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Abstract

Two new theorems show that small amounts of additive white noise can improve the bit count or mutual information of several popular

models of spiking retinal neurons and spiking sensory neurons. The first theorem gives necessary and sufficient conditions for this noise

benefit or stochastic resonance (SR) effect for subthreshold signals in a standard family of Poisson spiking models of retinal neurons. The

result holds for all types of finite-variance noise and for all types of infinite-variance stable noise: SR occurs if and only if a sum of noise

means or location parameters falls outside a ‘forbidden interval’ of values. The second theorem gives a similar forbidden-interval sufficient

condition for the SR effect for several types of spiking sensory neurons that include the Fitzhugh-Nagumo neuron, the leaky integrate-and-

fire neuron, and the reduced Type I neuron model if the additive noise is Gaussian white noise. Simulations show that neither the forbidden-

interval condition nor Gaussianity is necessary for the SR effect.

q 2005 Elsevier Ltd. All rights reserved.
1. Stochastic resonance in spiking retinal and sensory

neurons

Noise can help a nonlinear system as well as hurt it. The

formal name for such a noise benefit is stochastic resonance

(SR) (Bulsara and Zador, 1996; Deco and Schurmann, 1998;

Gammaitoni, 1995; Godivier and Chapeau-Blondeau, 1998;

Inchiosa et al., 2000; Jung, 1995; Kosko and Mitaim,

2001; Mitaim and Kosko, 1998; Wiesenfeld and Moss,

1995). Fig. 1 shows an SR noise benefit in a spiking retinal

neuron. The neuron should emit more spikes when the

brightness contrast level is low rather than high. The right

amount of Gaussian noise helps the neuron discriminate

between two levels of brightness contrast. The retinal

neuron emits too few spikes if no noise corrupts the

Bernoulli sequence of contrast levels. The neuron also emits

too many spikes and emits many of them at the wrong time

if too much noise corrupts the sequence.

The next section presents the first of two new SR

theorems for spiking neurons. This first theorem gives

necessary and sufficient conditions for an SR effect in
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standard models of spiking retinal neurons for almost all

types of additive white noise. The last section presents a

theorem that gives a sufficient condition for an SR noise

benefit in standard models of spiking sensory neurons for

Gaussian white noise. The converse also holds for the leaky

integrate-and-fire neuron but need not hold for other spiking

sensory neurons as simulations confirm. Lack of a converse

broadens rather than lessens the potential scope of SR in

spiking sensory neurons. Simulations also show that the SR

effect can persist for other types of finite-variance and

infinite-variance noise.

These new theorems extend our earlier results on SR in

threshold neurons for subthreshold signals (Kosko and

Mitaim, 2003; Kosko and Mitaim, 2004). These results

characterize SR in terms of a technical condition on the

noise mean or location parameter when mutual information

measures system performance of a simple memoryless

threshold neuron in the face of noisy Bernoulli input

sequences: SR occurs if and only if the noise mean E(n)

does not lie in the ‘forbidden interval’ (qKA, qCA) where

-A!A!q for threshold q and signal amplitude AO0.

The sufficient or if-part of the theorem first appeared in

(Kosko and Mitaim, 2003) while the converse only-if part

first appeared in (Kosko and Mitaim, 2004). The result holds

for all noise types that have finite variance and for all

infinite-variance noise types from the broad family of stable

distributions (Shao and Nikias, 1993). The proof technique

assumes that the nonnegative mutual information is positive
Neural Networks 18 (2005) 467–478
www.elsevier.com/locate/neunet

http://www.elsevier.com/locate/neunet


0 2 4 6 8 10 12 14 16 18 20
0

0.5

0.5

S(t) (a)

0 2 4 6 8 10 12 14 16 18 20
0

S(t) + n1(t) (b)

0 2 4 6 8 10 12 14 16 18 20

–1
0
1

f(t) ∗  (S(t) + n1(t)) (c)

0 2 4 6 8 10 12 14 16 18 20

–1
0

1
f(t)∗  (S(t) + n1(t)) + n2(t) (d)

0 2 4 6 8 10 12 14 16 18 20

0

1
Spikes (f)

0 2 4 6 8 10 12 14 16 18 20

0

1
Spikes (g)

0 2 4 6 8 10 12 14 16 18 20

0

1

Time in seconds

Spikes (h)

0 2 4 6 8 10 12 14 16 18 20
0

50
100
150

(e)r(t)

Fig. 1. Stochastic resonance in a spiking retinal neuron. The neuron should emit more spikes when the brightness contrast level is low rather than high. Noise

improves the discrimination of subthreshold contrast stimuli in the retina model (1)–(3). (a) Bernoulli contrast signal S as a function of time t. (b) Contrast

signal S plus Gaussian white noise n1 with variance s1
2Z0.032. (c) Signal in plot (b) filtered with f in (1). (d) Filtered noisy signal in (c) plus noise n2 (synaptic

and ion-channel noise) with variance s2
2Z0.062. (e) Noisy spike rate r(t). (f) SR effect: Output Poisson spikes that result from the noisy spike rate r(t). (g)

Output spikes in the absence of noise. (h) Output spikes in the presence of too much noise.
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and then shows that it goes to zero as the noise variance or

dispersion goes to zero-so the mutual information must

increase as the noise dispersion increases from zero.

