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Noise can speed Markov chain Monte Carlo estimation and quantum annealing
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Carefully injected noise can speed the average convergence of Markov chain Monte Carlo (MCMC) estimates
and simulated annealing optimization. This includes quantum annealing and the MCMC special case of the
Metropolis-Hastings algorithm. MCMC seeks the solution to a computational problem as the equilibrium
probability density of a reversible Markov chain. The algorithm must cycle through a long burn-in phase
until it reaches equilibrium because the Markov samples are statistically correlated. The special injected noise
reduces this burn-in period in MCMC. A related theorem shows that it reduces the cooling time in simulated
annealing. Simulations showed that optimal noise gave a 76% speed-up in finding the global minimum in the
Schwefel optimization benchmark. The noise-boosted simulations found the global minimum in 99.8% of trials
compared with only 95.4% of trials in noiseless simulated annealing. Simulations also showed that the noise
boost is robust to accelerated cooling schedules and that noise decreased convergence times by more than
32% under aggressive geometric cooling. Molecular dynamics simulations showed that optimal noise gave a
42% speed-up in finding the minimum potential energy configuration of an eight-argon-atom gas system with a
Lennard-Jones 12-6 potential. The annealing speed-up also extends to quantum Monte Carlo implementations of
quantum annealing. Noise improved ground-state energy estimates in a 1024-spin simulated quantum annealing
simulation by 25.6%. The quantum noise flips spins along a Trotter ring. The noisy MCMC algorithm brings
each Markov step closer on average to equilibrium if an inequality holds between two expectations. Gaussian
or Cauchy jump probabilities reduce the noise-benefit inequality to a simple quadratic inequality. Simulations
show that noise-boosted simulated annealing is more likely than noiseless annealing to sample high probability
regions of the search space and to accept solutions that increase the search breadth.
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I. NOISE-BOOSTING MCMC ESTIMATION

We show that carefully injected noise can speed the conver-
gence of Markov chain Monte Carlo (MCMC) estimates. The
noise randomly perturbs the signal and widens the breadth
of search. The perturbation can be additive or multiplicative
or some other measurable function. The two main theorems
below use additive noise only for simplicity. They hold for
arbitrary combinations of noise and signal. One corollary does
use multiplicative noise for a Gaussian jump density.

The injected noise must satisfy an inequality that incorpo-
rates the detailed-balance condition of a reversible Markov
chain. So the process is not simply blind independent noise
injection as in stochastic resonance [1–10]. The specially
chosen noise perturbs the current state so as to make the
state more probable within the constraints of reversibility.
This constrained probabilistic noise differs from the search
probability even if they are both Gaussian because the system
injects only that subset of Gaussian noise that satisfies the
inequality.

The noise boost shortens the distance between the current
sampled probability density and the desired equilibrium den-
sity. It reduces on average the Kullback-Liebler pseudodis-
tance between these two densities. This leads to a shorter
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“burn-in” time before the user can safely estimate integrals
or other statistics based on sample averages as in regular
(uncorrelated) Monte Carlo simulation.

The MCMC noise boost extends to simulated annealing
with different cooling schedules. It also extends to quantum-
annealing search that burrows through a cost surface rather
than thermally bounces over it as in classical annealing. The
quantum-annealing noise propagates along an Ising lattice. It
conditionally flips the corresponding sites on coupled Trotter
slices.

MCMC is a powerful statistical optimization technique
that exploits the convergence properties of Markov chains
[11,12]. These properties include Markov-chain versions of
the laws of large numbers and the central limit theorem [13].
It often works well on high-dimensional problems of statis-
tical physics, chemical kinetics, genomics, decision theory,
machine learning, quantum computing, financial engineering,
and Bayesian inference [14]. Special cases of MCMC include
the Metropolis-Hastings algorithm and Gibbs sampling in
Bayesian statistical inference [15–17].

MCMC solves an inverse problem: How can the system
reach a given solution from any starting point of the Markov
chain?

MCMC draws random samples from a reversible Markov
chain. It then computes sample averages to estimate popula-
tion statistics. The designer picks the Markov chain so that
its equilibrium probability density function corresponds to the
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solution of a given computational problem. The correlated
samples can require cycling through a long burn-in period
before the Markov chain equilibrates.

We show that careful (nonblind) noise injection can speed
up this lengthy burn-in period.

MCMC simulation itself arose in the early 1950s when
physicists modeled the intense energies and high particle
dimensions involved in the design of thermonuclear bombs.
These simulations ran on the MANIAC and other early com-
puters [18]. Many refer to this algorithm as the Metropolis al-
gorithm or the Metropolis-Hastings algorithm after Hastings’
modification to it in 1970 [15]. The original 1953 paper [18]
computed thermal averages for 224 hard spheres that collided
in the plane. Its high-dimensional state space was R448. So
even standard random-sample Monte Carlo techniques were
not feasible. The name “simulated annealing” has also be-
come common since Kirkpatrick’s work on spin glasses and
very large scale integration (VLSI) optimization in 1983 for
MCMC that uses a cooling schedule [19].

The noisy MCMC (N-MCMC) algorithm below resembles
but differs from our earlier “stochastic resonance” work on
using noise to speed up stochastic convergence. We showed
earlier how adding noise to a Markov chain’s state density
can speed convergence to the chain’s equilibrium probability
density π if we know π in advance [20]. The noise did not

add to the state. Nor was it part of the MCMC framework that
solves the inverse problem of starting with π and finding a
Markov chain that leads to it.

The noisy expectation-maximization (NEM) algorithm did
show on average how to boost each iteration of the EM
algorithm [21,22] as the estimator climbs to the top of the
nearest hill on a likelihood surface [23,24]. This noise result
also showed how to speed up the popular backpropagation
algorithm in neural networks because we also showed that
the backpropagation gradient-descent algorithm is a special
case of the generalized EM algorithm [25,26]. The same NEM
algorithm boosts the popular Baum-Welch method for training
hidden-Markov models in speech recognition and elsewhere
[27]. It boosts the k-means-clustering algorithm found in
pattern recognition and big data [28]. It also boosts recurrent
backpropagation in machine learning [29].

The N-MCMC algorithm and theorem below stem from a
simple intuition: Find a noise sample n that makes the next
choice of location x + n more probable. Define the usual state
transition function Q(y|x) as the probability that the system
moves or jumps to state y if it is in state x. The sample x is a
realization of the location random variable X . The sample n
is a realization of the noise random variable N . The Metropo-
lis algorithm requires a symmetric state transition function:
Q(y|x) = Q(x|y). This helps explain the common choice of

FIG. 1. Schwefel function f (x) = 419.9829d −∑d
i=1 xi sin (

√|x|) is a d-dimensional optimization benchmark on the hypercube −512 �
xi � 512 [30–33]. It has a single global minimum f (xmin ) = 0 at xmin = (420.9687, . . . , 420.9687). Energy peaks separate irregular troughs
on the surface. This leads to estimate capture in search algorithms that emphasize local search.
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a Gaussian jump function. Neither the Metropolis-Hastings
algorithm nor the N-MCMC results require symmetry. But
all MCMC algorithms do require that the chain is reversible.
Physicists call this detailed balance:

Q(y|x)π (x) = Q(x|y)π (y) (1)

for all x and y.
Now consider a noise sample n that makes the jump

more probable: Q(y|x + n) � Q(y|x). This is equivalent to
ln Q(y|x+n)

Q(y|x) � 0. Replace the denominator jump term with its
symmetric dual Q(x|y). Then eliminate this term with detailed
balance and rearrange to get the key inequality for a noise
boost:

ln
Q(y|x + n)

Q(y|x)
� ln

π (x)

π (y)
. (2)

Taking expectations over the noise random variable N and
over X gives a simple symmetric version of the sufficient
condition in the noisy MCMC theorem for a speed-up:

EN,X

[
ln

Q(y|x + N )

Q(y|x)

]
� EX

[
ln

π (x)

π (y)

]
. (3)

The inequality (3) has the form A � B. So it generalizes the
structurally similar sufficient condition A � 0 that governs the
NEM algorithm [23]. This is natural since the EM algorithm
deals with only the likelihood term P(E |H ) on the right side
of Bayes’s theorem: P(H |E ) = P(H )P(E |H )

P(E ) for hypothesis H
and evidence E . MCMC deals with the converse posterior
probability P(H |E ) on the left side. The posterior requires the
extra prior P(H ). This accounts for the right-hand side of (3).

