
Neural Networks 129 (2020) 359–384

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Noise can speed backpropagation learning and deep bidirectional
pretraining
Bart Kosko a,∗, Kartik Audhkhasi c,a, Osonde Osoba b,a

a Department of Electrical and Computer Engineering, Signal and Image Processing Institute, University of Southern California, Los
Angeles, CA 90089-2564, USA
b RAND Corporation, Santa Monica, CA 90401-3208, USA
c Google, Inc., NY, USA

a r t i c l e i n f o

Article history:
Received 11 March 2019
Received in revised form 19 February 2020
Accepted 2 April 2020
Available online 11 April 2020

Keywords:
Backpropagation
Noise benefit
Stochastic resonance
Expectation–Maximization algorithm
Bidirectional associative memory
Contrastive divergence

a b s t r a c t

We show that the backpropagation algorithm is a special case of the generalized Expectation–
Maximization (EM) algorithm for iterative maximum likelihood estimation. We then apply the recent
result that carefully chosen noise can speed the average convergence of the EM algorithm as it climbs
a hill of probability or log-likelihood. Then injecting such noise can speed the average convergence of
the backpropagation algorithm for both the training and pretraining of multilayer neural networks. The
beneficial noise adds to the hidden and visible neurons and related parameters. The noise also applies
to regularized regression networks. This beneficial noise is just that noise that makes the current signal
more probable. We show that such noise also tends to improve classification accuracy. The geometry
of the noise-benefit region depends on the probability structure of the neurons in a given layer. The
noise-benefit region in noise space lies above the noisy-EM (NEM) hyperplane for classification and
involves a hypersphere for regression. Simulations demonstrate these noise benefits using MNIST digit
classification. The NEM noise benefits substantially exceed those of simply adding blind noise to the
neural network. We further prove that the noise speed-up applies to the deep bidirectional pretraining
of neural-network bidirectional associative memories (BAMs) or their functionally equivalent restricted
Boltzmann machines. We then show that learning with basic contrastive divergence also reduces to
generalized EM for an energy-based network probability. The optimal noise adds to the input visible
neurons of a BAM in stacked layers of trained BAMs. Global stability of generalized BAMs guarantees
rapid convergence in pretraining where neural signals feed back between contiguous layers. Bipolar
coding of inputs further improves pretraining performance.

© 2020 Elsevier Ltd. All rights reserved.

1. Noise benefits in backpropagation

We generalize and extend the recent result (Audhkhasi, Osoba,
& Kosko, 2016) that the backpropagation (BP) algorithm (Rumel-
hart, Hinton, & Williams, 1986; Werbos, 1974) is a special case of
the generalized Expectation–Maximization (EM) algorithm
(Dempster, Laird, & Rubin, 1977). The new result extends to what
we call BP invariance: The parameter gradient of the neural net-
work’s layer log-likelihood L must give back the BP learning laws
for that layer. We demonstrate this BP invariance for classification
and regression as well as for logistic networks.

We then show how noise can boost BP based on the general
noise-boosting strategy for EM. This allows EM-based noise in-
jection into the hidden layers as well as into the output layers as
in Audhkhasi et al. (2016). This EM-based noise takes different

∗ Corresponding author.
E-mail address: kosko@usc.edu (B. Kosko).

forms for classification and regression networks because of BP
invariance. The injected EM-based noise differs from the simple
blind white noise or dither of earlier noise-injection schemes.
It is just that noise that makes the current signal more likely
on average. Simulations on the MNIST image data set confirm
that this noise-boosted BP climbs the nearest hill of likelihood
faster on average than does noiseless BP or dithered BP. It also
tends to improve classification accuracy. A new discrete con-
vergence theorem for bidirectional associative memories shows
that contrastive-divergence learning in such associative memo-
ries or restricted Boltzmann machines is also a form of general-
ized EM. We then derive sufficient conditions for noise-boosting
contrastive divergence learning in pretraining for logistic and
Gaussian layers.

BP remains the workhorse of neural networks and deep learn-
ing (Gulshan et al., 2016; Hinton, 2018; Jordan & Mitchell, 2015;
LeCun, Bengio, & Hinton, 2015; Schmidhuber, 2015). EM performs
maximum likelihood estimation for the general case of missing

https://doi.org/10.1016/j.neunet.2020.04.004
0893-6080/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.neunet.2020.04.004
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2020.04.004&domain=pdf
mailto:kosko@usc.edu
https://doi.org/10.1016/j.neunet.2020.04.004

360 B. Kosko, K. Audhkhasi and O. Osoba / Neural Networks 129 (2020) 359–384

Fig. 1. Backpropagation as generalized Expectation–Maximization. The diagram shows how the backpropagation (BP) algorithm behaves as the general Expectation–
Maximization (EM) algorithm when it recognizes different digits after training on handwritten MNIST digit samples. The forward pass of input data through the
neural network corresponds to the Expectation (E) step. The backpropagation of the gradients corresponds to the Maximization (M) step. BP’s hidden units correspond
to EM’s hidden or latent variables. Theorem 1 states the formal equivalence between BP and EM in terms of their gradient updates.

data or hidden parameters (Dempster et al., 1977; McLachlan &
Krishnan, 2007; Moon, 1996; Xu & Wunsch, 2008).

BP remains a popular way to attack large-scale problems of
pattern recognition and signal processing. BP scales well because
its time complexity is only O(n) for n training samples. This
holds because both the forward and backward passes have O(n)
time complexity during training. Support vector machines and
other kernel methods have O(n2) complexity in general (Kung,
2014). Key BP applications include speech recognition (Dahl,
Ranzato, Mohamed, & Hinton, 2010; Mohamed, Dahl, & Hinton,
2009, 2012; Mohamed et al., 2011; Mohamed, Yu, & Deng, 2010;
Sainath et al., 2011; Seide, Li, & Yu, 2011), machine translation
of text (Deselaers, Hasan, Bender, & Ney, 2009), audio process-
ing (Hamel & Eck, 2010), artificial intelligence (Bengio, 2009),
computer vision (Ciresan, Meier, Gambardella, & Schmidhuber,
2010; Nair & Hinton, 2009; Susskind, Hinton, Movellan, & Ander-
son, 2008), medicine (Hu et al., 2013), biomedical modeling (Guo,
Zhou, Nie, Ruan, & Li, 2019; Hou, Zhou, Nie, Liu, & Ruan, 2019),
and general multilayered or deep learning (Jordan & Mitchell,
2015; LeCun et al., 2015).

We generalize and extend the BP-as-EM theorem and then
use it to speed the average convergence of the BP training of
multilayer neural networks for both classification and regression.
The beneficial noise must satisfy a likelihood-based inequality
in all cases. We also show that this EM-based noise also tends
to improve classification accuracy. Simulations on MNIST hand-
written digit data confirm that this noise benefit substantially
exceeds the slight benefit (if any) of adding small amounts of
blind noise to the neural network. The MNIST data set is the
Modified National Institute of Standards and Technology image
data set of the ten handwritten digits 0, 1, . . . , 9. The data set
contains 60,000 digitized images for training and 10,000 images
for testing.

Related theorems show that similarly chosen noise can speed
the bidirectional pre-training of stacked layers. They show further
that contrastive-divergence is also a form of generalized EM. We
present a discrete bidirectional-associative-memory convergence
theorem that applies to such pre-training and ensures rapid con-
vergence for recall and learning. Using bipolar coding of inputs
further speeds convergence compared with binary coding.

1.1. Backpropagation invariance and the EM connection

The proof that BP is generalized EM casts BP as maximum
likelihood estimation. It then shows that the iterative BP algo-
rithm has the same gradient update at iteration n as does the
generalized EM algorithm in the master equation of (94):

∇Θ ln p(y|x, Θn) = ∇ΘQ (Θn
|Θn) (1)

as we explain below. This gradient identity applies far beyond
neural networks. We show that it follows from the concavity of
the logarithm and the related fact that Shannon entropy mini-
mizes cross entropy.

The left side of (1) implies that a pass through a neural clas-
sifier with 1-in-K encoding corresponds to rolling a K -sided die.
This holds because the likelihood of the output layer is a simple
type of multinomial distribution. It is a vector normal in the case
of a regression network. Then both output layers give back the
same BP learning law. We call this BP invariance: The parameter
gradient of a layer’s log-likelihood must equal that layer’s BP
learning law for a given network configuration. We also show
how this applies to layers of logistic or other hidden neurons. This
allows EM-based noise boosting of hidden neurons because of the
layer-likelihood factorization in (133).

The right side of (1) shows that increasing the network’s
log-likelihood ln p(y|x, Θn) increases EM’s surrogate likelihood
function Q . This means that a BP learning iteration takes a step
up the network’s likelihood or log-likelihood surface. We explain
below how the simple ‘‘EM trick’’ leads to the EM algorithm
itself. The trick in (68) swaps the left side of the definition of
conditional probability P(B|A) = P(A∩B)

P(A) with the denominator.
This swap gives the arbitrary and unconditional probability P(A)
as the ratio P(A) = P(A∩B)

P(B|A) for any ‘‘hidden’’ or other measurable

event B whatsoever. The entire EM theory unfolds from this
representation of the likelihood P(A).

Fig. 1 shows the high-level BP–EM correspondence for a feed-
forward neural network with hidden layers. The BP–EM corre-
spondence still holds for recurrent BP (Adigun & Kosko, 2017).
The correspondence also holds for the new bidirectional BP algo-
rithm (Adigun & Kosko, 2016, 2019a) and its application to gen-
erative adversarial neural networks trained on CIFAR-10 image
data (Adigun & Kosko, 2019b).

BP’s forward pass corresponds to EM’s expectation step. BP’s
backward pass corresponds to EM’s maximization step. The max-
imization here is the partial maximization of a gradient step. BP’s

B. Kosko, K. Audhkhasi and O. Osoba / Neural Networks 129 (2020) 359–384 361

Fig. 2. NEM-noise convergence benefit: NEM noise injection in the 10 output
neurons of a multilayer classifier network. The top figure shows the per-
cent median reduction in per-iteration cross entropy for NEM-backpropagation
(NEM–BP) training compared with noiseless BP training of a 10-class classifi-
cation neural network trained on 1000 digit images from the MNIST data set.
NEM noise reduced the cross entropy by 18% for the training set and the test set
at the optimal noise standard deviation of 0.42. The neural network used three
logistic (sigmoidal) hidden layers with 40 neurons each. The input layer used
784 logistic neurons. The output layer used 10 neurons with softmax activations.
The bottom figure shows the training-set cross entropy as iterations proceeded
for noiseless BP and for NEM–BP training that used the optimal noise variance
of 0.42. The knee-point of the NEM–BP curve at iteration 4 achieved the same
cross entropy as noiseless BP did at iteration 15.

hidden neurons and other hidden parameters correspond to EM’s
latent variables. The proof of Theorem 1 in the appendix gives the
formal details of the correspondence. It shows that the BP and
generalized EM gradients have the same parameter learning or
update equations. Figs. 8 and 9 show the geometry of the noise-
benefit sufficient condition for the special cases of cross-entropy
and either logistic or Gaussian output neurons.

1.2. Noise boosting BP via the noisy EM theorem

The gradient identity (1) and BP invariance allows EM-based
noise boosting of BP by invoking the recent noisy EM (NEM)
theorem (Osoba & Kosko, 2013, 2016b; Osoba, Mitaim, & Kosko,
2011b, 2013). This theorem gives a sufficient condition for speed-
ing the average convergence of the EM algorithm so long as the
noise obeys the likelihood-ratio positivity condition in (114). NEM
noise depends only on the gradient connection in (1). It does
not depend on second-order Hessian information as in the Adam
(adaptive moment estimation) variable-rate optimizer (Kingma &
Ba, 2014).

We state the NEM Theorem as Theorem 2 for completeness.
The NEM Theorem ensures on average that at each iteration a
proper noise injection results in a larger step up the hill of proba-
bility than does a noiseless EM step. So the NEM Theorem ensures
that proper noise injection speeds the average convergence of
the BP algorithm because of Theorem 1. The layer-likelihood
factorization (133) and the proof of Theorem 5 show how to inject
NEM noise in hidden layers.

The NEM noise benefit counts as a type of ‘‘stochastic res-
onance’’ effect: a small amount of noise improves the perfor-
mance of a nonlinear system while too much noise harms the
system (Bulsara, Boss, & Jacobs, 1989; Franzke & Kosko, 2011;
Gammaitoni, Hänggi, Jung, & Marchesoni, 1998; Kosko, 2006;

Fig. 3. Minimal benefits from blind-noise injection. The top figure shows the
percent median reduction in per-iteration cross entropy for EM–BP training with
blind noise (Blind-BP) relative to noiseless BP training of a 10-class classification
neural network that trained on 1000 images from the MNIST data set. Blind noise
produced only a small reduction in cross entropy of 1.7% for the training and
the test set at the optimal noise standard deviation of 0.54. The neural network
used three logistic (sigmoidal) hidden layers with 40 neurons each. The input
layer used 784 logistic neurons. The output layer used 10 neurons with softmax
activation functions. The bottom figure shows the training-set cross entropy as
iterations proceeded for noiseless BP and blind-BP training that used the optimal
noise variance of 0.54. Both blind-noise BP and noiseless BP gave similar cross
entropies for all iterations.

McDonnell, Stocks, Pearce, & Abbott, 2008; Mitaim & Kosko, 1998,
2014; Patel & Kosko, 2008, 2009, 2010, 2011; Wilde & Kosko,
2009).

The NEM noise benefit differs from ordinary stochastic reso-
nance in two ways. The first way is that the NEM noise benefit
does not rely on a neuron’s threshold. The NEM regression result
in (182) applies even to identity neurons in output or hidden
layers. The second way is that stochastic-resonance noise is blind
or dither noise in general. NEM noise is instead just that noise n
that makes the current signal y more probable:

p(y+ n|Θ) ⩾ p(y|Θ) (2)

for some parameter vector Θ . Then taking the average of the
resulting log-likelihood-ratio inequality ln p(y+n|Θ)

p(y|Θ) ⩾ 0 gives the

sufficient positivity condition in (114) for a NEM noise benefit.
The NEM Theorem ensures only that NEM noise will im-

prove the average convergence at each iteration. It does not
describe the magnitude of the speed-up. Our simulations on
MNIST handwritten-digit data show that the speed-up can be
substantial when injecting noise in just the output softmax neu-
rons alone. Fig. 2 shows the noise benefit for cross-entropy
training of a feedforward neural network. The NEM version shows
an 18% median decrease in cross entropy per iteration com-
pared with noiseless backpropagation training. We also show
how NEM noise injection into the hidden neurons further speeds
convergence and accuracy.

NEM noise is not blind noise. Fig. 3 shows that adding blind
noise gives only a minuscule improvement of 1.7% in cross entro-
py over the noiseless EM–BP algorithm. Reed used a Taylor-series
expansion to argue that these slight boosts from adding small-
amplitude blind noise resemble Tikhonov regularization (Reed,
Marks, & Oh, 1995; Reed, Oh, & Marks, 1992). Bishop published
a similar result (Bishop, 1995). We do expect that the NEM noise

362 B. Kosko, K. Audhkhasi and O. Osoba / Neural Networks 129 (2020) 359–384

Fig. 4. NEM noise improved classification accuracy. The figure shows the percent
median reduction in the per-iteration classification error rate for the NEM-
backpropagation (NEM–BP) training compared with noiseless BP training. The
neural network was a 10-class classification network trained on 1000 images
from the MNIST data set. NEM noise injection reduced the classification error
rate by 15% for the training set and about 10% for the test set at the optimal
noise standard deviation of 0.42. The neural network used three hidden layers
with 40 logistic (sigmoidal) neurons each. The input layer used 784 logistic
neurons. The output layer used 10 neurons with softmax activations. The bottom
figure shows the training-set classification error rate as iterations proceeded for
noiseless BP and NEM–BP training that used the optimal noise variance of 0.42.
The knee-point of the NEM–BP curve at iteration 4 had the same classification
error rate as noiseless BP did at iteration 11.

Fig. 5. Minimal accuracy benefits for blind noise. Percent median reduction
in per-iteration classification error rate for EM-backpropagation training with
blind noise (Blind-BP) compared with the noiseless EM–BP training of a 10-
class classification neural network trained on 1000 images from the MNIST data
set. Optimal noise (with standard deviation 0.28) gave only a minor reduction
in classification error rate of 1% for the training and the test set. The classifier
network used three logistic hidden layers with 40 neurons each. The input layer
used 784 logistic neurons and the output layer used 10 softmax neurons. The
bottom figure shows the training-set classification error rate over iterations for
EM–BP and blind-BP training that used the optimal noise variance of 0.28. Both
curves show similar classification error rates for all iterations.

benefit will fall off as the sample size grows because NEM noise
tends to act as synthetic random sample data (Osoba et al., 2013).

NEM–BP noise can add to all the neurons or other parameters
in the network. It can add to both the output and hidden neurons.

It can multiply any signal or parameter. Theorems 3 and 4 prove
the NEM noise benefit for adding noise to the output neurons of
a respective softmax classifier or regressor. Section 6 shows that
a NEM noise benefit also applies to the hidden neurons. Fig. 10
shows the effects of NEM-noise versus no noise injection in the
hidden layers of a classifier network and a regression network.
NEM noise gave a 60.44% relative reduction in the per-iteration
training-set cross-entropy compared with standard noiseless BP.
It gave a 54.39% relative reduction in the per-iteration test-set
cross-entropy.

NEM–BP also tends to give better classification accuracy at
each training iteration than the noiseless EM–BP algorithm. This
occurs both because NEM noise improves the cross entropy on
average at each iteration and because cross entropy approximates
the classification error rate. Theorem 6 recasts this explanation in
terms of likelihood: The network likelihood gives a lower bound
on the classification accuracy. NEM noise boosts just this likeli-
hood. Fig. 4 shows that NEM–BP gives a 15% median improvement
in the per-iteration classification error rate for the training set. It
gives a 10% improvement for the testing set at the optimal noise
variance of 0.42. Fig. 5 shows that this noise benefit disappears if
we inject blind noise in place of NEM noise.

A related NEM result holds for the feedback pre-training of the
individual layers of neurons in a multilayer neural network. These
so-called restricted Boltzmann machine (RBM) (Hinton et al.,
2012; Hinton, Osindero, & Teh, 2006; Smolensky, 1986) layers are
simple bidirectional associative memories (BAMs) (Kosko, 1987,
1988, 1991) that undergo synchronous updating of the neurons.
They are BAMs because the neurons in contiguous layers use
the same connection matrix W in the forward pass that they
use in transposed form WT in the backward pass. The neurons
have no within-layer connections but can in more general BAM
topologies.

The general BAM convergence theorem (Kosko, 1987, 1988,
1991) guarantees that all such rectangular matrices W are glob-
ally bidirectionally stable for either synchronous or asynchronous
neuron updates. This theorem holds for general neuronal ac-
tivation nonlinearities because the RBM energy function is a
Lyapunov function for the BAM network. The theorem ensures
almost immediate convergence to a BAM fixed point after only a
small number of synchronous back-and-forth updates when both
layers use logistic neurons. We present a special discrete case of
the BAM convergence theorem. It holds for a discrete version of
the adaptive BAM theorem (Kosko, 1987, 1988, 1991) for sim-
ple Hebbian correlation learning. These results help explain the
observed rapid convergence in stacked RBM layers. They do not
invoke Markov-chain convergence or other stochastic asymptotic
properties.