We now extend the above memoryless SR theorem to the

more complex models of retinal and sensory neurons that

produce spike trains. We prove that a general retinal model

with two noise sources and a piecewise-linear sigmoidal

function exhibits SR if and only if the sum of the two noise

means does not lie in the forbidden interval (q1Kv1, q2Kv2)

that depends on the threshold values q1 and q1 and on the

subthreshold signal values v1 and v2. The only-if part holds

in the sense that the system performs better without noise

than with it when the interval condition fails. We then show

that the SR effect holds for a general family of nonlinear
sensory neural models if the additive noise is Gaussian

white noise. These models include the popular FitzHugh-

Nagumo (FHN) model (Chialvo et al., 1997; Collins et al.,

1995) and the integrate-and-fire model (Collins et al., 1996;

Gerstner and Kistler, 2002), and the reduced Type I neuron

model (Lindner et al., 2003).
2. Stochastic resonance in spiking retinal models

Theorem 1 below characterizes SR in spiking retinal

models. It states that standard spiking retinal models benefit

from additive white noise if and only if a joint noise mean or

location parameter does not fall in a forbidden interval of
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threshold-based values. Theorem 1 holds for all finite-

variance noise and for all impulsive or infinite-variance

stable noise (Grigoriu, 1995; Kosko and Mitaim, 2001; Shao

and Nikias, 1993). The performance measure is the

input-output Shannon mutual-information (Cover and

Thomas, 1991) bit count I(S, R)ZH(R)KH(RjS) for input

signal random variable S and output response random

variable R. Fig. 1 shows a simulation instance of Theorem 1

for Gaussian white noise that corrupts a random Bernoulli

sequence of brightness contrast levels in a Poisson-spiking

retinal neuron.

The retina model of Theorem 1 is a noisy version of a

common Wiener-type cascade model (Chander and

Chichilnisky, 2001; Kim and Rieke, 2001; Korenberg and

Hunter, 1986; Rieke et al., 1996; Sakai et al., 1995):

rðtÞ Z r0h

ðN
KN

f ðzÞfSðtKzÞCn1ðtÞgdz Cn2ðtÞ

2
4

3
5 (1)

where S is the input stimulus defined below, r is

the instantaneous Poisson spike rate that gives the

exponential interspike-interval density function as

pðtÞZrðtÞexp K
Ðt
0

rðtÞdt

� �
, f is a band-pass linear filter

function, and h is a memoryless monotone-nondecreasing

function. Here n1 denotes the combined stimulus and

photoreceptor noise (AlaLaurila et al., 2004; Lamb, 1987;

Rieke et al., 1996) and n2 denotes the combined ion-channel

noise (Schneidman et al., 1998; Van Rossum et al., 2003) and

the synaptic noise (Freed, 2000; Levy and Baxter, 2002;

Manwani and Koch, 1999).

The input stimulus S is Michelson’s visual contrast signal

(Burkhardt et al., 1984): SZ ðLcKLsÞ=ðLc CLsÞ. Lc is the

amount of light that falls on the center of the ganglion cell’s

receptive field. Ls is the light that falls on its surround region.

The sigmoid-shaped memoryless function h approxi-

mates the spike threshold and saturation level. We define h

as a piecewise-linear approximation of a sigmoidal

nonlinearity (Yu et al., 2005):

hðxÞ Z

q2Kq1 if xOq2

xKq1 if q1 %x%q2

0 if x!q1

8><
>: (2)

and so

rðwðtÞÞ Z

r0ðq2Kq1Þ if wðtÞOq2

r0ðwðtÞKq1Þ if q1 %wðtÞ%q2

0 if wðtÞ!q1

:

8><
>: (3)

The Shannon mutual information I(S, R) between the

input contrast signal S and the output average spiking rate r

measures the neuron’s bit count and allows us to detect the

noise enhancement or SR effect.

The subthreshold contrast signal S(t)2{A, B} is a

random Bernoulli sequence with P[S(t)ZA]Zp and
P[S(t)ZB]Z1Kp. The time duration of each signal value

A and B in S(t) is much larger than the time constant of

the linear filter f(t). We define v(t) as the filtered output of

the contrast signal S(t) without noise n1(t) and such that

vðtÞjSðtÞZA Z v1 (4)

and

vðtÞjSðtÞZB Z v2 (5)

in steady-state, where v1Ov2 and max(v1, v2)!q1!q2. So

the input signal S(t) is subthreshold. We measure the average

spike rate for each symbol only when the corresponding

value of v(t) is in steady-state. Then the filtered noise z is

z(t)Zf(t)*n1 where ‘*’ denotes convolution.