The next sections review MCMC and then extend it to the
noise-boosted case. Theorem 1 proves that at each step the
noise-boosted chain is closer on average to the equilibrium
density than is the noiseless chain. Theorem 2 proves that
noisy simulated annealing increases the sample acceptance
rate to exploit the noise-boosted chain. The first corollary
uses an exponential term to weaken the sufficient condition.
The next two corollaries state a simple quadratic condition for
the noise boost when the jump probability is a Gaussian bell
curve or a Cauchy bell curve. A Cauchy bell curve has slightly
thicker tails and gives occasional longer jumps.

The next section presents the noisy Markov chain Monte
Carlo algorithm and the noisy simulated annealing algorithm.
Three simulations show the predicted MCMC noise bene-
fit. The first shows that noise decreased convergence time
in Metropolis-Hastings optimization of the highly nonlinear
Schwefel function (Fig. 1) by 75%. Figure 2 shows sam-
ple burn-in histograms as the MCMC system searches the
Schwefel surface for the global optimum. Figure 3 shows two
sample paths and describes the origin of the convergence noise
benefit. Then we show noise benefits in an eight-argon-atom
molecular dynamics simulation that uses a Lennard-Jones 12-
6 interatomic potential and a Gaussian-jump model. Figure 4
shows that the optimal noise gave a 42% speed-up. It took 173
steps to reach equilibrium with N-MCMC compared with 300
steps in the noiseless case. The third simulation shows that a
noise-boosted path-integral Monte Carlo quantum annealing
improved on the estimated ground state of a 1024-spin Ising
spin glass system by 25.6%. We were not able to quantify the
decrease in convergence time because the non-noisy quantum

FIG. 2. Time evolution of a two-dimensional (2D) histogram of
MCMC samples from the 2D Schwefel function in Fig. 1. (a) The
simulation has explored only a small region of the space after 1000
samples. The simulation has not sufficiently burned in. The samples
remain close to the initial state because the MCMC random walk
proposed new samples near the current state. This early histogram
did not match the Schwefel density. (b) The 10 000 sample histogram
better matched the target density but there were still large unexplored
regions. (c) The 100 000 sample histogram shows that the simulation
explored most of the search space. The tallest (red) peak shows
that the simulation found the global minimum. The histogram peaks
corresponded to energy minima on the Schwefel surface.

annealing algorithm did not converge to a ground state this
low in any trial.

II. MARKOV CHAIN MONTE CARLO

We first review the Markov chains that underlie the MCMC
algorithm [34]. This includes the important MCMC special
case called the Metropolis-Hastings algorithm.

A Markov chain is a random process whose future depends
only on the present. It has no memory of the past. So its
transitions from one state to another obey the Markov property

P(Xt+1 = x|X1 = x1, . . . , Xt = xt ) = P(Xt+1 = x|Xt = xt ).
(4)

P is the single-step transition probability matrix where

Pi, j = P(Xt+1 = j|Xt = i) (5)
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FIG. 3. Noise increased the breadth of search for simulated-annealing sample sequences from a five-dimensional (projected to two
dimensions) Schwefel surface with logarithmic cooling schedule. Noisy simulated annealing visited more local minima and quickly moved out
of those minima that trapped nonnoisy SA. Both figures show sample sequences with initial condition x0 = (0, 0) and N = 106. The red circle
(lower left) locates the global minimum at xmin = (−420.9687, −420.9687). (a) The noiseless algorithm found the (205, 205) local minimum
within the first 100 time steps. Thermal noise did not induce the noiseless algorithm to search the space beyond three local minima. (b) The
noisy simulation followed the noiseless simulation at the simulation start. It also sampled the same regions but in accord with Algorithm 2.
The noise injected in accord with Theorem 2 both enhanced the thermal jumps and increased the breadth of the simulation. The noise-injected
simulation visited the same three minima as in (a) but it performed a local optimization for only a few hundred steps before it jumped to the
next minimum. The estimate settled at (−310, −310). This was just one hop away from the global minimum xmin.

FIG. 4. MCMC noise benefit for an MCMC molecular dynamics
simulation of eight argon atoms. Noise decreases the convergence
time for an MCMC simulation to find the energy minimum by 42%.
The plot shows the number of steps that an MCMC simulation
needed to converge to the minimum energy in an eight-argon-atom
gas system. The optimal noise had a standard deviation of 0.56.
The plot shows 100 noise levels with variance noise powers that
range between 0 (no noise) and σ 2 = 3. Each point averaged 200
simulations and shows the average number of MCMC steps required
to estimate the minimum to within 0.01. The Lennard-Jones 12-6
model described the interaction between two argon atoms with ε =
1.654 × 10−21 J and σ = 3.405 × 10−10 m = 3.405 Å [41].

is the probability that the chain in state i at time t moves to
state j at time t + 1.

State j is accessible from state i if there is some nonzero
probability of transitioning from state i to state j (i → j) in
any finite number of steps:

P(n)
i, j > 0 (6)

for some n > 0. A Markov chain is irreducible if each state
is accessible from all other states [34,35]. Irreducibility im-
plies that for all states i and j there exists m > 0 such that
P(Xn+m = j|Xn = i) = P(m)

i, j > 0. This holds if and only if P
is a regular stochastic matrix.

The period di of state i is di = gcd{n � 1 : P(n)
i,i > 0} or

di = ∞ if P(n)
i,i = 0 for all n � 1 if gcd denotes the greatest

common divisor. State i is aperiodic if di = 1. A Markov chain
with transition matrix P is aperiodic if di = 1 for all states i.

A sufficient condition for a Markov chain to have a unique
stationary distribution π is that the state transitions satisfy
detailed balance: Pj,kx∞

j = Pk, jx∞
k for all states j and k. We

can also write this as Q(k| j)π ( j) = Q( j|k)π (k). This is called
the reversibility condition. A Markov chain is reversible if it
obeys detailed balance.

Markov Chain Monte Carlo algorithms exploit the Markov
convergence guarantee as they construct Markov chains
with samples drawn from complex probability densities. But
MCMC methods suffer from problem-specific parameters
that govern sample acceptance and convergence assessment
[36,37]. Strong dependence on initial conditions also biases
the MCMC sampling unless the simulation allows a lengthy
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period of burn-in to allow the driving Markov chain to mix
adequately.

A. The Metropolis-Hastings algorithm

We next present Hastings’s [15] generalization of the
MCMC Metropolis algorithm. Some now call this the
Metropolis-Hastings algorithm. This starts with the classical
Metropolis algorithm [18].

Suppose we want to sample x1, . . . , xn from a random vari-
able X with probability density function (pdf) p(x). Suppose
p(x) = f (x)

K for some function f (x) and normalizing constant
K . We may not know the normalizing constant K or it may
be hard to compute. The Metropolis algorithm constructs
a Markov chain with the target equilibrium density p. The
algorithm generates a sequence of samples from p(x).

(1) Choose an initial x0 with f (x0) > 0.
(2) Generate a candidate x∗

t+1 by sampling from the jump
distribution Q(xt+1|xt ). The jump pdf must be symmetric:
Q(xt+1|xt ) = Q(xt |xt+1).

(3) Calculate the density ratio for x∗
t+1: α = p(x∗

t+1 )
p(xt ) =

f (x∗
t+1 )

f (xt ) . Note that the normalizing constant K cancels.
(4) Accept the candidate point (xt+1 = x∗

t+1) if the jump
increases the probability (α > 1). Also accept the candidate
point with probability α if the jump decreases the probability.
Otherwise reject the jump (xt+1 = xt ) and return to step 2.

Hastings [15] replaced the symmetry constraint on the
jump distribution Q with α = min (

f (x∗
t+1 )Q(xt |x∗

t+1 )
f (xt )Q(x∗

t+1|xt ) , 1).

Then detailed balance still holds [34]. Gibbs sampling is a
special case of the Metropolis-Hastings algorithm when α =
1 always holds for each conditional pdf [14,34].

B. Simulated annealing

We next present a time-varying version of the Metropolis-
Hastings algorithm for global optimization of a high-
dimensional surface with many extrema. Kirkpatrick [19]
called this process simulated annealing because it resembles
the metallurgical annealing process that slowly cools a heated
substance until it reaches a low-energy crystalline state.

The simulated version uses a temperature-like parameter
T . T is so high at first that the search is essentially random.
T lowers until the search is greedy or locally optimal. Then
the system state tends to get trapped in a large minimum
or even in the global minimum. Kirkpatrick applied this
thermodynamically inspired algorithm to finding optimal lay-
outs for VLSI circuits.

