−Yt|
for all Zt, Yt ∈ R. Thus b(t,Xt) satisfies the global Lipschitz
condition.

We now use Lemma 1 to prove a sufficient interval
condition for the SR effect in the continuous neuron models
(3)-(4) and (5)-(9). Lack of a necessary condition broadens
rather than lessens the scope of potential SR effects in the
neurons. The proof structure follows that of the ‘forbidden
interval’ theorems [24], [25], [33]. The proof strategy is that
what goes down must go up. The proof assumes that the
nonnegative mutual information is positive for some level
of input-output correlation. Then the mutual information
goes to zero as the noise variance goes to zero. Hence the
mutual information must increase as the noise variance or
standard deviation increases from zero—and thus a noise
benefit must occur.

Theorem 1: Suppose that continuous neuron models
(3)-(4) and (5)-(9) have additive Gaussian white noise with
mean E(n) and variance σ2 and that the input signal S(t)
∈ {s1, s2} is subthreshold: θ1 ≤ s1 < s2 ≤ θ2. Suppose
that there is some statistical dependence between the input
random variable S and the output random variable Y so
that I(S, Y ) > 0. Then the neuron models (3)-(4) and
(5)-(9) exhibit the nonmonotone SR effect in the sense that
I(S, Y ) → 0 as σ → 0 if θ1 − s1 ≤ E(n) ≤ θ2 − s2.

Proof: Let σ1, σ2, . . . be any decreasing sequence of
noise standard deviations such that limn→∞ σn = 0. Define
Xn

t and Y n
t as solution processes of the equations (3)-(4)

with noise standard deviation σn instead of σ.
Suppose that E(n) �= 0. We can absorb E(n) into the

input signal S because the noise n is additive in the neuron
models (3)-(4). Then the new input signal S′ = S+E(n) and
S′ is subthreshold (θ1 ≤ S′ ≤ θ2) if and only if θ1 − s1 ≤
E(n) ≤ θ2−s2. So we can let S ∈ {s1, s2} be subthreshold
without loss of generality.
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Fig. 2. SR Noise benefits in noisy continuous neurons: finite-variance and infinite-variance cases. Noise increases the mutual information of the bistable
potential neuron (1)-(2) and (6). The graphs show the nonmonotonic signatures of SR for the bipolar input signal st = ±0.35. The additive noise are (a)
Gaussian, (b) uniform, and (c) symmetric α-stable noise with α = 1.9 (thick-tailed bell curve with infinite-variance [16]). The dashed vertical lines show
the total min-max deviations of the mutual information in 100 simulation trials.

Let the symbol ‘0’ denote the input signal S = s1 and the
output signal Y = −1. Let the symbol ‘1’ denote the input
signal S = s2 and the output signal Y = 1. Assume that 0 <
PS(s) < 1 to avoid triviality when PS(s) = 0 or 1. We show
that S and Y are asymptotically independent: I(S, Y ) =
0 if and only if S and Y are statistically independent [7].
So we need to show only that PSY (s, y) = PS(s)PY (y) or
PY |S(y|s) = PY (y) as σ → 0 for signal symbols s ∈ S and
y ∈ Y . The two symbol alphabet set S gives

PY (y) =
∑

s

PY |S(y|s)PS(s)

= PY |S(y|0)PS(0) + PY |S(y|1)PS(1)
= PY |S(y|0)PS(0) + PY |S(y|1)(1 − PS(0))
= (PY |S(y|0) − PY |S(y|1))PS(0) + PY |S(y|1)

So we need to show only that PY |S(y|0) − PY |S(y|1) = 0
as σ → 0. This condition implies that PY (y) = PY |S(y|1)
and PY (y) = PY |S(y|0). We prove the case for y = 0 only:
limσ→0{PY |S(0|0) − PY |S(0|1)} = 0 since the proof for
y = 1 is similar. Note that

lim
σ→0

{PY |S(0|0) − PY |S(0|1)}
= lim

n→∞{ PY n|S(0|0) − PY n|S(0|1) }
= lim

n→∞PY n|S(0|0) − lim
n→∞PY n|S(0|1)

= lim
n→∞P [Y n = 0|S = 0] − lim

n→∞P [Y n = 0|S = 1]

= lim
n→∞P [Xn

t < 0|S = 0]

− lim
n→∞P [Xn

t < 0|S = 1] for t >> 0

= lim
n→∞{P [Xn

t < 0, X̂t < 0|S = 0]