Theorem 1 below gives necessary and sufficient

conditions for an SR noise effect in the retina neuron

model (1)–(3) for either noise source n1 or n2. The theorem

shows that some increase in such noise must increase the

neuron’s mutual information I(S, R)-and thus must increase

the neuron’s ability to discriminate subthreshold contrast

signals-if the noise mean or location parameter obeys a

simple interval constraint. This SR effect holds for all finite-

variance probability density functions. The result is robust

because it further holds for all infinite-variance stable noise

densities such as impulsive Cauchy or Levy noise (Grigoriu,

1995; Kosko and Mitaim, 2001; Kosko and Mitaim, 2003;

Kosko and Mitaim, 2004) and the uncountably many other

stable densities that obey a generalized central limit theorem

(Shao and Nikias, 1993). The proof follows the technique of

(Kosko and Mitaim, 2003; Kosko and Mitaim, 2004).

Theorem 1. Suppose that the noise sources n1 and n2 in the

retina model (1)–(3) are white and have finite-variance

(or finite-dispersion in the stable case) probability density

functions p1(n) and p2(n) with corresponding variances

(dispersions) s2
1 and s2

2 (g1 and g2). Suppose that the input

signal S is subthreshold (v2!v1!q1!q2) and that there is

some statistical dependence between the input contrast random

variable S and the output random variable R so that I(S, R)O0.

Then the retina model (1)–(3) exhibits the nonmonotone SR

effect in the sense that I(S, R)/0 as s2
1 and s2

2 (or g1 and g2)

decrease to zero if and only if the mean sum Eðn1Þ!Ð
f ðtÞdtCEðn2Þ (or the location parameter sum in the stable

case) does not lie in the interval (q1Kv1, q2Kv2). The only-if

part holds in the sense that the system performs better without

noise than with it when the interval condition fails.

Proof. Assume 0!PS(s)!1 to avoid triviality when

PS(s)Z0 or 1.
A. If-part

We show that S and R are asymptotically independent:

I(s1, s2) as s1/0 and s2/0. This is equivalent to I(s)/0

as s/0 where s is the variance of the total noise nZzCn2.

Independence of n1 and n2 implies that z and n2 are
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independent and hence s2ZVarðzÞCs2
2, where

VarðzÞZs2
1

Ð
f 2ðtÞdt. Recall that I(S, R)Z0 if and only if

S and R are statistically independent (Cover and Thomas,

1991). So we need to show only that fSR(s, r)ZPS(s)fR(r) or

fRjS(rjs)ZfR(r) as s/0 for signal symbols s2{A, B} and

r2[0, r0(q2Kq1)] where fSR is a joint probability density

function and fSjR is a conditional density function. This is

equivalent to FRjSZFR as s/0 where FRjS is the

conditional distribution function (Durrett, 1996). The

well-known theorem on total probability and the two-

symbol alphabet set {A, B} give

FRðrÞ Z
X

s

FRjSðrjsÞPSðsÞ

Z FRjSðrjAÞPSðAÞCFRjSðrjBÞPSðBÞ

Z FRjSðrjAÞPSðAÞCFRjSðrjBÞð1KPSðAÞÞ

Z ðFRjSðrjAÞKFRjSðrjBÞÞPSðAÞCFRjSðrjBÞ

So we need to show that FRjS(rjA)KFRjS(rjB)/0 as s/0

for all r in the closed interval [0, r0(q2Kq1)]. This condition

implies that FR(r)ZFRjS(rjB) and FR(r)ZFRjS (rjA). Note

that FRjS(rjA)ZFRjS(rjB)Z1 for rZr0(q2Kq1) because

r0(q2Kq1) is the maximum firing rate. So we need to

show only that FRjS(rjA)KFRjS(rjB)/0 as s/0 for all r in

the half-open interval [0, r0(q2Kq1)).