Fig. 6 shows the noise benefit for NEM training of a logistic–
logistic BAM with 784 visible and 40 hidden neurons. All the neu-
rons in both fields have logistic sigmoidal activations. A ‘‘swamp-
ing’’ result still achieves this rapid BAM convergence even if a
hidden layer uses Gaussian activations. Adding enough logistic
neurons to the contiguous layer can always swamp or overcome
any convergence problems that the non-sigmoidal Gaussian neu-
rons might otherwise produce. Fig. 11 further shows how bipolar
coding of the MNIST images rapidly speeds up BAM conver-
gence compared with binary coding. This result follows from a
correlation-coding theorem in the Appendix of the original BAM
paper (Kosko, 1988). It simply requires that the input neurons en-
code data using the bipolar interval [−1, 1] rather than the binary
interval [0, 1]. The two theorems in the last section show that
training these contiguous BAM layers with contrastive divergence
is a form of generalized EM. So the training benefits from NEM
noise. These noise benefits include the case where one layer has
logistic neurons and the next layer has Gaussian neurons.

B. Kosko, K. Audhkhasi and O. Osoba / Neural Networks 129 (2020) 359–384 363

NEM training also gave about a 16% improvement in the
per-iteration squared reconstruction error over noiseless train-
ing. Fig. 7 shows that BAM training with blind noise gave no
significant benefit.

The NEM Theorem defines a type of ‘‘forbidden’’ condition that
ensures a noise speed-up so long as the noise lies outside of a
specified region in the noise state–space. The adjective ‘‘forbid-
den’’ comes from the noise-benefit theorems that describe adding
blind white noise to a threshold system so as to increase the
system’s mutual-information bit count or its cross-correlation or
to reduce its probability of detection error (Mitaim & Kosko, 2014;
Osoba & Kosko, 2013; Osoba et al., 2011b, 2013; Patel & Kosko,
2008, 2009). The simplest forbidden-interval theorem states that
a threshold signal system with bipolar and sub-threshold signal
amplitudes −A < A < θ will have a mutual-information (Kosko
& Mitaim, 2003, 2004; Mitaim & Kosko, 2004) or cross-correlation
noise benefit (Kosko, Lee, Mitaim, Patel, & Wilde, 2009; Lee,
Liu, Zhou, & Kosko, 2006; Mitaim & Kosko, 2014) if and only if
the average noise E[N] does not lie in the parameter interval
(θ − A, θ + A) for scalar threshold θ . This result applies to a
threshold system Yt = signum(St + N − θ) for input Bernoulli
signal St with amplitude A. Forbidden-interval theorems extend
to far more general nonlinear neural models and more general
noise processes that include Levy jump processes (Patel & Kosko,
2009). Stochastic-resonance noise may well benefit the use of
trained neural networks given their nonlinear structure. This
paper focuses only on noise that benefits neural training.

NEM forbidden regions are more complicated subsets of noise
space. Figs. 8 and 9 show that the noise must lie outside or
inside such regions to speed convergence. BP invariance and the
likelihood structure of a neural layer control the geometry of
the forbidden region. So a layer’s neural activations controls its
likelihood structure. Theorem 3 describes how the logistic output
neurons in Fig. 8 give the forbidden region as a hyperplane-based
half-space in noise space. A regression network’s output identity
neurons and BP invariance imply a Gaussian likelihood structure.
Theorem 4 describes the resulting spherical region in noise space
for a NEM-noise benefit. Reversing the inequalities of the NEM
Theorem gives a dual noise-harm condition for such forbidden
regions: Noise drawn from within such regions can only slow the
average convergence of the EM and BP algorithms.

Theorems 9 and 10 give similar noise-benefit sufficient con-
ditions in feedback networks for respective Bernoulli–Bernoulli
(logistic–logistic) BAMs and Gaussian–Bernoulli (Gaussian-
logistic) BAMs.

1.3. Earlier noise injection in backpropagation

The reduction of BP to EM differs in kind from earlier efforts
that applied EM to BP or that used BP in EM (Cook & Robinson,
1995; Ng & McLachlan, 2004). These earlier efforts treated EM and
BP as different algorithms. They did not show or suggest that one
subsumed the other. Nor did they inject specially chosen noise to
speed BP training or improve its accuracy.

Adding blind or unconditional noise to learning algorithms has
a long history in neural networks and machine learning. Minsky
observed in his 1961 overview of artificial intelligence that ‘‘one
may use noise added to each variable’’ in state–space search
based on random hill climbing (Minsky, 1961). Widrow showed
in 1976 that adding blind noise to the gradient parameters of
the LMS algorithm can improve convergence (Widrow & McCool,
1976). LMS applies to a minimal linear network with no hidden
neurons.

The NEM approach does not add blind noise to a network.
It adds specially chosen NEM noise to the data or the network
neurons or related parameters. Amari analyzed a ‘‘stochastic per-
ceptron’’ regression network (Amari, 1995) in the context of EM.

Fig. 6. NEM benefits in BAM training. The figures show the percent median
reduction in per-iteration squared reconstruction error for training with NEM
noise compared with the noiseless training of a 2-layer bidirectional associative
memory (BAM) on 1000 images from the MNIST data set. NEM noise gave a 16%
reduction in the training-set squared reconstruction error at the optimal noise
variance of 1024. The BAM used one hidden layer with 40 logistic neurons and
an input layer with 784 logistic neurons. The bottom figure shows the training-
set squared reconstruction error over iterations for NEM and noiseless training
that used the optimal noise variance of 1024.

Fig. 7. No blind-noise benefit in BAM training. The figures show the percent
median reduction in per-iteration squared reconstruction error for training with
blind noise compared with the noiseless training of a 2-layer BAM on 1000
images from the MNIST data set. The per-iteration squared reconstruction error
did not differ significantly for the two cases. The BAM used one hidden layer
with 40 logistic neurons and an input layer with 784 logistic neurons.

He came close to finding the BP-as-EM result in Theorem 1.
But Amari used a variance-based squared error for minimization
rather than the unweighted squared error that ties BP regression
to EM. NEM works with noise that has positive and often large
variance or dispersion.

More recent noise-injection efforts have found an approximate
regularizing effect from adding faint blind white noise to BP (An,
1996; Bishop, 1995; Hayakawa, Marumoto, & Sawada, 1995; Mat-
suoka, 1992; Reed et al., 1995, 1992). The drop-out neural al-
gorithm similarly applies blind multiplicative Bernoulli or Gaus-
sian noise to hidden activations (Srivastava, Hinton, Krizhevsky,
Sutskever, & Salakhutdinov, 2014). Denoising autoencoders like-
wise randomly zeros out input values in autoencoder networks to
reduce reconstruction error (Vincent, Larochelle, Lajoie, Bengio, &
Manzagol, 2010). Holmstrom and Koistinen (1992) earlier showed
that injecting additive Gaussian noise in mean-square BP can

364 B. Kosko, K. Audhkhasi and O. Osoba / Neural Networks 129 (2020) 359–384

Fig. 8. Noise-benefit region for a multilayer neural network with logistic output
neurons: NEM noise speeds the maximum-likelihood parameter estimation of
the neural network if the injected noise lies above the NEM hyperplane in
noise space. Theorem 3 defines the hyperplane in this case. The likelihood
structure of this logistic layer was a product of Bernoulli densities. The activation
signal at of the output layer controlled the normal to the hyperplane. The
hyperplane changed as learning proceeded because the parameters and hidden-
layer activations changed. The independent and identically distributed Gaussian
noise had mean 0 and variance 3. The vector (3, 1, 1) was the normal to the
hyperplane.

Fig. 9. Noise-benefit region for a regression network with linear or identity out-
put neurons: NEM noise speeds the maximum-likelihood parameter estimation
of the neural network if the noise lies inside a hypersphere in accord with
Theorem 4. The likelihood structure of the output layer is a vector normal
density. The activation signal at of the output layer and the target signal t
controlled the center and radius of the hypersphere. This hypersphere changed
as learning proceeded because the parameters and hidden-layer activations
changed. The independent and identically distributed Gaussian noise had mean
0 and variance 3. It had center t− at = (1, 1, 1).

improve the network’s generalization ability because such noise
acts as a Parzen-window estimate of the data density. The authors
did not prove a sufficient condition for this noise benefit. Aza-
mimi, Uwate, and Nishio (2008) later found through simulations
that adding tent-map chaotic noise to mean-square BP improved
its convergence. The injected chaotic noise outperformed blind
random noise.

We stress again that injecting such blind noise differs from
injecting NEM noise. The geometry of the main NEM noise result
also shows that blindly picking noise from both above and below
the NEM hyperplane should not on average produce a noise
benefit. This holds because on average noise from above the NEM

hyperplane improves convergence or accuracy while noise from
below it only degrades performance on average. We also show
below that all the main noise-boost theorems still hold for any
additive regularizer if the noise does not appear in the regularizer
term itself.

The NEM noise-injection results also differ from ‘‘noise con-
trastive estimation’’ (Gutmann & Hyvärinen, 2012;
Mnih & Kavukcuoglu, 2013) This perturbation technique uses a
type of Monte Carlo randomization to simplify the computation
of a normalization or partition function in logistic regression.
It does not inject noise into the data. Nor does it work with
BP-based deep learning on multi-neuron networks. It instead
compares training with data to training with blind noise. So the
NEM noise boost could in principle apply to its data training.
Noise contrastive estimation also randomly picks subsets of data
for processing. The BAM convergence theorem below does allow
random selection of neurons for updating. But that asynchronous
updating does not involve the NEM noise-injection process.

1.4. Overview of subsequent sections

The next section casts the BP algorithm as maximum likeli-
hood estimation. This maximum-likelihood framework includes
classification and regression networks as well as logistic net-
works. Section 3 presents the EM algorithm for neural-network
training and proves that it reduces to the backpropagation al-
gorithm per the gradient equality in (1). The proof shows that
BP’s gradient updates at each iteration are the same as the gra-
dient updates of generalized EM. Monte Carlo importance sam-
pling simplifies some of the gradient computations. Section 4
reviews the NEM theorem that states a sufficient condition for
noise-boosting the EM algorithm and its progeny.

Section 5 derives noise-benefit sufficient conditions for a feed-
forward neural network. It shows how to inject NEM noise into
the output neurons of a classifier or regression network. The
method applies to any network so long as the choice of neurons
and network likelihood leaves the BP laws invariant. Section 6
further shows how to inject NEM noise into hidden neurons.
Section 7 shows how NEM noise-boosting the network likelihood
can improve the classification accuracy of classifier networks. The
accuracy bound also applies to networks whose output neurons
are logistic neurons.

Section 8 reviews RBMs or BAMs and extends an important
version of the BAM global stability theorem for discrete networks.
The BAM network converges exponentially quickly to a bidirec-
tional fixed point if the neurons at both layers are logistic. This
result extends at once with a ‘‘swamping’’ argument. We can
always add more logistic neurons to a hidden layer to ensure
rapid BAM convergence even when the contiguous layer consists
of Gaussian neurons or other neurons with non-monotonic but
bounded activations. We further extend this BAM convergence
to include Hebbian correlation learning and use it to explain
convergence in the contrastive-divergence setting. A related BAM
result shows that using bipolar neuron coding tends to improve
performance. This means that the neuron activations should have
the range [−1, 1] rather than [0, 1]. Fig. 11 shows that bipolar
encoding speeds up BAM convergence by more than an order of
magnitude compared with binary encoding.

The penultimate section shows that contrastive-divergence
learning law is also a special case of generalized EM. It then de-
rives sufficient conditions for a NEM noise benefit for maximum-
likelihood training of Bernoulli–Bernoulli and Gaussian–Bernoulli
BAMs or RBMs. Section 10 presents the related simulation results.

B. Kosko, K. Audhkhasi and O. Osoba / Neural Networks 129 (2020) 359–384 365

2. Backpropagation as maximum likelihood estimation

This section shows that the BP algorithm performs maximum-
likelihood (ML) estimation of a neural network’s parameters. The
next section shows that BP is just one form of the EM algorithm
for ML estimation. Then the section after that shows how to
noise-boost EM and thus noise-boost BP.

We use a 3-layer neural network for notational convenience.
All results extend to deep networks with any number of hidden
layers. Most of the simulations in the figures used five-layer
networks with three hidden layers of logistic neurons.

The network consists of I input neurons, J hidden neurons, and
K output neurons. The I× J weight matrix W connects the I input
neurons to the J hidden neurons. The J × K matrix U connects
the hidden neurons to the K output neurons. Let the I-vector x
denote the I input neuron values. The input neurons may just act
as data registers and thus have identity activations: aij(xj) = xj for
the jth identity activation in the input i layer. We allow them to
have nonlinear activations and use logistic input neurons in the
simulations.

The J hidden units can have arbitrary nonlinear activations.
They often in practice have sigmoidal or monotone nondecreas-
ing activations. They can also have non-sigmoidal or Gaussian
activations as in radial-basis networks and the more general
fuzzy function approximators (Jang & Sun, 1993; Kosko, 1994,
1996; Osoba, Mitaim, & Kosko, 2011a) and their representations
as generalized probability mixtures (Kosko, 2018). They can also
have quasi-linear rectilinear-unit or ‘‘ReLU’’ activations as we
discuss below. Different hidden layers can contain both sigmoidal
and non-sigmoidal or Gaussian hidden neurons. The penultimate
section explores this for pre-training of deep networks.

The most common sigmoidal activation remains the logistic
activation. Let ah denote the vector of hidden-neuron activations.
Then the jth hidden neuron is (binary) logistic if

ahj (o
h
j) =

1
1+ exp(−ohj)

(3)

=
1

1+ exp
(
−
∑I

i=1 wjixi
) (4)

if wji is the weight of the directed link or edge or synapse that
connects the ith visible neuron to the jth hidden neuron. The term
ohj denotes the hidden neuron’s inner-product input:

ohj =
I∑

i=1

wjixi . (5)

The jth input neuron can also have a nonlinear activation aij(xj).
Then (3) implies that the partial derivative of ahj with respect to
its input ohj has a simple nonnegative form:

∂ahj
∂ohj
= ahj (1− ahj) . (6)

Large inputs can quickly saturate a steep logistic. Then the prod-
uct term in (6) implies that logistic hidden units can lead to
vanishing gradients in deep networks. This explains the increas-
ing use of rectified-linear-unit or ReLu activations ahj (o

h
j) =

max(0, ohj): ReLu activations are also monotone nondecreasing
but do not saturate for large inputs.

The sigmoidal hidden activations sometimes have a related
hyperbolic-tangent form:

ahj (o
h
j) =

eo
h
j − e−o

h
j

eo
h
j + e−o

h
j

. (7)

The hyperbolic tangent is just a scaled bipolar version of the
logistic activation lj in (3): ahj (o

h
j) = 2lj(2ohj) − 1. This also leads

to a simple and nonnegative derivative:

∂ahj
∂ohj
= 1− (ahj)

2 . (8)

The K output neurons can have arbitrary activations so long
as they leave the BP learning laws in (1) invariant. Classification
networks usually have output neurons with Gibbs or softmax
activations so that the output vector defines a discrete probability
distribution. This ratio of exponentials follows from rewriting the
Bayes-theorem ratio in terms of exponentials for K-class clas-
sification (Bishop, 2006). Regression networks often use output
neurons with linear or logistic activations. We show below that
BP invariance requires that output neurons with identity (or
linear) activations need Gaussian target vectors to preserve the BP
update equations. We address each in turn to derive the invariant
BP laws as maximum likelihood.

Consider first a multilayer classification network. Let y denote
the K -valued target or output variable. Let t denote its 1-in-K
binary encoding. So the target vector t is a unit binary vector and
thus a simple probability distribution. Then tk is the kth output
neuron’s value with softmax or Gibbs activation

atk =
exp(ok)∑K
l=1 exp(ol)

(9)

=

exp
(∑J

j=1 ukjahj
)

∑K
l=1 exp

(∑J
j=1 uljahj

) (10)

= pk(y = tk|x, Θ) (11)

where ukj is the weight of the directed link that connects the jth
hidden to the kth target neuron and where ok denotes the output
neuron’s inner-product input:

ok =
J∑

j=1

ukjahj . (12)

So atk depends on the input x and on the parameter matrices U
and W. The vector Θ denotes all network parameters.

The total output vector at defines a discrete probability density

at = p(y = t|x, Θ) (13)

because of the exponential-sum normalizer or ‘‘partition func-
tion’’ in the denominator of (10). Then taking the logarithm gives
the neural network’s log-likelihood function L(Θ):

L(Θ) = ln p(t|x, Θ) . (14)

The maximum-likelihood parameters Θ∗ for the neural network
solve the optimization problem

Θ∗ = argmax
Θ

ln p(y|x, Θ) . (15)

The basic NEM Theorem shows that the NEM-noise boosted
parameter vector Θ

(n)
NEM converges in fewer steps to the

maximum-likelihood network parameter vector Θ∗ than does the
noiseless parameter vector Θ (n). Each noise-boosted step up the
likelihood surface is at least as large on average as is the noiseless
step.

The partition function in the softmax activation (10) leads to
a more complicated partial derivative with respect to the K inner
products o1, . . . , oK :

∂atk
∂oj
=

{
−atj a

t
k if k ̸= j

atk(1− atk) if k = j .
(16)

366 B. Kosko, K. Audhkhasi and O. Osoba / Neural Networks 129 (2020) 359–384

The cross entropy E(Θ) is the usual scalar performance mea-
sure for a classifier network (Bishop, 2006) . The cross entropy
compares the target pdf t with the output softmax pdf at as the
expected information Et [ln 1

at]:

E(Θ) = −
K∑

k=1

tk ln atk . (17)

We first show that the network log-likelihood L(Θ) equals the
negative cross entropy: L(Θ) = −E(Θ). This equality follows
by rewriting the target-weighted sum of logarithms (17) as the
product of logarithms:

E(Θ) = −
K∑

k=1

ln(atk)
tk (18)

= − ln
[K∏
k=1

(atk)
tk
]

(19)

= − ln
[K∏
k=1

pk(y = tk|x, Θ)
]

(20)

= − ln p(y|x, Θ) (21)

= −L(Θ) . (22)

The probability density factorization (20) holds because we as-
sume that the K output neurons are conditionally independent of
one another given the input x. Such statistical independence also
reflects the network structure that there are no synaptic connec-
tions among the output neurons. The output layer’s intra-layer
connection matrix is a null matrix.

So p(y|x, Θ) = exp(−E(Θ)): Minimizing the cross entropy
E(Θ) maximizes the log-likelihood L and conversely. So such
cross-entropy estimators enjoy the same statistical properties
that ML estimators do. They are consistent and asymptotically
normal in general. They also obey the invariance principle:
ĝ(Θ)

ML
= g(Θ̂ML) for an arbitrary function g (Hogg, McKean, &

Craig, 2013).
The same derivation shows that −E(Θ) = ln atk if k is the

correct target label for input pattern x: x ∈ Ck for input decision
or pattern class Ck when the K classes Cj partition the input
pattern space. This holds because the target vector t is the unit bit
vector with a 1 in the kth slot and 0s elsewhere. But the above
derivation that p(y|x, Θ) = exp(−E(Θ)) still holds if the target
values t1, . . . , tK are not binary but instead define an arbitrary
discrete probability distribution. That also holds for the gradient
derivations below.

We show next that minimizing the cross entropy minimizes
the discrete Kullback–Leibler divergence KL(t∥at) between the
target vector t and the vector at of output activations. This equiv-
alence holds because both t and at are discrete pdfs:

KL(t∥at) =
K∑

k=1

tk ln
tk
atk

(23)

=

K∑
k=1

tk ln tk −
K∑

k=1

tk ln atk (24)

= −H(y)+ E(Θ) (25)

from (17). The output entropy H(y) does not affect the mini-
mization because H(y) does not depend on θ . So minimizing the
Kullback–Leibler divergence KL(t∥at) also maximizes the network
log-likelihood L(Θ).

