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ABSTRACT

Experiments confirm that small amounts of noise help a nanotube transistor detect noisy subthreshold electrical signals. Gaussian, uniform,
and impulsive (Cauchy) noise produced this feedforward stochastic-resonance effect by increasing both the nanotube system’s mutual information
and its input−output correlation. The noise corrupted a synchronous Bernoulli or random digital sequence that fed into the thresholdlike
nanotube transistor and produced a Bernoulli sequence. Both Shannon’s mutual information and correlation measured the performance gain
by comparing the input and output sequences. This nanotube SR effect was robust: it persisted even when infinite-variance Cauchy noise
corrupted the signal stream. Such noise-enhanced signal processing at the nanolevel promises applications to signal detection in wideband
communication systems and biological and artificial neural networks.

Noise can help carbon nanotube transistors detect subthresh-
old electrical signals by increasing the transistor’s input-
output mutual information or correlation. Several researchers
have demonstrated the stochastic resonance (SR) effect for
various types of threshold units or neurons.1-6 Experiments
with p-type nanotube transistors confirmed the specific SR
prediction based on the theoretical finding that simple
memoryless threshold neurons exhibit SR for almost all
finite-variance and infinite-variance noise types.7 The experi-
ments used three types of additive noise (Gaussian, uniform,
and infinite-variance1 Cauchy noise) and different combina-
tions of subthreshold ON/OFF electrical signals. Figure 1
shows the nonmonotonic signature of SR for white Gaussian
noise and the thresholdlike nonlinearity of the nanotube
transistors.8-13 The modes of the mutual-information and
correlation curves occurred for nonzero noise strength with
a standard deviation of at least 0.01.

The nanotube experiments produced the SR effect for both
the Shannon mutual information and the input-output
correlation14 of noisy Bernoulli sequences. The mutual
information I(S, Y) subtracts the noisy channel’s (the
transistor’s) output conditional entropyH(Y|S) from its
unconditional entropyH(Y): I(S, Y) ) H(Y) - H(Y|S). The
input signalSwas a random binary voltage that produced a
random outputY in the form of a transistor current. The

correlation measure found the normalized zero-lag cross-
correlation

of the two sequences with subtracted means. The measures
did not assume that the nanotube detector had a special
structure and did not impose a threshold scheme on the
experiment.

Figure 1b shows the thresholdlike nonlinearity of the
nanotube transistor in response to the noisy input signal. The
transconductanceG related the output drain-to-source current
I to the input gate voltageV and the threshold voltageVT in
a memoryless signal function:I ) G (V - VT) if V e VT

and zero otherwise. We note that the threshold neuron model
lacks the internal state dynamics of the FitzHugh-Nagumo
(FHN) model.15 The transconductanceG was negative
because the pristine (undoped) nanotube transistors exhibited
current-voltage characteristics that were consistent with
p-type transistors. Linear regression extrapolated the non-
linearity and estimated the threshold voltage.

Each of the nanotube experiments (Supporting Informa-
tion) applied 32 independent trials of 1000-symbol input
sequences for 24 noise levels per type and over a range of
gate voltages. The 24 sampled noise levels ranged from 0.001
to 1 standard deviation (dispersion for infinite-variance
Cauchy) linearly on a logarithmic scale. The noisy input was* Corresponding author. E-mail: kosko@sipi.usc.edu.

rSY(l) ) ∑
k)1

N

s(k) y(k - l)

NANO
LETTERS

xxxx
Vol. 0, No. 0

A-D

10.1021/nl0348239 CCC: $25.00 © xxxx American Chemical Society PAGE EST: 3.9
Published on Web 00/00/0000



a synchronized Bernoulli sequence of independent random
(subthreshold) ON/OFF values and additive white noise of
three types. So there was no timing noise in the pulse train
as in the FHN neuron model.16 The discrete-time noise was
white because the noise samples were uncorrelated in time.
So the discrete-time Fourier transform was 2π-periodic and
produced a flat noise power spectrum over the interval [0,
2π].17,18 Synchronization allows the nanotube systems to
implement a variety of algorithms from signal processing
and communications.

