
Nanosignal Processing: Stochastic
Resonance in Carbon Nanotubes That
Detect Subthreshold Signals

Ian Y. Lee, Xiaolei Liu, Bart Kosko,* and Chongwu Zhou

Electrical Engineering Department, UniVersity of Southern California,
Los Angeles, California 90089-2564

Received September 25, 2003; Revised Manuscript Received October 11, 2003

ABSTRACT

Experiments confirm that small amounts of noise help a nanotube transistor detect noisy subthreshold electrical signals. Gaussian, uniform,
and impulsive (Cauchy) noise produced this feedforward stochastic-resonance effect by increasing both the nanotube system’s mutual information
and its input−output correlation. The noise corrupted a synchronous Bernoulli or random digital sequence that fed into the thresholdlike
nanotube transistor and produced a Bernoulli sequence. Both Shannon’s mutual information and correlation measured the performance gain
by comparing the input and output sequences. This nanotube SR effect was robust: it persisted even when infinite-variance Cauchy noise
corrupted the signal stream. Such noise-enhanced signal processing at the nanolevel promises applications to signal detection in wideband
communication systems and biological and artificial neural networks.

Noise can help carbon nanotube transistors detect subthresh-
old electrical signals by increasing the transistor’s input-
output mutual information or correlation. Several researchers
have demonstrated the stochastic resonance (SR) effect for
various types of threshold units or neurons.1-6 Experiments
with p-type nanotube transistors confirmed the specific SR
prediction based on the theoretical finding that simple
memoryless threshold neurons exhibit SR for almost all
finite-variance and infinite-variance noise types.7 The experi-
ments used three types of additive noise (Gaussian, uniform,
and infinite-variance1 Cauchy noise) and different combina-
tions of subthreshold ON/OFF electrical signals. Figure 1
shows the nonmonotonic signature of SR for white Gaussian
noise and the thresholdlike nonlinearity of the nanotube
transistors.8-13 The modes of the mutual-information and
correlation curves occurred for nonzero noise strength with
a standard deviation of at least 0.01.

The nanotube experiments produced the SR effect for both
the Shannon mutual information and the input-output
correlation14 of noisy Bernoulli sequences. The mutual
information I(S, Y) subtracts the noisy channel’s (the
transistor’s) output conditional entropyH(Y|S) from its
unconditional entropyH(Y): I(S, Y) ) H(Y) - H(Y|S). The
input signalSwas a random binary voltage that produced a
random outputY in the form of a transistor current. The

correlation measure found the normalized zero-lag cross-
correlation

of the two sequences with subtracted means. The measures
did not assume that the nanotube detector had a special
structure and did not impose a threshold scheme on the
experiment.

Figure 1b shows the thresholdlike nonlinearity of the
nanotube transistor in response to the noisy input signal. The
transconductanceG related the output drain-to-source current
I to the input gate voltageV and the threshold voltageVT in
a memoryless signal function:I ) G (V - VT) if V e VT

and zero otherwise. We note that the threshold neuron model
lacks the internal state dynamics of the FitzHugh-Nagumo
(FHN) model.15 The transconductanceG was negative
because the pristine (undoped) nanotube transistors exhibited
current-voltage characteristics that were consistent with
p-type transistors. Linear regression extrapolated the non-
linearity and estimated the threshold voltage.

Each of the nanotube experiments (Supporting Informa-
tion) applied 32 independent trials of 1000-symbol input
sequences for 24 noise levels per type and over a range of
gate voltages. The 24 sampled noise levels ranged from 0.001
to 1 standard deviation (dispersion for infinite-variance
Cauchy) linearly on a logarithmic scale. The noisy input was* Corresponding author. E-mail: kosko@sipi.usc.edu.
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a synchronized Bernoulli sequence of independent random
(subthreshold) ON/OFF values and additive white noise of
three types. So there was no timing noise in the pulse train
as in the FHN neuron model.16 The discrete-time noise was
white because the noise samples were uncorrelated in time.
So the discrete-time Fourier transform was 2π-periodic and
produced a flat noise power spectrum over the interval [0,
2π].17,18 Synchronization allows the nanotube systems to
implement a variety of algorithms from signal processing
and communications.

The ON/OFF values in Figure 1a were ON) -1.6 V
and OFF) -1.4 V. The input updated the symbols about
once every 10 ms. A 200-mV drain-source voltage biased
the nanotube at room temperature in vacuum. The experiment
measured and averaged 10 samples of the detector output at
100 ksymbols/s near the end of each symbol interval to
estimate the output sequence.