BP updates a classifier network’s parameters Θ through gra-
dient descent to minimize the cross entropy E(Θ). The above

arguments show that this gradient descent also minimizes the
Kullback–Leibler divergence. It also maximizes the log-likelihood
ln p(y|x, Θ) and thus maximizes L(Θ). So we can write the esti-
mate of Θ at the (n + 1)th iteration or training epoch as Θ (n+1)

in three equivalent ways:

Θ (n+1)
= Θ (n)

− ηn∇ΘE(Θ)
⏐⏐⏐
Θ=Θ(n)

(26)

= Θ (n)
+ ηn∇Θ ln p(y|x, Θ)

⏐⏐⏐
Θ=Θ(n)

(27)

= Θ (n)
+ ηn∇ΘL(Θ)

⏐⏐⏐
Θ=Θ(n)

(28)

where ηn is a positive learning rate or a sequence of (usually
decreasing) learning rates.

We next derive the two key partial derivatives of the network
log-likelihood L(Θ) that underlie BP’s gradient descent or ascent
for a classifier neural network. The argument below shows that
the same partial derivatives result for regression and logistic. So
BP invariance holds. The argument assumes that all functions
are sufficiently smooth to apply the chain rule of differential
calculus (Kosko, 1991).

The first result is that the partial derivative of the log-
likelihood L with respect to the synaptic weight ukj is

∂L
∂ukj
= (tk − atk)a

h
j (29)

where the weights ukj connect the hidden neurons to the output
neurons. The second result is that the partial derivative of L with
respect to wji is

∂L
∂wji
= ahj (1− ahj)xi

K∑
k=1

(tk − atk)ukj . (30)

where the weights wji connect the input neurons or data registers
to the hidden neurons. This second result assumes that the hid-
den neurons have logistic activations and thus have derivatives
of the form (6). Using hidden neurons with hyperbolic-tangent
activations gives

∂L
∂wji
= (1− (ahj))

2xi
K∑

k=1

(tk − atk)ukj (31)

from (8). So (29) and (30) give the partial derivatives that perform
gradient ascent on the network log-likelihood L. They constitute
the BP gradient algorithm for a standard classifier neural network.

The first partial-derivative result (29) follows from
∂L
∂ukj
=

∂L
∂ok

∂ok
∂ukj

(32)

=
(K∑
i=1

∂L
∂ati

∂ati
∂ok

) ∂ok
∂ukj

(33)

=
(
tk

1
atk

∂atk
∂ok
+

K∑
i̸=k

ti
1
ati

∂ati
∂ok

) ∂ok
∂ukj

(34)

=
(
tk

1
atk

atk(1− atk)−
K∑
i̸=k

ti
1
ati

ati a
t
k

) ∂ok
∂ukj

(35)

from (16)

=
(
tk − atk

K∑
i=1

ti
) ∂ok
∂ukj

(36)

= (tk − atk)
∂ok
∂ukj

(37)

= (tk − atk)a
h
j (38)

B. Kosko, K. Audhkhasi and O. Osoba / Neural Networks 129 (2020) 359–384 367

from (12). The derivation confirms that the target values t1, . . . ,
tK can be any discrete pdf.

The second partial-derivative result (30) follows for logistic
neurons from

∂L
∂wji
=

∂L
∂ahj

∂ahj
∂ohj

∂ohj
∂wji

(39)

=
(K∑
k=1

∂L
∂ok

∂ok
∂ahj

)∂ahj
∂ohj

∂ohj
∂wji

(40)

=
(K∑
k=1

(tk − atk)
∂ok
∂ahj

)∂ahj
∂ohj

∂ohj
∂wji

(41)

from (32)–(37)

=
(K∑
k=1

(tk − atk)
∂ok
∂ahj

)
ahj (1− ahj)

∂ohj
∂wji

(42)

from (6) since the hidden units ahj are logistic

=
(K∑
k=1

(tk − atk)ukj
)
ahj (1− ahj)xi (43)

from (12) and since

∂ohj
∂wji
=

∂

∂wji

(I∑
n=1

xnwjn
)
= xi . (44)

The partial derivative (44) shows that the input-layer neurons
can have logistic or other nonlinear activations ain without chang-
ing the basic form of the gradient learning law. Then the partial
derivative ∂L

∂wji
in (30) becomes the slightly more general gradient

term

∂L
∂wji
= ahj (1− ahj)a

i
i(xi)

K∑
k=1

(tk − atk)ukj . (45)

The hidden activations can also have other forms such as the
quasi-linear rectilinear (ReLU) form max(0, x) and its variants.

We turn next to the BP training of a regression neural network.
We will show that the BP learning laws remain invariant if we
correctly pick the network likelihood function and the structure
of its output neurons.

This type of supervised neural network corresponds to the
classical case (Haykin, 1998; Kosko, 1991; Rumelhart et al., 1986)
of minimizing the network’s output squared error SE to approxi-
mate some sampled function f : RI

→ RK. The network uses la-
beled input–output samples (x1, t1), (x2, t2), . . . for training. Then
BP minimizes the squared-error function SE

SE =
1
2

K∑
k=1

(tk − atk)
2 . (46)

for all such training samples. The simplest assumption is that the
training samples are direct samples from the function and involve
no randomness.

The more general random framework views the training sam-
ples as realizations or footprints of random vectors x and t. Then
the functional assumption is that some joint or conditional prob-
ability density p(t|x) connects the input and output random vec-
tors and thus that we ultimately sample from a joint density
p(x, t). So the network can use the paired realizations to estimate
the governing but unknown density p(t|x). The argument below
assumes this more general random framework.

Function approximation of f : RI
→ RK requires that the K

output neurons model any real number. So a linear or identity

activation function replaces the Gibbs softmax function at the
output layer for regression:

atk = ok =
J∑

j=1

ukjahj . (47)

The hidden units still have nonlinear activations. It is just this
hidden-layer nonlinearity that allows a multilayer feedforward
network with enough hidden units to uniformly approximate any
continuous function on a compact set (Barron, 1993; Cybenko,
1989; Hornik, Stinchcombe, & White, 1989).

The random view of neural regression makes a further as-
sumption when minimizing the output squared error (46). We
assume in this regression squared-error case that the random
target vector t is a Gaussian K -vector (Bishop, 2006) with mean
at and with an identity or white covariance matrix I:

t ∼ N (t|at , I) = preg (t|x, Θ) (48)

where

N (t|at , I) =
1

(2π)K/2 exp

{
−

1
2

K∑
k=1

(tk − atk)
2

}
(49)

because the target covariance matrix is the K -by-K identity ma-
trix I and thus has a unit determinant.

Then BP maximizes the regression log-likelihood function Lreg :

Lreg = ln preg (t|x, Θ) (50)

= lnN (t|at , I) (51)

= ln(2π)−
K
2 −

1
2

K∑
k=1

(tk − atk)
2 . (52)

So maximizing the regression log-likelihood Lreg just minimizes
the network squared error (46) because the additive constant
ln(2π)−

K
2 does not affect the optimization. This log-likelihood

approach to neural regression plainly generalizes to richer prob-
abilistic and constraint models.

We can now show that the BP gradient-update equations for
regression are the same as those for classification. This shows that
both networks obey BP invariance at their output layers:

∂Lreg
∂ukj
=

∂Lreg
∂atk

∂atk
∂ok

∂ok
∂ukj

(53)

=
∂Lreg
∂atk

∂ok
∂ukj

(54)

from (47)

= (tk − atk)
∂ok
∂ukj

(55)

from (52)

= (tk − atk)a
h
j (56)

from (12).
So the regression update (56) for the output layer is the same

as the classification update (29). So BP invariance holds for these
different output layers with very different layer likelihoods. The
regression network also has the same update (30) or (45) for
the hidden layers because both types of network have the same
hidden structure and because both use the same gradient result
(56) to initialize the update process for the hidden parameters. So
classification and regression networks have identical BP gradient
learning laws. This BP invariance is essential for the result in
Theorem 1 that BP gradients equal EM gradients. We show below

368 B. Kosko, K. Audhkhasi and O. Osoba / Neural Networks 129 (2020) 359–384

that such BP invariance must hold at each layer when noise-
boosting. The general factorization of the multiplication theorem
in (133) permits this layer decomposition and allows an EM
structure to hold at each layer.

We show last that a multilayer network with logistic output
neurons also has the same BP gradient updates as classification
and regression networks. We call these logistic networks if the
BP learning laws remain invariant. They apply to multi-class
classification where the input may properly belong to more than
one pattern class.

A logistic network can approximate vector-valued functions
f : RI

→ [0, 1]K that map real vectors to the unit hypercube
[0, 1]K . So a logistic network can act as a regression network. It
can also learn or approximate fuzzy-set outputs since the unit
hypercube [0, 1]K is the power set of all finite fuzzy sets of length
K (Carpenter, Grossberg, & Rosen, 1991; Kosko, 1991).

We also expect that a logistic network has a relationship to
classification networks since the Gibbs or softmax activation (10)
reduces to the logistic activation (3) if the network has just
one output neuron and thus if K = 1. This one-neuron-output
case reflects the binary Bayesian classification involved when the
system must decide between a hypothesis or class H and its
opposite Hc given the input x as evidence. Then Bayes Theorem
gives the posterior p(H|x) as

p(H|x) =
p(H)p(x|H)

p(H)p(x|H)+ p(Hc)p(x|Hc)
(57)

=
1

1+ e−φ(x) . (58)

This logistic structure holds if φ(x) has the log-odds form

φ(x) = ln
p(H)p(x|H)
p(Hc)p(x|Hc)

. (59)

This binary classification suggests in turn how to define the
appropriate log-likelihood function Llog for a logistic network with
K conditionally independent output neurons and target vector
t. Define the network likelihood plog (y|x, Θ) as a product of
independent Bernoulli densities

plog (y|x, Θ) =
K∏

k=1

(atk)
tk (1− atk)

1−tk . (60)

Then the logistic network’s log-likelihood Llog adds two cross-
entropy sums:

Llog = ln plog (y|x, Θ) (61)

=

K∑
k=1

tk ln atk +
K∑

k=1

(1− tk) ln(1− atk) . (62)

Then the BP gradient-update equations for a logistic network
are the same as those for classification and regression networks:

∂Llog
∂ukj
=

∂Llog
∂atk

∂atk
∂ok

∂ok
∂ukj

(63)

=
∂Llog
∂atk

atk(1− atk)a
h
j (64)

from (6) and (12)

= [tk
1
atk
− (1− tk)

1
1− atk

]atk(1− atk)a
h
j (65)

= [tk(1− atk)− (1− tk)atk]a
h
j (66)

= (tk − atk)a
h
j . (67)

So the logistic network’s gradient update for the output layer
is the same as the classification update (29) and the regression
update (56). This confirms BP invariance for the logistic layer
log-likelihood. Their hidden structure is also the same.

So the BP learning laws remain invariant for all three networks
because they have the same BP gradient partial derivatives. This
means that Theorem 1 applies to all three networks and indeed
to many more.

3. Backpropagation as generalized expectation maximization

Both BP and the EM algorithm find the ML estimate of a neural
network’s parameters. So both algorithms climb a local hill of
probability or log-likelihood. Both algorithms are iterative algo-
rithms that involve many forward and backward sweeps. Both
algorithms also involve hidden or latent parameters. This raises
the question whether there is a formal relationship between BP
and EM. Theorem 1 declares that there is: Backpropagation is a
special case of the generalized EM algorithm. We first develop the
EM algorithm.

The EM algorithm is an iterative maximum likelihood method
for the general case of missing data or latent variables Z (Demp-
ster et al., 1977; Efron & Hastie, 2016).

The EM algorithm maximizes the log-likelihood ln p(y|x, Θ) by
maximizing the lower-bound surrogate likelihood or Q -function
Q (Θ|Θn). The expectation or E-step computes the current Q -
function Q (Θ|Θn). The maximization or M-step maximizes Q
(Θ|Θn) over the parameters Θ given the data and given the
current parameter estimate Θn. This maximization gives the new
parameter estimate Θn+1 for the next round of E–M steps.

EM’s ‘‘ascent property’’ ensures that increasing Q (Θ|Θn) can
only increase ln p(y|x, Θ) (Dempster et al., 1977). We derive this
result below for network parameters and show in the next section
how noise can boost the ascent. The updates Θn+1 converge to
the local ML maximum Θ∗. The E-step and M-step have an espe-
cially simple form for tuning the parameters of a convex mixture
of Gaussian pdfs (McLachlan & Krishnan, 2007). A key connection
with BP is that EM’s ‘‘latent’’ or hidden variables Z correspond to
the hidden units h in the multilayer neural network.

The EM algorithm arises from the definition of conditional
probability P(B|A) = P(A∩B)

P(A) for any probability measure P . We

assume that all probabilities are positive.
The key EM insight is that we can write any marginal proba-

bility P(A) in terms of any measurable event B:

P(A) =
P(A ∩ B)
P(B|A)

. (68)

Event B can represent missing data or latent or hidden vari-
ables or any other quantity. We call this the ‘‘EM trick’’. Taking
logarithms in (68) gives the basic EM-like equality

ln P(A) = ln P(A ∩ B)− ln P(B|A). (69)

These probabilities can condition on a set of parameters Θ . This
gives the parametrized form for the log-likelihood:

ln P(A|Θ) = ln P(A ∩ B|Θ)− ln P(B|A, Θ). (70)

The next step takes expectations on both sides of (70) with re-
spect to the discrete density P(B|A, Θ): P(B|A, Θ)+P(Bc

|A, Θ) = 1
for any parameter set Θ . This expectation does not affect the log-
likelihood ln P(A|Θ) because the log-likelihood does not involve
B. The first term on the right of (70) is the ‘‘complete’’ likelihood
in EB|A,Θ [ln P(B ∩ A|Θ)]. It is the complete or joint probability of
the observed data A and the unobserved or hidden or latent data
B. Then this expectation defines the surrogate likelihood Q (Θ|Θn)
in the EM algorithm if the expectation is with respect to the

B. Kosko, K. Audhkhasi and O. Osoba / Neural Networks 129 (2020) 359–384 369

parametrized density P(B|A, Θn) for the nth parameter set Θn in
the parameter sequence Θ1, Θ2, . . . , Θn. The other expectation
EB|A,Θn [ln P(B|A, Θ)] is just an entropy term and does not affect
the maximization of Q (Θ|Θn).

We now recast this basic EM formulation in terms of the neu-
ral network’s pdf structure. Then we derive EM’s ascent property.

The EM algorithm iteratively maximizes the neural network’s
log-likelihood pdf ln p(y|x, Θ) for network parameters Θ . The
output y often depends on the input x through the hidden
units h. So we could simply write the network log-likelihood
as ln p(y|h, Θ) in such cases. But the output y may also depend
directly on the input x as in ‘‘skip-layer’’ networks (Intrator &
Intrator, 2001; Ripley, 1994) or in networks with still richer
connection topologies. So we write the network log-likelihood as
ln p(y|x, Θ) or as ln p(y|h, x, Θ) for full generality.

The EM trick brings the hidden neurons h into the network
pdf p(y|x, Θ) as in (68):

p(y|x, Θ) =
p(y, x|Θ)
p(x|Θ)

(71)

=
p(h, y, x|Θ)

p(x|Θ)
p(y, x|Θ)

p(h, y, x|Θ)
(72)

=
p(h, y|x, Θ)
p(h|y, x, Θ)

(73)

Then taking logarithms gives the crucial EM log-likelihood equa-
tion in terms of the complete likelihood and hidden posterior:

ln p(y|x, Θ) = ln p(h, y|x, Θ)− ln p(h|y, x, Θ). (74)

This log-likelihood equation underlies both EM’s ascent prop-
erty below and the proof of Theorem 1 that BP is general-
ized EM. EM’s ascent property (Dempster et al., 1977) is a hill-
climbing property. It states that any parameter choice Θ that
increases Q (Θ|Θn) can only increase the log-likelihood difference
ln p(y|x, Θ) − ln p(y|x, Θn). This result follows from Jensen’s
inequality and the concavity of the logarithm (Hogg et al., 2013).
Those same two properties apply in the proof of Theorem 1.

The EM algorithm conditions on the hidden posterior p(h|y, x, Θn)
to estimate the hidden parameters h given all observed informa-
tion y and x and given the current parameter estimate Θn. Taking
this expectation on both sides of (74) gives

ln p(y|x, Θ) = Eh|y,x,Θn{ln p(h, y|x, Θ)} (75)
− Eh|y,x,Θn{ln p(h|y, x, Θ)}

= Q (Θ|Θn)− Eh|y,x,Θn{ln p(h|y, x, Θ)} (76)

= Q (Θ|Θn)+ H(Θ|Θn) (77)

where the differentiable cross entropy H(Θ|Θn) is

H(Θ|Θn) = −
∫
h
p(h|y, x, Θn) ln p(h|y, x, Θ)dh . (78)

A similar version of the equality (77) also appears in Bishop
(2006) and Oakes (1999).

We now state the network EM algorithm. The EM algorithm
performs an E-step and then an M-step at each iteration or epoch
n given some initial parameter value Θ0. The E-step at n com-
putes the above expectation Q (Θ|Θn) = Eh|y,x,Θn{ln p(h, y|x, Θ)}.
This can involve approximation techniques for complicated ex-
pectations. Below we use a form of Monte Carlo importance
sampling to estimate Q (Θ|Θn).

The M-step maximizes the Q-function to find the next param-
eter estimate Θn+1:

Θn+1
= argmax

Θ
Q (Θ|Θn) . (79)

This gives an inequality for the choice Θ = Θn:

Q (Θn+1
|Θn) ⩾ Q (Θn

|Θn) , (80)

We show now that the Q -function inequality (80) and Jensen’s
inequality imply EM’s ascent property for ML estimation:

ln p(y|x, Θn+1) ⩾ ln p(y|x, Θn) . (81)

The proof is closely related to the proof of Theorem 1 that BP is
generalized EM.

The ascent property (81) follows from the entropy inequality

H(Θ|Θn) ⩾ H(Θn
|Θn) for all Θ (82)

because (77) gives the inequality

ln p(y|x, Θ)− ln p(y|x, Θn) (83)
= [Q (Θ|Θn)− Q (Θn

|Θn)]

+ [H(Θ|Θn)− H(Θn
|Θn)] (84)

⩾ Q (Θ|Θn)− Q (Θn
|Θn). (85)

Then (80) implies the result (81) for the parameter choice Θ =

Θn+1 from the M-step (79).
The entropy inequality (82) follows from Jensen’s inequal-

ity (Hogg et al., 2013) for convex functions because the logarithm
is concave and thus its negative is convex:

H(Θn
|Θn)− H(Θ|Θn) = Eh|y,x,Θn{ln

p(h|y, x, Θ)
p(h|y, x, Θn)

} (86)

⩽ lnEh|y,x,Θn{
p(h|y, x, Θ)
p(h|y, x, Θn)

} (87)

= ln
∫
h

p(h|y, x, Θ)
p(h|y, x, Θn)

p(h|y, x, Θn)dh (88)

= ln
∫
h
p(h|y, x, Θ)dh (89)

= ln 1 = 0 (90)

since the pdf p(h|y, x, Θ) integrates to unity. So Shannon entropy
minimizes cross entropy: H(Θ|Θn) ⩾ H(Θn

|Θn) holds for all
choices of parameter vector Θ .

This proof of the entropy inequality (82) also shows that the
continuous K–L divergence is nonnegative: KL(Θnx ∥Θ) ⩾ 0
because

KL(Θn
∥Θ) =

∫
h
p(h|y, x, Θn) ln

(
p(h|y, x, Θn)
p(h|y, x, Θ)

)
dh (91)

= H(Θ|Θn)− H(Θn
|Θn) (92)

upon expanding the logarithm and distributing the integral.
A weaker form of the EM algorithm is the generalized EM

(GEM) algorithm. The GEM algorithm only increases Q (Θ|Θn) at
each iteration n. GEM need not maximize the Q -function. GEM
performs this partial optimization through gradient ascent:

Θn+1
= Θn

+ η∇ΘQ (Θ|Θn)
⏐⏐⏐
Θ=Θn

(93)

where again η is a positive learning coefficient or a (usually
decreasing) sequence of such coefficients. This still leads to the
ascent property (81). The Noisy EM Theorem in the next section
gives a sufficient condition for injected noise to increase the
ascent at each iteration.

