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Abstract— Gunshots produce bruise patterns on persons who
wear soft body armor when shot even when the armor stops
the bullets. An adaptive fuzzy system modeled these bruise
patterns by their depth and width given a projectile’s mass and
momentum. The fuzzy system used rules with sinc-shaped if-part
fuzzy sets and was robust against random rule pruning: Median
and mean test errors remained low even after removing up to
one fifth of the rules. Gunshot data tuned the additive fuzzy
function approximator. The fuzzy system’s conditional variance
V [Y |X = x] described the second-order uncertainty of the
function approximation. Handguns with different barrel lengths
shot bullets over a fixed distance at armor-clad gelatin blocks
that we made with Type 250A Ordnance Gelatin. The bullet-
armor experiments found that a bullet’s weight and momentum
correlated with the depth of its impact on armor-clad gelatin
(R2 = 0.953 and p-value < 0.001 for the null hypothesis that the
regression line had zero slope). Related experiments on plumber’s
putty found that highspeed baseball impacts compared well to
bullet-armor impacts for large-caliber handguns. A baseball’s
impact depth in putty correlated with its momentum (R2 = 0.93
and p-value < 0.001). Baseball impact depths were comparable
to bullet-armor impact depths: Getting shot with a .22 caliber
bullet when wearing soft body armor resembles getting hit in
the chest with a 40-mph baseball. Getting shot with a .45 caliber
bullet resembles getting hit with a 90-mph baseball.

I. MODELING SOFT-BODY-ARMOR BRUISE IMPACT

How does it feel to get shot while wearing soft body armor?
One police officer described it as a sting while another officer
described it as a “hard blow” [1]. Fig. 1 shows the bruise
beneath the armor after a .44 caliber bullet struck a police
officer’s upper left chest. The armor stopped the bullet but the
impact still injured soft tissue.

We examined the bruising effect with a fuzzy function
approximator and a baseball analogy. Bullet impact experi-
ments produced the bullet-armor bruise data that generated a
quantitative bruise profile and a baseball-impact comparison.
The bruise profile gave the depth and width of the deformation
that a handgun bullet made on gelatin-backed armor for gelatin
blocks that we made with Type 250A Ordnance Gelatin (from
Kind & Knox Gelatin).

Few researchers have studied the relationship between the
bruising effect and the so-called backface signature or the
deformation in the armor’s backing material after a gunshot
[2]. Our bruise profile modeled the bullet-armor impact with
the depth and width of the bruise as a blunt object that
could injure soft tissue. The baseball analogy helped estimate
gunshot impacts on armor. We found that a fast baseball could
hit as hard as a large caliber handgun bullet on armor.

Fig. 1. (a) Actual bruise from a police officer shot by a .44 caliber
weapon in the line of duty while wearing soft body armor. (b) Close-up
of the “backface signature” bruise in (a). Note that the bruise includes
the discoloration around the wound. Photo reproduced with permission
from the IACP/Du Pont Kevlar Survivors’ Club.

An adaptive fuzzy system learned to model the depth
and width of bruise profiles from the bullet-armor impact
experiments. The experiments found that a bullet made a larger
impact if it had a larger caliber or a larger momentum (see
Table 1). A larger and slower handgun bullet hit harder than
a smaller and faster one in the experiments. Impact depth
correlated better with momentum than with kinetic energy.

We picked the initial rules based on our ballistic judgment
and experience. The experimental data tuned the rules of
an adaptive standard-additive-model (SAM) fuzzy system [3].
The SAM system used two scalar subsystems to model the
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Fig. 2. One of the authors holds a 14-ply Kevlar soft body armor panel
(from a Superfeatherlite vest from Second Chance) and some sample
cartridges (.22, .38, .40, and .45 caliber). Different caliber bullets struck
the sample armor but did not include a .44 caliber.

depth and width of a bullet-armor impact in parallel given the
bullet’s weight and momentum. The fuzzy system was robust
against random rule pruning. The median, mean, and maximal
test errors resembled the initial system error for pruning that
randomly removed up to 20% of the rules.

The next two sections review soft body armor and bullet-
impact bruises.

II. SOFT BODY ARMOR

Soft body armor prevents most handgun bullets from pen-
etrating a user’s body [4]. Our armor experiments used a
generic armor that combined many layers of fabric that wove
together Kevlar fibers. Thinner armor is softer than thicker
armor. Another type of armor material laminated together
many layers of parallel fibers. Both types of armor deform
under a bullet’s impact and spread the impact’s force over a
wider area. Bullets penetrate by crushing [5]. So soft body
armor arrests a handgun bullet by reducing its crushing force
below a material-failure threshold [5].