Consider sZA: Then (3) implies that

FRjSðrjAÞ Z Prfr0hðv CnÞ%rgjSZA

Z Prfr0hðv1 CnÞ%rg by ð4Þ

Z Prfhðv1 CnÞ%r=r0g because r0O0

Z Prfv1 Cn%sup½hK1ðr=r0Þ�g

because h is monotonic nondecreasing

Z Prfn%sup½hK1ðr=r0Þ�Kv1g

Z

ðsup½hK1ðr=r0Þ�Kv1

KN

pðnÞdn

where p(n) is the probability density function of the total

noise zCn2. A symmetric argument shows that

FRjSðrjBÞ Z

ðsup½hK1ðr=r0Þ�Kv2

KN

pðnÞdn

So we need to show that

ðsup½hK1ðr=r0Þ�Kv2

KN

pðnÞdn K

ðsup½hK1ðr=r0Þ�Kv1

KN

pðnÞdn

Z

ðsup½hK1ðr=r0Þ�Kv1

sup½hK1ðr=r0Þ�Kv2

pðnÞdn /0 as s/0
But Eq. (2) implies that q1%sup[hK1(r/r0)]!q2. So

ðsup½hK1ðr=r0Þ�Kv2

sup½hK1ðr=r0Þ�Kv1

pðnÞ dn%

ðq2Kv2

q1Kv1

pðnÞdn

and so it is enough to show that

ðq2Kv2

q1Kv1

pðnÞdn/0 as s/0

We first consider the case of finite variance noise. Let the

mean of the total noise nZzCn2 be mZE(z)CE(n2). Suppose

that m!q1Kv1 since m;(q1Kv1, q2Cv2) where for conven-

ience only we ignore the measure-zero case of mZq1Kv1. Pick

3Z ð1=2Þðq1 Kv1KmÞ. So q1Kv1K3Zq1K v1K3CmKm

ZmC ðq1Kv1KmÞK3ZmC23K3Z mC3. Then

FRjSðrjAÞKFRjSðrjBÞ

Z

ðq2Kv2

q1Kv1

pðnÞdn

%

ðN
q1Kv1

pðnÞdn

%

ðN
q1Kv1K3

pðnÞdn Z PrfnRm C3g

Z PrfnKmR3g%PrfjnKmjR3g

%
s2

32
by Chebychev’s inequality

/0 as s1 /0 and s2/0

because s2Zs2
1

Ð
f 2ðtÞdtCs2

2. A symmetric argument shows

that for mOq2Kv2

FRjSðrjAÞKFRjSðrjBÞ %
s2

32
/ 0

as s1/0 and s2/0.

We next consider the case of infinite variance noise.

Note that if n1 and n2 are alpha-stable noise then zZn1*f and

zCn2 are also alpha-stable noise (Grigoriu, 1995). Let m be

the location parameter of the total alpha-stable noise

nZzCn2. The characteristic function f(u) of alpha-stable

noise density p(n) reduces to a simple exponential in

the zero dispersion limit (Kosko and Mitaim, 2003):

lim
g/0

fðuÞ Z expfimug

for all a’s, skewness b’s, and location m’s because

fðuÞ Z exp im uKgjuj
a 1 C ib signðuÞtan

ap

2

� �n o
for as1
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and

fðuÞ Z expfimuKgjujð1K2i b lnjujsignðuÞ=pÞg

for a Z 1

where

signðuÞ Z

1 if uO0

0 if u Z 0

K1 if u!0

8><
>:

with iZ
ffiffiffiffiffiffi
K1

p
, 0!a%2, K1%b%1, and gO0. So Fourier

transformation gives the corresponding density function in

the limiting case (g/0) as a translated delta function

lim
g/0

pðnÞ Z dðnKmÞ:

Then

FRjSðrjAÞKFRjSðrjBÞ Z

ðq2Kv2

q1Kv1

pðnÞdn

/

ðq2Kv2

q1Kv1

dðnKmÞdn Z 0

because m;(q1Kv1, q2Kv2).
B. Only-if part

Suppose that m2(q1Kv1, q2Kv2) where m is the mean

or location parameter of the total noise nZzCn2. Then

exactly one of the following four cases holds:

Case (1): v2Cm%q1!v1Cm%q2

Case (2): q1!v2Cm!v1Cm%q2

Case (3): q1!v2Cm!q2!v1Cm

Case (4): v2Cm%q1!q2!v1Cm

Suppose that Case (1) or Case (4) holds. Then define a

new random variable YZg(R) such that

y Z gðrÞ Z
0 if r Z 0

1 if rO0

(

Suppose next that Case (2) holds. Then define

y Z gðrÞ Z
0 if r%r0ðv2 Cm CaÞ

1 if rOr0ðv2 Cm CaÞ

(

where aZ ðv1Kv2Þ=2.

Suppose last that Case (3) holds. Then define

y Z gðrÞ Z
0 if r!r0ðq2Kq1Þ

1 if r Z r0ðq2Kq1Þ

(

We show that I(S, Y)/H(S) as s/0. Recall that

H(S)RI(S, R) because I(S, R)ZH(S)KH(SjR) and S is a

discrete random variable, and that I(S, R)%I(S, YZg(R))

by data processing inequality (Cover and Thomas, 1991).

Then I(S, R) converges to its maximum value H(S) as

s/0 and hence the SR effect does not exist in the sense

that the system performs better without noise than with it

when the interval condition fails.

We first give the proof for Case (1) and Case (4). Note

that v2Cm!q1 implies m!q1Kv2 where for convenience

only we ignore the measure-zero case of mZq1Kv2.

Suppose that m is the mean of the finite variance total

noise zCn2. Pick 3Z ð1=2Þdðm; q1 Kv2ÞO0. Then

q1Kv2K3ZmC3. Write

PYjSð0jBÞ Z Prfr0ðn CvÞ Z 0gjSZB

Z Prfn Cv2%q1g by ð3Þ and ð5Þ

Z Prfn%q1Kv2g

RPrfn%q1Kv2K3g Z Prfn%m C3g

Z 1KPrfnKmO3g

R1KPrfjnKmjO3g

R1K
s2

32
by Chebychev’s inequality

/1 as s2/0

So PYjS(0jB)Z1.

