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ABSTRACT

Experiments confirm that small amounts of noise help a nanotube transistor detect noisy subthreshold electrical signals. Gaussian, uniform,
and impulsive (Cauchy) noise produced this feedforward stochastic-resonance effect by increasing both the nanotube system’s mutual information
and its input—output correlation. The noise corrupted a synchronous Bernoulli or random digital sequence that fed into the thresholdlike
nanotube transistor and produced a Bernoulli sequence. Both Shannon’s mutual information and correlation measured the performance gain
by comparing the input and output sequences. This nanotube SR effect was robust: it persisted even when infinite-variance Cauchy noise
corrupted the signal stream. Such noise-enhanced signal processing at the nanolevel promises applications to signal detection in wideband
communication systems and biological and artificial neural networks.

Noise can help carbon nanotube transistors detect subthresheorrelation measure found the normalized zero-lag cross-
old electrical signals by increasing the transistor’'s irput  correlation

output mutual information or correlation. Several researchers

have demonstrated the stochastic resonance (SR) effect for N

various types of threshold units or neurdnExperiments rsxl) = le(k) yk—1)

with p-type nanotube transistors confirmed the specific SR <

prediction based on the theoretica} .finding that simple of the two sequences with subtracted means. The measures
memoryless threshold neurons exhibit SR for almost all did not assume that the nanotube detector had a special

finite-variance and infinite-variance noise typgeghe experi- structure and did not impose a threshold scheme on the
ments used three types of additive noise (Gaussian, uniform.experiment.
and infinite-varianceCauchy noise) and different combina-  Figure 1b shows the thresholdlike nonlinearity of the

tions of subthreshold ON/OFF electrical signals. Figure 1 nanotube transistor in response to the noisy input signal. The
shows the nonmonotonic signature of SR for white Gaussiantransconductandd related the output drain-to-source current
noise and the thresholdlike nonlinearity of the nanotube | to the input gate voltag¥ and the threshold voltagér in
transistor$~1* The modes of the mutual-information and a memoryless signal function: = G (V — V5) if V < V¢
correlation curves occurred for nonzero noise strength with and zero otherwise. We note that the threshold neuron model
a standard deviation of at least 0.01. lacks the internal state dynamics of the FitzHudkagumo

15 i
The nanotube experiments produced the SR effect for both(FHN) model._ '_I'he transconductance was negatlve_ )
the Shannon mutual information and the inpatitput because the pristine (undoped) nanotube transistors exhibited

I . . current-voltage characteristics that were consistent with
correlatiot* of noisy Bernoulli sequences. The mutual . . .
. . . , p-type transistors. Linear regression extrapolated the non-
information 1(S Y) subtracts the noisy channel's (the

) " . linearity and estimated the threshold voltage.
transistor’s) output conditional entropi(Y|S) from its y g

. _ - Each of the nanotube experiments (Supporting Informa-
unconditional entrop(Y): (S Y) = H(Y) — H(Y|9). The tion) applied 32 independent trials of 1000-symbol input

input signalSwas a random binary voltage that produced a sequences for 24 noise levels per type and over a range of
random outputY in the form of a transistor current. The  gate voltages. The 24 sampled noise levels ranged from 0.001
to 1 standard deviation (dispersion for infinite-variance
* Corresponding author. E-mail: kosko@sipi.usc.edu. Cauchy) linearly on a logarithmic scale. The noisy input was
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Figure 1. (a) Stochastic resonance with additive white Gaussian noise. The CNT-FET detector’'s mutual information (top red curve) and
zero-lag correlation (top green curve) increase for small amounts of noise and then decrease for larger amounts. The control experiments
gave the flat non-SR mutual information (bottom red curve) and correlation (bottom green curve) when no nanotube bridged the source and
drain electrodes. The SR mode or optimal noise level had the same standard deviation value of 0.01 for both performance measures. Each
vertical dashed bar occurs at 1 of the 24 sampled noise values and shows the maximum and the minimum range of 32 averaged experimental
trials. The solid polygonal line connects the means of those 24 sets of experiments. The random input SagasacBernoulli sequence

of ON/OFF values with additive white Gaussian noise. The random seqiYemas the output of the nanotube threshold detector. Shown

is one of four such successful combinations of input binary values with the parameter choices-O8 V and OFF= —1.4 V. Each trial

applied 1000 subthreshold symbols to the detector. The input signal was the analog voltage representation of the symboSsgquence
approximately 10-ms intervals. The output signal was the nanotube current. The data acquisition measured and averaged 10 samples at 100
ksamples/s near the end of each symbol interval to estimate the output sequence (Supporting Informgitest #nd a Kolmogorov