Failure analysis does not consider the physiological effect as
armor stops a bullet. Some researchers define armor failure as
material failure such as broken fibers or breached fabric layers
[6] – [10]. Others require complete bullet passages [11]. Such
definitions do not address the interactions that flexible armor
permit with the underlying material.

These interactions have two effects. The first is that a bullet-
armor impact can injure soft tissue even though the bullets
do not penetrate the armor (see Fig. 1). The second effect is
that soft body armor’s performance can differ for different
“backing material” that supports the armor. We found that
a hammer strike breached several layers of concrete-backed
armor fabric but a handgun bullet bounced off gelatin-backed
armor fabric.

The backface signature is the deformation in the backing
material after a bullet strikes armor [5]. Studies of backface
signatures [2] give little information about the impact as a

KINETIC WEIGHT &
MOMENTUM WEIGHT ENERGY SPEED MOMENTUM

mv m 1/ 2 mv2 v m&v

DEPTH 0.931 0.930 0.753 0.226 0.953
p = 0.003

WIDTH 0.952 0.877 0.836 0.140 0.951
p = 0.025

TABLE I. Linear regression statistics (R2) for the bullet impact experi-
ments. Momentum correlated the most and kinetic energy correlated the
least with an impact’s depth and width. Speed correlated little with the
impact’s depth and width. A bullet’s weight could represent its caliber
because the experiments used one weight per caliber. All regression tests
had p-value < 0.001 unless otherwise noted. The p-value measured the
credibility of the null hypothesis H0 : β1 = 0 that the regression line
had zero slope β1. A statistical test rejects the null hypothesis H0 at a
significance level α if the p-value is less than that significance level. So the
regression rejected the null hypothesis H0 for the customary significance
levels α = 0.05 and α = 0.01 because p-value < 0.001.

bruising force if the backing material differs from soft tissue.
One industry standard measures the backface signature on clay
backing material [5]. The clay records the impact in a plastic
or permanent deformation but its properties differ from soft
tissue.

Gelatin tissue simulant is elastic and responds to a bullet’s
crushing force similar to how soft tissue responds in bullet
penetration tests [12] – [14]. So testing gelatin-backed soft
body armor can help study the armor’s performance on a user’s
body. We performed the bullet-armor impact experiments on
tissue simulant and defined a simple two-parameter bruise
profile to describe the impact.

III. BRUISING AND THE BRUISE PROFILE

Bruising implies injury: It is escaped blood in the intercel-
lular space after a blunt impact injures soft tissue [15]. The
visible part of a bruise is the part of the escaped blood that is
close to the skin surface. It need not indicate the severity of the
injury. Scraping with a coin or a spoon can leave extensive but
superficial bruises or welts that resemble bruises from abuse
[16]. The visible bruise can change over time [17] at different
rates based on sex, age, body fat [15], and medication [18].
So a bruise shows that a blunt impact occurred but need not
show that internal injuries occurred [19], [20].

A bruise profile models the shape of the bullet-armor impact
and can help guide the examination after an armor gunshot.
The bruise profile can indicate the affected internal tissue
beneath the visible armor bruise. We suggest that medical
experts can infer the severity of internal injuries by applying
the bruise profile based on a bullet’s design, size, speed, and
weight to the location of the bullet-armor impact.

IV. ADAPTIVE FUZZY SYSTEM

Bullet-impact experiments trained an adaptive fuzzy system
to model the depth and width of the bullet-armor impact given
a handgun bullet’s weight and momentum. We picked the
fuzzy system’s initial depth rules in Table 2 based on the
correlations in the experimental data (Table 1) and based on
our ballistic judgment and experience. Similar rules described
the width subsystem. A typical rule was “If a bullet’s weight
is very small (VS) and its momentum is small (SM) then the



Fig. 3. Sample if-part and then-part fuzzy sets. (a) Joint (product) sinc
if-part set function for two-dimensional input case [21]. The joint set
function has the factorable form aj(x) = aj(x1, x2) = a1

j (x1)×a2
j (x2).

The shadows show the scalar sinc set functions ai
j : R → R for i = 1, 2

that generate aj : R2 → R. (b) Scalar Gaussian then-part set function.

armor deformation depth is SM and the width is VS.” The
gunshot data tuned the rules in an adaptive standard-additive-
model (SAM) function approximation.