We can now state and easily prove Theorem 1. This fundamen-
tal theorem shows that BP is a special case of the GEM algorithm
because their gradient updates coincide at each iteration n so
long as BP invariance holds. This result follows from the gradient
identity ∇Θ ln p(y|x, Θn) = ∇ΘQ (Θn

|Θn) + ∇ΘH(Θn
|Θn) =

370 B. Kosko, K. Audhkhasi and O. Osoba / Neural Networks 129 (2020) 359–384

∇ΘQ (Θn
|Θn) since the null gradient ∇ΘH(Θn

|Θn) = 0 holds
given the entropy inequality (82) and given Fermat’s Theorem for
gradients. This gives the master gradient equation at a given layer
(the output layer in particular):

∇Θ ln p(y|x, Θn) = ∇ΘQ (Θn
|Θn). (94)

The proof in the Appendix gives the complete details.

Theorem 1 (Backpropagation as the GEM Algorithm). The back-
propagation update equation for a differentiable likelihood function
p(y|x, Θ) at epoch n

Θn+1
= Θn

+ η∇Θ ln p(y|x, Θ)
⏐⏐⏐
Θ=Θn

(95)

equals the GEM update equation at epoch n

Θn+1
= Θn

+ η∇ΘQ (Θ|Θn)
⏐⏐⏐
Θ=Θn

(96)

where GEM uses the differentiable Q-function

Q (Θ|Θn) = Eh|y,x,Θn

{
ln p(y,h|x, Θ)

}
. (97)

We show next how Monte Carlo importance sampling can
approximate the Q -function expectation in (97).

The approximation assumes that the hidden-layer neurons
are Bernoulli random variables. Then the activation ahj of the jth
hidden neuron defines the two conditional probabilities

p(hj = 1|x, Θ) = ahj (98)

and

p(hj = 0|x, Θ) = 1− ahj . (99)

This gives the jth hidden unit’s pdf as the Bernoulli pdf

p(hj|x, Θ) = (ahj)
hj (1− ahj)

1−hj (100)

where hj = 0 or hj = 1.
The hidden units are conditionally independent within a layer

given the input x and network parameters Θ . So the hidden prior
pdf p(h|x, Θ) factors and has a product Bernoulli form

p(h|x, Θ) =
J∏

j=1

p(hj|x, Θ) =
J∏

j=1

(ahj)
hj (1− ahj)

1−hj . (101)

So the probability structure of the hidden layer corresponds to
flipping the same coin J times.

The EM algorithm’s E-step computes the Q-function in (97).
Computing the expectation in (97) requires 2J values of p(h|y, x,
Θn). This is computationally intensive for large values of J . So we
can use ordinary Monte Carlo sampling to approximate the above
Q -function. The strong law of large numbers ensures that this
Monte Carlo approximation converges almost surely to the true
Q-function with enough random samples (Hogg et al., 2013).

Bayes theorem gives the hidden posterior density p(h|x, y, Θn)
as the ratio

p(h|y, x, Θn) =
p(h|x, Θn)p(y|h, x, Θn)∑
h p(h|x, Θn)p(y|h, x, Θn)

. (102)

We can randomly sample more easily from the simpler pdf
p(h|x, Θn) than from p(h|y, x, Θn) because the hidden hj terms
are independent given x. Then we replace p(h|x, Θn) by its Monte
Carlo approximation using M independent and identically dis-
tributed (i.i.d.) samples:

p(h|x, Θn) ≈
1
M

M∑
m=1

δK (h− hm) (103)

where δK is the J-dimensional Kronecker delta function. The
standard error in the approximation falls off as the inverse of

the square root of the sample size M . Then the Monte Carlo
approximation of the hidden posterior becomes

p(h|y, x, Θn) ≈
∑M

m=1 δK (h− hm)p(y|h, x, Θn)∑
h
∑M

m1=1
δK (h− hm1)p(y|h, x, Θn)

(104)

=

∑M
m=1 δK (h− hm)p(y|hm, x, Θn)∑M

m1=1
p(y|hm1 , x, Θn)

(105)

=

M∑
m=1

δK (h− hm)γm (106)

where the weights γm have the Bayesian form

γm
=

p(y|hm, x, Θn)∑M
m1=1

p(y|hm1 , x, Θn)
(107)

and give the relative importance or ‘‘responsibility’’ (Bishop,
2006) of hm. So (106) gives an importance-sampled approxima-
tion of p(h|y, x, Θn) where each sample hm has weight γm.

Approximate the surrogate likelihood Q-function as

Q (Θ|Θn) ≈
∑
h

M∑
m=1

γmδK (h− hm) ln p(y,h|x, Θ) (108)

=

M∑
m=1

γm ln p(y,hm
|x, Θ) (109)

=

M∑
m=1

γm
[
ln p(hm

|x, Θ)+ ln p(y|hm, x, Θ)
]

(110)

since p(y,hm
|x, Θ) = p(hm

|x, Θ)p(y|hm, x, Θ). Then the above
Bernoulli structure of the hidden prior p(hm

|x, Θ) gives

ln p(hm
|x, Θ) = ln

J∏
j=1

p(hm
j |x, Θ) (111)

since again the hidden neurons in a layer are conditionally inde-
pendent of one another given the input x

= ln
J∏

j=1

(ahj)
hmj (1− ahj)

1−hmj (112)

=

J∑
j=1

[
hm
j ln ahj + (1− hm

j) ln(1− ahj)
]

(113)

if the hidden-layer activations approximate Bernoulli probabili-
ties.

The Q-function in (110) equals a sum of log-likelihood func-
tions for two 2-layer neural networks between the visible-hidden
layer and the hidden-output layer. The M-step maximizes or im-
proves this Q-function by gradient ascent. So the gradient ascent
corresponds to taking two distinct BP steps on the two 2-layer
neural networks.

4. The Noisy Expectation–Maximization theorem

The Noisy Expectation–Maximization (NEM) algorithm (Osoba
et al., 2011b, 2013) modifies the EM iterative scheme at each step
and convergences faster on average than does noiseless EM. It
injects additive noise into the data at each EM iteration. Injecting
multiplicative noise or other signal-noise-combined noise still
improves the ascent property of EM (Dempster et al., 1977) at
each iteration on average (Osoba & Kosko, 2016a).

The NEM noise intensity or variance also decays slightly with
the iteration count. This guarantees convergence to the optimal

B. Kosko, K. Audhkhasi and O. Osoba / Neural Networks 129 (2020) 359–384 371

parameters of the original data model. The estimates would oth-
erwise only jitter around the optimal value. But the noise must
satisfy the NEM positivity condition below that guarantees that
the NEM parameter estimates will climb faster up the likelihood
surface on average.

The motivation for the NEM positivity condition stems from
a simple likelihood inequality. Suppose that there is some addi-
tive noise n that makes the signal observation y more probable
given some parameter Θ . Then the pdf inequality p(y + n|Θ) ⩾
p(y|Θ) holds. The values n and y are realizations of the respective
random variables n and y. Then the pdf inequality holds if and
only if ln p(y+n|Θ)

p(y|Θ) ⩾ 0. This latter term is the log-likelihood

ratio often found in ML estimation (Hogg et al., 2013). Then
taking the expectation over all random variables gives the NEM
positivity (non-negativity) condition as in Theorem 2. Taking the
expectation implies that the log-likelihood-ratio inequality need
hold only almost everywhere. It need not hold on sets of zero
probability.

The next section presents the formal statement of the NEM
Theorem for additive noise injection.

4.1. NEM theorem for additive noise injection

The NEM Theorem (Osoba et al., 2011b, 2013) states a general
sufficient condition when noise speeds up the EM algorithm’s av-
erage convergence to a local maximum of the network probability
or log-likelihood.

The NEM Theorem assumes that the noise random variable
n has pdf p(n|x). So the noise n can depend on the data x.
Such noise dependence implies that NEM noise benefit differs
from most ‘‘stochastic resonance’’ noise benefits where the user
injects independent noise or dither (Bulsara et al., 1989; Kosko,
2006; McDonnell et al., 2008; Mitaim & Kosko, 2014). The hidden
variables h are the latent variables in the EM model. The vector
sequence {Θn

} is a sequence of EM estimates for parameter
vector Θ . So the maximum-likelihood parameter vector Θ∗ =

limn→∞Θn is the converged EM estimate for Θ .
Define the noisy Q function Qn(Θ|Θn) as the expected log-

likelihood Qn(Θ|Θn) = Eh|x,Θn [ln p(x+ n,h|Θ)]. So Qn(Θ|Θn) is
a random variable because the expectation does not average out
the noise random variable N. Assume again that the differential
entropy of all random variables is finite. Assume also that the
additive noise keeps the data in the likelihood function’s support.
Then we can state the NEM theorem (Osoba et al., 2011b, 2013)
in the special but important case of additive noise injection.

Theorem 2 (Noisy Expectation–Maximization (NEM)). Suppose the
average positivity condition holds at iteration n:

Ex,h,n|Θ∗

[
ln
(
p(x+ n,h|Θn)

p(x,h|Θn)

)]
⩾ 0 . (114)

Then the EM noise benefit

Q (Θn
|Θ∗) ⩽ Qn(Θn

|Θ∗) (115)

holds on average at iteration n:

Ex,n|Θn

[
Q
(
Θ∗|Θ∗

)
− Qn

(
Θn
|Θ∗

)]
⩽ Ex|Θn

[
Q
(
Θ∗|Θ∗

)
− Q

(
Θn
|Θ∗

)]
. (116)

The NEM Theorem states that each iteration of a suitably noisy
EM algorithm gives higher likelihood estimates on average than
do the noiseless EM’s estimates. So the NEM algorithm converges
faster than EM on average (and almost always in practice). The
faster NEM convergence occurs both because the likelihood func-
tion has an upper bound and because the NEM algorithm takes
larger average steps up the likelihood surface.

A natural question is whether the NEM positivity inequality
(114) can hold at all: Is the inequality vacuous? The inequality
may appear to violate intuitions about the concavity and Jensen’s
inequality that dictate the related entropy inequality (82). But
(114) does hold in general because the expectation conditions on
the converged parameter vector Θ∗ and not on a simpler pdf.

We show this result with Jensen’t inequality. Consider the
expectation of an ordinary log-likelihood ratio ln f (y|Θ)

g(y|Θ) (Hogg
et al., 2013). Take the expectation of ln f (y|Θ)

g(y|Θ) with respect to
the pdf g(y|Θ) to get Eg [ln f (y|Θ)

g(y|Θ)]. But the logarithm is concave.
So Jensen’s inequality gives Eg [ln f (y|Θ)

g(y|Θ)] ⩽ lnEg [
f (y|Θ)
g(y|Θ)]. Then

the pdf g(y|Θ) cancels: lnEg [
f (y|Θ)
g(y|Θ)] = ln

∫
Y

f (y|Θ)
g(y|Θ)g(y|Θ) dy =

ln
∫
Y f (y|Θ) dy = ln 1 = 0 because f (y|Θ) is a pdf. So Eg [ln f (y|Θ)

g(y|Θ)]

⩽ 0. So strict positivity condition is impossible in this case. But
the cancellation argument does not apply to the NEM expectation
in (114) in general because the integrating pdf depends on Θ∗ in
(114) and not on Θn. So cancellation occurs only when the NEM
algorithm has converged because then Θn

= Θ∗.
Modified EM (and NEM) can perform maximum a posteriori

(MAP) estimation for problems of missing information. The MAP
or Bayesian version modifies the Q -function by adding the log-
prior term G(Θ) = ln p(Θ) (Dempster et al., 1977; McLachlan &
Krishnan, 2007):

Q (Θ|Θn) = Eh|x,Θt [ln p(x,h|Θ)] + G(Θ) . (117)

The MAP version of the NEM algorithm makes a similar change
to the Qn-function:

Qn(Θ|Θn) = Eh|x,Θt [ln p(x+ n,h|Θ)] + G(Θ) . (118)

This NEM extension resembles the recent noise-boost of simu-
lated and quantum annealing and more generally Markov Chain
Monte Carlo (MCMC) statistical estimation (Franzke & Kosko,
2015).

Many latent-variable models are not identifiable (Teicher,
1963). So they need not have global optima. These models in-
clude Gaussian mixture models (McLachlan & Peel, 2000), hidden
Markov models (Rabiner, 1989), and neural networks. The EM
and NEM algorithms converge to local optima in these cases. The
additive noise in the NEM algorithm helps the NEM estimates
search other nearby local optima. The NEM Theorem still guaran-
tees that NEM estimates have higher likelihood on average than
EM estimates do for non-identifiable models. Users can also run
several NEM simulations from different random starting points
and then pick the best performer.

5. Injecting NEM noise in output neurons

The two theorems in this section show how injecting NEM
noise into a neural network’s output neurons can speed conver-
gence in classifier/logistic neurons and in regression networks.

The first theorem adds noise n to the 1-in-K encoding t of the
target variable y of a classifier network with softmax or logistic
output neurons. Both cases yield simple hyperplane noise condi-
tions. They define different forbidden regions in noise space. Fig. 2
shows a typical speed-up in BP convergence when NEM noise
adds only to the 10 output softmax neurons in a 5-layer network
The noise-boosted network hit the knee of the convergence curve
after just 4 iterations while noiseless BP took 15 iterations to get
to the same place.

The second theorem derives a spherical noise region for a
regression network with identity output neurons. The spherical
structure arises from the vector-Gaussian target vector t. All
proofs are in Appendix.

372 B. Kosko, K. Audhkhasi and O. Osoba / Neural Networks 129 (2020) 359–384

The next section extends these results to allow NEM noise
injection into the hidden neurons. This hidden-noise injection
requires using the proper layer NEM condition for the hidden
neurons based on their activation type and the corresponding
layer log-likelihood.

Theorem 3 (Hyperplane Noise Benefit for Injecting Noise in a Clas-
sifier Network’s Output Layer). The NEM positivity condition (114)
holds for maximum-likelihood training of a classifier neural network
with output Gibbs or softmax activations if the following average
hyperplane condition holds at iteration n:

Et,h,n|x,Θ∗
{
nT ln at

}
⩾ 0 . (119)

The NEM condition (114) also holds for injecting noise in output
logistic neurons if

Et,h,n|x,Θ∗{nT ln at} ⩾ Et,h,n|x,Θ∗{nT ln(1− at)} . (120)

The above sufficient NEM condition (A.14) requires that the
noise vector n lies above a hyperplane with normal ln at . So the
logistic NEM noise-injection algorithm uses noise samples n that
obey the noise-weighted log-odds inequality
K∑

k=1

nk ln
atk

1− atk
⩾ 0 . (121)

The next section uses this result to inject NEM noise into the
hidden neurons because they are logistic. Other types of hidden
neurons must use the appropriate log-likelihood function in the
above derivation.

The next theorem gives a sufficient condition for a noise
benefit in a regression neural network with a Gaussian target
vector t ∼ N (t|at , I) from (49). The condition defines a spherical
noise-benefit region in noise space.

Theorem 4 (Regression Hypersphere Noise Benefit). The NEM pos-
itivity condition (114) holds at iteration n for maximum-likelihood
training of a regression neural network with Gaussian target vector
t ∼ N (t|at , I) if

Et,h,n|,x,Θ∗
{
∥n− at + t∥2 − ∥at − t∥2

}
⩽ 0 (122)

where ∥.∥ is the Euclidean vector norm.

The spherical NEM condition defines a forbidden-noise region
outside a sphere in noise space with center t − at and radius
∥t − at∥. All noise inside this sphere speed the average ML
convergence of the neural network.

The proof of Theorem 4 shows that we can also perturb the
network parameters to achieve a NEM-noise benefit. The additive
structure of the above NEM condition shows that we can add the
NEM noise directly to the mean-vector parameter at instead of to
the target vector t.

We can also multiplicatively perturb the normal density’s
identity covariance matrix I by a variance σ 2 > 0 to give the
new covariance matrix σ 2I. This gives the NEM-perturbation like-
lihood ratio as an exponential since the likelihoods are Gaussian:

N (t|at , σ 2I)
N (t|at , I)

=
exp{ 1

σ2 (−
1
2

∑K
k=1(tk − atk)

2)}

exp{− 1
2

∑K
k=1(tk − atk)2}

(123)

= exp{(1−
1
σ 2)(

1
2

K∑
k=1

(tk − atk)
2)} . (124)

The NEM sufficient condition (114) takes the logarithm of this
likelihood ratio and demands that its average be nonnegative.
This gives a noise perturbation benefit when

σ 2 ⩾ 1 (125)

when the quadratic term is nonzero. The same argument shows
that the NEM condition for an additive covariance perturbation
I+ nI = (1+ n)I is just n ⩾ 0.

The proof of Theorem 4 also shows that the same spherical
noise-benefit condition (A.22) holds for a regularized regression
network. A Tikhonov regularizer adds the squared-norm param-
eter term λ

∑
l θ

2
l as a λ-scaled penalty term to the squared

norm of t − a (Girosi, Jones, & Poggio, 1995). This regularizer
corresponds to a normal prior in a Bayesian probabilistic interpre-
tation (Bishop, 2006). So it is proportional to an exponential that
contains the regularizer term. Then the network posterior density
is the product of the normal likelihood and the normal prior and
thus is still normal. This normal posterior Nregularized(t|at , I) now
includes the regularizer sum as an additive term in its exponent.
But we do not add noise to this term because it involves only
network parameters. So the regularizer term cancels out from the
NEM ratio to give

Nregularized(t+ n|at , I)
Nregularized(t|at , I)

=
N (t+ n|at , I)

N (t|at , I)
(126)

as in (A.20). So (A.22) still holds for a regularized network. This
remains true for an l1 or lasso regularizer because it enters the
posterior as a Laplacian or doubly exponential prior (Tibshirani,
1996). So it still results in a ratio of exponentials where the lasso
regularizer cancels out of the NEM ratio.

The more general result is that any noiseless prior will cancel
out of the NEM posterior ratio and give back the likelihood ratio
in (A.20) and thus in (A.22).

This section presented sufficient conditions for a noise benefit
in training a neural network that uses the BP/EM algorithm. Re-
versing the inequalities in the noise benefit theorems and proofs
yields symmetric noise harm results for injecting noise that lies
below the NEM hyperplane for a classifier network or outside the
NEM sphere for a regression network.

6. Injecting NEM noise in hidden neurons

The previous noise results added noise to only the output
neurons. We now derive the NEM noise-benefit condition for in-
jecting NEM noise into hidden neurons a layer at a time during BP
training. This applies to both regression and classifier networks
as well as to networks with logistic output neurons. NEM-noise
injection takes care here because a given hidden layer’s log-
likelihood Lh may differ from the log-likelihood of the output
layer or from other hidden layers.

Fig. 10 shows the substantial training speed-up that occurred
when we injected NEM noise into all the neurons of a 3-layer
regression network that learned the test function f (x) = sin x.
Adding NEM noise to just the regression network’s single output
neuron reduced the squared error. Further adding NEM noise to
the 10 hidden logistic neurons markedly reduced the squared
error.