Smirnov test both rejected the similarity between a monotonically decreggingbability density function and the two SR curves<

0.001). (b) Thresholdlike (nonlinear) gate effect of the p-type CNT-FET detector. Each point shows the detector’s response to one random
input symbol. The experimental data showed that the CNT-FET detector behaved as a threshold in response to the noisy input signal
stream. The gate effect showed little hysteresis. This differed from the hysteretic curve that a semiconductor parameter analyzer captured
from the detector (Supporting Information) and differed from the typical hysteretic loops in ref 18. Linear regression gave an approximate
threshold gate voltage &fr = —2.3 V (8o = —2.99 nA, 31 = —1.31 nA/V, p value < 0.0001) for the transistor current equatior G

(V — V) if V = V¢ and zero otherwise.

a synchronized Bernoulli sequence of independent randominto a binary sequence with a threshold scheme. Sorting the
(subthreshold) ON/OFF values and additive white noise of output sequence based on the input symbol and then applying
three types. So there was no timing noise in the pulse trainthe histogram gave the conditional output discrete probability
as in the FHN neuron mod#&.The discrete-time noise was  density functionPy«Y = Yi|S= §) = p;/p; conditioned on
white because the noise samples were uncorrelated in timethe input symbols that computed the conditional entropy:
So the discrete-time Fourier transform was2eriodic and

produced a flat noise power spectrum over the interval [0, N N P
27].1718 Synchronization allows the nanotube systems to H(Y9 = — ZZpji In|— 2)
implement a variety of algorithms from signal processing =1j= Y

and communications.

The ON/OFF values in Figure 1a were OGN —1.6 V. The mutual information measure was the difference between
and OFF= —1.4 V. The input updated the symbols about the unconditional and conditional entropies:
once every 10 ms. A 200-mV drain-source voltage biased
the nanotube at room temperature in vacuum. The experiment _

I = H(Y) — H(Y| 3

measured and averaged 10 samples of the detector output at &Y 8 9 ®)
100 ksymbols/s near the end of each symbol interval to
estimate the output sequence.

A histogram of the output sequence gave the discrete

Cross correlation compared the input and the output symbol
sequences and gave a scalar representation with its zero-lag

probability density functiorP(Y = Y)) = p; that computed value:
the unconditional Shannon entropy: '
N rsl0) = ZS(k) y(k) 4)
k=

HY)=— Y plinp (1)

=
Converting the input Bernoulli sequence to bipolar form
for mutual information without converting the detector output (mapping ON tot+1 and OFF to-1) made it approximately

1684 Nano Lett., Vol. 3, No. 12, 2003
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Figure 2. (a) Stochastic resonance with additive white uniform noise. All four combinations of input voltage values produced a clear SR
response in both mutual information (bottom red curve) and iaputput correlation (top green curve) just as with additive white Gaussian
noise. Shown is the SR effect for the subthreshold signal-ON1.8 V and OFF= —1.6 V. The SR mode is at 0.04 standard deviation.

(b). Robust stochastic resonance with additive white Cauchy noise. This highly impulsive noise has infinite variance and infinite higher-
order moments. The Cauchy-noise experiment produced a measurable SR effect for two of the four combinations of input voltages. Shown
is an approximate SR effect for the subthreshold signal©N2 V and OFF= —1.8 V. The SR mode lies at about the 0.003 dispersion

value. Several SR researchers have found multiple modes in the plot of system performance against noisé $&&hegthimited dynamic

range -5V, 5V] of the data acquisition equipment (Supporting Information) may have produced the second peak in the graph as a truncation
artifact because it clipped large spikes when it realized the infinite-variance Cauchy noise. The clipping affected more than 0.1% of the
noise only for dispersions greater than 0.01.

zero mean (equal numbers #fl's and—1's give exactly combinations of binary symbols—@.0,—1.8), (—1.8,—1.6),
zero mean) and noise-free. Subtracting the sample mean fron(—1.6,—1.4), and {1.4,—1.2) V. Figure 1la shows the SR
the output sequence improved the match between similareffect for additive white Gaussian noise and the subthreshold
input and output sequences. A normalization scheme gavesignal pair ON= —1.6 V and OFF= —1.4 V. The SR mode
the normalized correlation meastufe: of the mutual-information curve is 6 times the value at
minimal noise. The SR mode of the correlation curve is 3
N times the value at minimal noise. Figure 2a shows the SR
Zs(k) y(K) effect for additive white uniform noise and the signal pair
k= ON= —-1.8V and OFF= —1.6 V.
SN = ©®) We also passed impulsive or infinite-variance white noise