We applied two scalar-valued additive fuzzy systems [3],
[21] F : R2 → R in parallel that used two-dimensional inputs
to model the depth and width of a bullet-armor impact. These
systems approximated some unknown function f : R2 → R
by covering the graph of f with m fuzzy rule patches and
averaging patches that overlap. An if-then rule of the form “If
X is A then Y is B” defined a fuzzy Cartesian patch A×B
in the input-output space X×Y . These nonlinear systems can
uniformly approximate any continuous (or bounded measur-
able) function on a compact domain [3].

The SAM output computed a convex-weighted sum of the
then-part centroids cj for each vector input x

F (x) =

m∑
j=1

wjaj(x)Vjcj

m∑
j=1

wjaj(x)Vj

=
m∑

j=1

pj(x)cj (1)

for if-part joint set function aj : Rn → [0, 1] that defined the
if-part set Aj ⊂ Rn, rule weights wj ≥ 0, pj(x) ≥ 0, and
m∑

j=1

pj(x) = 1 for each x ∈ R2. The convex coefficient

pj(x) =
wjaj(x)Vj

m∑
i=1

wiai(x)Vi

(2)

depended on then-part set Bj only through its volume or area
Vj (and perhaps through its rule weight wj). We note that (1)
and (3) below imply [3] that F (x) = E[Y |X = x]. So the
SAM output describes the first-order behavior of the fuzzy
system and does not depend on the shape of the then-part
sets Bj . But the shape of Bj did affect the second-order
uncertainty or conditional variance V [Y |X = x] of the SAM
output F (x) [3]:

V [Y |X = x] =
m∑

j=1

pj(x)σ2
Bj

+
m∑

j=1

pj(x)(cj − F (x))2 (3)

DEPTH MOMENTUM
VS SM MS MD ML LG VL

VL MD MD MD LG LG LG VL
LG MD MD MD LG LG LG VL
ML MD MD MD MD MD MD LG

WEIGHT MD SM MD MD MD MD MD LG
MS SM SM SM SM SM MD LG
SM SM SM SM SM SM MD MD
VS VS VS VS SM SM MD MD

TABLE II. Initial fuzzy rules for the depth subsystem. The initial
fuzzy rules for the armor-deformation depth based on the experimenters’
ballistic judgment and experience. A typical rule was “If the bullet’s
weight is very small (VS) and the momentum is small (SM) then the
armor deformation depth is SM and the width is VS.” The if-part fuzzy
sets describe the bullet’s weight {Very Small, SMall, Medium Small,
MeDium, Medium Large, LarGe, Very Large} and momentum {VS, SM,
MS, MD, ML, LG, VL}. The then-part fuzzy sets describe the armor
deformation’s depth {VS, SM, MD, LG, VL} and width {VS, SM, MD,
LG, VL}.

where σ2
Bj

is the then-part set variance

σ2
Bj

=

∞∫
−∞

(y − cj)2pBj (y)dy (4)

where pBj (y) = bj(y)/Vj is an integrable probability density
function, and where bj : R → [0, 1] is the integrable set
function of then-part set Bj . The first term on the right
side of (3) gave an input-weighted sum of the then-part set
uncertainties. The second term measured the interpolation
penalty that resulted from computing the SAM output F (x)
in (1) as the weighted sum of centroids. The second-order
structure of a fuzzy system’s output depends crucially on the
size and shape of the then-part sets Bj . Fig. 4 shows the
conditional-variance surface of the depth output.

We used scalar Gaussian set functions for the one-
dimensional then-part fuzzy sets Bj . This gave the set variance
σ2

Bj
from the then-part set volume Vj : σ2

Bj
= V 2

j /2π.
We used the 2-D factorable sinc function (see Fig. 3) for

the if-part fuzzy sets Aj . Sinc sets often converge faster and
with greater accuracy than do triangles, Gaussian bell curves,
Cauchy bell curves, and other familiar set shapes [21].

A larger then-part rule volume Vj produced more uncer-
tainty in the jth rule and so should result in less weight. So we
weighted each rule with the inverse of its squared volume [3]:
wj = 1/V 2

j . A larger volume Vj also gave a larger conditional
variance.