+ P [Xn
t < 0, X̂t > 0|S = 0]}

− lim
n→∞{P [Xn

t > 0, X̂t < 0|S = 1]

− P [Xn
t > 0, X̂t > 0|S = 1]}

for large values of t

= lim
n→∞{P [Xn

t < 0|X̂t < 0, S = 0]P [X̂t < 0|S = 0]

+P [Xn
t < 0|X̂t > 0, S = 0]P [X̂t > 0|S = 0]}

− lim
n→∞{P [Xn

t > 0|X̂t < 0, S = 1]P [X̂t < 0|S = 1]

−P [Xn
t > 0|X̂t > 0, S = 1]P [X̂t > 0|S = 1]}
for large values of t

= {1 · 1
2

+ 0 · 1
2
} − {0 · 1

2
+ 1 · 1

2
}

by Lemma 1 and the assumption that

P [X̂t < 0|S = si] = P [X̂t > 0|S = si]
= 1/2 for i = 1, 2.

= 0

Q.E.D.

Figure 2(a) shows a simulation instance of Theorem
1 for additive white Gaussian noise. Small amounts of
additive noise in a bistable potential neuron model produce
the SR effect in terms of the noise-enhanced Shannon
mutual information I(S, Y ) between realizations of a
random (Bernoulli) bipolar input signal S and the neuron’s
thresholded output random variable Y . The SR effects in
Figure 2 (b) and (c) lie beyond the scope of Theorem 1
because they show that the SR effect still occurs for other
finite-variance non-Gaussian noise such as uniform noise
and for infinite-variance alpha-stable noise [16], [23], [25],
[35], [36].

III. STOCHASTIC RESONANCE IN FHN SPIKING

NEURONS

We first review the dynamics of the FitzHugh-Nagumo
(FHN) neuron model for subthreshold input signals. We
then use Lemma 2 to prove Theorem 2. This direct proof
avoids the firing-rate approximation that we used in an earlier
version of the theorem [33]. Theorem 2 gives only a sufficient
interval condition for the SR noise benefit in the FHN neuron.
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So SR can still occur when the noise mean violates the
interval condition.

The FHN neuron model [5], [11], [14], [32] is a two-
dimensional simplification of the Hodgkin and Huxley neu-
ron model [17]. It describes the response of a so-called
Type II excitable system [14], [27] that undergoes a Hopf
bifurcation. The system first resides in the stable rest state
for subthreshold inputs as do multistable systems. Then the
system leaves the stable state in response to a strong input
but returns to it after passing through firing and refractory
states in a manner quite unlike the behavior of multistable
systems. The FHN neuron model is a limit-cycle oscillator
of the form

εẋ = −x(x2 − 1
4
) − w + A + s(t) + n(t) (23)

ẇ = x − w (24)

where x(t) is a fast (voltage) variable, w(t) is slow
(recovery) variable, A is a constant (tonic) activation signal,
and ε = 0.005. n(t) is Gaussian white noise and s(t) is a
subthreshold input signal—either s1 or s2. We measure the
neuron’s response to the input signal s(t) in terms of the
transition (firing) rate r(t).

The intersection of the cubic nullcline w =
x(x2 − 1/4) + A + s(t) with a linear nullcline w = x gives
the location of the system’s fixed-point attractor because
ẇ = 0 and ẋ = 0 at the fixed point. The (x,w)-phase plane
shows that the FHN neuron model performs relaxation
oscillations when the fixed point lies between the first
minimum and the first maximum of the cubic nullcline. So
the threshold occurs when the linear nullcline intersects the
cubic nullcline at the minimum. The cubic nullcline has a
minimum at x = −1/(2

√
3) and so it does not depend on

A + s(t). The term A + s(t) shifts the cubic nullcline in
the vertical direction and hence it controls the location of
the fixed point. The fixed point occurs at the minimum of
the cubic nullcline if A + s(t) = −5/(12

√
3) ≡ AT . So the

fixed point occurs between the first minimum and maximum
of the cubic nullcline when A + s(t) > AT . Then the FHN
model exhibits relaxation oscillations.

We can rewrite (23)-(24) as

εẋ = −x(x2 − 1
4
) − w + AT − (B − s(t)) + n(t) (25)

ẇ = x − w (26)

where B is a positive constant parameter that corresponds
to the distance that the input signal s(t) must overcome
to cross the threshold. Then B − s(t) is the signal-
to-threshold distance and so s(t) is subthreshold when
B − s(t) > 0. We chose B = 0.007 in simulations and
hence A = −(5/(12

√
3 + 0.007)).