N N .
through the nanotube detector to test whether it was robust
\/ > K s(k)\/ > Y0 ¥ g
k= k=

to occasional large noise spikes. We chose the highly
impulsive Cauchy noisdor this task. This infinite-variance

It divided the zero-lag cross correlatiog0) by the square noise probability density function had the form

root of the energy of the input and the output sequences
where the energy of a sequence is the same as the zero-lag p(n) = —27/—2
value of its autocorrelation: z(n” +y°)

N N for zero location and finite dispersion Figure 2b shows
x| = sz(k) = ;‘x(k) x(k—_o=rx(0) (6)  that a diminished SR effect still persists for Cauchy noise
k= = with the subthreshold signal pair ON —2.0 V and OFF=
—1.8 V. Not all Cauchy experiments produced a measurable
Nanotube field-effect transistor technology produced de- SR effect.
tectors that could exhibit hystereSig! or react to adsorbed These SR results suggest that nanotubes can exploit noise
moleculeg?2* The experiment applied subthreshold symbols in other signal-processing tasks if advances in nanotube
that were at least two standard deviations away from the far device technology can overcome the problems of hysteresis
leg of the hysteretic loop. The effective Vs curve in Figure and parasitic capacitance that affect logic ciréigsd high-
1b, as collected from the detector response to the inputfrequency signal® The nanotube signal detectors might
symbols, showed that the experiment produced evidence ofapply to broadbartd?8 or optical communication systefis
the SR effect despite the potential hysteretic effect. that use submicroamp currents and attenuated signals in noise
The experiment found the SR effect for mutual information because our nanotube detectors used nanoamp current and
and correlation for Gaussian and uniform noise and for four could distinguish between subthreshold binary symbols. The
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detectors might apply to parallel signal proces&iray the

nanolevel because they could have a small minimum feature

size! in vast parallel arrays of nanotubes. The parallel

detectors could apply to spread spectrum communications:

each nanotube can act as an antétthat matches a separate
frequency chann#&l in frequency hopping and perhaps in
other types of spread spectrum communicatidns.nano-
tube’s length can code for a given frequeftayhile chemical
adsorption can tune a nanotube’s thresRé&fdThe detectors
might apply to chemical detection and parallel field pro-

gramming by tuning the threshold chemically. The nanotube
detectors can also operate in a biological environment such

as saline solutiof® The nanotube detectors could interface

with biological systems because an electrolyte can act as their

(18) Ingle, V. K.; Manolakis, D. G.; Kogon, SStatistical and Adaptie
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or robotic systems because the detectors are threshold device

similar to spiking neuron¥
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SUPPORTING INFORMATION

Materials and Methods

The experiment tested a p-type carbon nanotube field effect transistor (CNT-FET) as a threshold
detector with subthreshold input signal plus noise. The input signal was a Bernoulli random variable
corrupted by a zero-mean Gaussian, uniform, or zero-location Cauchy distributed noise. The
experiment captured the detector output signal in response to the noisy input and compared against the
Bernoulli input signal to determine the detector performance. The experiment sought evidence of the
stochastic resonance (SR) effect: detection that improved with increasing noise strength before

deteriorating with further increases in noise strength.

The CNT-FET signal detector consisted of a chemical vapor deposition (CVD) grown
semiconductor carbon nanotube lying on a silicon dioxide insulation layer 500 nanometers (nm) thick
and ohmically contacting titanium—gold electrodes (20 nm Ti, 60 nm Au) at both ends (figure S1). The
metal contacts were the source and drain electrodes for electric current while the tube was the
conduction channel. The p—doped silicon substrate beneath the silicon dioxide layer was the back gate
that completed the field effect transistor that was the detector. The single—walled nanotube was three to

five micrometers (um) long and less than two nm in diameter according to atomic force microscopy.

Materials and Methods 1
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Figure S1 (a): Detector image. Atomic force microscope (AFM) image of the CNT-FET detector. The
detector consisted of a semiconductor carbon nanotube lying across two Ti—Au electrodes (top and
bottom). The nanotube was three to five um long and less than two nm in diameter according to the

AFM. The nanotube was undoped.
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Source/Drain Electrodes

Ti-Au Carbon Nanotube Ti-Au

Thin silicon oxide la

Figure S1 (b): Nanotube layout. The metal electrodes cover the ends of the carbon nanotube. The
nanotube lies on top of the thin (500 nm) silicon oxide layer. The underlying substrate has p—type

(holes) doping and can conduct electricity to act as the backgate.