Suppose we want to find the global minimum of a cost
function C(x). Simulated annealing maps the cost function to
a potential energy surface through the Boltzmann factor

p̃(xt ) ∝ exp

[
−C(xt )

kT

]
(7)

for some scaling constant k > 0. It then performs the
Metropolis-Hastings algorithm with the p̃(xt ) in place of
the probability density p(x). This operation preserves the
Metropolis-Hastings framework because p̃(xt ) is an unnor-
malized probability density.

Simulated annealing introduces a temperature parameter
to tune the Metropolis-Hastings acceptance probability α.
The algorithm slowly cools the system according to a cool-
ing schedule T (t ). This reduces the probability of accepting
candidate points with higher energy. The algorithm provably
attains a global minimum in the limit but this requires an
extremely slow ln (t + 1) cooling. Accelerated cooling sched-
ules such as geometric or exponential often yield satisfactory
approximations in practice. The procedure below describes
the algorithm. The algorithm attains the global minimum as
t → ∞.

(1) Choose an initial x0 with C(x0) > 0 and initial temper-
ature T0.

(2) Generate a candidate x∗
t+1 by sampling from the jump

distribution Q(xt+1|xt ).
(3) Compute the Boltzmann factor α =

exp (−C(x∗
t+1 )−C(xt )

kT ).
(4) Accept the candidate point (xt+1 = x∗

t+1) if the jump
decreases the energy. Also accept the candidate point with
probability α if the jump increases the energy. Otherwise
reject the jump (xt+1 = xt ).

(5) Update the temperature Tt = T (t ). T (t ) is usually a
monotonic decreasing function.

(6) Return to step 2.

III. NOISY MARKOV CHAIN MONTE CARLO

We now show how carefully injected noise can speed
the average convergence of MCMC simulations in terms of
reducing the relative-entropy (Kullback-Liebler divergence)
pseudodistance. This basic theorem leads to many variants.

Theorem 1 states the noisy MCMC (N-MCMC) theorem
and gives a simple inequality as a sufficient condition for the
speed-up. The Appendix gives the proof. We also include al-
gorithm statements of the main results. We note that reversing
inequalities in the N-MCMC theorem leads to noise that on
average slows convergence.

Corollary 1 weakens the sufficient condition of Theorem 1
through the use of a new exponential term. Corollary 2 allows
noise injection with any measurable combination of noise
and state. Corollary 3 shows that a Gaussian jump function
reduces the sufficient condition to a simple quadratic inequal-
ity. Figure 5 shows simulation instances of Corollary 2 for
a Lennard-Jones model of the interatomic potential of a gas
of eight argon atoms. The graph shows the optimal Gaussian
variance for the quickest convergence to the global minimum
of the potential energy. Corollary 5 states a similar quadratic
inequality when the jump function is the thicker-tailed Cauchy
probability bell curve. Earlier simulations showed that a
Cauchy jump function can lead to “fast” simulated annealing
because sampling from its thicker tails can lead to more
frequent long jumps out of shallow local minima [38].

Theorem 1 is the main contribution of this paper. It shows
that injecting noise into a jump density that satisfies detailed
balance can only bring the jump density closer to the equi-
librium density if the noise-injected jump density satisfies an
average inequality at each iteration.

Theorem 1 (Noisy Markov chain Monte Carlo theorem
(N-MCMC)). Suppose that Q(x|xt ) is a Metropolis-Hastings
jump pdf for time t and that it satisfies the detailed balance
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FIG. 5. The Lennard-Jones 12-6 potential well approximating
pairwise interactions between two neutral atoms. The figure shows
the energy of a two-atom system as a function of the interatomic
distance. The well results from two competing atomic effects: (1)
overlapping electron orbitals causing strong Pauli repulsion to push
the atoms apart at short distances and (2) van der Waals and dis-
persion attractions pulling the atoms together at longer distances.
Three parameters characterize the potential: (1) ε is the depth of the
potential well, (2) rm is the interatomic distance corresponding to the
minimum energy, and (3) σ is the zero-potential interatomic distance.
Table I lists parameter values for argon.

condition π (xt )Q(x|xt ) = π (x)Q(xt |x) for the target equilib-
rium pdf π (x). Then the MCMC noise benefit dt (N ) � dt

holds on average at time t if

EN,X

[
ln

Q(xt + N |x)

Q(xt |x)

]
� EN

[
ln

π (xt + N )

π (xt )

]
(8)

where dt = D(π (x)‖Q(x|xt )), dt (N ) = D(π (x)‖Q(x|xt +
N )), N ∼ fN |xt (n|xt ) is a noise random vari-
able that may depend on xt , and D(·‖·) is
the relative-entropy pseudodistance: D(P‖Q) =∫

X p(x) ln ( p(x)
q(x) ) dx.

We next present five corollaries to Theorem 1. Corollary
1 shows that an expectation-based exponential term eA can
weaken the N-MCMC inequality (8) and thereby broaden the
theorem’s range of application. The Appendix gives the proof.

Corollary 1. The N-MCMC noise benefit condition holds
if

Q(xt + n|x) � eA Q(xt |x) (9)

for almost all x and n if

A = EN

[
ln

π (xt + N )

π (xt )

]
. (10)

Corollary 2 shows that any measurable combination g(x, n)
of the noise n and state x applies in Corollary 1. So it
applies in the N-MCMC theorem as well. An important case
is multiplicative noise injection: g(x, n) = xn. We omit the
proof because it just replaces x + n with g(x, n) in the proof
of Corollary 1.

Corollary 2. The N-MCMC noise benefit condition holds
if

Q(g(xt , n)|x) � eA Q(xt |x) (11)

for almost all x and n if

A = EN

[
ln

π (g(xt , N ))
π (xt )

]
. (12)

Corollary 3 is a practical result. It shows that the spe-
cial case of a Gaussian jump density reduces the N-MCMC
inequality to a simple quadratic constraint on the noise n.
The quadratic condition depends on the Gaussian densities
mean and variance σ 2. The similar quadratic condition for the
noise-boosted EM algorithm depends only on the mean [24].

Corollary 3. Suppose Q(xt |x) ∼ N (x, σ 2). Then the suf-
ficient noise benefit condition (9) holds if

n(n + 2(xt − x)) � −2σ 2A (13)

for A in (12).
This condition hinges only on samples x and n given an

estimate ẼN [ln π (xt + N )]. This points to a simple naïve im-
plementation of the N-MCMC algorithm that assumes a fixed
noise distribution fn(n) and tunes a multiplicative scaling
constant αn. The naïve approach would choose α to meet
some predefined acceptance threshold for the noise condition.
Corollaries 4 and 5 lead to similar implementations if we
substitute the appropriate constraint.

Corollary 4 shows that a Gaussian jump density still gives a
simple quadratic noise constraint in the case of multiplicative
noise injection.

Corollary 4. Suppose Q(xt |x) ∼ N (x, σ 2) and g(xt , n) =
nxt . Then the sufficient noise benefit condition (11) holds if

nxt (nxt − 2x) − xt (xt − 2x) � −2σ 2A (14)

for A in (12).
Corollary 5 shows that the jump density need not have

finite variance. It shows that infinite-variance Cauchy noise
also produces a quadratic constraint on the noise. Cauchy
bell curves resemble Gaussian bell curves but have thicker
tails. The quadratic constraint depends on the Cauchy noise
dispersion (unlike the noisy-EM Cauchy quadratic constraint
that depends only on the Cauchy density’s location parameter
[24]).

Corollary 5. Suppose Q(xt |x) ∼ Cauchy(x, d ). Then the
sufficient condition (9) holds if

n2 + 2n(xt − x) � (e−A − 1)(d2 + (xt − x)2) (15)

for A in (12).

IV. NOISY SIMULATED ANNEALING

We now show how carefully injected noise can speed
convergence of simulated annealing. We will later extend a
version of this result to quantum annealing.

Theorem 2 states the noisy simulated annealing (N-SA)
theorem for an annealing temperature schedule T (t ) and
exponential occupancy probabilities π (x; T ) ∝ exp (−C(x)

T ).
It also gives a simple inequality as a sufficient condition for
the speed-up. Its proof uses Jensen’s inequality for concave
functions and appears in the Appendix. Algorithm 2 in the
next section states an annealing algorithm based on the N-SA
theorem. Two corollaries further extend the theorem.