Let xi = HFi
denote the stable fixed point that corre-

sponds to the subthreshold signal si. Then xi is a solution of
x(x2− 1

4 )−w+AT −(B−si) = 0 and it depends on si. Note
that x is a fast variable and w is a slow variable for ε � 1. So
we assume ẇ ∼ 0 and w ∼ x = xi. Then the escape from

the fixed-point xi is “quasi” one-dimensional along x and
(25) reduces to the double-well barrier-escape problem [5].
The corresponding double-well potential function has three
roots xi, ui, and vi. If the system state is at xi then it needs
to surmount ui to get to vi. Once it reaches the state vi then
it returns to xi through the w degree of freedom.

The deterministic FHN model (n(t) ≡ 0 in (25)) performs
relaxation oscillations and its action potential x(t) is bounded
between 0.6 and -0.6. The system emits a spike whenever
x(t) crosses the threshold value θ = 0. We use a lowpass-
filtered version of x(t) to avoid false spike detections due to
the additive noise.

We measure the mutual information between the input
signal s(t) and the FHN system response in terms of the
output spike-rate random variable R:

R =
N(t1, t2]
t2 − t1

(27)

for sufficiently large values of t1 and t2. Here N(t1, t2] is
the number of spikes in the time interval (t1, t2].

We rewrite equations (23)-(24) as

ż1 = −z1

ε
(z2

1 − 1
4
) − z2

ε
+

A

ε
+

s(t)
ε

+
n(t)

ε
(28)

ż2 = z1 − z2. (29)

Here z1 = x and z2 = w. The corresponding matrix Ito
stochastic differential equation is

dZt = b(t, Zt)dt + σdBt (30)

where Zt = (z1,t, z2,t)T , Bt = (B1,tB2,t)T ,

b(t, Zt) =
[

b1(z1,t, z2,t)
b2(z1,t, z2,t)

]

=
[ z1,t

ε (z1,t − 1
4 ) − z2,t

ε + A
ε + st

ε
z1,t − z2,t

]
,

Zt =
[

z1,t

z2,t

]
, and σ =

[
σ
ε 0
0 0

]
.

The drift term b(t, Zt) in (30) is locally Lipschitz but not
globally Lipschitz. So Lemma 1 does not apply to the FHN
neuron. But Lemma 2 extends the conclusion of Lemma 1
to the locally Lipschitz drift term b(t, Zt).

Lemma 2: Let b : R+×Rn → Rn and σ : Rn×Rm → Rn

in (3) be measurable functions that satisfy
n∑

i=1

{2xibi(t, x) + aii(t, x)} ≤ K(1 + ||x||2) (31)

for every x ∈ Rn and a local Lipschitz condition

||σij(t, x) − σij(t, y)|| ≤ Gr||x − y||, (32)

||bi(t, x) − bi(t, y)|| ≤ Dr||x − y|| (33)

when ||x||, ||y|| ≤ r. Here a = σσT and ||x||2 = xT x.

Suppose dXt = b(t,Xt)dt + σdBt (34)

dX̂t = b(t, X̂t)dt (35)
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Fig. 3. SR Stochastic resonance in the FHN spiking neuron model (25)-(26). The additive noise are (a) Gaussian, (b) uniform, and (c) symmetric α-stable
noise with α = 1.9 (thick-tailed bell curve with infinite-variance [16]).

Then for every T ∈ R+ and for every ε > 0:

E[ sup
0≤t≤T

||Xt − X̂t|| > ε] → 0 as σ → 0

and hence

P [ sup
0≤t≤T

||Xt − X̂t|| > ε] → 0 as σ → 0. (36)

We can now state and prove Theorem 2.

Theorem 2: Suppose that the FHN neuron system (30)
has an additive Gaussian white noise n(t) with mean E(n)
and that the input signal S(t) ∈ {s1, s2} is subthreshold:
S(t) < B. Suppose that there is some statistical dependence
between the input random variable S and the output spike-
rate random variable R so that I(S,R) > 0. Then the FHN
neuron model (30) exhibits the nonmonotone SR effect in
the sense that I(S,R) → 0 as σ → 0 if E(n) < B − s2.

Proof: Let σ1, σ2, . . . be any decreasing sequence of noise
standard deviations such that limn→∞ σn = 0. Define Zn

t as
a solution process of (37) with noise standard deviation σn

instead of σ and let Rn be the corresponding output spike-
rate random variable.