Similarly for PYjS(1jA): Note that q1!v1Cm0q1Kv1!m.

Now pick 3Z ð1=2Þdðq1Kv1;mÞO0. Then q1Kv2C3Z
mK3. Write

PYjSð1jAÞ Z Prfr0ðn CvÞO0gjSZA

Z Prfn Cv1Rq1g by ð3Þ and ð4Þ

Z PrfnRq1Kv1gRPrfnRq1Kv1 C3g

Z PrfnRmK3g Z 1KPrfnKm!K3g

R1KPrfjnKmjO3g

R1K
s2

32
by Chebychev’s inequality

/1 as s2/0

So PYjS(1jA)Z1.

Suppose next that m is the location parameter of the total

alpha-stable noise zCn2. Then

PYjSð0jBÞ Z Prfn%q1Kv2g

Z

ðq1Kv2

KN

pðnÞdn

/

ðq1Kv2

KN

dðnKmÞdn Z 1

as g/0 because m!q1Kv2:
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Similarly

PYjSð1jAÞ Z PrfnRq1Kv1g

Z

ðN
q1Kv1

pðnÞdn

/

ðN
q1Kv1

dðnKmÞdn Z 1

as g/0 because mOq1Kv1:

The two conditional probabilities for both the finite-

variance and infinite variance cases likewise imply that

PYjS(0jA)ZPYjS(1jB)Z0 as s/0 or g/0. These four

probabilities further imply that

HðYjSÞ Z
X

s

X
y

PSYðs; yÞlog2 PYjSðyjsÞ

Z
X

s

PsðsÞ
X

y

PYjSðyjsÞlog2 PYjSðyjsÞ/0

where we have used the fact (L’Hospital) that 0 log20Z0.

The unconditional entropy H(Y) becomes

HðYÞ ZK
X

y

PYðyÞlog2 PYðyÞ

/K
X

s

PSðsÞlog2 PSðsÞ Z HðSÞ

because

PYðyÞ Z
X

s

PYjSðyjsÞPSðsÞ

Z PYjSðyjAÞPSðAÞCPYjSðyjBÞPSðBÞ

Z PYjSðyjAÞPSðAÞCPYjSðyjBÞð1KPSðAÞÞ

Z ðPYjSðyjAÞKPYjSðyjBÞÞPSðAÞCPYjSðyjBÞ

Z ðPYjSðyjBÞKPYjSðyjAÞÞPSðBÞCPYjSðyjAÞ

/
PSðAÞ if y Z 1

PSðBÞ if y Z 0

(

Thus H(YjS)/0 and H(Y)/H(S) as s/0 or g/0.

Then I(S, Y)/H(S) as s/0 or g/0 because I(S, Y)Z
H(Y)KH(YjS). H(S) is the maximum of I(S, Y) because

I(S, Y)ZH(S)KH(SjY) and H(SjY)R0 (Cover and Thomas,

1991). So I(S, R) converges to its maximum value H(S) as

s/0 and hence the system performs better without noise

than with it for Case (1) and Case (4).

We next prove the claim for Case (2). We show only that

PYjS(0jB)ZPYjS(1jA)Z1 as s/0 because the rest of
the proof proceeds as in Case (1).

PYjSð0jBÞ Z Prfr0ðn Cv2Þ%r0ðv2 Cm CaÞg

Z Prfn Cv2%v2 Cm Cag

Z Prfn%m Cag

RPrfn%m C3g for 3 Z
a

2

Z 1KPrfnKmO3gR1KPrfjnKmjO3g

R1K
s2

32
by Chebychev’s inequality

/1 as s2/0

So PYjS(0jB)Z1.

Similarly

PYjSð1jAÞZPrfr0ðnCv2ÞOr0ðv2 CmCaÞg

ZPrfnCv1Ov2 CmCag

because a Z
v1Kv2

2

ZPrfnCv1Ov1 CmKag

ZPrfnOmKagRPrfnOmK3g

by picking 3 Z
a

2

Z1KPrfnKm!K3gR1KPrfjnKmjO3g

R1K
s2

32
by Chebychev’s inequality

/1 as s2/0

So PYjS(1jA)Z1.

The proof for Case (3) proceeds as in Case (1). Q.E.D.