We picked the fuzzy system’s initial rules according to
the observed correlations in Table 1: Same-weight bullets hit
harder if they were faster. Same-speed bullets hit harder if
they were heavier. But heavier and slower handgun bullets hit
harder than lighter and faster ones. The if-part set functions aj

used center and width parameters to uniformly cover the input
space. The then-part set functions bj used center parameters or
centroids cj that gave an output according to Table 2 and used
width parameters that reflected the uncertainty of the rules.
The fuzzy sets in Table 2 listed the initial rules we created
based on our experience with ballistics and soft body armor.
The volume Vj was a function of its width parameter. A rule
was less certain if its if-part covered untested combinations
of bullet weight and momentum so its then-part had a larger



Fig. 4. Fuzzy system output and conditional variance. An adaptive fuzzy system used two parallel scalar fuzzy systems to model the depth and
width (mm) of a bullet-armor deformation given the bullet’s weight (grain) and momentum (grain feet per second). The experiments used one
weight per bullet caliber so that a bullet’s weight could represent its caliber in the input. The output gave the depth and width of the bruise
profile. Each surface plots the output against the momentum to the left and the weight to the right. The first-order outputs are the depth and
width. The second-order uncertainties are the conditional variance for the depth and width. We initialized the fuzzy rules using correlations in
the experimental data (see Table 2). The left and right side rules were less certain because their if-parts covered untested combinations of bullet
weight and momentum. So their then-parts had larger set variances and gave larger conditional variances. (a) The depth output surface (b) The
conditional variance of the depth output. The width subsystem produced similar surfaces. Both the depth and width increased as the bullet weight
and momentum increased.

set variance. Fig. 4 shows the fuzzy system’s initial first-order
output F (x) = E[Y |X = x] and second-order uncertainty
V [Y |X = x].

A random resampling scheme selected two thirds of the
sparse data as the bootstrapped training set and the remaining
one third as the test set [22]. A bootstrap scheme sampled the
training data with replacement at random to generate 300 sets
of input-output data to tune the fuzzy system.

Tuning reduced the system’s error function that summed
the squared differences (SSE) between the training data and
the output by more than a half for 3000 epochs of learning:
It reduced the depth subsystem error from 38 to 11.6 and
reduced the width subsystem error from 47 to 21. The final
SSE resembled the initial SSE. Test data produced the low test
error of SSE = 20.5 for the depth subsystem and so showed
that the tuning was effective. Learning only slightly improved
the width subsystem because the test error of SSE = 42 was
only slightly less than the initial error of 47.

The fuzzy system was robust against random pruning (see
Fig. 5). Pruning randomly removed a fraction of the rules over
100 trials. The depth and the width subsystems gave similar
results. The maximal test error remained low (SSE < 100)
for up to 20 percent of randomly removed rules. This was
comparable to the approximation errors in data tuning. Both
the mean and the median of the test error remained low for
random pruning that removed up to 30 percent of the rules.

V. BULLET-ARMOR IMPACT EXPERIMENTS
The bullet-armor experiments found that the a bullet-armor

impact’s depth and width correlated with the combination of
the bullet’s weight and momentum. The regression statistics
were R2 = 0.953 for the depth and R2 = 0.951 for the width.

A bullet’s impact depth and width correlated better with its
momentum mv than with its weight m, speed v, or kinetic
energy 1/2 mv2 (Table 1). A bullet’s weight could represent its
caliber in the fuzzy system because the experiments used one
weight per bullet caliber. So the fuzzy system’s inputs were
weight and momentum.

Linear regression measured how well the bullet-armor data
fit a straight line. The null hypothesis H0 : β1 = 0 stated
that the slope β1 of the regression line was zero and thus the
impact deformation’s depth and width (dependent variables)
did not vary with a bullet’s weight, speed, momentum, or
kinetic energy (independent variables). The p-value measures
the credibility of H0. A statistical test rejects the null hy-
pothesis H0 at a significance level α if the p-value is less
than that significance level: Reject H0 if p-value < α. So
the regression rejected the null hypothesis H0 at the standard
significance levels α = 0.05 and α = 0.01 because p-value
< 0.001. The depth regression equation was y = 0.064 +
0.006x1 + 7.5× 10−6x2, where x1 was bullet weight and x2

was bullet momentum. The width regression coefficients were
β0 = 3.274, β1 = 0.002, and β2 = 1.8× 10−5.

We used four bullet calibers (.22, .38, .40, and .45 caliber)
and two different speeds (such as on average 808 ft/s and 897
ft/s for the .45) per caliber to produce 46 sets of input-output
data. This gave a sparse sampling of the input space.