We can absorb E(n) into the input signal S(t) because the
noise n is additive in the spiking neuron model. Then the new
input signal is S′ = S + E(n) and S′ is subthreshold (S′ <
B) because E(n) < B – s2 where s2 = max{s1, s2}. So we
can assume that E(n) = 0 holds without loss of generality.

Recall that I(S,R) = 0 if and only if S and R are
statistically independent [7]. So we need to show only that
fSR(s, r) = PS(s)fR(r) or fR|S(r|s) = fR(r) as σ → 0
for signal symbols s ∈ {s1, s2} and for all r ≥ 0 where
fSR is the joint probability density function and fS|R is
the conditional density function. This is logically equivalent
to FR|S = FR as σ → 0 where FR|S is the conditional
distribution function [10]. The elementary theorem on total

probability and the two-symbol alphabet set {s1, s2} give

FR(r) =
∑

s

FR|S(r|s)PS(s)

= FR|S(r|s1)PS(s1) + FR|S(r|s2)PS(s2)
= FR|S(r|s1)PS(s1) + FR|S(r|s2)(1 − PS(s1))
= (FR|S(r|s1) − FR|S(r|s2))PS(s1) + FR|S(r|s2)

So we need to show that for all r ≥ 0:

FR|S(r|s1) − FR|S(r|s2) → 0 as σ → 0.

This holds if and only if

P [R > r|S = s2] − P [R > r|S = s1] → 0 as σ → 0.

We prove that limσ→0 P [R > r|S = si] = 0 for i = 1 and
2. Note that if r > 0 for (30) then Zn

1,t must cross the firing
or spike threshold θ. Then

P [Rn > r|S = si] ≤ P [ sup
t1≤t≤t2

Zn
1,t > θ|S = si]

and hence

lim
σ→ 0

P [R > r|S = si]

= lim
n→∞P [Rn > r|S = s2]

≤ lim
n→∞P [ sup

t1≤t≤t2

Zn
1,t > θ|S = si]

= lim
n→∞P [ sup

t1≤t≤t2

Zn
1,t > θ, Ẑ1,t < θ|S = si]

because Ẑ1,t converges to the FHN

fixed-point HFi
< θ for large t

= 0 by Lemma 2.

Q.E.D.

Figure 3 (a) shows a simulation instance of the SR effect
in Theorem 2 for the FHN neuron model (25)-(26) with
additive white Gaussian noise. The model parameters are
AT = -5/12(

√
3), B = 0.07, and S = ±0.004. The solid

curve shows the smoothed average mutual information. The
dashed vertical lines show the total min-max deviations
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of the mutual information in 100 simulation trials. The
mutual-information plot shows the predicted nonmonotonic
signature of SR. Theorem 2 applies to additive white
Gaussian noise although Figure 3 (b) and (c) confirm a
comparable noise benefit for uniform noise and impulsive
infinite-variance α-stable noise.

Simulations of the continuous-time dynamical systems
require a suitable time-discretization method. We used the
Euler-Maruyama scheme [13], [20] to obtain the discrete
stochastic form:

xt+1 = xt + ∆T
(
f(xt) + st

)
+ σ

√
∆Twt

yt = g(xt)

for t = 0, 1, 2, . . . and initial condition x0. The input sample
st equalled the signal s(t∆T ) at time step t. The zero-mean
white Gaussian noise sequence wt had unit variance σ2

w = 1
and σ was the standard deviation of the additive white
Gaussian noise n(t) in (1). The term

√
∆T scales wt so

that
√

∆Twt conforms with the Wiener increment [13],
[20], [31]. The output sample yt is some transformation g
of the system’s state xt. This algorithm gives fairly accurate
results for several nonlinear systems [13], [20], [28], [31].

IV. CONCLUSION

We have shown that our earlier sufficient conditions
for noise benefits in neuron models persist for continuous
neuron models cast as formal stochastic differential
equations. A sufficient condition also holds for the FHN
spiking neuron model and does not require the earlier
firing-rate approximation [33]. But a severe restriction of
the Ito model is that the additive noise is Gaussian. The
earlier theorems hold for much broader classes of noise both
with arbitrary finite-variance noise and with infinite-variance
impulsive noise from the general class of stable distributions
[16], [23], [25], [35], [36]. Simulation evidence suggests
that some form of Theorems 1 and 2 should hold for (stable)
Levy processes and other types of non-Gaussian noise.
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