Simulation results confirm this mathematical result that

noise in retinal signal processing can help retinal neurons

detect subthreshold contrast signals. Figs. 2 and 3 show

detailed simulation instances of the predicted SR effect in

Theorem 1. Fig. 2 shows a 3-D plot of the Shannon

mutual information versus the standard deviations of

Gaussian white noise sources n1 and n2 in (1). Fig. 3

shows their respective cross-section plots for the values

s1Z0.01 and s2Z0.02. We computed the bit count I(S,

R) using a discrete density of R based on the number of

spikes in 1-second intervals for each input symbol. Each

plot shows the nonmonotonic signature of SR.
3. Stochastic resonance in spiking sensory

neuron models

Theorem 2 below describes the SR noise benefit in a

wide range of spiking sensory neuron models. It states its

own ‘forbidden-interval’ sufficient condition for SR in the

special but ubiquitous case of additive Gaussian white

noise. Proposition 1 shows that the converse also holds for

the leaky integrate-and-fire neuron. Fig. 6 further shows that
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Fig. 3. Stochastic resonance in the model (1)–(3) with additive Gaussian white noise. Plots (a) and (b) show the respective cross-sections of the mutual-

information surface of Fig. 2 for s1Z0.01 and s2Z0.02. Each simulation trial produced 10,000 input-output samples {s(t), r(t)} that estimated the Poisson

spiking rate r(t) to obtain the mutual information. Thick lines show the average mutual information. Vertical lines show the total min–max deviations of the

mutual information in 1000 trials.
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the SR result persists in this case even for infinite-variance

stable noise. Proposition 2 shows that the converse need not

hold for the Fitzhugh-Nagamo neuron—SR can still occur

inside the forbidden interval.

Theorem 2 specifically shows that these and other

spiking neuron models enjoy an SR noise benefit if the

noise mean E(n) falls to the left of a bound and if their

average firing rates depend on the Kramers rate solution

(Kramers, 1940) of the Fokker-Planck diffusion equation.
Theorem 2 applies to popular spiking sensory neuron

models such as the FitzHugh-Nagumo (FHN) model

(Chialvo et al., 1997; Collins et al., 1995), the leaky

integrate-and-fire model (Collins et al., 1996; Gerstner and

Kistler, 2002), and the reduced Type I neuron model

(Lindner et al., 2003). Fig. 7 shows that SR can still occur in

the FHN neuron model even if E(n) falls to the right of this

bound. So the interval condition in Theorem 2 is not

necessary.
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The FHN neuron model has the form

3 _v ZKv v2K
1

4

� �
Kw CAT Kd Cn; (6)

_w Z vKw (7)

where v is the membrane voltage (fast) variable, w is a

recovery (slow) variable, ATZK5=ð12
ffiffiffi
3

p
Þ is a threshold

voltage, S is the input signal, dZBKS, B is the constant

signal-to-threshold distance, and n is independent Gaussian

white noise. The input signal is subthreshold when dO0 and

so then S!B.

Kramers rate formula gives the average firing rate of the

FHN neuron model with subthreshold input signals (S(t)

/B) (Collins et al., 1996)

EðrðtÞÞ Z
B

2p
ffiffiffi
3

p
3

exp
K2

ffiffi
3

p
½B3K3B2SðtÞ�

3s2

� �
: (8)

The average spike rate model poorly estimated the

averge firing rates of the FHN model in simulations. So we

instead fitted the equation

EðrðtÞÞ Z a exp
KbB3 CcB2SðtÞ

s2

� �
(9)

to the simulation data. Nonlinear least-squares gave the

parameters a, b, and c in (9). Fig. 4 shows that the fitted

model (9) closely estimates the average spike rates of the

FHN neuron model because the coefficient of determination

was r2Z0.9976.
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Fig. 4. Approximation of the average firing rate. The estimated firing rate

(solid line) closely approximates the average firing rate (dashed line) for the

FHN neuron model in (9). The model parameters are AT ZK5=ð12
ffiffiffi
3

p
Þ,

BZ0.07, and SZ0.01. Nonlinear least-squares fitted the parameters in (9)

as aZ1.1718, bZ0.0187, and cZ0.0680 with coefficient of determination

r2Z0.9976.
The leaky integrate-and-fire neuron model has the form

(Collins et al., 1996)

_v ZKav CaKd CS Cn (10)

where v is the membrane voltage, a and d are constants, d/a

is the barrier height of the potential, S is an input signal, and

n is independent Gaussian white noise. The input signal S is

subthreshold when S!d. The neuron emits a spike when the

membrane voltage v crosses the threshold value of 1 from

below to above. The membrane voltage v resets to 1Kd/a

just after the neuron emits a spike. Then the ensemble-

averaged spike rate E(r(t)) for subthreshold inputs (S2/d)

has the form (Collins et al., 1996)

EðrðtÞÞ Z
dffiffiffiffiffiffiffiffi
s2p

p exp
Kd2 C2dSðtÞ

s2a

� �
(11)

where s2 is the variance of n.