A histogram of the output sequence gave the discrete
probability density functionP(Y ) Yi) ) pi that computed
the unconditional Shannon entropy:

for mutual information without converting the detector output

into a binary sequence with a threshold scheme. Sorting the
output sequence based on the input symbol and then applying
the histogram gave the conditional output discrete probability
density functionPY|S(Y ) Yi|S) Sj) ) pji/pj conditioned on
the input symbols that computed the conditional entropy:

The mutual information measure was the difference between
the unconditional and conditional entropies:

Cross correlation compared the input and the output symbol
sequences and gave a scalar representation with its zero-lag
value:

Converting the input Bernoulli sequence to bipolar form
(mapping ON to+1 and OFF to-1) made it approximately

Figure 1. (a) Stochastic resonance with additive white Gaussian noise. The CNT-FET detector’s mutual information (top red curve) and
zero-lag correlation (top green curve) increase for small amounts of noise and then decrease for larger amounts. The control experiments
gave the flat non-SR mutual information (bottom red curve) and correlation (bottom green curve) when no nanotube bridged the source and
drain electrodes. The SR mode or optimal noise level had the same standard deviation value of 0.01 for both performance measures. Each
vertical dashed bar occurs at 1 of the 24 sampled noise values and shows the maximum and the minimum range of 32 averaged experimental
trials. The solid polygonal line connects the means of those 24 sets of experiments. The random input sequenceSwas a Bernoulli sequence
of ON/OFF values with additive white Gaussian noise. The random sequenceY was the output of the nanotube threshold detector. Shown
is one of four such successful combinations of input binary values with the parameter choices ON) -1.6 V and OFF) -1.4 V. Each trial
applied 1000 subthreshold symbols to the detector. The input signal was the analog voltage representation of the symbol sequenceS at
approximately 10-ms intervals. The output signal was the nanotube current. The data acquisition measured and averaged 10 samples at 100
ksamples/s near the end of each symbol interval to estimate the output sequence (Supporting Information). Aø2 test and a Kolmogorov-
Smirnov test both rejected the similarity between a monotonically decreasingâ probability density function and the two SR curves (p <
0.001). (b) Thresholdlike (nonlinear) gate effect of the p-type CNT-FET detector. Each point shows the detector’s response to one random
input symbol. The experimental data showed that the CNT-FET detector behaved as a threshold in response to the noisy input signal
stream. The gate effect showed little hysteresis. This differed from the hysteretic curve that a semiconductor parameter analyzer captured
from the detector (Supporting Information) and differed from the typical hysteretic loops in ref 18. Linear regression gave an approximate
threshold gate voltage ofVT ) -2.3 V (â0 ) -2.99 nA,â1 ) -1.31 nA/V, p value< 0.0001) for the transistor current equationI ) G
(V - VT) if V e VT and zero otherwise.
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zero mean (equal numbers of+1’s and-1’s give exactly
zero mean) and noise-free. Subtracting the sample mean from
the output sequence improved the match between similar
input and output sequences. A normalization scheme gave
the normalized correlation measure:14

It divided the zero-lag cross correlationrSY(0) by the square
root of the energy of the input and the output sequences
where the energy of a sequence is the same as the zero-lag
value of its autocorrelation:

Nanotube field-effect transistor technology produced de-
tectors that could exhibit hysteresis19-21 or react to adsorbed
molecules.22-24 The experiment applied subthreshold symbols
that were at least two standard deviations away from the far
leg of the hysteretic loop. The effectiveI-VG curve in Figure
1b, as collected from the detector response to the input
symbols, showed that the experiment produced evidence of
the SR effect despite the potential hysteretic effect.

The experiment found the SR effect for mutual information
and correlation for Gaussian and uniform noise and for four

combinations of binary symbols: (-2.0,-1.8), (-1.8,-1.6),
(-1.6,-1.4), and (-1.4,-1.2) V. Figure 1a shows the SR
effect for additive white Gaussian noise and the subthreshold
signal pair ON) -1.6 V and OFF) -1.4 V. The SR mode
of the mutual-information curve is 6 times the value at
minimal noise. The SR mode of the correlation curve is 3
times the value at minimal noise. Figure 2a shows the SR
effect for additive white uniform noise and the signal pair
ON ) -1.8 V and OFF) -1.6 V.

We also passed impulsive or infinite-variance white noise
through the nanotube detector to test whether it was robust
to occasional large noise spikes. We chose the highly
impulsive Cauchy noise1 for this task. This infinite-variance
noise probability density function had the form

for zero location and finite dispersionγ. Figure 2b shows
that a diminished SR effect still persists for Cauchy noise
with the subthreshold signal pair ON) -2.0 V and OFF)
-1.8 V. Not all Cauchy experiments produced a measurable
SR effect.

These SR results suggest that nanotubes can exploit noise
in other signal-processing tasks if advances in nanotube
device technology can overcome the problems of hysteresis
and parasitic capacitance that affect logic circuits25 and high-
frequency signals.26 The nanotube signal detectors might
apply to broadband27,28 or optical communication systems29

that use submicroamp currents and attenuated signals in noise
because our nanotube detectors used nanoamp current and
could distinguish between subthreshold binary symbols. The