The bullet-armor experiments used eight layers of ballistic
fabric for generic armor, blocks of ten-percent ordnance gelatin
for tissue simulant, and full-copper-jacket range ammunition
for handgun bullets. We made the generic armor with eight
layers of Aramid fabric style 713 from Hexcel Schwebel that
consisted of 1000 deniers of Kevlar 29 fibers in plain weave.



Fig. 5. Rule pruning. The fuzzy system was robust against random
pruning. The figure plots the system’s test error in log scale versus the
percent of pruned depth rules. Similar result holds for random pruning
of width rules. The vertical bars show the maximal and minimal range of
100 trials. The solid polygonal line interpolates the median of those trials.
The dashed line interpolates the mean. The maximal error remained
below 100 sum squared error (SSE) for up to 20% of randomly pruned
rules. Both the mean and median error remained low for rule losses
of up to 30%. The tuning was effective for the depth subsystem: Test
SSE = 20.5 was less than the initial error of 38. But tuning only slightly
improved the width subsystem because the test error of SSE = 42 was
only slightly less than the initial error of 47.

The gelatin blocks consisted of water and Kind & Knox Type
250A Ordnance Gelatin at ten percent by weight. The Orange
County Indoor Shooting Range provided the space, the rental
handguns, and range ammunition for the experiments.

Handguns with different barrel lengths shot bullets at the
armor-clad gelatin blocks over a fixed distance. The exper-
iments recorded at least five shots for each of the seven
combinations of bullet weight and mean velocity. An optical
chronometer measured the bullet speeds in separate tests and
found the mean speed of the bullets from the same ammunition
box using the same handguns. The chronometer was the
Prochrono Plus model from Competition Electronics.

The gelatin mixture sat for 24 hours to minimize air bubbles.
A water bath heated the mixture until the gelatin dissolved
while keeping the mixture’s temperature below 40 degrees C.
A refrigerator cooled the mixture in molds for 48–72 hours
to ensure the gelatin blocks had uniform temperature close to
4 degrees C. A BB shot calibrated each gelatin block before
use by giving BB penetration at known temperatures.

VI. BASEBALL IMPACT EXPERIMENTS

The baseball impact experiments used regulation baseballs
(Fig. 7) to produce at least 10 data points for each of six
different speeds. Pitching machines threw the balls at tubs of
Oatey’s plumber’s putty at a distance of 5 feet. Home Run Park
in Anaheim provided the batting cages that had baseball speeds
from 40 mph to 90 mph. The optical chronometer measured
the baseball speeds before the impact in each test. The putty
deformed to record each baseball impact.

The baseball experiments found that the mean depth of
a baseball’s impact correlated with its speed: The statistics

Bullet Caliber .22 .38 .357 .45
Depth (mm) 5 15 21 22

Baseball Speed (mph) 40 70 80 90
Depth (mm) 6.5 13.6 17 21.6

Fig. 6. Baseball and bullet impact depth in plumber’s putty versus
momentum. The baseball impact depth correlated with baseball momen-
tum R2 = 0.93 and p-value < 0.001 for the null hypothesis: β1 = 0.
The solid line on the right is the regression line for the baseball impacts
(blue dots) y = β0 + β1x where x is baseball momentum and y is
putty deformation depth for the regression coefficients β0 = −6.155 and
β1 = 5.188. Only two data fell outside of the 95% confidence bounds.
Bullet-armor impact depths correlated with bullet momentum R2 = 0.97.
The green dashed line on the left is the regression line for the bullet-
armor impacts (green circles) y = 2.124 + 4.766x where x is bullet
momentum and y is depth. The two regression lines have the similar
slope β1 ≈ 5. Baseballs deformed plumber’s putty similar to handgun
bullets: The mean impact depth was 21.6 mm for 90-mph baseballs. The
bullet-armor impact depth was 21 mm for a .357 magnum bullet and
22 mm for a .45 caliber bullet. The mean depth was 17 mm for 80-
mph baseballs and was 13.6 mm for 70-mph baseballs. The bullet-armor
depth was 15 mm for a .38 caliber bullet. The mean depth was 6.5 mm
for 40-mph baseballs. And the bullet-armor depth was 5 mm for a .22
caliber bullet.

were R2 = 0.93 for correlation and p-value < 0.001 for
the linear regression. The regression equation had the form
y = −6.155 + 5.188x where x was baseball momentum
and y was putty deformation depth. The correlation was
the same between the impact depth and baseball momentum
because the baseballs had approximately the same weight. This
corroborated the results from the bullet-armor experiments.