Theorem 2 (Noisy simulated annealing Theorem (N-SA)).
Suppose C(x) is an energy surface with occupancy
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probabilities π (x; T ) ∝ exp (−C(x)
T ). Then the simulated-

annealing noise benefit

EN [αN (T )] � α(T ) (16)

holds on average if

EN

[
ln

π (xt + N ; T )

π (xt ; T )

]
� 0 (17)

where α(T ) is the simulated annealing acceptance probability
from state xt to the candidate x∗

t+1 that depends on a tempera-
ture T (with cooling schedule T (t )):

α(T ) = min

{
1, exp

(
−�E

T

)}
(18)

and αN (T ) is the noisy simulated annealing acceptance prob-
ability from state xt to the candidate x∗

t+1 + N :

αN (T ) = min

{
1, exp

(
−�EN

T

)}
(19)

where �E = E∗
t+1 − Et = C(x∗

t+1) − C(xt ) is the energy dif-
ference of states x∗

t+1 and xt and �EN = E∗
N,t+1 − Et =

C(x∗
t+1 + N ) − C(xt ) is the energy difference of states x∗

t+1 +
N and xt .

Two important annealing corollaries follow from Theorem
2. The first corollary allows the acceptance probability β(T )
to depend on any increasing convex function m of the oc-
cupancy probability ratio. The proof also relies on Jensen’s
inequality and appears in the Appendix.

Corollary 6. Suppose m is a convex increasing function.
Then the N-SA theorem noise benefit

EN [βN (T )] � β(T ) (20)

holds on average if

EN

[
ln

π (xt + N ; T )

π (xt ; T )

]
� 0 (21)

where β is the acceptance probability from state xt to the
candidate x∗

t+1,

β(T ) = min

{
1, m

(
π (x∗

t+1; T )

π (xt ; T )

)}
, (22)

and βN is the noisy acceptance probability from state xt to the
candidate x∗

t+1 + N :

βN (T ) = min

{
1, m

(
π (x∗

t+1 + N ; T )

π (xt ; T )

)}
. (23)

Corollary 7 gives a simple inequality condition for the
noise benefit in the N-SA theorem when the occupancy prob-
ability π (x) has a softmax or Gibbs form of an exponential
normalized with a partition function or integral of exponen-
tials. Its proof also appears in the Appendix.

Corollary 7. Suppose π (x) = Ceg(x) if C is the normal-
izing constant C = 1∫

X eg(x) dx . Then there is an N-SA noise

benefit if

EN [g(xt + N )] � g(xt ). (24)

Algorithm 1. The noisy Metropolis-Hastings algorithm

1: procedure NOISYMETROLOPLISHASTINGS (X )
2: x0 ← INITIAL (X )
3: for t ← 0, N do
4: xt+1 ← SAMPLE (xt )
5: procedure SAMPLE (xt )
6: x∗

t+1 ← xt + JUMPQ (xt ) + NOISE (xt )

7: α ← π (x∗
t+1 )

π (xt )

8: if α > 1 then
9: return x∗

t+1

10: else if UNIFORM [0, 1] < α then
11: return x∗

t+1

12: else
13: return xt

14: procedure JUMPQ (xt )
15: return y ∼ Q (y|xt )
16: procedure NOISE (xt )
17: return y ∼ f (y|xt )

V. NOISY MCMC ALGORITHMS AND RESULTS

We now present algorithms for noisy MCMC and noisy
simulated annealing. We follow each with applications of the
algorithms and results that show improvements over existing
noiseless algorithms.

A. The noisy MCMC algorithms

This section presents two noisy variants of MCMC algo-
rithms. Algorithm 1 extends Metropolis-Hastings MCMC for
sampling. Algorithm 2 describes how to use noise to benefit
stochastic optimization with simulated annealing.

B. Noise improves complex optimization

The first simulation produced a noise benefit in simulated
annealing on a complex cost function. The Schwefel function
[30] is a standard optimization benchmark because it has

Algorithm 2. The Noisy Simulated Annealing Algorithm

1: procedure NOISYSIMULATEDANNEALING (X , T0 )
2: x0 ← INITIAL (X )
3: for t ← 0, N do
4: T ← Temp (t )
5: xt+1 ← SAMPLE (xt , T )
6: procedure SAMPLE (xt , T )
7: x∗

t+1 ← xt + JUMPQ (xt ) + NOISE (xt )
8: α ← π (x∗

t+1) − π (xt )
9: if α � 0 then

10: return x∗
t+1

11: else if UNIFORM [0, 1] < exp (−α/T ) then
12: return x∗

t+1

13: else
14: return xt

15: procedure JUMPQ (xt )
16: return y ∼ Q (y|xt )
17: procedure NOISE (xt )
18: return y ∼ f (y|xt )
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FIG. 6. Simulated-annealing noise benefits with a five-dimensional Schwefel energy surface and a logarithmic cooling schedule. Noise
improved three distinct performance metrics when using Algorithm 2. (a) Noise reduced convergence time by 76%. We defined convergence
time as the number of steps the simulation took to estimate the global minimum energy with error <10−3. Simulations with faster convergence
will in general find better estimates given the same computational time. (b) Noise improved the estimated minimum system energy by two
orders of magnitude in simulations with a fixed run time (tmax = 106). Figure 3 shows how the estimated minimum corresponds to samples.
Noise increased the breadth of the search and pushed the simulation to make good jumps toward new minima. (c) Noise decreased the likelihood
of failure in a given trial by almost 100%. We defined a simulation failure if it did not converge by t = 107. This was about 20 times longer than
the average convergence time. 4.5% of noiseless simulations failed. The simulation produced no sign of failure except an increased estimated
variance between trials. Noisy simulated annealing produced only two failures in 1000 trials (0.2%).

many local minima and has the unique global minimum

f (x) = 419.9829d −
d∑

i=1

xi sin(
√

|xi|) (25)

where d is the dimension over the hypercube −500 �
xi � 500 for i = 1, . . . , d . The Schwefel function
has a single global minimum f (xmin) = 0 at xmin =
(420.9687, . . . , 420.9687). Figure 1 shows a representation
of the surface for d = 2.

The simulation used a zero-mean Gaussian jump density
with σjump = 5 and thus with variance σ 2

jump = 25. It also
used a zero-mean Gaussian noise density with 0 < σnoise � 5.
Figure 6(a) shows that noisy simulated annealing in accord
with Theorem 2 converged 76% faster than did standard noise-
less simulated annealing when using logarithmic cooling. Fig-
ure 6(b) shows that the estimated global minimum from noisy
simulated annealing was almost two orders of magnitude
better than non-noisy simulations on average (0.05 vs 4.6).
The simulation annealed a five-dimensional Schwefel surface.
It estimated the minimum energy configuration and averaged

053309-8



NOISE CAN SPEED MARKOV CHAIN MONTE CARLO … PHYSICAL REVIEW E 100, 053309 (2019)

FIG. 7. Noise benefits decreased convergence time under accelerated cooling schedules. Simulated annealing algorithms often use
accelerated cooling schedules such as exponential cooling Texp(t ) = T0At or geometric cooling Tgeom(t ) = T0 exp (−At1/d ) where A < 1 and
T0 are user parameters and d is the sample dimension. Accelerated cooling schedules do not have convergence guarantees as do log cooling
Tlog(t ) = ln (t + 1) but often provide better estimates given a fixed run time. Noise enhanced simulated annealing reduced convergence time
under an (a) exponential cooling schedule by 40.5% and under a (b) geometric cooling schedule by 32.8%.

the result over 1000 trials. We defined the convergence time
as the number of steps that the simulation required to reach
the global minimum energy within 10−3:

| f (xt ) − f (xmin)| � 10−3. (26)

Figure 3 shows projections of trajectories from a sim-
ulation without noise (a) and a simulation with noise (b).
We initialized each simulation with the same x0. The figure
shows the global minimum circled in red (lower left). It shows
that noisy simulated annealing boosted the sequences through
more local minima while the no-noise simulation could not
escape cycling between three local minima.

Figure 6(c) shows that the noise decreased the failure
rate of the simulation. We defined a failed simulation as a
simulation that did not converge before t < 107. Noiseless
simulations produced the failure rate 4.5%. Even moderate
noise reduced the failure rate to less than 1 in 200 (<0.5%).

Figure 7 shows that appropriate noise also boosted simu-
lated annealing with accelerated cooling schedules. Noise re-
duced convergence time by 40.5% under exponential cooling
and 32.8% under geometric cooling. The simulations attained
comparable solution error and failure rate (0.05%) across all
noise levels. So we have omitted the corresponding figures.