The CNT-FET signal detector was a threshold device and was the nonlinear system in the

experiment with approximate threshold voltage V't = -2 volts. The approximation linearly extrapolated

Materials and Methods 3



the transistor current—to—gate voltage curve to find a voltage that would intercept the x—axis and would
correspond to the OFF state (figure 1 (b) of the main text). The transconductance G related the output

drain—to—source current / to the input gate voltage " and the threshold voltage V'r:
I1=G (V—-"Vr)if V< Vyand 0 otherwise. (S1)
The transconductance G was negative for the p—type, pristine CNT transistors.

The experiment involved the following equipment (figure S2). A Hewlett Packard 4156 B
semiconductor parameter analyzer (not shown) measured /-Vp and I-Vg curves that characterized the
CNT-FET detector’s gate effect. A National Instrument PCI-MIO-16XE—10 multifunction data
acquisition (DAQ) board generated the analog voltages that drove the transistor’s gate and biased the
nanotube then measured the electric current flowing through the nanotube. A DL 1211current—voltage
preamplifier converted the detector’s output electric current (/ps) to voltage for data acquisition
(risetime set to 0.1 ms and sensitivity set to 10 A/V). Two resistors formed a voltage divider to divide
the smallest voltage step by two and improved the resolution of the DAQ’s analog voltages. A personal
computer running LabView driver controlled the input signal generation and the output measurement
to test the CNT—FET detector. A cryostat isolated the detector electrically, kept it at room temperature,
and maintained a rough vacuum to remove contaminants such as moisture. A subthreshold gate voltage
without additive noise would keep the detector in the OFF state — the drain—to—source current would be

in the pico—amp range.

Materials and Methods 4
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Figure S2: Nanotube experiment setup. The threshold detector was a p—type CNT—FET. The input was
the gate voltage and the output was the current of the CNT-FET detector. The DAQ board updated the
input symbols about once every 10 ms to allow the data acquisition and amplifier hardware to reach
steady state. An estimate of each output symbol was the average of 10 measurements that the DAQ
made near the end of the symbol interval. Each experiment applied one type of additive white noise for
32 trials 1,000—symbol sequences and used 24 evenly spaced noise values that ranged from 0.001 to 1

standard deviations (dispersions for infinite—variance Cauchy noise).

The experiment generated digital signals in software and converted them to analog voltages to test

the detector. An input S consisted of a sequence of binary symbols b plus white noise n: s, =b, +n,.
Each b was independent, identically distributed (Bernoulli random variables), and took value 4 with

probability p or A with probability 1-p. The noise n was independent of and synchronized with the

binary symbols. Each n was independent and identically distributed. Three types of distributions were

Materials and Methods 5



available: Gaussian, uniform, and Cauchy. The binary symbols were subthreshold (4 =—1.8 V and A

=—1.6 V, for example) with respect to the threshold voltage.

An output Y was the detector’s current in response to each input S at the gate. The p—type transistor

model gave Y = G(S -V)if § <V and zero otherwise.

The experiment biased the nanotube at 200 mV and updated the input symbol about every 10 ms.
The symbol interval was a compromise that produced data in quantity within limited lab time while
allowing sufficient time for the preamplifier and DAQ to reach steady state. The experiment conducted
32 trials for each noise type and strength and for each pair of binary symbols. Each trial consisted of a
1000—symbol sequence. The data acquisition equipment measured and averaged ten samples of the
detector output near the end of each symbol interval at a rate of 100 kilo—symbols per second to
estimate the output symbol sequence. A comparison between the input sequence and the output

sequence yielded the system performance.

Cross correlation and mutual information provided comparison between the input and the output
sequences and yielded two measures of detector performance. A cross correlation measured the
similarity between the input and the output sequences. The correlation measure used the zero—lag value

as a scalar representation of the cross correlation sequence between the input and the output:

rey (D)= s(k)y(k=1) (S2)
re (0) = s(k)y(k) (S3)

A normalization scheme divided the zero—lag correlation by the square root of the energy of the input
and the output sequences to give the normalized correlation measure where the energy of a sequence is

the same as the zero—lag value of its autocorrelation:

Materials and Methods 6



2. s()y(k)

C(S,Y)= = = =
\/st)s(k)\/zy(k)y(k) (s4)
rgy (0)

\7ss (0)ryy (0)

This normalized correlation has the maximal value of one for any two identical sequences.