Theorem 2 applies to the reduced Type I neuron model in

(12) below. The reduction procedure in (Gutkin and

Ermentrout, 1998; Hoppensteadt and Izhikevich, 1997)

gives a simple one-dimensional normal form (Lindner et al.,

2003) of the multi-dimensional dynamics of Type I neuron

models:

_v Z b Cv2 Csn (12)

where v is the membrane potential, b is the value of input

signal, and s is the standard deviation of Gaussian white

noise n. The firing rate of the reduced model (12) for

subthreshold or excitable regime (b!0) and weak noise

(s2/2jbj3/2) is (Lindner et al., 2003)

EðrðtÞÞ Z

ffiffiffiffiffiffi
jbj

p
p

exp
K8jbj3=2

3s2

� �
: (13)

We can combine (9), (11), and (13) into the general form

EðrðtÞÞ Z gðB; SðtÞ; sÞexp
hðB; SðtÞÞ

ks2

� �
(14)

where E(r(t)) is the average firing rate and k is a constant.

The functions g(B, S, s) and h(B, S) depend on the potential

barrier B, the subthreshold input signal S, and on the

variance s2 of the additive Gaussian white noise n so that

E(r(t))/0 as s/0. We note that the formula for the

average Poisson spike rate in excitable cells due to the

voltage-gated ion channels dynamics has a form similar to

(14) (Bezrukov and Vodyanoy, 1998).

We can now state Theorem 2. This theorem gives a

sufficient condition for SR to occur in spiking sensory

neuron models if their average output spike rates have the

general form (14). The proof again follows the proof in

(Kosko and Mitaim, 2003; Kosko and Mitaim, 2004).

Theorem 2. Suppose that the average spike rate of a

sensory neuron model has the form (14) and that E(n) is

the mean of the model’s additive Gaussian white noise n.

Suppose that input signal S(t)2{s1, s2} is subthreshold:



0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Standard deviation σ of additive Gaussian white noise

M
ut

ua
l i

nf
or

m
at

io
n 

I(
S

,R
) 

in
 b

its

x 10–3

Fig. 5. Stochastic resonance in the FHN spiking neuron model—a

simulation instance of Theorem 2. The model parameters are

AT ZK5=12ð
ffiffiffi
3

p
Þ, BZ0.07, and SZG0.005. The solid curve shows the

average mutual information. The dashed vertical lines show the total min–

max deviations of mutual information in 100 simulation trials.

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

Dispersion γ of additive α-stable noise (α = 1.9)

M
ut

ua
l i

nf
or

m
at

io
n 

I(
S

,R
) 

in
 b

its

x 10–5

Fig. 6. Stochastic resonance in the integrate-and-fire spiking neuron model

with subthreshold input signals and infinite-variance a-stable noise

(aZ1.9). The model parameters are aZ0.5, dZ0.01, s1Z0.0025, and

s2Z0.005. The solid curve shows the smoothed average mutual

information. The dashed vertical lines show the total min–max deviations

of mutual information in 100 simulation trials.
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S(t)!B. Suppose that there is some statistical dependence

between the input signal random variable S and the output

average spike-rate random variable R so that I(S, R)O0.

Then the spiking sensory neuron exhibits the nonmonotone

SR effect in the sense that I(S, R)/0 as the noise intensity

s/0 if E(n)!BKs2.

Proof. Again we need to show only that

FRjSðrjs1ÞKFRjSðrjs2Þ/0

iff FRjSðrjs1ÞK1 C1KFRjSðrjs2Þ/0

iff PrfRRrjS Z s2gKPrfRRrjS Z s1g/0

as s/0 for all r in ð0; rmaxÞ ð15Þ

We can write

PrfRRrjS Z s1g %
EðRjS Z s1Þ

r

by Markov’s inequality for all r and similarly

PrfRRrjS Z s2g %
EðRjS Z s2Þ

r

If the expression of E(r(t)) has the form (14) then we

need only show that E(RjSZs1)/0 and E(RjSZs2)/0 as

s/0. We can absorb E(n) into the input signal S(t) because

the noise n is additive in the model of spiking sensory

neuron. Then the new input signal is S 0(t)ZS(t)CE(n) and

S 0(t) is subthreshold (S 0(t)!B) because E(n)!BKs2 where

s2Zmax{s1, s2}. Thus E(r(t)) has the form of (14). This

proves (15) and hence the Theorem 2. Q.E.D.

Fig. 5 shows a simulation instance of the SR effect in

Theorem 2 for the special but important case of the FHN

neuron model. The mutual-information plot shows the

predicted nonmonotonic signature of SR. The leaky

integrate-and-fire neuron model produces similar nonmo-

notonic SR plots. Fig. 6 goes beyond the scope of Theorem

2 and shows a simulation instance of the SR effect in the

leaky integrate-and-fire neuron model with implusive

infinite-variance a-stable white noise.

Proposition 1. The converse of Theorem 2 holds for the

leaky integrate-and-fire neuron model (10) in the sense that

the system performs better without noise than with it when

the interval condition E(n)!BKs2 fails.

Proof. Suppose that E(n)OBKs2. Then exactly one of the

following two is true:

Case (1): s01Zs1CEðnÞ is subthreshold and s02Z
s2CEðnÞ is superthreshold.

Case (2): Both s01 and s02 are superthreshold.