Adding NEM noise to the 10 output softmax neurons of a
4-layer neural classifier markedly reduced the average test-set
cross-entropy for the MNIST training data. Further adding NEM
noise to the hidden neurons further decreased the cross entropy.
More complex classification tasks should see corresponding de-
crease in cross entropy in much larger deep networks. Injecting
NEM noise also improved classification accuracy in apparent ac-
cord with the accuracy bounds in the next section. Training with
NEM noised produced up to 35% improvement on test data for
both regression and classification. Injecting blind noise only hurts
performance for both regressors and classifiers.

Hidden-layer noise injection must distinguish between two
cases: Injecting the same NEM noise from the output layer into
the hidden layer versus injecting fresh NEM noise at the hidden

B. Kosko, K. Audhkhasi and O. Osoba / Neural Networks 129 (2020) 359–384 373

layer after injecting separate NEM noise at the output layer. The
first case can over-constrain the NEM noise if the noise injection
occurs in multiple hidden layers. We first discuss this constrained
case and then present the unconstrained case as a theorem. The
simulations in Fig. 10 used the unconstrained noise injection in
the next theorem and in Algorithm 1.

Suppose we have injected NEM noise n into the output layer
and want to inject the same noise into the last hidden layer hk.
The proof of Theorem 3 shows that the NEM noise n added to the
output targets t adds to the error et

et = t− at (127)

of the output neurons. So the noisy error vector etN is

etN = t+ n− at (128)

= et + n . (129)

Then this noisy error vector etN propagates back over the weights
to the hidden layer.

The weight matrix U connects the J hidden units to the K
output neurons. So passing etN backwards uses the matrix U in
this notation (other formulations would use the matrix transpose
UT throughout) . Then the error ehN that arrives at the hidden layer
is

ehN = UeN (130)

= Uet + Un . (131)

The forward pass sees the hidden neuron activations as visi-
ble data. So this linearly transformed noise satisfies the NEM
sufficient condition at the logistic hidden layer if

(Un)T ln ah ⩾ (Un)T ln(1− ah) (132)

from (120) where ah are the hidden layer activations. This hidden-
layer NEM condition will change in accord with BP invariance
if the neurons are not logistic and thus have a different layer
log-likelihood L. The same argument shows that the transformed
NEM noise Un applies to the next hidden layer if it scales by the
appropriate weight matrix and obeys the appropriate layer NEM
condition for its layer log-likelihood.

We turn next to the more general case of injecting fresh
NEM noise at the kth hidden layer in accord with that layer’s
log-likelihood function. The key idea is that NEM-noise injection
in the kth hidden layer depends only on the preceding layers
and input x. It does not depend on the higher layers or on
the output layer y. This follows from the multiplication theo-
rem of basic probability that factors the total network likelihood
p(y,hk, . . . ,h1, |x, Θn) into the product layer likelihoods:

p(y,hk, . . . ,h1, |x, Θn) = p(y|hk, . . . ,h1, x, Θn)×
p(hk|hk−1, . . . ,h1, x, Θn) · · · p(h2|h1, x, Θn)p(h1|x, Θn).

(133)

Taking logarithms in (133) allows unconstrained NEM noise
for the kth layer log-likelihood so long as BP invariance holds.
The sum structure of these log-likelihoods shows that NEM noise
can boost any or all of these layers at a given training epoch. The
next theorem presents this general result for the common case of
logistic hidden neurons.

Theorem 5 (NEM Noise in Hidden Logistic Neurons). NEM noise n
boosts a given hidden layer of logistic neurons if the injected noise
satisfies the NEM likelihood inequality

Eh,n|x,Θ∗{nT ln ah} ⩾ Eh,n|x,Θ∗{nT ln (1− a)h} . (134)

for the hidden-layer activation vector ah with the logistic layer-
likelihood structure (60)–(62).

Data: T input data vectors {x1, . . . , xT }, T target label 1-in-K
vectors {y1, . . . , yT }, number of BP epochs R

Result: Trained DNN weight matrices U and W
while epoch r : 1→ R do

while training data vector number t : 1→ T do
• Propagate the input data vector xt forward through the
neural network with (3);
• Compute the K -dimensional output softmax activation
vector a with (10);
• Generate the output noise vector n;
if nT ln at ⩾ 0 then
• Add the NEM noise: yt ← yt + n;

else
• Do nothing

end
• Compute the error yt − a;
• Back-propagate the error to compute the cross-entropy
gradient ∇UE(Θ) or −∇UL(Θ);
• Generate the hidden noise vector m;
if mT ln ah ⩾ mT ln(1− ah) then
• Add the NEM noise: ht ← ht +m;

else
• Do nothing

end
• Back-propagate the error to compute the cross-entropy
gradient ∇WE(Θ) or −∇WL(Θ);
• Update the network parameter matrices U and W with
the gradient descent in (174)

end
end
Algorithm 1: The NEM–BP algorithm for total NEM noise injec-
tion for a neural network with one hidden layer. The NEM noise
injects both into the output layer and into the hidden layer. The
algorithm extends to deep networks with arbitrarily many hidden
layers.

The proof of Theorem 5 also shows how to inject NEM noise
in hidden neurons with ReLu or ‘‘rectified linear’’ units h(x) =
max(x, 0) and its variants. ReLu units may help reduce the prob-
lem of ‘‘vanishing gradients’’ that sigmoidal units can produce in
deep networks (Rawat & Wang, 2017).

ReLu units have identity activations for positive inputs. So we
can approximate the ReLu-layer likelihood function with the nor-
mal likelihood for identity activations as in the case of a regres-
sion network. We simply replace the NEM regression noise nwith
UTn in the hyperspherical NEM condition (182). A better but more
complex approximation would rework the logistic-likelihood ar-
gument in the proof of Theorem 5 with a truncated-normal
likelihood.

7. NEM noise benefits in classification accuracy

Noise can improve network classification accuracy as well as
speed BP convergence. Fig. 4 demonstrates this boost in accuracy
for a classification network with three hidden layers and 10 out-
put neurons. Fig. 5 shows a similar result. NEM noise adds only to
the output neurons in both cases. Fig. 10 reports more substantial
NEM gains in classification accuracy because noise adds to all the
neurons in the network. NEM-boosted recurrent backpropagation
also improved classification accuracy of videos (Adigun & Kosko,
2017).

374 B. Kosko, K. Audhkhasi and O. Osoba / Neural Networks 129 (2020) 359–384

Fig. 10. NEM Noise injection in output and hidden layers for backpropagation
training of a regression and classifier network. The first figure shows the noise-
boost that results when injecting NEM noise into a 3-layer regression neural
network. The regression network approximates the function f (x) = sin x over
the domain [0, 2π] using 18,000 randomly drawn training samples. The input
and output layers contained just one identity neuron each. The hidden layer
contained 10 logistic hidden neurons. Adding NEM noise to just the single output
neuron reduced the average squared-error of training over noiseless BP training.
Adding NEM noise to both the output and hidden neurons markedly reduced
the squared error even further. Adding blind noise to the network only slowed
learning convergence. The second figure shows the noise-boost from injecting
NEM noise into a 4-layer classifier trained on the MNIST digit set. The 10 output
neurons had softmax activations. The 40 neurons in each of the two hidden
layers had logistic activations. Injecting NEM noise in the 10 output neurons
quickly and markedly reduced the average test-set cross entropy compared with
noiseless BP training. Injecting NEM noise into the output and hidden layers
further reduced the test-set cross entropy. Adding blind noise performed worse
than noiseless BP. Training with NEM noise led to 35% improvement for both
the regression and classification tasks.

We offer two explanations of this consistently observed accu-
racy boost.

The first explanation is a general but indirect argument: The-
orem 6 shows that the network log-likelihood of a classifier
network gives a lower bound on the classification accuracy. NEM
noise only increases the log-likelihood on average. So it can only
increase the classification accuracy. The results in the lemma
below and Theorem 6 hold in general for statistical classifiers.

The second explanation depends directly on the nature of the
injected NEM noise. NEM noise (2) is just that noise that makes
the output target more probable. It does this by increasing the
activation of the correct output activation and thereby lowering
the activations of the other K−1 output activations. These output
activations have softmax form and so define a length-K probabil-
ity distribution. So NEM noise only makes correct classification
more probable.

Both explanations are only partial because they apply only
to the training of the classifier network. The observed accu-
racy boost occurs later with trained networks. This also suggests
adding some form of the above stochastic-resonance noise during
post-training use to improve classification.

We start with the first explanation and show that the network
likelihood L is a lower bound for the classification accuracy A in
binary classification. So noise-boosting L tends only to increase A.

We first develop this result for a classifier network with a
single output neuron. The result is the bound A ⩾ L+ln 2 in (139).
Theorem 6 extends this result to the general case of K output
neurons for both the softmax-based likelihood in (22) and the
logistic likelihood in (62).

So assume the classifier network has a single output neuron.
Then the output activation is both softmax and logistic since
K = 1. We need suppose only that this lone output neuron has
non-decreasing activation at ∈ (0, 1]. Let t denote the binary
target value for the output neuron: t ∈ {0, 1}. So a ‘1’ codes for
one of the two input pattern classes and a ‘0’ codes for its set
complement thus the other pattern class.

Complete classification accuracy measures both the true-
positive and true-negative classifications. A true-positive classi-
fication occurs if both t = 1 and at ⩾ 1

2 because then we round
off the observed output at to 1. So a false positive (or false alarm)
occurs if both t = 0 and at ⩾ 1

2 . A true negative occurs if both
t = 0 and at < 1

2 . A false negative (or miss) occurs if both t = 1
and at < 1

2 . Then the complete accuracy A counts both the true
positives and true negatives:

A = t I
(
at ⩾

1
2

)
+ (1− t) I

(
at <

1
2

)
. (135)

I is a binary indicator function: I(E) = 1 if event E occurs and
I(E) = 0 if E does not occur. Then A = 1 when a true positive or
true negative occurs. A = 0 when a false positive or false negative
occurs. The corresponding log-likelihood L function is

L = t ln(at)+ (1− t) ln(1− at) . (136)

The proof of the accuracy-likelihood bound (139) uses the
following lemma for real numbers. The lemma gives a logarithmic
lower bound on the indicator function I

(
x ⩾ 1

2

)
and more.

Lemma 1. Let x ∈ (0, 1] and y ∈ (0, 1]. Then

I
(
x ⩾ y

)
⩾ ln

(x
y

)
(137)

if y ⩾ x/e.

Lemma 1 implies that

I
(
x ⩾

1
2

)
⩾ ln

(
2x
)

(138)

for all x in (0, 1] because 2x < e holds for all such x.
The next result shows that the log-likelihood L in (136) is

a lower-bound on the classification accuracy A in (135) if the
classification or logistic network has a single output neuron.
So the NEM noise benefit during BP/EM training tends only to
increase the accuracy. The next theorem extends this one-output-
neuron result to K output neurons that have softmax activations
or logistic activations subject to a simplification of the complete
accuracy A for classifier networks.

We first state the one-output-neuron result. The classification
accuracy A in (135) of a single-output neural network exceeds the
log-likelihood L in (136):

A ⩾ L+ ln 2 . (139)

The bound (139) holds because the inequality (138) gives

I
(
at ⩾

1
2

)
⩾ ln(2at) (140)

for all target activation values at ∈ (0, 1]. But at < 1
2 if and only

if 1− at > 1
2 . So

I
(
at <

1
2

)
= I
(
1− at >

1
2

)
. (141)

B. Kosko, K. Audhkhasi and O. Osoba / Neural Networks 129 (2020) 359–384 375

Replace x with 1− at in (138):

I
(
at <

1
2

)
⩾ ln(2(1− at)) . (142)

Then the inequalities (140) and (142) give the accuracy bound
(139):

A = t I
(
at ⩾

1
2

)
+ (1− t) I

(
at <

1
2

)
⩾ t ln(2at)+ (1− t) ln(2(1− at)) (143)

= [t ln(at)+ (1− t) ln(1− at)] + t ln 2+ (1− t) ln 2 (144)

= L+ (t + 1− t) ln 2 (145)

= L+ ln 2 . (146)

Consider next the general case of K output neurons with
logistic activations at1, . . . , a

t
k. Then the total complete accuracy

A sums all true positives and all true negatives over all K logistic
neurons in (135):

A =
K∑

k=1

Ak (147)

=

K∑
k=1

tk I
(
atk ⩾

1
2

)
+

K∑
k=1

(1− tk) I
(
atk <

1
2

)
. (148)

Most classifier networks with softmax output neurons use
a simpler measure of classification accuracy. They just count
the number of true positive in n test runs and ignore the true
negatives. This count Aclass uses a form of the first sum in (148):

Aclass =

K∑
k=1

tk I
(
atk = max

1⩽j⩽K
atj
)

(149)

because we assign an input pattern x to the kth decision class Ck if
and only if the kth output softmax neuron has the largest activa-
tion atk(x) among the K output neurons. We measured classifica-
tion accuracy with (149) in the MNIST classification simulations.
The ratio of the n counts Aclass to n trials gives this accuracy as a
percentage or relative frequency.

The classification accuracy Aclass has a simple probabilistic
interpretation. Let I(A) denote the indicator function of any mea-
surable event A. Then the probability of A is just the expectation of
its indicator function: P(A) = E[I(A)]. This result holds in general.
It follows formally from the Radon–Nikodym Theorem of measure
theory (Tucker, 2013).

Suppose that x ∈ Ck and that the target vector is binary with
tk = 1 and tj = 0 if k ̸= j. Then the average classification
accuracy is just the probability that the kth output neuron ‘‘wins’’
the competition for activation given the input x ∈ Ck:

E[Aclass(x)] = P(atk(x) ⩾ atj (x) for 1 ⩽ j ⩽ K). (150)

This result extends to the case where the target vector t is any
K -length probability vector in [0, 1]K :

E[Aclass(x)] =
K∑

k=1

tk P(atk(x) = max
1⩽j⩽K

atj (x)). (151)

So the expected classification accuracy is a probability mixture of
the output ‘‘win’’ probabilities.

The next theorem uses a maximum-based corollary to
Lemma 1 that applies to K softmax neurons:

I
(
atk = max

1⩽j⩽K
atj
)
⩾ ln

(atk
max1⩽j⩽K atj

)
. (152)

This inequality holds because atk ⩾ max1⩽j⩽K atj for all x just in
case atk = max1⩽j⩽K atj . The sufficient condition of Lemma 1 holds

because max1⩽j⩽K atj ⩾ atk ⩾
atk
e since e > 1.

The next theorem derives separate likelihood bounds on the
accuracy for logistic and softmax classifiers.

Theorem 6 (Classification Accuracy-Likelihood Bound). The classi-
fication accuracy Aclass in (149) of a softmax-output neural network
exceeds the log-likelihood L(Θ) in (22):

Aclass ⩾ L . (153)

A network with K logistic output neurons has the bound

A ⩾ Llog + K ln 2 (154)

for the logistic log-likelihood Llog in (62).

NEM noise should also increase accuracy on average during
training. Consider K softmax output neurons with 1-in-K encod-
ing. NEM noise makes these binary target signals more probable
in accord with (2) and Theorem 3. So we expect on average a
slightly better ‘‘win’’ pattern for NEM-boosted activations aNEMj :

max1⩽j⩽K aNEMj ⩾ max1⩽j⩽K aj. So ln
max1⩽j⩽K aNEMj
max1⩽j⩽K aj

⩾ 0. Then (A.32)
gives LNEM (Θ) ⩾ L(Θ) on average for any target pdf {tk} because
LNEM (Θ) − lnmax1⩽j⩽K aNEMj ⩾ L(Θ) − lnmax1⩽j⩽K aj holds if and
only if

LNEM (Θ)− L(Θ) ⩾ ln max
1⩽j⩽K

aNEMj − ln max
1⩽j⩽K

aj (155)

= ln
max1⩽j⩽K aNEMj

max1⩽j⩽K aj
⩾ 0 . (156)

So on average: LNEM (Θ) ⩾ L(Θ).
Suppose last that tk = 1. Then the NEM noise boost and (150)

imply an average NEM accuracy benefit: ANEM
class ⩾ Aclass.

8. Pre-training with bidirectional associative memories
(BAMs) or restricted Boltzmann machines (RBMs)

Restricted Boltzmann Machines (Hinton et al., 2006; Smolen-
sky, 1986) are a special type of bidirectional associative memory
(BAM) (Kosko, 1987, 1988, 1991). So they enjoy rapid conver-
gence to a bidirectional fixed point for synchronous updating
of all neurons in each of the two fields or layers of neurons.
This convergence depends only on network parameters. It does
not require a probabilistic interpretation or the use of stochastic
convergence techniques. Bidirectional training also extends to
unsupervised learning as we show below. It also extends to su-
pervised backpropagation training (Adigun & Kosko, 2016, 2019a)
and thus admits an EM and maximum-likelihood formulation
(Adigun & Kosko, 2018).

The simplest BAM is a two-layer heteroassociative network
that uses the synaptic connection matrix W on the forward pass
of the neuronal signals from the lower layer to the higher layer.
Its defining property is that it uses the adjoint or transpose
matrix WT on the backward pass from the higher layer to the
lower layer. Its neural and synaptic nonlinearities can be quite
general. Using both W and WT this way symmetrizes the rect-
angular matrix W. The lower layer is visible during the training
of deep neural networks (Hinton et al., 2006) while the higher
field is hidden. The general BAM Theorem ensures that any such
matrix W is bidirectionally stable for threshold neurons as well
for most continuous neurons. Logistic neurons satisfy the BAM
Theorem because logistic activations are bounded and monotone
nondecreasing. Fig. 11 shows convergence results for such a lo-
gistic BAM. The following results use the term RBM and BAM
interchangeably.

The most striking fact about BAMs is their global stability.
Every real rectangular matrixW is globally stable for a wide range

376 B. Kosko, K. Audhkhasi and O. Osoba / Neural Networks 129 (2020) 359–384

of nonlinear neuron activations (Kosko, 1991). Passing state vec-
tors back and forth through W and its transpose W T always and
quickly leads to a two-step limit cycle and thus a bidirectional
fixed point of the dynamical system. These nonlinear models
range from simple thresholds to Cohen–Grossberg neural dynam-
ics (Cohen & Grossberg, 1983; Grossberg, 1988) where the general
activations need be only bounded and monotone nondecreasing.
There is no need to appeal to far more complex notions of
Gibbs-style Markov-chain stochastic convergence. Global stability
follows in a simple deterministic manner for an extremely wide
range of BAM systems.

We focus on neurons with soft thresholds such as logistic or
hyperbolic-tangent activations. These activations behave in prac-
tice as on–off thresholds and yet have the continuous derivatives
(6) and (8). The continuous BAM Theorem (Kosko, 1988, 1990,
1991) holds for such smooth activations for a wide range of
Cohen–Grossberg nonlinear neural models (Cohen & Grossberg,
1983). But we can apply the simpler discrete BAM Theorem
so long as the sigmoids are sufficiently steep to approximate
a threshold. The proof uses the quadratic Lyapunov function
E(av, ah|Θ) = −

∑I
i=1
∑J

j=1 wijav
i a

h
j in (A.41).

Theorem 7 (Discrete BAM Theorem). Every connection matrix W is
bidirectionally stable for visible and hidden neurons with sufficiently
steep sigmoid activations.

The Discrete BAM Theorem extends to a simple version of the
Adaptive BAM Theorem (Kosko, 1987, 1988, 1991) if the weights
wij adapt through simple Hebbian correlation learning:

wij(t + 1) = wij(t)+ av
i (t + 1)ahj (t + 1) (157)

or just ∆wij = av
i a

v
j . The weight update takes place after both

the visible and hidden neurons have updated (they all update at
the same time in the differential-equation versions (Kosko, 1987,
1988, 1991)). Then the update ∆wij gives

∆E = −
I∑

i=1

J∑
j=1

∆wijav
i a

h
i (158)

= −

I∑
i=1

J∑
j=1

(av
i a

h
i)

2 (159)

< 0 (160)

for any nonzero Hebbian weight change ∆wij in (157). So a
discrete version of the ABAM Theorem holds for simple Heb-
bian learning. We will see below how this general ABAM con-
vergence helps explain convergence in contrastive-divergence
learning since (A.41) gives the Hebbian-based gradient term

∂E(av, ah|Θ)
∂wij

= −av
i a

h
j . (161)

We next summarize two other BAM results that apply to pre-
training in the deep learning of feedforward neural networks. We
omit their proofs for reasons of space.