The ON/OFF values in Figure 1a were ON) -1.6 V
and OFF) -1.4 V. The input updated the symbols about
once every 10 ms. A 200-mV drain-source voltage biased
the nanotube at room temperature in vacuum. The experiment
measured and averaged 10 samples of the detector output at
100 ksymbols/s near the end of each symbol interval to
estimate the output sequence.

A histogram of the output sequence gave the discrete
probability density functionP(Y ) Yi) ) pi that computed
the unconditional Shannon entropy:

for mutual information without converting the detector output

into a binary sequence with a threshold scheme. Sorting the
output sequence based on the input symbol and then applying
the histogram gave the conditional output discrete probability
density functionPY|S(Y ) Yi|S) Sj) ) pji/pj conditioned on
the input symbols that computed the conditional entropy:

The mutual information measure was the difference between
the unconditional and conditional entropies:

Cross correlation compared the input and the output symbol
sequences and gave a scalar representation with its zero-lag
value:

Converting the input Bernoulli sequence to bipolar form
(mapping ON to+1 and OFF to-1) made it approximately

Figure 1. (a) Stochastic resonance with additive white Gaussian noise. The CNT-FET detector’s mutual information (top red curve) and
zero-lag correlation (top green curve) increase for small amounts of noise and then decrease for larger amounts. The control experiments
gave the flat non-SR mutual information (bottom red curve) and correlation (bottom green curve) when no nanotube bridged the source and
drain electrodes. The SR mode or optimal noise level had the same standard deviation value of 0.01 for both performance measures. Each
vertical dashed bar occurs at 1 of the 24 sampled noise values and shows the maximum and the minimum range of 32 averaged experimental
trials. The solid polygonal line connects the means of those 24 sets of experiments. The random input sequenceSwas a Bernoulli sequence
of ON/OFF values with additive white Gaussian noise. The random sequenceY was the output of the nanotube threshold detector. Shown
is one of four such successful combinations of input binary values with the parameter choices ON) -1.6 V and OFF) -1.4 V. Each trial
applied 1000 subthreshold symbols to the detector. The input signal was the analog voltage representation of the symbol sequenceS at
approximately 10-ms intervals. The output signal was the nanotube current. The data acquisition measured and averaged 10 samples at 100
ksamples/s near the end of each symbol interval to estimate the output sequence (Supporting Information). Aø2 test and a Kolmogorov-
Smirnov test both rejected the similarity between a monotonically decreasingâ probability density function and the two SR curves (p <
0.001). (b) Thresholdlike (nonlinear) gate effect of the p-type CNT-FET detector. Each point shows the detector’s response to one random
input symbol. The experimental data showed that the CNT-FET detector behaved as a threshold in response to the noisy input signal
stream. The gate effect showed little hysteresis. This differed from the hysteretic curve that a semiconductor parameter analyzer captured
from the detector (Supporting Information) and differed from the typical hysteretic loops in ref 18. Linear regression gave an approximate
threshold gate voltage ofVT ) -2.3 V (â0 ) -2.99 nA,â1 ) -1.31 nA/V, p value< 0.0001) for the transistor current equationI ) G
(V - VT) if V e VT and zero otherwise.
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zero mean (equal numbers of+1’s and-1’s give exactly
zero mean) and noise-free. Subtracting the sample mean from
the output sequence improved the match between similar
input and output sequences. A normalization scheme gave
the normalized correlation measure:14

It divided the zero-lag cross correlationrSY(0) by the square
root of the energy of the input and the output sequences
where the energy of a sequence is the same as the zero-lag
value of its autocorrelation:

Nanotube field-effect transistor technology produced de-
tectors that could exhibit hysteresis19-21 or react to adsorbed
molecules.22-24 The experiment applied subthreshold symbols
that were at least two standard deviations away from the far
leg of the hysteretic loop. The effectiveI-VG curve in Figure
1b, as collected from the detector response to the input
symbols, showed that the experiment produced evidence of
the SR effect despite the potential hysteretic effect.