Suppose that the input signal s0i is superthreshold. Then

the interspike interval Ti in the absence of additive noise n is

(Gerstner and Kistler, 2002)
Ti Z tmln
vN

i Kvr

vN
i KTh
where vN
i and vr are the respective values of the membrane

potential at steady-state and at the reset, tm is a time-

constant of the membrane potential, and Th is a threshold for

spike generation. The interspike interval has a Gaussian

distribution in the presence of Gaussian white noise n in (10)

(Gerstner and Kistler, 2002). The probability density of
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interspike interval ti is

f ðtiÞ Z
v0iffiffiffiffi
p

p
s

exp K
v0

2
ðti KTiÞ

2

s2

" #

where E(ti)ZTi, v0iZ ðdviðtÞ=dtÞ evaluated at tZTi, and s is

the standard deviation of the additive white noise. Then

Prfjti KTijO3g %
s2

2v03
for all 3O0

/0 as s2/0

Thus if s0i is superthreshold then ti/Ti in probability as

s/0 by the definition of convergence in probability. Then

the corresponding output spike rate rjS0Zs0 i
Zri/ ð1=TiÞ in

probability because riZ(1/ti). So

Pr riK
1

Ti

����
����O3

� �
/0 for all 3O0 as s

2/0 (16)

Suppose that Case (1) holds. Then define

y Z gðrÞ Z

0 if r%
1=T2

2

1 if rO
1=T2

2

:

8>>>><
>>>>:

Suppose that Case (2) holds. Then define

y Z gðrÞ Z

0 if r%
1

T1

Ca

1 if rO
1

T2

Ka

8>>>><
>>>>:

where aZ ðð1=T2ÞKð1=T1ÞÞ=2. Note that aO0 because

(1/T2)O(1/T1).

We need to show only that PYjS0 ð0js01ÞZPYjS0 ð1js02ÞZ1

as s/0 because the rest of the proof is similar to the only-if

part of the proof of Theorem 1.

Suppose that Case (1) holds. Then

PYjSð0js
0
1Þ Z Pr r%

1=T2

2
jS0 Z s01

� �

Z 1KPr rO
1=T2

2
jS0 Z s01

� �

R1K
EðRjS0 Z s01Þ

1=T2

2

by Markov’s inequality

/1 as s/0
because s01 is subthreshold and E(r(t))/0 for (14).

PYjS0 ð1js02Þ Z Pr rO
1=T2

2
jS0 Z s02

� �

Z 1KPr r!
1=T2

2
jS0 Z s02

� �

R1KPr jr2K
1

T2

jO
1=T2

2

� �
because rjS0Zs0i

Z ri

/1 by ð16Þ:

Suppose now that Case (2) holds. Then

PYjSð0js
0
1Þ Z Pr r%

1

T1

CajS0 Z s01

� �

Z Pr r1%
1

T1

Ca

� �
because rjS0Zs0i

Z ri

Z 1KPr r1O
1

T1

Ca

� �

R1KPr jr1K
1

T1

jOa

� �
/1 by ð16Þ

and

PYjSð1js
0
2Þ Z Pr rO

1

T2

KajS0 Z s02

� �

Z Pr r2O
1

T2

Ka

� �

Z 1KPr r2!
1

T2

Ka

� �

R1KPr jr2K
1

T2

jOa

� �
/1 by ð16Þ Q:E:D:

Proposition 2. The converse of Theorem 2 does not hold for

the FHN neuron model (6)–(7).

Fig. 7 confirms Proposition 2 because it shows that SR

can still occur when the noise mean E(n) falls to the right of

BKmax{s1, s2}.
4. Conclusion

Theorems 1 and 2 and their progeny present technical

interval conditions that screen for whether an SR noise

benefit occurs in spiking neurons. Several of the most

popular models of biological models provably benefit

from adding the right amount of white noise subject to

these interval conditions. Spiking retinal models benefit

from almost all types of noise because Theorem 1 holds

both for all finite-variance noise and for the large class
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Fig. 7. The interval condition in Theorem 2 is not necessary. Stochastic

resonance in the FHN spiking neuron model with superthreshold input

signals and additive Gaussian white noise. The model parameters are

AT ZK5=ð12
ffiffiffi
3

p
Þ, BZ0.07, s1Z0.56, and s2Z0.565. E(n)Z0OBKs2Z

K0.495 implies that E(n) does not satisfy the interval condition of Theorem

2. The solid curve shows the smoothed average mutual information. The

dashed vertical lines show the total min–max deviations of mutual

information in 100 simulation trials.
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of infinite-variance stable noise. Theorem 2 applies only to

additive Gaussian white noise although simulations confirm

a comparable noise benefit for infinite-variance stable noise

(see Fig. 6) and other types of finite-variance noise. An open

research question is whether other noise types produce a

noise benefit in sensory neurons or in the more complex

cortical neurons that take spikes as input as well as emit

spikes as output. These theorems suggest a potential

engineering noise benefit from controlled noise injection

in artificial retinas, neural prosthetics, low-light imaging

and night vision, and infrared imaging and object detection.
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