The first result is that the proof of the BAM convergence
theorem still holds even if some or all of the neurons in one
of the layers have bounded non-monotone activations such as
Gaussian bell-curve activations. The only condition is that there
be enough logistic neurons in the other field to overcome any
positive energy changes ∆Ei > 0 and still maintain the global en-
ergy decrease for the combined forward pass and backward pass:
∆E = ∆Eforward+∆Ebackward < 0. This result is a type of ‘‘swamp-
ing’’ result because the negative energy changes from logistic
neurons can always outweigh or swamp any positive changes

Fig. 11. Benefits of bipolar over binary coding in a logistic–logistic bidirectional
associative memory (BAM). The two curves show the reconstruction squared
error using binary coding in [0, 1] versus bipolar coding [−1, 1] of the input
data in BAM encoding. Bipolar coding gives much faster convergence in terms of
reconstruction squared error of the BAM input. The logistic–logistic BAM had 784
input logistic neurons and 40 hidden logistic neurons and trained on 1000 MNIST
digit images. Bipolar encoding speeded convergence by more than an order of
magnitude: Bipolar encoding of the input image pixels led to convergence in
about 25 iterations. Training with binary encoding took nearly 500 iterations to
converge.

from bounded non-monotonic neurons if there are enough logis-
tic neurons. This result holds in particular if one of the layers
consists of bounded Gaussian activations. The above Discrete
ABAM Theorem also holds for such bounded activations. We
show below how to inject pre-training NEM noise in this mixed
logistic-Gaussian case.

The second result is that bipolar encoding improves BAM recall
or convergence time when compared with binary coding. Bipolar
encoding uses state vectors in the bipolar n-cube [−1, 1]n rather
than in the binary n-cube [0, 1]n. The simple bipolar transform
2x− 1 for binary x ∈ [0, 1] gives the order-of-magnitude speed-
up in convergence in Fig. 11. Bipolar coding led to convergence in
25 bidirectional iterations of the logistic neurons. Binary encoding
of the same MNIST images required nearly 500 iterations to
converge. This result follows from the corresponding theorem
in the Appendix of the original BAM paper (Kosko, 1988) and
depends on the l1 correlation structure of learning in bipolar
spaces.

We next show that learning with contrastive divergence is also
a special case of learning with generalized EM. Then we show
how to noise-boost such RBM or BAM learning when all neurons
are logistic and when one layer is logistic and the other layer is
Gaussian.

We first show that the contrastive-divergence learning algo-
rithm is also a special case of generalized EM. The next section
shows how to noise-boost such two-layer BAMs or RBMs for pre-
training. This involves defining the joint pdf p(av, ah|Θ) as a Gibbs
or softmax function of the network energy E(av, ah|Θ).

Consider again a BAM or RBM with I visible neurons and J
hidden neurons. We can also denote the visible or input layer
as the input field FX and the hidden layer as the adjoining field
FH (Kosko, 1991). Let av

i and ahj denote the respective activations
of the ith visible neuron and the jth hidden neuron:

av
i = av

i

(J∑
j=1

wijahj +
J∑

j=1

ajahj

)
(162)

B. Kosko, K. Audhkhasi and O. Osoba / Neural Networks 129 (2020) 359–384 377

ahj = ahj

(
I∑

i=1

wijav
i +

I∑
i=1

biav
i

)
(163)

for scaling constants aj and bi. Define the inputs x̃i and h̃j as

x̃i =
J∑

j=1

wijahj +
J∑

j=1

ajahj (164)

h̃j =

I∑
i=1

wijav
i +

I∑
i=1

biav
i . (165)

Then we can write the visible and hidden activations more com-
pactly as av

i (x̃i) and ahj (h̃j).
We focus on logistic and Gaussian activations because they are

the most common in pre-training and in many other applications.
This gives rise to two types of connected BAM fields or layers.
The first type has logistic or other sigmoid neurons at each layer.
Its probability structure is a Bernoulli(visible)–Bernoulli(hidden)
BAM. The second type has Gaussian neurons at the lower or
visible layer but logistic neurons at the upper or hidden layer.
Its probability structure is a Gaussian(visible)–Bernoulli(hidden)
BAM. We well embed these networks in the EM framework and
then noise-boost them separately.

The probabilistic structure of the BAM or RBM depends on the
energy E(av, ah|Θ) of the two-layer network. Then the joint pdf of
activation vector av by way of the input x and hidden activation
ah is the Gibbs or softmax density as in (10):

p(av, ah|Θ) =
exp(−E(av, ah|Θ))

Z(Θ)
(166)

with partition function

Z(Θ) =
∑
av

∑
ah

exp(−E(av, ah|Θ)) . (167)

Integrals can replace sums for continuous variables in the above
partition function Z(Θ).

The energy function E(av, ah|Θ) depends in turn on the type
of activations in the visible field and in the hidden field. A
Bernoulli(visible)–Bernoulli(hidden) BAM or RBM has logistic con-
ditional pdfs at both the hidden and visible layers. So it has the
following BAM energy or Lyapunov function (Kosko, 1987, 1988,
1991) that slightly generalizes (A.41):

E(av, ah|Θ) = −
I∑

i=1

J∑
j=1

wijav
i (x̃i)a

h
j (h̃j)−

I∑
i=1

biav
i (x̃i)

−

J∑
j=1

ajahj (h̃j) (168)

where wij is the connection weight between the ith visible and
jth hidden neuron, bi is the bias for the ith visible neuron, and aj
is the bias for the jth hidden neuron.

A Gaussian(visible)–Bernoulli(hidden) BAM or RBM has Gaus-
sian conditional pdfs at the visible layer but logistic conditional
pdfs at the hidden layer. So its energy function (Hinton et al.,
2006; Hinton & Salakhutdinov, 2006) includes an extra quadratic
term:

E(av, ah|Θ) = −
I∑

i=1

J∑
j=1

wijav
i (x̃i)a

h
j (h̃j)

+
1
2

I∑
i=1

(av
i (x̃i)− bi)2 −

J∑
j=1

ajahj (h̃j) . (169)

A key fact for learning is that the weight wij appears expressly
only in the quadratic form in both energy functions (168) and

(169). This gives the same Hebbian-based gradient term −av
i a

h
j

as in (157) when we differentiate either (168) or (169):

∂E(av, ah|Θ)
∂wij

= −av
i (x̃i)a

h
j (h̃j). (170)

The overall deep or multilayer neural network uses RBMs
or BAMs as an inter-layer building blocks. The system finds
maximum-likelihood estimates for the BAM’s or RBM’s param-
eters and then stacks the resulting BAMs or RBMs on top of each
other. This uses a form of what Hinton has called contrastive
divergence learning (Hinton et al., 2006; Hinton & Salakhutdinov,
2006). Then BP trains this pre-trained neural network. We show
now how learning with contrastive divergence is just generalized
EM for logistic or Gaussian-logistic BAMs or RBMs.

Contrastive divergence approximates the ML training of the
RBM or BAM parameters for ln p(x|Θ). See Bengio (2009) for a
review of the technique. Gradient ascent can iteratively solve
this simplified two-layer maximum-likelihood optimization (15)
for the optimal parameters Θ∗ as we have shown above when
casting BP as maximum likelihood.

We estimate the same matrix weights wij in the quadratic
forms of the network energies (168) or (169) because these
terms are the same for a Bernoulli–Bernoulli and Gaussian–
Bernoulli BAM or RBM. A marginalization argument shows that
the contrastive-divergence gradient estimate of the log-likelihood
ln p(av, ah|Θ) with respect to the weight wij has the Hebbian
difference form (Hinton et al., 2006; Hinton & Salakhutdinov,
2006):

∂ ln p(av, ah|Θ)
∂wij

= Eah|av,Θ{a
v
i a

h
j } − Eav,ah|Θ{a

v
i a

h
j } . (171)

Then the learning law for wij becomes

wn+1
ij = wn

ij + η

(
Eah|av,Θn{av

i a
h
j } − Eav,ah|Θn{av

i a
h
j }

)
(172)

where again η > 0 is the learning rate or sequence of such rates.
Learning stops in (172) when the Hebbian averages are equal

for the hidden posterior p(ah|Θ) and the joint or complete pdf
p(av, ah|Θ): Eah|av,Θ{a

v
i a

h
j } = Eav,ah|Θ{a

v
i a

h
j }.

This stopping rule corresponds roughly to a Hebbian ABAM
equilibrium from (159)–(161) when the encoding wij = av

i a
h
j

holds at a local energy minimum. The ABAM converges quickly
in the discrete case and exponentially quickly in the continuous
case (Kosko, 1987, 1991). This deterministic global-stability result
avoids the need to invoke Gibbs sampling or other forms of
Markov chain Monte Carlo and their often extensive burn-in runs
before they achieve stochastic equilibrium. So rapid ABAM con-
vergence may explain the observed ‘‘surprising empirical result’’
that a trivial Markov chain of just one step ‘‘often gives good
results’’ (Bengio, 2009).

We can easily compute the pdf p(ah|av, Θn) for the BAM or
RBM because there are no connections between any two hidden
neurons or between any two visible neurons in these simple BAM
models (unlike the more general case of BAM fields of winner-
take-all or other competitive neurons (Kosko, 1991)). This pdf
gives the expectation Eah|av,Θn{av

i a
h
j }. But we cannot so easily

compute the joint pdf p(av, ah|Θn) because of the partition func-
tion Z(Θ) in (167). Contrastive divergence (CD) (Bengio, 2009;
Hinton et al., 2006) approximates Z(Θ) through activations that
derive from a forward and a backward pass in the BAM or RBM.

The next theorem shows that the contrastive-divergence
learning law (172) is also special case of the GEM algorithm
(93). This result holds because of the Gibbs ratio form of the
two-layer-network density function p(av, ah|Θ) in (166).

378 B. Kosko, K. Audhkhasi and O. Osoba / Neural Networks 129 (2020) 359–384

Theorem 8 (Contrastive-Divergence Learning in a BAM or RBM is
Generalized EM). The contrastive-divergence update equation (172)
for the differentiable Gibbs likelihood function p(av, ah|Θ) in (166)
at epoch n

wn+1
ij = wn

ij + η
∂ ln p(av, ah|Θ)

∂wij

⏐⏐⏐
Θ=Θn

(173)

equals the GEM update equation at epoch n

wn+1
ij = wn

ij + η
∂Q (Θ|Θn)

∂wij

⏐⏐⏐
Θ=Θn

. (174)

The next section shows that NEM noise can speed up the ML
estimation involved in pre-training BAMs or RBMs.

9. Noise-boosting contrastive divergence in BAMs and RBMs

Theorem 8 lets us inject NEM noise n into the input activations
av. Theorem 2 implies that the BAM or RBM enjoys a NEM
additive-noise benefit if it satisfies the NEM inequality

Eav,ah,n|Θ∗

{
ln

p(av + n, ah|Θn)
p(av, ah|Θn)

}
⩾ 0 . (175)

The noisy complete data likelihood is

p(av + n, ah|Θn) =
exp(−E(av + n, ah|Θn))

Zn(Θn)
(176)

where Zn(Θ) is the noisy partition function

Zn(Θ) =
∑
av

∑
ah

exp(−E(av + n, ah|Θ)) (177)

from (166).
So a NEM noise benefit holds at epoch n if

Eav,ah,n|Θ∗

{
ln

exp(−E(av + n, ah|Θn))
exp(−E(av, ah|Θn))

}
⩾ En|Θ∗

{
ln

Zn(Θn)
Z(Θn)

}
(178)

because neither the partition function Z(Θ) nor its noisy version
Zn(Θ) depend on the input or hidden activations. This gives the
key BAM/RBM noise-benefit inequality:

Eav,ah,n|Θ∗

{
E(av, ah|Θn)− E(av + n, ah|Θn)

}
⩾ En|Θ∗

[
ln Zn(Θn)

]
− ln Z(Θn) . (179)

A practical heuristic takes the lower bound in (179) as zero.
This gives a simple inequality that the NEM noise n must satisfy
on average:

E(av + n, ah|Θn) ⩽ E(av, ah|Θn). (180)

The BAM/RBM noise-benefit condition (179) holds for arbi-
trary probabilistic neurons if the network probability has the
Gibbs ratio structure (166). The next theorem states that the
important special case of a logistic–logistic (Bernoulli–Bernoulli)
BAM or RBM defines a separating NEM hyperplane in noise space.
A simple heuristic also takes its lower bound as zero.

Theorem 9 (Logistic–Logistic Hyperplane Noise Benefit). The NEM
positivity condition holds for a Bernoulli–Bernoulli (logistic–logistic)
BAM or RBM at iteration n if

Eav,ah,n|Θ∗

{
nT (Wah + b)

}
⩾ En|Θ∗

[
ln Zn(Θn)

]
− ln Z(Θn) . (181)

Fig. 6 shows that injecting NEM noise into a BAM in accord
with Theorem 9 reduced the MNIST training-set squared error by
16% compared with noiseless training. Fig. 7 shows that injecting
blind noise into the BAM produced no benefit.

The same argument holds for the Gaussian-logistic energy
function in (169) but gives a hyperspherical NEM separation con-
dition for a Gaussian–Bernoulli BAM or RBM.

Theorem 10 (Gaussian-Logistic Spherical Noise Benefit). The NEM
positivity condition holds for training a Gaussian–Bernoulli BAM or
RBM at iteration n if

Eav,ah,n|Θ∗

{1
2
∥n∥2 − nT (Wah + b− x)

}
⩽ ln Z(Θn)− En|Θ∗

[
ln Zn(Θn)

]
. (182)

The NEM inequality in (182) bisects the noise space. The
bisecting surface itself is a hypersphere. This hyperspherical NEM
sufficient condition resembles that of injecting noise into the
output layer of a regression network as in Theorem 4.

10. Simulation results

The classifier simulations used 1000 training instances from
the training set of the MNIST digit classification data set. Each
image in the data set had 28 × 28 pixels with each pixel value
lying between 0 and 1. We fed each pixel into the input neuron
of a neural network. The classifier networks had 5 layers. There
were 40 logistic neurons in each of the three hidden layers. There
were 10 softmax neurons in the output layer for classifying the 10
categories of handwritten digits. We modified the MATLAB code
in (Hinton) to inject noise during EM-backpropagation training of
a neural network.

The simulations used 10 Monte Carlo samples for approximat-
ing the Q-function in the 10-class classification network. Fig. 2
shows the NEM noise benefit for cross-entropy training of a
feedforward neural classifier. The NEM version produced an 18%
median decrease in cross entropy per iteration compared with
noiseless BP training. Fig. 3 shows that adding blind noise instead
of NEM noise only gave a miniscule improvement of 1.7% in cross
entropy over the noiseless EM–BP algorithm. Fig. 4 shows that
NEM noise injection gave a 15% median improvement in the per-
iteration classification error rate for the training set and a 10%
improvement for the test set at the optimal noise variance of 0.42.
Fig. 5 shows that this noise benefit disappears upon using blind
noise in place of NEM noise.

Fig. 10 shows the effects of NEM noise injection in the hid-
den layers as well as the output layers of a regression network
and an MNIST-trained classifier network. The regression network
approximated f (x) = sin x with 18,000 random training samples
from the domain [0, 2π]. The three-layer network used just one
identity neuron in the output layer and 10 logistic neurons in the
hidden layer. Adding NEM noise to the output and hidden neu-
rons substantially reduced the average squared error compared
with adding NEM noise to just the output neuron alone or adding
no noise at all. The NEM noise for the output identity neuron used
the hyperspherical NEM condition from Theorem 4. The NEM
noise for the hidden logistic neurons used the hyperplane NEM
condition from Theorem 5. This total NEM noise injection led to
almost complete convergence after just 4 iterations.

Fig. 10 also shows the effects of NEM noise injection both in
the output layer and in the hidden layers of a 3-hidden-layer clas-
sifier network with 40 hidden logistic neurons each. NEM noise
gave a 60.44% relative reduction in the per-iteration training-
set cross-entropy compared with noiseless BP. It gave a 54.39%
relative reduction in the per-iteration test-set cross-entropy for
NEM compared with noiseless BP.

Fig. 11 shows that logistic neurons with bipolar values in
[−1, 1] speeded up BAM convergence by more than an order of
magnitude over ordinary binary logistic neurons with values in
[0, 1] when training on the MNIST test images. Each BAM used
784 visible logistic neurons and 40 hidden logistic neurons. The
bipolar BAM converged in about 25 iterations. The binary BAM
converged in about 500 iterations.

B. Kosko, K. Audhkhasi and O. Osoba / Neural Networks 129 (2020) 359–384 379

11. Conclusions

The backpropagation algorithm is a special case of the gen-
eralized EM algorithm. That should not be surprising because
backpropagation is a form of iterative maximum-likelihood esti-
mation and because EM generalizes iterative maximum likelihood
to the case of hidden variables. Proper noise injection speeds
average backpropagation convergence because it speeds average
EM convergence. This leads to several sufficient conditions that
guarantee a BP speed-up for classification and regression net-
works as well as for logistic networks. These noise benefits still
hold for regularized networks.

Similar sufficient conditions hold for a noise benefit in pre-
training neural networks based on the NEM theorem. Basic
contrastive-divergence learning is also a special case of gener-
alized EM if the probability density of the two-layer network has
the form of a Gibbs density based on the network energy. The
convergence involved between two stacked layers is the global
stability that the (adaptive) BAM convergence theorem ensures.
This holds if both layers use sigmoidal neurons or if they both use
logistic neurons. It still holds if one of the layers uses Gaussian or
other nonmonotonic neurons so long as there are enough logistic
neurons in the other layer. Correlation encoding properties of
BAMs show that bipolar neurons give better recall performance
on average than do binary neurons.

In sum: The basic gradient identity from Theorem 1

∇Θ ln p(y|x, Θn) = ∇ΘQ (Θn
|Θn) (183)

applies to any iterative maximum-likelihood scheme such as
convolutional and recurrent classification or regression (Adigun &
Kosko, 2017; Audhkhasi et al., 2016). Then a corresponding NEM
noise benefit will also apply.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Appendix. Proofs of theorems

This appendix gives the complete proofs of all theorems except
the quoted Theorem 2 from Osoba et al. (2011b) and Osoba et al.
(2013).

Theorem 1 (Backpropagation as the GEM Algorithm). The back-
propagation update equation for a differentiable likelihood function
p(y|x, Θ) at epoch n

Θn+1
= Θn

+ η∇Θ ln p(y|x, Θ)
⏐⏐⏐
Θ=Θn

(95)

equals the GEM update equation at epoch n

Θn+1
= Θn

+ η∇ΘQ (Θ|Θn)
⏐⏐⏐
Θ=Θn

(96)

where GEM uses the differentiable Q-function

Q (Θ|Θn) = Eh|y,x,Θn

{
ln p(y,h|x, Θ)

}
. (97)

Proof. The proof rests on the above EM equality (77) for the
network log-likelihood:

ln p(y|x, Θ) = Q (Θ|Θn)− Eh|y,X,Θn{ln p(h, y|X, Θ)} (A.1)

= Q (Θ|Θn)+ H(Θ|Θn) (A.2)

for differentiable cross entropy H(Θ|Θn) from (78).