Baseball impacts and bullet-armor impacts had similar
depths in Oatey’s plumber’s putty (Fig. 6). The similarity
of impact depths suggested that handgun shots on soft body
armor would feel like baseball impacts without armor. Fast-
baseball impact depths were comparable to bullet-armor im-
pact depths: Getting shot with a .22 caliber bullet when
wearing soft body armor resembles getting hit on the chest
with a 40-mph baseball. Getting shot with a .45 caliber bullet
resembles getting hit with a 90-mph baseball.

VII. CONCLUSION

The adaptive SAM system modeled the bruise profile of
a bullet impact based on bullet-armor experiments. The fuzzy
system’s output conditional variance measured the inherent un-
certainty in the rules. A baseball analogy gave further insight
into armor gunshots based on baseball-impact experiments.



Fig. 7. A regulation baseball and a record of its impact. Pitching
machines threw baseballs at tubs of plumber’s putty. A chronograph
measured the speed of each baseball. The baseball speeds were approx-
imately 40, 50, 60, 70, 80, and 90 miles per hour.
The bullet-armor experiments found correlations between a
bullet impact’s depth and width and its weight and momentum.
The baseball correlations corroborated the bullet-armor results.
These results would benefit from further testing with more than
one weight per caliber.

APPENDIX
This appendix derives the learning laws for scalar and joint factorable if-

part sets. Supervised gradient descent can tune all the parameters in the SAM
(1). A gradient descent learning law for a SAM parameter x has the form

ξ(t + 1) = ξ(t)− µt
∂E

∂ξ
(5)

where µt is a learning rate at iteration t. We seek to minimize the squared
error E(x) = 1/2(f(x)−F (x))2 of the function approximation. The vector
function f : Rn → Rp has components f(x) = (f1(x), . . . , fp(x))T and so
does the vector function F (x). We consider the case when p = 1. A general
form for multiple output when p > 1 expands the error function E(x) =
‖ f(x) − F (x) ‖ for some norm ‖.‖ . Let ξk

j denote the kth parameter in
the set function aj . Then the chain rule gives the gradient of the error function
with respect to the if-part set parameter ξk

j , with respect to the then-part set
centroid cj = (c1j , . . . , cp

j )T , and with respect to the then-part set volume
Vj

∂E

∂ξj
k

=
∂E

∂F

∂F

∂aj

∂aj

∂ξj
k

,
∂E

∂cj
=

∂E

∂F

∂F

∂cj
, and

∂E

∂Vj
=

∂E

∂F

∂F

∂Vj
(6)

where

∂E

∂F
= − [f(x)− F (x)] = −ε(x)and

∂F

∂aj
= (cj − F (x))

pj(x)

aj(x)
. (7)

The SAM ratios (1) with inverse-squared-volume rule weights wj = 1/V 2
j

give
∂F

∂cj
=

aj(x)/Vj

m∑
j=1

aj(x)/Vj

= pj(x) (8)

∂F

∂Vj
= −

pj(x)

Vj
(cj − F (x)) (9)

Then the learning laws for the then-part set centroids cj and volumes Vj have
the final form

cj(t + 1) = cj(t) + µtεt(x)pj(x) (10)

Vj(t + 1) = Vj(t)− µtεt(x)
pj(x)

Vj
[cj − F (x)] (11)

The learning laws for the if-part set parameters follow in like manner for both

scalar and joint sets as we show below. Chain rule gives for scalar sinc set
function

∂E

∂mk
j

=
∂E

∂F

∂F

∂aj

∂aj

∂mk
j

and
∂E

∂dk
j

=
∂E

∂F

∂F

∂aj

∂aj

∂dk
j

(12)

A joint factorable set function aj(x) = a1
j (x) . . . an

j (x) leads to a new
form for the error gradient. The gradient with respect to the parameter of the
jth set function aj has the form

∂E

∂mk
j

=
∂E

∂F

∂F

∂aj

∂aj

∂ak
j

∂ak
j

∂mk
j

where
∂aj

∂ak
j

=

n∏
i6=k

ai
j(xi) =

aj(x)

ak
j (xk)

. (13)

Combining (5), (6), (12), and (13) gives the if-part learning laws.
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