The mutual information was the difference between the output entropy H (Y) and the conditional

output entropy H (Y|S) conditioned on the input:

I(S,Y)=HXY)-H(|S) (S5)

N
where output entropy H(Y ):—Z p;Inp, used the symbol probabilities P(Y =Y)=p, and

i=1

N N .
conditional output entropy H(Y | S) = —z D ln(&j used the output probabilities conditioned on
=1 j=1 p;

_Pi

the input P (Y =Y, [S=3S5))
P

A histogram of each output sequence gave the discrete probability density function to compute the
entropies. The use of a histogram avoids imposing an artificial software threshold scheme on the data.
The histogram applied a fixed set of bin edges to each output sequence so that the bins represented a
fixed set of discrete symbols. The normalization ensured that symbol probability density functions

summed to unity.

The nanotube detector exhibited some hysteresis in its gate effect but not enough to prevent the SR
effect. The hysteresis (figure S3) affected the transistor’s gate effect: threshold voltage shifted based
on the direction of the input voltage change. Charge trapping by water molecules on the silicon dioxide

surface was one possible mechanism of hysteresis '®. We kept the detector in vacuum to reduce the

Materials and Methods 7



hysteretic effect but some effect persisted even after 72 hours in vacuum. Again the device hysteresis

did not prevent the observation of the SR effect.

The experimental data exhibited a gate effect consistent with a transistor in a plot of input sequence
versus output sequence (figure 1 (b) of main text). The figure suggested that the signal sequences in the
experiment encountered little changes in the threshold effect. The experiment used subthreshold
Bernoulli symbols and signals that had short hold times, rapid voltage transitions, and small voltage
changes. This voltage scheme differs from the large voltage range and slow voltage—sweep transitions
that characterized the hysteresis in figure S3. The experiment yielded evidence of the SR effect in spite

of the hysteretic mechanisms.

1 4 T T T T T T

Drain to Source Current I (nA)

Gate Voltage VG V) [VD =200 mV]

Figure S3: Nanotube transistor gate effect. A semiconductor parameter analyzer produced the I-Vg

curve that showed the transistor current as a function of gate voltage. The gate effect showed some
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hysteresis: the threshold voltage and the transconductance varied depending on the direction of the gate
voltage sweep. The hysteretic effect did not prevent observation of the SR effect. This set of the I~V
curve shows a threshold shift in contrast to the effective I~V curve (figure 1 (b) in main text) that the

detector produced in response to the experiment’s noisy input signal.

Two statistical tests confirmed that the SR—curves were nonmonotonic. A goodness-of-fit test
measures how well a candidate probability density function (pdf) matches a benchmark pdf given a set

of data from the candidate pdf. The null hypothesis Hy states that the two pdfs are the same. The test
rejects the null hypothesis if a test statistic exceeds a critical value for a given significance level a. The
significance level a denotes the probability of a Type-I error--the probability of rejecting the null
hypothesis when it is true. The p—value measures the credibility of the null hypothesis Hy given the
data. A statistical test rejects the null hypothesis Hy at the significance level « if the p—value is less
than the significance level: Reject Hy if p—value < a. Two types of goodness-of-fit tests rejected the
match between either SR curve and a monotonically decreasing function based on a B—pdf. The B—pdf
(fig. S4 (a)) defines a monotone decreasing function if its two parameters are = 0.5 and = 5. It has
the form

x“7(1-x) A

S6
B(a, B) (50

Jap(X) =

for x €[0,1] and positive parameters a > 0 and 8 > 0. The denominator term B(a, /) is

_ { a Y= _ F(“)F(ﬂ)
Bla,B) = z[x (-x)""dx = T 5) (S7)

with I” function
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[(n+1) = Tu”e“du = nl'(n) (S8)

for n >0 (I'(1)=1 and with T'(n+1)=n! if n is a positive integer). The B—pdf contrasts with the SR—
curves because it is nonzero only for x €[0,1] and because it decreases monotonically to zero as x

increases to 1 for the parameters = 0.5 and f= 5.