C. Noise speeds Lennard-Jones 12-6 simulations

The second simulation shows a noise benefit in an MCMC
molecular dynamics model. This model used the noisy
Metropolis-Hastings algorithm (Algorithm 1) to search a 24-
dimensional energy landscape. It used the Lennard-Jones 12-6
potential well to model the pairwise interactions between
an eight-argon-atom gas. The Lennard-Jones (12-6) potential

well approximates the interaction energy between two neutral
atoms [39–41]:

VLJ = ε

[( rm

r

)12
− 2
( rm

r

)6
]

(27)

= 4ε

[(σ

r

)12
−
(σ

r

)6
]

(28)

where ε is the depth of the potential well, r is the distance
between the two atoms, rm is the interatomic distance corre-
sponding to the minimum energy, and σ is the zero potential
interatomic distance. Figure 5 shows how the two terms
interact to form the energy surface: (1) the power-12 term
dominates at short distances since overlapping electron or-
bitals cause strong Pauli repulsion to push the atoms apart and
(2) the power-6 term dominates at longer distances because
van der Waals and dispersion forces pull the atoms toward a
finite equilibrium distance rm. Table I shows the value of the
Lennard-Jones parameters for argon.

The simulation estimated the minimum energy coordinates
for eight argon atoms in three dimensions. We performed
200 trials at each noise level. We summarized each trial as
the average number of steps to estimate the minimum energy
within 10−2.

Figure 4 shows that noise produced a 42% reduction in
convergence time over the non-noisy simulation in the eight-

TABLE I. Argon Lennard-Jones 12-6 parameters.

ε 1.654 × 10−21 J
σ 3.405 × 10−10 m
rm 3.821 Å
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argon-atom system. The simulation found the global noise
optimum at a noise variance of σ 2 = 0.56. We found this
optimal noise value through repeated trial and error. The
N-MCMC theorems guarantee only that noise will improve
system performance on average if the noise obeys the N-
MCMC inequality. The results do not directly show how to
find the optimal noise value.

VI. QUANTUM SIMULATED ANNEALING

Quantum annealing (QA) uses quantum perturbations
to evolve the system state in accord with the quantum
Hamiltonian [42–44]. Classical simulated annealing instead
evolves the system with thermodynamic excitations.

Simulated QA uses an MCMC framework to simulate
draws from the square magnitude of the wave function �(r, t )
instead of solving the time-dependent Schrödinger equation:

ih̄
∂

∂t
�(r, t ) =

[−h̄2

2μ
∇2 + V (r, t )

]
�(r, t ) (29)

where μ is the particle’s reduced mass, V is the potential
energy, and ∇2 is the Laplacian operator of appropriately
summed second partial derivatives of the spatial variables.

The acceptance probability is proportional to the ratio of a
function of the energy of the old and new states in classical
simulated annealing. This discourages beneficial hops if there
are energy peaks between minima. QA uses probabilistic
tunneling to allow occasional jumps through high energy
peaks as in Fig. 8.

classical
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En
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w
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)

Ensemble state

quantum
(through)

local minimum
(not op�mal)

global minimum
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FIG. 8. Quantum annealing (QA) uses quantum tunneling to
burrow through energy peaks (yellow). Classical simulated annealing
(SA) instead generates a sequence of states to scale the peak (blue).
The figures shows that a local minimum has trapped the estimate
(green). SA would require a sequence of unlikely jumps to scale
the potential energy hill. This may not be realistic at low SA
temperatures. So the estimate gets trapped in the suboptimal valley.
QA uses quantum tunneling to burrow through the mountain. This
explains why QA can give better estimates than SA gives while
optimizing complex potential energy surfaces that contain many high
energy states.

Ray and Chakrabarti [45] recast Kirkpatrick’s thermo-
dynamic simulated annealing using quantum fluctuations to
drive the state transitions. The resulting QA algorithm uses a
transverse magnetic field 
 in place of the temperature T in
classical simulated annealing. Then the strength of the mag-
netic field governs the transition probability between system
states. The adiabatic theorem [46] ensures that the system
remains near the ground state during slow changes of the field
strength.

The adiabatic Hamiltonian evolves smoothly from the
transverse magnetic dominance to the Edwards-Anderson
Hamiltonian:

H (t ) =
(

1 − t

T

)
H0 + t

T
HP. (30)

This evolution leads to the minimum energy configuration of
the underlying potential energy surface as time t approaches a
fixed large value T .

QA outperforms classical simulated annealing in cases
where the potential energy landscape contains many high
but thin energy barriers between shallow local minima [45].
QA is well suited to problems in discrete search spaces
that have vast numbers of local minima. A good example
is finding the ground state of an Ising spin glass. Lucas
recently found Ising formulations for Karp’s 21 NP-complete
problems [47]. The NP-complete problems include such op-
timization benchmarks as graph partitioning, calculating an
exact cover, integer weight knapsack packing, graph coloring,
and the traveling salesman problem. NP-complete problems
are a special class of decision problem that have time com-
plexity super-polynomial (NP-hard) to the input size but only
polynomial time to verify the solution (NP). Advances by D-
Wave Systems have brought quantum annealers to market and
shown how adiabatic quantum computers can have real-world
applications [43].

Spin glasses are systems with localized magnetic mo-
ments. Quenched disorder characterizes the steady-state inter-
actions between atomic moments. Thermal fluctuations drive
changes within the system. Ising spin-glass models use a two-
dimensional or three-dimensional lattice of discrete variables
to represent the coupled dipole moments of atomic spins.
The discrete variables take one of two values: +1 (up) or
−1 (down). The two-dimensional square-lattice Ising model
is one of the simplest statistical models that shows a phase
transition.

Simulated QA for an Ising spin glass usually applies
the Edwards-Anderson model Hamiltonian with a transverse
magnetic field J⊥:

H = U + K = −
∑
〈i j〉

Ji jsis j − J⊥∑
i

si. (31)

The transverse field J⊥ and classical Hamiltonian Ji j have a
nonzero commutator in general:

[J⊥, Jij] �= 0 (32)

for the commutator operator [A, B] = AB − BA.
The path-integral Monte Carlo method is a standard QA

method [48] that uses the Trotter (“breakup”) approximation
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for quantum operators that do not commute:

e−β(K+U) ≈ e−βKe−βU (33)

if [K, U] �= 0 and β = 1
kBT . Then the Trotter approximation

estimates the partition function Z:

Z = Tr(e−βH) (34)

= Tr

(
exp

[
−β(K + U)

P

])P

(35)

=
∑

s1

· · ·
∑

sP

〈s1|e−β(K+U)/P|s2〉

× 〈s2|e−β(K+U)/P|s3〉 × · · · × 〈sP|e−β(K+U)/P|s1〉 (36)

≈ CNP
∑

s1

· · ·
∑

sP

e− Hd+1
PT (37)

= ZP, (38)

where N is the number of lattice sites in the d-dimensional
Ising lattice, P is the Trotter number of imaginary-time slices,

C =
√

1

2
sinh

(
2


PT

)
, (39)

and

Hd+1 = −
P∑

k=1

⎛⎝∑
〈i j〉

Ji js
k
i sk

j + J⊥∑
i

sk
i sk+1

i

⎞⎠, (40)

where 
 is the transverse field strength and sP+1 = s1 to
satisfy periodic bounding conditions. The temperature T in
the exponent of (37) absorbs the β coefficient because in
Planck units the Boltzmann coefficient kB is kB = 1. So T =

1
kBβ

= 1
β

.
A Trotter slice subdivides the system’s evolution into short

time intervals. Then the system Hamiltonian is approximately
time independent and includes an error term. The product PT
in (37) determines the spin replica couplings both between
neighboring Trotter slices and between the spins within slices.

Shorter simulations did not show a strong dependence on
the number of Trotter slices P. This is likely because shorter
simulations spend relatively less time under the lower trans-
verse magnetic field to induce strong coupling between the
slices. So the Trotter slices tend to behave more independently
than if they evolved under the increased coupling from longer
simulations.

High Trotter numbers (N = 40) show substantial improve-
ments for very long simulations. Martoňák [48] compared
high Trotter simulations to classical annealing. The compu-
tations showed that path-integral QA gave a relative speed-up
of four orders of magnitude over classical annealing: “one can
calculate using path-integral quantum annealing in one day
what would be obtained by plain classical annealing in about
30 years.”

A. The noisy quantum simulated annealing algorithm

This section develops a noise-boosted version of path-
integral simulated QA. Algorithm 3 presents pseudocode for
the noisy QA algorithm.

The noisy QA algorithm describes how to advance the state
of a quantum Ising model forward in time in a heat bath and
under the effect of a perturbing transverse magnetic field. The
algorithm represents the qubit system at a given time with
state variable Xt . A noise power parameter captures the action
of excess quantum effects in the system. This lets external
noise produce further spin transitions along coupled Trotter
slices. The noise power parameter is similar to the temperature
parameter in classical simulated annealing. It describes an
increase in the chance of temporary transitions to higher
energy states.