Taking gradients with respect to the network parameter vector
Θ gives

∇Θ ln p(y|x, Θ) = ∇ΘQ (Θ|Θn)+∇ΘH(Θ|Θn) . (A.3)

Then the theorem follows if we can show that the null gradient
∇ΘH(Θ|Θn) = 0 holds when Θ = Θn. But the entropy inequality
(82) states that

H(Θ|Θn) ⩾ H(Θn
|Θn) (A.4)

for all Θ . Thus Θn minimizes H(Θ|Θn). So

∇ΘH(Θ|Θn) = 0 (A.5)

holds at Θ = Θn from Fermat’s Theorem for gradients.
Putting (A.5) in (A.3) gives the desired gradient equality at

Θ = Θn:

∇Θ ln p(y|x, Θ)
⏐⏐⏐
Θ=Θn

= ∇ΘQ (Θ|Θn)
⏐⏐⏐
Θ=Θn

. (A.6)

So the BP and GEM update equations are identical at each itera-
tion n. ■

Theorem 3 (Hyperplane Noise Benefit for Injecting Noise in a Clas-
sifier Network’s Output Layer). The NEM positivity condition (114)
holds for maximum-likelihood training of a classifier neural network
with output Gibbs or softmax activations if the following average
hyperplane condition holds at iteration n:

Et,h,n|x,Θ∗
{
nT ln at

}
⩾ 0 . (119)

The NEM condition (114) also holds for injecting noise in output
logistic neurons if

Et,h,n|x,Θ∗{nT ln at} ⩾ Et,h,n|x,Θ∗{nT ln(1− at)} . (120)

Proof. We add the noise vector n to the output target 1-in-
K encoding vector t. Then expanding the EM-based complete
likelihood ratio in the NEM sufficient condition (114) gives the
likelihood ratio as a simple product of exponentiated output
activations because the output neurons are conditionally inde-
pendent:
p(t+ n,h|x, Θ)

p(t,h|x, Θ)
=

p(t+ n,h|x, Θ)p(h|x, Θ)
p(h|x, Θ)p(t,h|x, Θ)

(A.7)

=
p(t+ n|h, x, Θ)

p(t|h, x, Θ)
(A.8)

=

∏K
k=1(a

t
k)

tk+nk∏K
k=1(a

t
k)tk

(A.9)

=

K∏
k=1

(atk)
tk+nk

(atk)tk
(A.10)

=

K∏
k=1

(atk)
nk . (A.11)

So the NEM positivity condition (114) becomes

Et,h,n|x,Θ∗
{
ln

K∏
k=1

(atk)
nk
}
⩾ 0 (A.12)

or

Et,h,n|x,Θ∗
{ K∑

k=1

nk ln atk
}
⩾ 0 . (A.13)

The vector version has the inner-product form

Et,h,n|x,Θ∗{nT ln at} ⩾ 0 (A.14)

380 B. Kosko, K. Audhkhasi and O. Osoba / Neural Networks 129 (2020) 359–384

if ln at is the vector of the output neuron log-activations.
The same argument gives a related NEM-hyperplane result for

output logistic neurons with noise-injected complete likelihood
plog (t+ n,h|x, Θ) using (60):

plog (t+ n,h|x, Θ)
plog (t,h|x, Θ)

=

K∏
k=1

(atk)
tk+nk (1− atk)

1−tk−nk

(atk)tk (1− atk)1−tk
(A.15)

=

K∏
k=1

(atk)
nk (1− atk)

−nk . (A.16)

Then taking logarithms and NEM expectations gives the more
complex hyperplane inequality

Et,h,n|x,Θ∗{nT ln at} ⩾ Et,h,n|x,Θ∗{nT ln (1− a)t} . (A.17)

■

Theorem 4 (Regression Hypersphere Noise Benefit). The NEM pos-
itivity condition (114) holds at iteration n for maximum-likelihood
training of a regression neural network with Gaussian target vector
t ∼ N (t|at , I) if

Et,h,n|,x,Θ∗
{
∥n− at + t∥2 − ∥at − t∥2

}
⩽ 0 (122)

where ∥.∥ is the Euclidean vector norm.

Proof. Add the noise vector n to the K output neurons t. So the
noise n enters the regression likelihood as preg (t + n|h, x, Θ)
from (48). Then the corresponding complete likelihood ratio in
the NEM sufficient condition (114) becomes
preg (t+ n,h|x, Θ)

preg (t,h|x, Θ)
=

preg (t+ n,h|x, Θ)preg (h|x, Θ)
preg (h|x, Θ)preg (t,h|x, Θ)

(A.18)

=
preg (t+ n|h, x, Θ)

preg (t|h, x, Θ)
(A.19)

=
N (t+ n|at , I)

N (t|at , I)
(A.20)

from (51)

= exp
(1
2

[
∥t− at∥2 − ∥t+ n− at∥2

])
(A.21)

from (49) for Euclidean norm ∥z∥2 = z21 + · · · + z2d . Take the
logarithm and expectation to get the spherical NEM condition

Et,h,n|,x,Θ∗
{
∥n− at + t∥2 − ∥at − t∥2

}
⩽ 0 . ■ (A.22)

Theorem 5 (NEM Noise in Hidden Logistic Neurons). NEM noise n
boosts a given hidden layer of logistic neurons if the injected noise
satisfies the NEM likelihood inequality

Eh,n|x,Θ∗{nT ln ah} ⩾ Eh,n|x,Θ∗{nT ln (1− a)h} . (134)

for the hidden-layer activation vector ah with the logistic layer-
likelihood structure (60)–(62).

Proof. The general likelihood factorization (133) gives the to-
tal network log-likelihood as the respective sum of layer log-
likelihoods at iteration n:

L(x) = L(y|x)+ L(hk|x)+ · · · + L(h1|x) (A.23)

where L(hk|x) = ln p(hk|hk−1, . . . ,h1, x, Θn). This additive struc-
ture allows NEM-noise injection at all layers or at any subset of
layers at the nth training iteration.

We assume for simplicity that the hidden layer in question is
the kth hidden layer. It has likelihood function p(hk|hk−1, . . . ,h1,
x, Θn) that we write in abbreviated form p(hk|h, x, Θ) where h

describes all lower hidden layers hk−1, . . . ,h1. The NEM structure
still holds for the likelihood ratio because
p(hk + n|h, x, Θ)

p(hk|h, x, Θ)
=

p(hk + n,h|x, Θ)p(h|x, Θ)
p(h|x, Θ)p(hk,h|x, Θ)

(A.24)

=
p(hk + n,h|x, Θ)

p(hk,h|x, Θ)
. (A.25)

Then the logistic likelihood (60) gives the noise-injected complete
likelihood ratio as

p(hk + n,h|x, Θ)
p(hk,h|x, Θ)

=

J∏
j=1

(ahkj)hkj+nj (1− ahkj)1−hkj−nj

(ahkj)hkj (1− ahkj)1−hkj
(A.26)

=

J∏
j=1

(ahkj)nj (1− ahkj)−nj . (A.27)

The result now follows from the basic NEM Theorem by taking
logarithms and then taking expectations with respect to the
likelihood p(h,n|x, Θ∗). ■

Lemma 1. Let x ∈ (0, 1] and y ∈ (0, 1]. Then

I
(
x ⩾ y

)
⩾ ln

(x
y

)
(137)

if y ⩾ x/e.

Proof. Suppose first that x ∈ (0, y). Then x < y. So the indicator
event does not occur: I

(
x ⩾ y

)
= 0. But ln(xy) ⩽ 0 because x < y

and both x and y are positive. So I
(
x ⩾ y

)
⩾ ln(xy) holds in this

case. Suppose next that x ∈ [y, 1] for y > 0. Then x ⩾ y holds.
So I

(
x ⩾ y

)
= 1 holds. But ln(xy) ⩽ 1 holds just in case y ⩾ x/e.

Then I
(
x ⩾ y

)
⩾ ln(xy) holds in this case as well. ■

Theorem 6 (Classification Accuracy-Likelihood Bound). The classifi-
cation accuracy Aclass in (149) of a softmax-output neural network
exceeds the log-likelihood L(Θ) in (22):

Aclass ⩾ L . (153)

A network with K logistic output neurons has the bound

A ⩾ Llog + K ln 2 (154)

for the logistic log-likelihood Llog in (62).

Proof. The K softmax neurons obey 0 < max1⩽j⩽K atj ⩽ 1. So
lnmax1⩽j⩽K atj ⩽ 0. Combine this inequality with the inequality in
(152):

Aclass =

K∑
k=1

tk I
(
atk = max

1⩽j⩽K
atj
)

(A.28)

⩾

K∑
k=1

tk ln
(atk
max1⩽j⩽K atj

)
(A.29)

=

K∑
k=1

tk ln atk −
K∑

k=1

tk ln max
1⩽j⩽K

atj (A.30)

= L(Θ)− (ln max
1⩽j⩽K

atj)
K∑

k=1

tk (A.31)

= L(Θ)− ln max
1⩽j⩽K

atj (A.32)

⩾ L(Θ) (A.33)

from (22) and since {tk} is a K -length probability distribution.

B. Kosko, K. Audhkhasi and O. Osoba / Neural Networks 129 (2020) 359–384 381

The logistic bound follows similarly from (140) and (142):

A =
K∑

k=1

tk I
(
atk ⩾

1
2

)
+

K∑
k=1

(1− tk) I
(
atk <

1
2

)
(A.34)

⩾

K∑
k=1

tk ln 2atk +
K∑

k=1

(1− tk) ln(2(1− at)) (A.35)

=

K∑
k=1

tk ln atk + ln 2+
K∑

k=1

(1− tk) ln(1− at)+ (K − 1) ln 2

(A.36)

=

K∑
k=1

tk ln atk +
K∑

k=1

(1− tk) ln(1− at)+ K ln 2 (A.37)

= Llog + K ln 2 (A.38)

from (62). ■

Theorem 7 (Discrete BAM Theorem). Every connection matrix W is
bidirectionally stable for visible and hidden neurons with sufficiently
steep sigmoid activations.

Proof. Let W be any I× J matrix that connects the visible field of
I sigmoidal neurons with the hidden field of J sigmoidal neurons.
The jth hidden neuron receives the W -filtered inner product

ohj =
I∑

i=1

wijav
i (o

v
i) (A.39)

from the I visible neurons if we ignore external inputs. The ith
visible neuron likewise receives the W T -filtered inner product

ov
i =

J∑
j=1

wijahj (o
h
j) (A.40)

from the J visible neurons. Define the quadratic energy function
E as

E(av, ah|Θ) = −
I∑

i=1

J∑
j=1

wijav
i a

h
j (A.41)

Then E is bounded below: E ⩾ −
∑I

i=1
∑J

j=1 |wij|. We will show
that E is a global Lyapunov function for the two-layer network
by showing that a state change in either field can only decrease E
and thus that ∆E < 0 along system trajectories. The state changes
also have a minimal step size. So E stops decreasing after a finite
number of steps.

Suppose a nonempty subset of the I visible neurons changes
state from time increment t to t+1. There are 2I

−1 such subsets.
Suppose the ith neuron belongs to this subset. Then ∆av

i ̸= 0.
So either ∆av

i = 1 − 0 = 1 or ∆av
i = 0 − 1 = −1 since

the sigmoidal activation av
i is sufficiently steep to approximate a

binary threshold. We assume the threshold is zero but it can any
real number. The first case ∆av

i = 1 holds if and only if the inner
product ov

i in (A.40) is positive at t + 1 after being negative at t:
ov
i > 0. Then ∆av

i
∑J

j=1 wijahj > 0. The second case ∆av
i = −1

occurs just in case ov
i < 0 at t + 1 after being positive at t . Then

again ∆av
i
∑J

j=1 wijahj > 0.
So the total change ∆E due to these updating neurons during

the backward pass obeys

∆E = E(t + 1)− E(t) (A.42)

= −

I∑
i=1

∆av
i

J∑
j=1

wijahj (A.43)

< 0 (A.44)

from (A.41). A symmetric result holds for hidden neurons that
change state during the forward pass: ∆E = −

∑I
j=1 ∆ahj

∑J
i=1

wijav
i < 0 for any of the 2J

− 1 subsets of such hidden neurons.
So ∆E < 0 for a state change in either field. So every matrix W
is bidirectionally globally stable. ■

Theorem 8 (Contrastive-Divergence Learning in a BAM or RBM is
Generalized EM). The contrastive-divergence update equation (172)
for the differentiable Gibbs likelihood function p(av, ah|Θ) in (166)
at epoch n

wn+1
ij = wn

ij + η
∂ ln p(av, ah|Θ)

∂wij

⏐⏐⏐
Θ=Θn

(173)

equals the GEM update equation at epoch n

wn+1
ij = wn

ij + η
∂Q (Θ|Θn)

∂wij

⏐⏐⏐
Θ=Θn

. (174)

Proof. The EM surrogate likelihood Q-function Q (Θ|Θn) of the
BAM or RBM network takes the expectation of the joint log-
likelihood ln p(av, ah|Θ) with respect to the hidden posterior pdf
p(ah|av, Θn):

Q (Θ|Θn) = Eah|av,Θn{ln p(av, ah|Θ)} (A.45)

= Eah|av,Θn{−E(av, ah|Θ)− ln Z(Θ)} . (A.46)

Then taking the derivative with respect to wij and using the
Hebbian derivative result (170) gives

∂Q (Θ|Θn)

∂wij
=

∂Eah|av,Θn{−E(av, ah|Θ)− ln Z(Θ)}
∂wij

(A.47)

= Eah|av,Θn

{
−

∂E(av, ah|Θ)
∂wij

−
∂ ln Z(Θ)

∂wij

}
(A.48)

= Eah|av,Θn

{
av
i a

h
j −

1
Z(Θ)

∂Z(Θ)
∂wij

}
. (A.49)

The partition-function term expands with (170) as

1
Z(Θ)

∂Z(Θ)
∂wij

=
1

Z(Θ)

∂

{∑
av
∑

ah exp(−E(a
v, ah|Θ))

}
∂wij

(A.50)

=
1

Z(Θ)

∑
av

∑
ah

∂ exp(−E(av, ah|Θ))
∂wij

(A.51)

=
1

Z(Θ)

∑
av

∑
ah

− exp(−E(av, ah|Θ))
∂E(av, ah|Θ)

∂wij
(A.52)

=
1

Z(Θ)

∑
av

∑
ah

exp(−E(av, ah|Θ))av
i a

h
j (A.53)

=

∑
av

∑
ah

exp(−E(av, ah|Θ))
Z(Θ)

av
i a

h
j (A.54)

=

∑
av

∑
ah

p(av, ah|Θ) av
i a

h
j (A.55)

= Eav,ah|Θ{a
v
i (x̃i)a

h
j (h̃j)} . (A.56)

So the partial derivative of the Q-function becomes

∂Q (Θ|Θn)

∂wij
= Eah|av,Θn

{
av
i a

h
j − Eav,ah|Θ{a

v
i a

h
j }

}
(A.57)

= Eah|av,Θn{av
i a

h
j } − Eav,ah|Θ{a

v
i a

h
j } (A.58)

382 B. Kosko, K. Audhkhasi and O. Osoba / Neural Networks 129 (2020) 359–384

since the expectation of a constant equals the constant. This
learning term gives the GEM gradient-ascent equation:

wn+1
ij = wn

ij + η
∂Q (Θ|Θn)

∂wij

⏐⏐⏐
Θ=Θn

(A.59)

= wn
ij + η

(
Eah|av,Θn{av

i a
h
j } − Eav,ah|Θn{av

i a
h
j }

)
(A.60)

= wn
ij + η

∂ ln p(av, ah|Θ)
∂wij

⏐⏐⏐
Θ=Θn

(A.61)

from (172). So the two update equations are identical. ■

Theorem 9 (Logistic–Logistic Hyperplane Noise Benefit). The NEM
positivity condition holds for a Bernoulli–Bernoulli (logistic–logistic)
BAM or RBM at iteration n if

Eav,ah,n|Θ∗

{
nT (Wah + b)

}
⩾ En|Θ∗

[
ln Zn(Θn)

]
− ln Z(Θn) . (181)

Proof. The Bernoulli–Bernoulli energy E(av, ah|Θ) in (168) gives
the energy difference

E(av, ah|Θn)− E(av + n, ah|Θn)

=

I∑
i=1

J∑
j=1

wijniahj (h̃j)+
I∑

i=1

bini . (A.62)

Then putting (A.62) into (179) gives the NEM noise-benefit con-
dition for this logistic–logistic BAM/RBM:

Ex,h,n|Θ∗
{ I∑

i=1

J∑
j=1

wijniahj (h̃j)+
I∑

i=1

bini

}
⩾ Eav,h,n|Θ∗ ln

Zn(Θn)
Z(Θn)

.

The term in brackets has the matrix–vector form
I∑

i=1

J∑
j=1

wijniahj +
I∑

i=1

nibi = nT (Wah + b) . (A.63)

So the NEM condition becomes a hyperplane inequality:

Eav,ah,n|Θ∗

{
nT (Wah + b)

}
⩾ En|Θ∗

[
ln Zn(Θn)

]
− ln Z(Θn) . ■ (A.64)

Theorem 10 (Gaussian-Logistic Spherical Noise Benefit). The NEM
positivity condition holds for training a Gaussian–Bernoulli BAM or
RBM at iteration n if

Eav,ah,n|Θ∗

{1
2
∥n∥2 − nT (Wah + b− x)

}
(182)

⩽ ln Z(Θn)− En|Θ∗
[
ln Zn(Θn)

]
.

Proof. Putting the Gaussian-logistic energy function in (169) into
(179) gives the noise-benefit condition for a Gaussian(visible)–
Bernoulli(hidden) BAM or RBF:

Eav,ah,n|Θ∗

{ I∑
i=1

J∑
j=1

wijniahj +
I∑

i=1

nibi −
1
2

I∑
i=1

n2
i (A.65)

−

I∑
i=1

niav
i

}
⩾ En|Θ∗

[
ln Zn(Θn)

]
− ln Z(Θn) .

The term in brackets has the vector–matrix form
I∑

i=1

J∑
j=1

wijniahj +
I∑

i=1

nibi −
1
2

I∑
i=1

n2
i −

I∑
i=1

niav
i

= nT (Wah + b− av)−
1
2
∥n∥2 . (A.66)

So taking expectations of both sides of (A.65) gives the noise-
benefit sufficient condition as the quadratic condition (182). ■

References

Adigun, O., & Kosko, B. (2016). Bidirectional representation and backpropagation
learning. In International joint conference on advances in big data analytics (pp.
3–9).

Adigun, O., & Kosko, B. (2017). Using noise to speed up video classification with
recurrent backpropagation. In Neural networks (IJCNN), 2017 international
joint conference on (pp. 108–115). IEEE.

Adigun, O., & Kosko, B. (2018). Training generative adversarial networks with
bidirectional backpropagation. In 2018 17th IEEE international conference on
machine learning and applications (ICMLA) (pp. 1178–1185). IEEE.

Adigun, O., & Kosko, B. (2019a). Bidirectional backpropagation. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 50(5), 1982 - 1994, May 2020.

Adigun, O., & Kosko, B. (2019b). Noise-boosted bidirectional backpropagation and
adversarial learning. Neural Networks, 120, 9–31.

Amari, S.-I. (1995). Information geometry of the EM and em algorithms for neural
networks. Neural Networks, 8(9), 1379–1408.

An, G. (1996). The effects of adding noise during backpropagation training on a
generalization performance. Neural Computation, 8(3), 643–674.

Audhkhasi, K., Osoba, O., & Kosko, B. (2016). Noise-enhanced convolutional
neural networks. Neural Networks, 78, 15–23.

Azamimi, A., Uwate, Y., & Nishio, Y. (2008). An analysis of chaotic noise injected
to backpropagation algorithm in feedforward neural network. In Proceedings
of IWVCC08 (pp. 70–73). Citeseer.