The goodness-of-fit tests converted each averaged SR—curve to its equivalent pdf fsz(k). The
conversion interpolated 25 averaged values so that the SR—curves had a uniform increment of Ax =
0.001 and were nonzero only in the interval [0, 1]. The conversion integrated (via discrete

approximation) and normalized the SR—curves so that they integrated to one:
© 1 N
IfSR(x)dx = IfSR(x)dx ~ ZfSR(k)Ax =1 (59)
—0 0 k=1

where fsr is the normalized SR—curve.
A Xz—test compared the SR—pdfs (mutual information and correlation measure) to the f—pdf in figure
S4 (a). We converted the pdf f(k) to the cumulative distribution function (CDF) F(k) by integration (via

discrete approximation):

X

F) = [l = [reodn = 3G = F() (510)

—00

The CDF appeared in both a y*~test and a Kolmogorov—Smirnov (KS) test: the tests compared the SR—

generated CDF to the —CDF in figure S4 (b).
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Figure S4 (a) The B probability density function (pdf) and the SR—pdfs. The reference pdf (top green
curve) had a B distribution with the parameters ¢ = 0.5 and f = 5 (ﬂ(O.S, 5)) and decreased

monotonically. A normalization scheme converted the SR—curves in figure 1 into their equivalent pdfs
fsr (red for information and blue for correlation). A test statistic that exceeded a critical value rejected

the null hypothesis Hyp: SR—pdfs ~ (0.5,5) and so confirmed that the SR—curves were nonmonotonic.
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Figure S4 (b) The SR—cumulative distribution functions (CDF) and the 3(0.5,5) CDF. Integrating the
pdfs gave the CDFs. The B(0.5,5) pdf gave the top green CDF. The SR—pdfs gave the red (information)

and blue (correlation) CDFs. The CDF—based statistical tests removed a potential defect in the pdf—

based test: the tail of the pdf could skew the test statistic if it gave near—zero values in its denominator.
Rejecting the null hypothesis Hp: SR—-CDFs ~ [(0.5,5) confirmed that the SR—curves were

nonmonotonic.

The goodness-of-fit test applied a y’—test with the null hypothesis H, : SR-pdfs ~ ,3(0.5,5) at the

smallest level of significance o = 0.001:

H, : SR-pdfs ~ 3(0.5,5)
H, : SR-pdfs + 5(0.5,5)
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The test rejected the null hypothesis if the test statistic exceeded the critical value. The test statistic

had the form
O —E.)
Xiw = ZM (S11)

where O; was an observed value in the SR—pdfs and E; was an expected value in the reference B—pdf.

The critical value was y’.. . =48.2679 for the smallest level of significance o. = 0.001 and for degree
of freedom v=(k—1—-m) = (25 — 1 —2) = 22 where k was the number of data and m was the number
of parameters in the test. The test statistic was y ., = 2.632x10"" for the mutual-information pdf
and was yipn., =1.648x10" for the correlation—measure pdf. So the y’—test showed that the

monotonically decreasing 3—pdf differed substantially from both the SR—pdfs with p—value p < 0.001.

A second y ~test based on the CDF removed a potential confounding factor in the pdf-based test: the
small values in the tail of the pdf might skew the test statistic if it gave near—zero values in its
denominator. The CDF-based goodness-of-fit test applied the same hypotheses as the pdf-based test

but changed the test statistic to use the observed and expected CDF values:

H, : SR-CDFs ~ £3(0.5,5)

H_: SR-CDFs + £(0.5,5)
instead of the pdf. The test statistic was ¥/ pp., =89.2559 for the mutual-information CDF and was
enres =129.1207 for the correlation-measure CDF. Both test statistics greatly exceeded the critical
value y2..  =48.2679. So the y’~test also showed that the B—CDF differed substantially from both

SR—CDFs with p—value < 0.001.
The Kolmogorov—Smirnov (KS) test for goodness-of-fit also tested how well the SR-CDFs matched

a B—CDF:
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H, : SR-CDFs ~ f3(0.5,5)
H,: SR-CDFs + £3(0.5,5)

by comparing the CDF-based test statistic to the critical value KS =0.32 for the smallest

critical
significance level o = 0.01 and for n = 25 (number of data). The test statistic equaled the largest

difference between the observed and the expected CDF values:

KS,, =max(0, - E/)) (S12)

test

where O; was an observed value in the SR-CDF and E; was an expected value in the reference f—CDF.

Both test statistics exceeded the critical value: KS,  =0.3955 for the mutual-information CDF and

test

KS, A =0.4997 for the correlation—measure CDF. So the KS—test rejected the null hypothesis and

test

showed that the monotonic decreasing B—CDF differed from both the SR-CDFs with p—value < 0.01.
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