The noisy QA algorithm uses subscripts to denote the spin
index s within the Ising lattice and slice number l between
the Trotter lattices. We restrict the fully indexed value Xt [s, l]
to −1 and +1 to represent spin-up and spin-down alignments
in the spin network. The algorithm advances the time index
t to follow the simulation in time. The algorithm updates the
transverse magnetic field strength 
 and Trotter-slice lattice
coupling J⊥ at each step. These proxy values describe the
quantum coupling inherent in the system. High values ensure
that the system will tunnel through high-energy intermediate
states. These constants decrease as the simulation advances.
So they resemble the decreasing temperature in classical
simulated annealing.

The noisy QA algorithm computes the energy of each spin
on each Trotter slice as in the standard path-integral quantum
annealing. The algorithm does this for each time step. The
algorithm computes the local energy between the spin and
each of its neighbors in the Ising spin network. It does this
for each spin along the Trotter slices in accord with the
Hamiltonian

H = −
∑

k

⎛⎝∑
i, j

Ji, j s
k
i sk

j + J⊥∑
i

sk
i sk+1

i

⎞⎠. (41)

The noisy QA algorithm then flips spins under one of three
conditions:

(1) if E > 0;
(2) if α < eE/T where α = Uniform[0, 1];
(3) if the energies satisfy a noise-based inequality.
Conditions 1 and 2 describe the standard path-integral

quantum annealing spin-flip conditions. The algorithm flips
only the currently indexed spin under these two conditions.
Condition 3 enables spin-flips among Trotter neighbors. The
probability of the flip depends on the relative energy of the
Trotter neighbors and on a noise-based inequality. The system
then accepts either toggles if they reduce the overall system
energy.

Condition 3 is analogous to generating candidate “jump”
values in classical simulated annealing. The spin flip along the
Trotter slices in Fig. 9 is analogous to accepting the candidate
jump state in classical simulated annealing. The algorithm
checks the noise-based inequality as follows. It first draws
a uniform random variable. It then compares this uniform
value to the simulation-wide threshold parameter called the
NoisePower. Standard path-integral quantum annealing cor-
responds to NoisePower = 0.

The noisy quantum annealing algorithm uses Trotter neigh-
bors to bias an operator average toward lower energy con-
figurations. The Trotter formalism treats each particle in a
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FIG. 9. The noisy quantum annealing algorithm propagates noise
along a Trotter ring. The algorithm inspects the local energy land-
scape after each time step. It then injects noise by conditionally
flipping the spin of neighbors. These spin flips diffuse the noise
across the network because quantum correlations between neighbors
encourage convergence to the optimal solution.

physical system by a ring of P equivalent particles that interact
through harmonic springs. The average of an observable O
becomes an average of the operator O on each Trotter slice.
Standard path-integral quantum annealing computes local en-
ergies within each Trotter slice and then updates the particle
state according to conditions 1 and 2 above. The noisy QA
algorithm biases the operator average by allowing nodes in
metastable energy configurations to affect Trotter neighbors
between slices.

B. Noise improves quantum MCMC

The third simulation shows a noise benefit in simulated
quantum annealing [42–44]. It shows that noise that obeys
a condition similar to the N-MCMC theorem improves the
ground-state energy estimate.

Algorithm 3. The Noisy Quantum Annealing Algorithm

1: procedure NOISYSIMULATEDQUANTUMANNEALING (X ,
0,P,T )
2: x0 ← INITIAL (X )
3: for t ← 0, N do
4: 
 ← TransverseField (
0, t )
5: J⊥ ← TrotterScale (P, T, 
)
6: for all Trotter slices l do
7: for all spins s do
8: xt+1 [l, s] ← SAMPLE (xt , J⊥, s, l )
9: procedure TROTTERSCALE (P, T , 
)

10: return PT
2 ln tanh ( 


PT )
11: procedure SAMPLE (xt , J⊥, s, l)
12: E ← LocalEnergy (J⊥, xt , s, l )
13: if E > 0 then
14: return −xt [l, s]
15: else if UNIFORM [0, 1] < exp (E/T ) then
16: return −xt [l, s]
17: else
18: If Uni f orm [0, 1] < NoisePower then
19: E+ ← LocalEnergy (J⊥, xt , s, l + 1)
20: E− ← LocalEnergy (J⊥, xt , s, l − 1)
21: if E > E+ then
22: xt+1 [l + 1, s] ← −xt [l + 1, s]
23: if E > E− then
24: xt+1 [l − 1, s] ← −xt [l − 1, s]
25: return xt [l, s]

We used path-integral Monte Carlo quantum annealing
[48] to calculate the ground state of a randomly coupled
1024-bit (32 × 32) Ising quantum spin system. The simulation
used 20 Trotter slices to approximate the quantum coupling
at temperature T = 0.01. It used 2D periodic horizontal and
vertical boundary conditions (toroidal boundary conditions)
with coupling strengths Ji j drawn from Uniform[−2, 2].

Each trial used random initial spin states (si ∈ −1, 1). We
used 100 preannealing steps to cool the simulation from an
initial temperature T0 = 3 to Tq = 0.01. The quantum anneal-
ing linearly reduced the transverse magnetic field 
0 = 1.5
to 
final = 10−8 over 100 steps. We performed a Metropolis-
Hastings pass for each lattice across each Trotter slice after
each update. We maintained Tq = 0.01 for the entirety of the
quantum annealing. The simulation used the standard slice
coupling between Trotter lattices:

J⊥ = PT

2
ln tanh

(

t

PT

)
(42)

where 
t is the current transverse field strength, P is the
number of Trotter slices, and T = 0.01.

The simulation injected noise into the model using a
power parameter 0 < p < 1. The algorithm extended the
Metropolis-Hastings test to each lattice-site by conditionally
flipping the corresponding site on coupled trotter slices.

We benchmarked the results against the true ground state
E0 = −1591.92 [49]. Figure 10 shows that noise that obeys
the N-MCMC benefit condition improved the ground-state
solution by 25.6%. This reduced simulation time by several
orders of magnitude since the estimated ground state largely
converged by the end of the simulation. We did not quan-
tify the decrease in convergence time because the non-noisy
quantum annealing algorithm did not converge near the noisy
quantum annealing estimate during any trial.

Figure 10 also shows that the noise benefit is not a simple
diffusive benefit. We computed for each trial the result of blind
noise by injecting noise identical to the above but noise that
did not have to satisfy the N-MCMC condition. Figure 10
shows that such blind noise reduced the accuracy of the
ground-state estimate by 41.6%.

VII. CONCLUSION

Noise can speed MCMC convergence in reversible Markov
chains that are aperiodic and irreducible. The noise must
satisfy an inequality that depends on the reversibility of
the Markov chain. Simulations showed that such noise also
improved the breadth of such simulation searches for deep
local minima. This noise boosting of the Metropolis-Hastings
algorithm does not require symmetric jump densities. Nor do
the jump densities need finite variance.

Carefully injected noise can also improve quantum anneal-
ing where the noise flips spins among Trotter neighbors. Other
forms of quantum noise injection should produce a noise boost
if the N-MCMC or noisy-annealing inequalities hold at least
approximately.

The proofs that the noise boosts hold for Gaussian and
Cauchy jump densities suggest that the more general family
of symmetric stable thick-tailed bell-curve densities [50,51]
should also produce noise-boosted MCMC and annealing
with varying levels of jump impulsiveness.

053309-12



NOISE CAN SPEED MARKOV CHAIN MONTE CARLO … PHYSICAL REVIEW E 100, 053309 (2019)

-1650

-1450

-1250

-1050

-850

-650

-450

-250

-50 0 0.01 0.02 0.03 0.04 0.05
En

er
gy

 
Noise power

N-MCMC theorem Blind

true ground state

Noise benefit

Es�mate error

FIG. 10. Simulated quantum annealing noise benefit in a 1024 Ising spin simulation. The pink line shows that noise improved the estimated
ground-state energy of a 32 × 32 spin lattice by 25.6%. The plot shows the ground state energy after 100 path-integral Monte Carlo steps. The
true ground state energy (red) was E0 = −1591.92. Each plotted point shows the average calculated ground state from 100 simulations at each
noise power. The blue line shows that blind (independent and identically distributed sampling) noise did not benefit the simulation. Blind noise
only made the estimates worse. So the N-MCMC noise-benefit condition is central to the S-QA noise benefit.