Barron, A. R. (1993). Universal approximation bounds for superpositions of a
sigmoidal function. IEEE Transactions on Information Theory, 39(3), 930–945.

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in
Machine Learning, 2(1), 1–127.

Bishop, C. M. (1995). Training with noise is equivalent to Tikhonov regularization.
Neural Computation, 7(1), 108–116.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.
Bulsara, A., Boss, R., & Jacobs, E. (1989). Noise effects in an electronic model of

a single neuron. Biological Cybernetics, 61(3), 211–222.
Carpenter, G. A., Grossberg, S., & Rosen, D. B. (1991). Fuzzy ART: Fast stable

learning and categorization of analog patterns by an adaptive resonance
system. Neural Networks, 4(6), 759–771.

Ciresan, D., Meier, U., Gambardella, L., & Schmidhuber, J. (2010). Deep, big, simple
neural nets for handwritten digit recognition. Neural Computation, 22(12),
3207–3220.

Cohen, M. A., & Grossberg, S. (1983). Absolute stability of global pattern
formation and parallel memory storage by competitive neural networks. IEEE
Transactions on Systems, Man and Cybernetics, (5), 815–826.

Cook, G. D., & Robinson, A. J. (1995). Training MLPs via the expectation
maximization algorithm. In Proc. artificial neural networks. IET.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, 2(4), 303–314.

Dahl, G., Ranzato, M., Mohamed, A., & Hinton, G. (2010). Phone recognition with
the mean-covariance restricted Boltzmann machine. In Proc. NIPS, Vol. 23 (pp.
469–477).

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society.
Series B. Statistical Methodology, 1–38.

Deselaers, T., Hasan, S., Bender, O., & Ney, H. (2009). A deep learning approach
to machine transliteration. In Proceedings of the fourth workshop on statistical
machine translation (pp. 233–241). Association for Computational Linguistics.

Efron, B., & Hastie, T. (2016). Computer age statistical inference, Vol. 5. Cambridge
University Press.

Franzke, B., & Kosko, B. (2011). Noise can speed convergence in Markov Chains.
Physical Review E, 84(4), 041112.

Franzke, B., & Kosko, B. (2015). Using noise to speed up Markov Chain Monte
Carlo estimation. Procedia Computer Science, 53, 113–120.

Gammaitoni, L., Hänggi, P., Jung, P., & Marchesoni, F. (1998). Stochastic
resonance. Reviews of Modern Physics, 70(1), 223.

Girosi, F., Jones, M. B., & Poggio, T. (1995). Regularization theory and neural
networks architectures. Neural Computation, 7(2), 219–269.

Grossberg, S. (1988). Nonlinear neural networks: Principles, mechanisms, and
architectures. Neural Networks, 1(1), 17–61.

Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A.,
et al. (2016). Development and validation of a deep learning algorithm
for detection of diabetic retinopathy in retinal fundus photographs. JAMA,
316(22), 2402–2410.

Guo, Y., Zhou, D., Nie, R., Ruan, X., & Li, W. (2019). Deepanf: A deep attentive
neural framework with distributed representation for chromatin accessibility
prediction. Neurocomputing.

Gutmann, M. U., & Hyvärinen, A. (2012). Noise-contrastive estimation of un-
normalized statistical models, with applications to natural image statistics.
Journal of Machine Learning Research (JMLR), 13(1), 307–361.

http://refhub.elsevier.com/S0893-6080(20)30124-6/sb1
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb1
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb1
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb1
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb1
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb2
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb2
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb2
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb2
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb2
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb3
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb3
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb3
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb3
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb3
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb4
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb4
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb4
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb5
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb5
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb5
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb6
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb6
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb6
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb7
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb7
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb7
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb8
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb8
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb8
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb9
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb9
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb9
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb9
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb9
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb10
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb10
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb10
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb11
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb11
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb11
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb12
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb12
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb12
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb13
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb14
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb14
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb14
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb15
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb15
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb15
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb15
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb15
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb16
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb16
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb16
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb16
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb16
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb17
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb17
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb17
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb17
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb17
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb18
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb18
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb18
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb19
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb19
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb19
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb21
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb21
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb21
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb21
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb21
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb22
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb22
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb22
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb22
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb22
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb23
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb23
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb23
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb24
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb24
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb24
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb25
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb25
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb25
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb26
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb26
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb26
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb27
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb27
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb27
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb28
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb28
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb28
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb29
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb29
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb29
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb29
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb29
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb29
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb29
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb30
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb30
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb30
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb30
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb30
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb31
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb31
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb31
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb31
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb31

B. Kosko, K. Audhkhasi and O. Osoba / Neural Networks 129 (2020) 359–384 383

Hamel, P., & Eck, D. (2010). Learning features from music audio with deep belief
networks. In Proc. ISMIR.

Hayakawa, Y., Marumoto, A., & Sawada, Y. (1995). Effects of the chaotic noise
on the performance of a neural network model for optimization problems.
Physical Review E, 51(4), 2693–2696.

Haykin, S. (1998). Neural networks: A comprehensive foundation. Prentice Hall.
Hinton, G. (2018). Deep learning: a technology with the potential to transform

health care. Journal of the American Medical Association, 320(11), 1101–1102.
Hinton, G. (2020). Training a deep autoencoder or a classifier on MNIST dig-

its. http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html. [Online;
accessed February-2020].

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A.-R., Jaitly, N., et al. (2012). Deep
neural networks for acoustic modeling in speech recognition. IEEE Signal
Processing Magazine.

Hinton, G., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep
belief nets. Neural Computation, 18(7), 1527–1554.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data
with neural networks. Science, 313(5786), 504–507.

Hogg, R. V., McKean, J., & Craig, A. T. (2013). Introduction to mathematical
statistics. Pearson.

Holmstrom, L., & Koistinen, P. (1992). Using additive noise in back-propagation
training. IEEE Transactions on Neural Networks, 3(1), 24–38.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5), 359–366.

Hou, R., Zhou, D., Nie, R., Liu, D., & Ruan, X. (2019). Brain CT and MRI
medical image fusion using convolutional neural networks and a dual-
channel spiking cortical model. Medical & Biological Engineering & Computing,
57(4), 887–900.

Hu, X., Cammann, H., Meyer, H.-A., Miller, K., Jung, K., & Stephan, C. (2013). Artifi-
cial neural networks and prostate cancertool for diagnosis and management.
Nature Reviews Urology.

Intrator, O., & Intrator, N. (2001). Interpreting neural-network results: a
simulation study. Computational Statistics & Data Analysis, 37(3), 373–393.

Jang, J.-S. R., & Sun, C.-T. (1993). Functional equivalence between radial basis
function networks and fuzzy inference systems. IEEE Transactions on Neural
Networks, 4(1), 156–159.

Jordan, M., & Mitchell, T. (2015). Machine learning: trends, perspectives, and
prospects. Science, 349, 255–260.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Kosko, B. (1987). Adaptive bidirectional associative memories. Applied Optics,
26(23), 4947–4960.

Kosko, B. (1988). Bidirectional associative memories. IEEE Transactions on
Systems, Man and Cybernetics, 18(1), 49–60.

Kosko, B. (1990). Unsupervised learning in noise. IEEE Transactions on Neural
Networks, 1(1), 44–57.

Kosko, B. (1991). Neural networks and fuzzy systems: A dynamical systems
approach to machine intelligence. Prentice Hall.

Kosko, B. (1994). Fuzzy systems as universal approximators. IEEE Transactions on
Computers, 43(11), 1329–1333.

Kosko, B. (1996). Fuzzy engineering. Prentice Hall.
Kosko, B. (2006). Noise. Viking.
Kosko, B. (2018). Additive fuzzy systems: From generalized mixtures to rule

continua. International Journal of Intelligent Systems, 33(8), 1573–1623.
Kosko, B., Lee, I., Mitaim, S., Patel, A., & Wilde, M. M. (2009). Applications

of forbidden interval theorems in stochastic resonance. In Applications of
nonlinear dynamics (pp. 71–89). Springer.

Kosko, B., & Mitaim, S. (2003). Stochastic resonance in noisy threshold neurons.
Neural Networks, 16(5), 755–761.

Kosko, B., & Mitaim, S. (2004). Robust stochastic resonance for simple threshold
neurons. Physical Review E, 70(3), 031911.

Kung, S. Y. (2014). Kernel methods and machine learning. Cambridge University
Press.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444.
Lee, I., Liu, X., Zhou, C., & Kosko, B. (2006). Noise-enhanced detection

of subthreshold signals with carbon nanotubes. IEEE Transactions on
Nanotechnology, 5(6), 613–627.

Matsuoka, K. (1992). Noise injection into inputs in back-propagation learning.
IEEE Transactions on Systems, Man and Cybernetics, 22(3), 436–440.

McDonnell, M., Stocks, N., Pearce, C., & Abbott, D. (2008). Stochastic resonance:
from suprathreshold stochastic resonance to stochastic signal quantization.
Cambridge University Press.

McLachlan, G. J., & Krishnan, T. (2007). The EM algorithm and extensions, Vol. 382.
Wiley-Interscience.

McLachlan, G., & Peel, D. (2000). Finite mixture models. Wiley-Interscience.
Minsky, M. (1961). Steps toward artificial intelligence. Proceedings of the IRE,

49(1), 8–30.
Mitaim, S., & Kosko, B. (1998). Adaptive stochastic resonance. Proceedings of the

IEEE, 86(11), 2152–2183.

Mitaim, S., & Kosko, B. (2004). Adaptive stochastic resonance in noisy neurons
based on mutual information. IEEE Transactions on Neural Networks, 15(6),
1526–1540.

Mitaim, S., & Kosko, B. (2014). Noise-benefit forbidden-interval theorems for
threshold signal detectors based on cross correlations. Physical Review E,
90(5), 052124.

Mnih, A., & Kavukcuoglu, K. (2013). Learning word embeddings efficiently
with noise-contrastive estimation. In Proc. Advances in neural information
processing systems (pp. 2265–2273).

Mohamed, A., Dahl, G., & Hinton, G. (2009). Deep belief networks for phone
recognition. In Proc. NIPS workshop on deep learning for speech recognition
and related applications.

Mohamed, A., Dahl, G., & Hinton, G. (2012). Acoustic modeling using deep belief
networks. IEEE Transactions on Audio, Speech, and Language Processing, 20(1),
14–22.

Mohamed, A., Sainath, T., Dahl, G., Ramabhadran, B., Hinton, G., & Picheny, M.
(2011). Deep belief networks using discriminative features for phone
recognition. In Acoustics, speech and signal processing (ICASSP), 2011 IEEE
international conference on (pp. 5060–5063). IEEE.

Mohamed, A., Yu, D., & Deng, L. (2010). Investigation of full-sequence training
of deep belief networks for speech recognition. In Proc. Interspeech (pp.
2846–2849). Citeseer.

Moon, T. K. (1996). The expectation-maximization algorithm. IEEE Signal
Processing Magazine, 13(6), 47–60.

Nair, V., & Hinton, G. (2009). 3D object recognition with deep belief nets.
Advances in Neural Information Processing Systems, 22, 1339–1347.

Ng, S.-K., & McLachlan, G. J. (2004). Using the EM algorithm to train neural
networks: misconceptions and a new algorithm for multiclass classification.
IEEE Transactions on Neural Networks, 15(3), 738–749.

Oakes, D. (1999). Direct calculation of the information matrix via the EM. Journal
of the Royal Statistical Society. Series B. Statistical Methodology, 61(2), 479–482.

Osoba, O., & Kosko, B. (2013). Noise-enhanced clustering and competitive
learning algorithms. Neural Networks.

Osoba, O., & Kosko, B. (2016a). The noisy expectation–maximization algorithm
for multiplicative noise injection. Fluctuation and Noise Letters, 1350012.

Osoba, O., & Kosko, B. (2016b). The noisy expectation-maximization algorithm
for multiplicative noise injection. Fluctuation and Noise Letters, 1650007.

Osoba, O., Mitaim, S., & Kosko, B. (2011a). Bayesian inference with adaptive fuzzy
priors and likelihoods. IEEE Transactions on Systems, Man and Cybernetics, Part
B, 41(5), 1183–1197.

Osoba, O., Mitaim, S., & Kosko, B. (2011b). Noise benefits in the expectation-
maximization algorithm: NEM theorems and models. In The international
joint conference on neural networks (IJCNN) (pp. 3178–3183). IEEE.

Osoba, O., Mitaim, S., & Kosko, B. (2013). The noisy expectation–maximization
algorithm. Fluctuation and Noise Letters, 12(03), 1350012.

Patel, A., & Kosko, B. (2008). Stochastic resonance in continuous and spiking
neurons with levy noise. IEEE Transactions on Neural Networks, 19(12),
1993–2008.

Patel, A., & Kosko, B. (2009). Error-probability noise benefits in threshold neural
signal detection. Neural Networks, 22(5), 697–706.

Patel, A., & Kosko, B. (2010). Optimal mean-square noise benefits in
quantizer-array linear estimation. IEEE Signal Processing Letters, 17(12),
1005–1009.

Patel, A., & Kosko, B. (2011). Noise benefits in quantizer-array correlation
detection and watermark decoding. IEEE Transactions on Signal Processing,
59(2), 488–505.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected
applications in speech recognition. Proceedings of the IEEE, 77(2), 257–286.

Rawat, W., & Wang, Z. (2017). Deep convolutional neural networks for im-
age classification: A comprehensive review. Neural Computation, 29(9),
2352–2449.

Reed, R., Marks, R., & Oh, S. (1995). Similarities of error regularization, sigmoid
gain scaling, target smoothing, and training with jitter. IEEE Transactions on
Neural Networks, 6(3), 529–538.

Reed, R., Oh, S., & Marks, R. (1992). Regularization using jittered training data.
In Neural networks, 1992. IJCNN., International joint conference on, Vol. 3 (pp.
147–152). IEEE.

Ripley, B. D. (1994). Neural networks and related methods for classification.
Journal of the Royal Statistical Society. Series B. Statistical Methodology,
409–456.

Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning representations by
back-propagating errors. Nature, 323–533.

Sainath, T., Kingsbury, B., Ramabhadran, B., Fousek, P., Novak, P., & Mo-
hamed, A. (2011). Making deep belief networks effective for large vocabulary
continuous speech recognition. In Proc. ASRU (pp. 30–35). IEEE.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural
Networks, 61, 85–117.

Seide, F., Li, G., & Yu, D. (2011). Conversational speech transcription using
context-dependent deep neural networks. In Proc. Interspeech (pp. 437–440).

http://refhub.elsevier.com/S0893-6080(20)30124-6/sb33
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb33
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb33
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb33
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb33
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb34
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb35
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb35
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb35
http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb37
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb37
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb37
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb37
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb37
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb38
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb38
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb38
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb39
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb39
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb39
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb40
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb40
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb40
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb41
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb41
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb41
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb42
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb42
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb42
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb43
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb43
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb43
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb43
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb43
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb43
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb43
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb44
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb44
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb44
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb44
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb44
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb45
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb45
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb45
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb46
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb46
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb46
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb46
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb46
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb47
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb47
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb47
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb49
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb49
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb49
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb50
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb50
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb50
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb51
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb51
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb51
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb52
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb52
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb52
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb53
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb53
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb53
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb54
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb55
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb56
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb56
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb56
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb57
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb57
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb57
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb57
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb57
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb58
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb58
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb58
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb59
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb59
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb59
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb60
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb60
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb60
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb61
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb62
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb62
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb62
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb62
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb62
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb63
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb63
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb63
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb64
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb64
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb64
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb64
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb64
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb65
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb65
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb65
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb66
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb67
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb67
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb67
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb68
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb68
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb68
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb69
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb69
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb69
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb69
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb69
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb70
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb70
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb70
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb70
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb70
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb73
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb73
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb73
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb73
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb73
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb74
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb74
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb74
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb74
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb74
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb74
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb74
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb75
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb75
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb75
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb75
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb75
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb76
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb76
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb76
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb77
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb77
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb77
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb78
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb78
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb78
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb78
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb78
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb79
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb79
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb79
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb80
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb80
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb80
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb81
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb81
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb81
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb82
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb82
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb82
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb83
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb83
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb83
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb83
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb83
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb84
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb84
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb84
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb84
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb84
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb85
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb85
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb85
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb86
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb86
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb86
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb86
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb86
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb87
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb87
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb87
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb88
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb88
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb88
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb88
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb88
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb89
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb89
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb89
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb89
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb89
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb90
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb90
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb90
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb91
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb91
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb91
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb91
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb91
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb92
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb92
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb92
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb92
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb92
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb93
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb93
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb93
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb93
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb93
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb94
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb94
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb94
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb94
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb94
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb95
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb95
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb95
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb96
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb96
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb96
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb96
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb96
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb97
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb97
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb97

384 B. Kosko, K. Audhkhasi and O. Osoba / Neural Networks 129 (2020) 359–384

Smolensky, P. (1986). Information processing in dynamical systems: Foundations
of harmony theory. Boulder: Department of Computer Science, University of
Colorado.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. Journal
of Machine Learning Research (JMLR), 15(1), 1929–1958.

Susskind, J., Hinton, G., Movellan, J., & Anderson, A. (2008). Generating facial
expressions with deep belief nets. Affective Computing, Emotion Modelling,
Synthesis and Recognition, 421–440.

Teicher, H. (1963). Identifiability of finite mixtures. The Annals of Mathematical
Statistics, 34(4), 1265–1269.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society. Series B. Statistical Methodology, 267–288.

Tucker, H. G. (2013). A graduate course in probability. Courier Corporation.
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P.-A. (2010). Stacked

denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion. Journal of Machine Learning Research (JMLR),
11(Dec), 3371–3408.

Werbos, P. J. (1974). Applied mathematics, Beyond regression: New tools for
prediction and analysis in the behavioral sciences (Doctoral Dissertation), MA:
Harvard University.

Widrow, B., & McCool, J. M. (1976). A comparison of adaptive algorithms based
on the methods of steepest descent and random search. IEEE Transactions on
Antennas and Propagation, 24(5), 615–637.

Wilde, M., & Kosko, B. (2009). Quantum forbidden-interval theorems for
stochastic resonance. Journal of Physical A: Mathematical Theory, 42(46).

Xu, R., & Wunsch, D. (2008). Clustering, Vol. 10. John Wiley & Sons.

http://refhub.elsevier.com/S0893-6080(20)30124-6/sb99
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb99
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb99
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb99
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb99
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb100
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb100
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb100
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb100
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb100
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb101
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb101
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb101
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb101
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb101
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb102
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb102
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb102
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb103
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb103
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb103
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb104
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb105
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb105
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb105
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb105
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb105
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb105
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb105
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb106
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb106
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb106
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb106
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb106
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb107
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb107
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb107
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb107
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb107
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb108
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb108
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb108
http://refhub.elsevier.com/S0893-6080(20)30124-6/sb109

	Noise can speed backpropagation learning and deep bidirectional pretraining
	Noise benefits in backpropagation
	Backpropagation invariance and the EM connection
	Noise boosting BP via the noisy EM theorem
	Earlier noise injection in backpropagation
	Overview of subsequent sections

	Backpropagation as maximum likelihood estimation
	Backpropagation as generalized expectation maximization
	The Noisy Expectation–Maximization theorem
	NEM theorem for additive noise injection

	Injecting NEM noise in output neurons
	Injecting NEM noise in hidden neurons
	NEM noise benefits in classification accuracy
	Pre-training with bidirectional associative memories (BAMs) or restricted Boltzmann machines (RBMs)
	Noise-boosting contrastive divergence in BAMs and RBMs
	Simulation results
	Conclusions
	Declaration of competing interest
	Appendix. Proofs of Theorems
	References