The experiment found the SR effect for mutual information
and correlation for Gaussian and uniform noise and for four

combinations of binary symbols: (-2.0,-1.8), (-1.8,-1.6),
(-1.6,-1.4), and (-1.4,-1.2) V. Figure 1a shows the SR
effect for additive white Gaussian noise and the subthreshold
signal pair ON) -1.6 V and OFF) -1.4 V. The SR mode
of the mutual-information curve is 6 times the value at
minimal noise. The SR mode of the correlation curve is 3
times the value at minimal noise. Figure 2a shows the SR
effect for additive white uniform noise and the signal pair
ON ) -1.8 V and OFF) -1.6 V.

We also passed impulsive or infinite-variance white noise
through the nanotube detector to test whether it was robust
to occasional large noise spikes. We chose the highly
impulsive Cauchy noise1 for this task. This infinite-variance
noise probability density function had the form

for zero location and finite dispersionγ. Figure 2b shows
that a diminished SR effect still persists for Cauchy noise
with the subthreshold signal pair ON) -2.0 V and OFF)
-1.8 V. Not all Cauchy experiments produced a measurable
SR effect.

These SR results suggest that nanotubes can exploit noise
in other signal-processing tasks if advances in nanotube
device technology can overcome the problems of hysteresis
and parasitic capacitance that affect logic circuits25 and high-
frequency signals.26 The nanotube signal detectors might
apply to broadband27,28 or optical communication systems29

that use submicroamp currents and attenuated signals in noise
because our nanotube detectors used nanoamp current and
could distinguish between subthreshold binary symbols. The

Figure 2. (a) Stochastic resonance with additive white uniform noise. All four combinations of input voltage values produced a clear SR
response in both mutual information (bottom red curve) and input-output correlation (top green curve) just as with additive white Gaussian
noise. Shown is the SR effect for the subthreshold signal ON) -1.8 V and OFF) -1.6 V. The SR mode is at 0.04 standard deviation.
(b). Robust stochastic resonance with additive white Cauchy noise. This highly impulsive noise has infinite variance and infinite higher-
order moments. The Cauchy-noise experiment produced a measurable SR effect for two of the four combinations of input voltages. Shown
is an approximate SR effect for the subthreshold signal ON) -2 V and OFF) -1.8 V. The SR mode lies at about the 0.003 dispersion
value. Several SR researchers have found multiple modes in the plot of system performance against noise strength.51-53 The limited dynamic
range [-5V, 5V] of the data acquisition equipment (Supporting Information) may have produced the second peak in the graph as a truncation
artifact because it clipped large spikes when it realized the infinite-variance Cauchy noise. The clipping affected more than 0.1% of the
noise only for dispersions greater than 0.01.
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detectors might apply to parallel signal processing30 at the
nanolevel because they could have a small minimum feature
size31 in vast parallel arrays of nanotubes. The parallel
detectors could apply to spread spectrum communications:
each nanotube can act as an antenna32 that matches a separate
frequency channel33 in frequency hopping and perhaps in
other types of spread spectrum communications.34 A nano-
tube’s length can code for a given frequency35 while chemical
adsorption can tune a nanotube’s threshold.23,24The detectors
might apply to chemical detection and parallel field pro-
gramming by tuning the threshold chemically. The nanotube
detectors can also operate in a biological environment such
as saline solution.36 The nanotube detectors could interface
with biological systems because an electrolyte can act as their
gate.36,37The nanotube detectors might also help implement
pulse-train neural networks and exploit noise in biological38-49

or robotic systems because the detectors are threshold devices
similar to spiking neurons.50
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