APPENDIX

1. Proofs of N-MCMC Theorems

Theorem 1 (Noisy Markov chain Monte Carlo theorem
(N-MCMC)). Suppose that Q(x|xt ) is a Metropolis-Hastings
jump pdf for time t and that it satisfies the detailed balance
condition π (xt )Q(x|xt ) = π (x)Q(xt |x) for the target equilib-
rium pdf π (x). Then the MCMC noise benefit dt (N ) � dt

holds on average at time t if

EN,X

[
ln

Q(xt + N |x)

Q(xt |x)

]
� EN

[
ln

π (xt + N )

π (xt )

]
, (A1)

where dt = D(π (x)‖Q(x|xt )), dt (N ) = D(π (x)‖Q(x|xt + N )),
N ∼ fN |xt (n|xt ) is noise that may depend on xt , and
D(·‖·) is the relative-entropy pseudodistance: D(P‖Q) =∫

X p(x) ln ( p(x)
q(x) ) dx.

Proof. Define the metrical averages (Kullback-Leibler
divergences) dt and dt (N ) as

dt =
∫

X
π (x) ln

π (x)

Q(x|xt )
dx = EX

[
ln

π (x)

Q(x|xt )

]
(A2)

dt (N ) =
∫

X
π (x) ln

π (x)

Q(x|xt + N )
dx = EX

[
ln

π (x)

Q(x|xt + N )

]
.

(A3)

Take expectations over N : EN [dt ] = dt and EN [dt (N )] =
EN [dt (N )]. Then dt (N ) � dt guarantees that a noise benefit
occurs on average: EN [dt (N )] � dt .

Suppose that the N-MCMC condition holds:

EN

[
ln

π (xt + N )

π (xt )

]
� EN,X

[
ln

Q(xt + N |x)

Q(xt |x)

]
. (A4)

Expand the expectations to give∫
N

ln
π (xt + n)

π (xt )
fN |xt (n|xt ) dn

�
∫∫

N,X
ln

Q(xt + n|x)

Q(xt |x)
π (x) fN |xt (n|xt ) dx dn. (A5)

Then split the logarithm ratios:∫
N

ln π (xt + n) fN |xt (n|xt ) dn −
∫

N
ln π (xt ) fN |xt (n|xt ) dn

�
∫∫

N,X
ln Q(xt + n|x)π (x) fN |xt (n|xt ) dx dn

−
∫∫

N,X
ln Q(xt |x)π (x) fN |xt (n|xt ) dx dn. (A6)
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Rearrange the inequality as follows:∫
N

ln π (xt + n) fN |xt (n|xt ) dn

−
∫∫

N,X
ln Q(xt + n|x)π (x) fN |xt (n|xt ) dx dn

�
∫

N
ln π (xt ) fN |xt (n|xt ) dn

−
∫∫

N,X
ln Q(xt |x)π (x) fN |xt (n|xt ) dx dn. (A7)

Take expectations with respect to π (x) in the single
integrals:∫∫

N,X
ln π (xt + n)π (x) fN |xt (n|xt ) dx dn

−
∫∫

N,X
ln Q(xt + n|x)π (x) fN |xt (n|xt ) dx dn

�
∫∫

N,X
ln π (xt )π (x) fN |xt (n|xt ) dx dn

−
∫∫

N,X
ln Q(xt |x)π (x) fN |xt (n|xt ) dx dn. (A8)

Then the joint integral factors into a product of single inte-
grals from Fubini’s theorem [52] because we assume that all
functions are integrable:∫∫

N,X
π (x) ln

π (xt + n)

Q(xt + n|x)
fN |xt (n|xt ) dx dn

�
∫

N
fN |xt (n|xt ) dn︸ ︷︷ ︸

=1

∫
X

π (x) ln
π (xt )

Q(xt |x)
dx (A9)

since fN |xt is a pdf.
The next step is the heart of the proof: Apply the

MCMC detailed balance condition π (x)Q(y|x) = π (y)Q(x|y)
to the denominator Q terms in the previous inequality. This
gives

Q(xt |x) = π (xt ) Q(x|xt )

π (x)
(A10)

and

Q(xt + n|x) = π (xt + n) Q(x|xt + n)

π (x)
. (A11)

Insert these two Q equalities into (A9) and then cancel like π

terms to give∫∫
N,X

π (x) ln �����
π (xt + n)

���π (xt +n)Q(x|xt +n)
π (x)

fN |xt (n|xt ) dx dn

�
∫

X
π (x) ln

���π (xt )
��π (xt )Q(x|xt )

π (x)

dx. (A12)

Rewrite the inequality as∫∫
N,X

π (x) ln
π (x)

Q(x|xt + n)
fN |xt (n|xt ) dx dn

�
∫

X
π (x) ln

π (x)

Q(x|xt )
dx. (A13)

Then Fubini’s Theorem again gives∫
N

[∫
X

π (x) ln
π (x)

Q(x|xt + n)
dx

]
fN |xt (n|xt ) dn

�
∫

X
π (x) ln

π (x)

Q(x|xt )
dx. (A14)

This inequality holds if and only if (iff)∫
N

D(π (x)‖ Q(x|xt + n)) fN |xt (n|xt ) dn

� D(π (x)‖ Q(x|xt )). (A15)

Then the metrical averages in (A2)–(A3) give∫
N

dt (N ) fN |xt (n|xt ) dn � dt . (A16)

This noise inequality is just the desired average result:

EN [dt (N )] � dt . (A17)

�
Corollary 1. The N-MCMC noise benefit condition holds

if

Q(xt + n|x) � eA Q(xt |x) (A18)

for almost all x and n if

A = EN

[
ln

π (xt + N )

π (xt )

]
. (A19)

Proof. The following inequalities need to hold only for
almost all x and n. The first inequality is just the N-MCMC
condition:

Q(xt + n|x) � eA Q(xt |x) (A20)

iff

ln [Q(xt + n|x)] � A + ln [Q(xt |x)] (A21)

iff

ln [Q(xt + n|x)] − ln [Q(xt |x)] � A (A22)

iff

ln
Q(xt + n|x)

Q(xt |x)
� A. (A23)

Then taking expectations gives the desired noise-benefit
inequality:

EN,X

[
ln

Q(xt + N |x)

Q(xt |x)

]
� EN

[
ln

π (xt + N )

π (xt )

]
. (A24)

�
Corollary 3. Suppose Q(xt |x) ∼ N (x, σ 2). Then the suf-

ficient noise benefit condition (9) holds if

n(n + 2(xt − x)) � −2σ 2A (A25)

for A in (12).
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Proof. Assume that the normal hypothesis holds:

Q(xt |x) = 1
σ
√

2π
e− (xt −x)2

2σ2 . Then Q(xt + n|x) � eA Q(xt |x)
holds iff

1

σ
√

2π
e− (xt +n−x)2

2σ2 � eA 1

σ
√

2π
e− (xt −x)2

2σ2 (A26)

iff

e− (xt +n−x)2

2σ2 � eA− (xt −x)2

2σ2 (A27)

iff

− (xt + n − x)2

2σ 2
� A − (xt − x)2

2σ 2
(A28)

iff

−(xt + n − x)2 � 2σ 2A − (xt − x)2 (A29)

iff

− x2
t + 2xt x − 2xt n − x2 + 2xn − n2

� 2σ 2A − x2
t + 2xt x − x2 (A30)

iff

2xn − 2xt n − n2 � 2σ 2A (A31)

iff

n(n + 2(xt − x)) � −2σ 2A. (A32)

�
Corollary 4. Suppose Q(xt |x) ∼ N (x, σ 2) and g(xt , n) =

nxt . Then the sufficient noise benefit condition (11) holds if

nxt (nxt − 2x) − xt (xt − 2x) � −2σ 2A (A33)

for A in (12).
Proof. Assume the normality condition that Q(xt |x) =

1
σ
√

2π
e− (xt −x)2

2σ2 . Then Q(nxt |x) � eA Q(xt |x) holds iff

1

σ
√

2π
e− (nxt −x)2

2σ2 � eA 1

σ
√

2π
e− (xt −x)2

2σ2 (A34)

iff

e− (nxt −x)2

2σ2 � eA− (xt −x)2

2σ2 (A35)

iff

− (nxt − x)2

2σ 2
� A − (xt − x)2

2σ 2
(A36)

iff

−(nxt − x)2 � 2σ 2A − (xt − x)2 (A37)

iff

−x2 + 2xnxt − n2x2
t � 2σ 2A − x2 + 2xxt − x2

t (A38)

iff

2xnxt − n2x2
t − 2xxt + x2

t � 2σ 2A (A39)

iff

nxt (nxt − 2x) − xt (xt − 2x) � −2σ 2A. (A40)

�

Corollary 5. Suppose Q(xt |x) ∼ Cauchy(x, d ). Then the
sufficient condition (9) holds if

n2 + 2n(xt − x) � (e−A − 1)(d2 + (xt − x)2) (A41)

for A in (12).
Proof. Assume the Cauchy-pdf condition that

Q(xt |x) = 1

πd
[
1 + ( xt −x

d

)2] . (A42)

Then

Q(xt + n|x) � eA Q(xt |x) (A43)

iff
1

πd
[
1 + ( xt +n−x

d

)2] � eA 1

πd
[
1 + ( xt −x

d

)2] (A44)

iff

1 +
(

xt + n − x

d

)2

� e−A

[
1 +

(
xt − x

d

)2
]

(A45)

� e−A + e−A

(
xt − x

d

)2

(A46)

iff (
xt + n − x

d

)2

− e−A

(
xt − x

d

)2

� e−A − 1 (A47)

iff

(xt + n − x)2 − e−A (xt − x)2 � d2(e−A − 1), (A48)

(xt − x)2 + n2 + 2n(xt − x) − e−A (xt − x)2 � d2(e−A − 1),
(A49)

(1 − e−A)(xt − x)2 + n2 + 2n(xt − x) � d2(e−A − 1)
(A50)

iff

n2 � d2(e−A − 1) + (e−A − 1)(xt − x)2 − 2n(xt − x)
(A51)

� (e−A − 1)(d2 + (xt − x)2) − 2n(xt − x). (A52)

�

2. Proof of N-SA Theorem

Theorem 2 (Noisy simulated annealing Theorem (N-SA)).
Suppose C(x) is an energy surface with occupancy proba-
bilities π (x; T ) ∝ exp (−C(x)

T ). Then the simulated-annealing
noise benefit

EN [αN (T )] � α(T ) (A53)

holds on average if

EN

[
ln

π (xt + N ; T )

π (xt ; T )

]
� 0 (A54)

where α(T ) is the simulated annealing acceptance probability
from state xt to the candidate x∗

t+1 that depends on a tempera-
ture T (with cooling schedule T (t )):

α(T ) = min

{
1, exp

(
−�E

T

)}
(A55)
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and αN (T ) is the noisy simulated annealing acceptance prob-
ability from state xt to the candidate x∗

t+1 + N :

αN (T ) = min

{
1, exp

(
−�EN

T

)}
(A56)

where �E = E∗
t+1 − Et = C(x∗

t+1) − C(xt ) is the energy dif-
ference of states x∗

t+1 and xt and �EN = E∗
N,t+1 − Et =

C(x∗
t+1 + N ) − C(xt ) is the energy difference of states x∗

t+1 +
N and xt .

Proof. The proof uses Jensen’s inequality for a concave
function g [52,53]:

g(E [X ]) � E [g(x)] (A57)

where X is a real integrable random variable. Then Jensen’s
inequality gives

ln E [X ] � E [ln X ] (A58)

because the natural logarithm is a concave function.
We first expand α(T ) in terms of the π densities:

α(T ) = min

{
1, exp

(
−�E

T

)}
(A59)

= min

{
1, exp

(
−E∗

t+1 − Et

T

)}
(A60)

= min

⎧⎨⎩1,
exp

(
−E∗

t+1

T

)
exp

(−Et
T

)
⎫⎬⎭ (A61)

= min

{
1, �

�1Z · π (x∗
t+1; T )

��
1
Z · π (xt ; T )

}
(A62)

= min

{
1,

π (x∗
t+1; T )

π (xt ; T )

}
(A63)

for the normalizing constant

Z =
∫

X
exp

(
−C(x)

T

)
dx. (A64)

We next let N be an integrable noise random variable that
perturbs the candidate state x∗

t+1.
We want to show the inequality

EN [αN (T )] = EN

[
min

{
1,

π (x∗
t+1 + N ; T )

π (xt ; T )

}]
(A65)

� min

{
1,

π (x∗
t+1; T )

π (xt ; T )

}
(A66)

= α(T ). (A67)

So it suffices to show that

EN

[
π (x∗

t+1 + N ; T )

π (xt ; T )

]
� π (x∗

t+1; T )

π (xt ; T )
(A68)

holds. This inequality holds iff

EN
[
π (x∗

t+1 + N ; T )
]
� π (x∗

t+1; T ) (A69)

because π (xt ) � 0 since π is a pdf.
Suppose now that the N-SA condition holds:

EN

[
ln

π (xt + N )

π (xt )

]
� 0. (A70)

Then

EN [ln π (xt + N ) − ln π (xt )] � 0 (A71)

iff

EN [ln π (xt + N )] � EN [ln π (xt )]. (A72)

Then Jensen’s inequality gives the inequality

ln EN [π (xt + N )] � EN [ln π (xt )]. (A73)

This inequality holds iff

ln EN [π (xt + N )] �
∫

N
ln π (xt ) fN (n|xt ) dn (A74)

iff

ln EN [π (xt + N )] � ln π (xt )
∫

N
fN (n|xt ) dn︸ ︷︷ ︸

=1

(A75)

iff

ln EN [π (xt + N )] � ln π (xt ). (A76)

Then taking exponentials gives the desired average noise
benefit:

EN [π (xt + N )] � π (xt ). (A77)

�
Corollary 6. Suppose m is a convex increasing function.

Then the N-SA theorem noise benefit

EN [βN (T )] � β(T ) (A78)

holds on average if

EN

[
ln

π (xt + N ; T )

π (xt ; T )

]
� 0 (A79)

where β is the acceptance probability from state xt to the
candidate x∗

t+1,

β(T ) = min

{
1, m

(
π
(
x∗

t+1; T
)

π (xt ; T )

)}
, (A80)

and βN is the noisy acceptance probability from state xt to the
candidate x∗

t+1 + N

βN (T ) = min

{
1, m

(
π
(
x∗

t+1 + N ; T
)

π (xt ; T )

)}
. (A81)

Proof. We want to show that

EN [βN (T )] = EN

[
min

{
1, m

(
π (x∗

t+1 + N ; T )

π (xt ; T )

)}]
(A82)

� min

{
1, m

(
π (x∗

t+1; T )

π (xt ; T )

)}
(A83)

= β(T ). (A84)

So it suffices to show that

EN

[
m

(
π (x∗

t+1 + N ; T )

π (xt ; T )

)]
� m

(
π (x∗

t+1; T )

π (xt ; T )

)
. (A85)
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Suppose that the N-SA condition holds:

EN

[
ln

π (xt + N ; T )

π (xt ; T )

]
� 0. (A86)

Then

EN [π (xt + N )] � π (xt ) (A87)

holds as in the proof of the N-SA Theorem. This inequality
implies that

EN [π (xt + N )]

π (xt−1; T )
� π (xt )

π (xt−1; T )
(A88)

because π (xt ) � 0 since π is a pdf and because

EN

[
π (xt + N )

π (xt−1; T )

]
� π (xt )

π (xt−1; T )
. (A89)

Then

m

(
EN

[
π (xt + N )

π (xt−1; T )

])
� m

(
π (xt )

π (xt−1; T )

)
(A90)

because m is an increasing function. Then Jensen’s inequal-
ity for convex functions gives the desired average noise
inequality:

EN

[
m

(
π (xt + N )

π (xt−1; T )

)]
� m

(
π (xt )

π (xt−1; T )

)
(A91)

because m is convex. �

Corollary 7. Suppose π (x) = Ceg(x) if C is the normal-
izing constant C = 1∫

X eg(x) dx . Then there is an N-SA noise

benefit if

EN [g(xt + N )] � g(xt ). (A92)

Proof. Suppose that the N-SA condition holds:

EN [g(xt + N )] � g(xt ). (A93)

Then the equivalent inequality

EN [ln eg(xt +N )] � ln eg(xt ) (A94)

holds iff the following equivalent inequalities hold:

EN [ln(eg(xt +N ) )] � ln(eg(xt ) ), (A95)

EN

[
ln

π (xt + N )

C

]
� ln

π (xt )

C
, (A96)

EN

[
ln

π (xt + N )

C
− ln

π (xt )

C

]
� 0, (A97)

EN

[
ln

π (xt +N )

�C
π (xt )

�C

]
� 0, (A98)

EN

[
ln

π (xt + N )

π (xt )

]
� 0. (A99)

�
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