Figure 2. (a) Stochastic resonance with additive white uniform noise. All four combinations of input voltage values produced a clear SR
response in both mutual information (bottom red curve) and input-output correlation (top green curve) just as with additive white Gaussian
noise. Shown is the SR effect for the subthreshold signal ON) -1.8 V and OFF) -1.6 V. The SR mode is at 0.04 standard deviation.
(b). Robust stochastic resonance with additive white Cauchy noise. This highly impulsive noise has infinite variance and infinite higher-
order moments. The Cauchy-noise experiment produced a measurable SR effect for two of the four combinations of input voltages. Shown
is an approximate SR effect for the subthreshold signal ON) -2 V and OFF) -1.8 V. The SR mode lies at about the 0.003 dispersion
value. Several SR researchers have found multiple modes in the plot of system performance against noise strength.51-53 The limited dynamic
range [-5V, 5V] of the data acquisition equipment (Supporting Information) may have produced the second peak in the graph as a truncation
artifact because it clipped large spikes when it realized the infinite-variance Cauchy noise. The clipping affected more than 0.1% of the
noise only for dispersions greater than 0.01.
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detectors might apply to parallel signal processing30 at the
nanolevel because they could have a small minimum feature
size31 in vast parallel arrays of nanotubes. The parallel
detectors could apply to spread spectrum communications:
each nanotube can act as an antenna32 that matches a separate
frequency channel33 in frequency hopping and perhaps in
other types of spread spectrum communications.34 A nano-
tube’s length can code for a given frequency35 while chemical
adsorption can tune a nanotube’s threshold.23,24The detectors
might apply to chemical detection and parallel field pro-
gramming by tuning the threshold chemically. The nanotube
detectors can also operate in a biological environment such
as saline solution.36 The nanotube detectors could interface
with biological systems because an electrolyte can act as their
gate.36,37The nanotube detectors might also help implement
pulse-train neural networks and exploit noise in biological38-49

or robotic systems because the detectors are threshold devices
similar to spiking neurons.50
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 Materials and Methods 1

 

SUPPORTING INFORMATION 

Materials and Methods 

The experiment tested a p-type carbon nanotube field effect transistor (CNT-FET) as a threshold 

detector with subthreshold input signal plus noise. The input signal was a Bernoulli random variable 

corrupted by a zero-mean Gaussian, uniform, or zero-location Cauchy distributed noise. The 

experiment captured the detector output signal in response to the noisy input and compared against the 

Bernoulli input signal to determine the detector performance. The experiment sought evidence of the 

stochastic resonance (SR) effect: detection that improved with increasing noise strength before 

deteriorating with further increases in noise strength. 

The CNT–FET signal detector consisted of a chemical vapor deposition (CVD) grown 

semiconductor carbon nanotube lying on a silicon dioxide insulation layer 500 nanometers (nm) thick 

and ohmically contacting titanium–gold electrodes (20 nm Ti, 60 nm Au) at both ends (figure S1). The 

metal contacts were the source and drain electrodes for electric current while the tube was the 

conduction channel. The p–doped silicon substrate beneath the silicon dioxide layer was the back gate 

that completed the field effect transistor that was the detector. The single–walled nanotube was three to 

five micrometers (µm) long and less than two nm in diameter according to atomic force microscopy. 



 Materials and Methods 2

 

 

Figure S1 (a): Detector image. Atomic force microscope (AFM) image of the CNT–FET detector. The 

detector consisted of a semiconductor carbon nanotube lying across two Ti–Au electrodes (top and 

bottom). The nanotube was three to five µm long and less than two nm in diameter according to the 

AFM. The nanotube was undoped. 

1 µm

Ti-Au  
Electrode 

Carbon  
Nanotube 
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Figure S1 (b): Nanotube layout. The metal electrodes cover the ends of the carbon nanotube. The 

nanotube lies on top of the thin (500 nm) silicon oxide layer. The underlying substrate has p–type 

(holes) doping and can conduct electricity to act as the backgate. 

 

 

The CNT–FET signal detector was a threshold device and was the nonlinear system in the 

experiment with approximate threshold voltage VT = –2 volts. The approximation linearly extrapolated 

Thin silicon oxide layer 

The gate is the p-doped substrate 

Ti-Au Ti-Au
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the transistor current–to–gate voltage curve to find a voltage that would intercept the x–axis and would 

correspond to the OFF state (figure 1 (b) of the main text). The transconductance G related the output 

drain–to–source current I to the input gate voltage V and the threshold voltage VT:  

I = G (V – VT) if V ≤ VT and 0 otherwise.  (S1) 

The transconductance G was negative for the p–type, pristine CNT transistors. 

The experiment involved the following equipment (figure S2). A Hewlett Packard 4156 B 

semiconductor parameter analyzer (not shown) measured I–VD and I–VG curves that characterized the 

CNT–FET detector’s gate effect. A National Instrument PCI–MI0–16XE–10 multifunction data 

acquisition (DAQ) board generated the analog voltages that drove the transistor’s gate and biased the 

nanotube then measured the electric current flowing through the nanotube. A DL 1211current–voltage 

preamplifier converted the detector’s output electric current (IDS) to voltage for data acquisition 

(risetime set to 0.1 ms and sensitivity set to 10–8 A/V). Two resistors formed a voltage divider to divide 

the smallest voltage step by two and improved the resolution of the DAQ’s analog voltages. A personal 

computer running LabView driver controlled the input signal generation and the output measurement 

to test the CNT–FET detector. A cryostat isolated the detector electrically, kept it at room temperature, 

and maintained a rough vacuum to remove contaminants such as moisture. A subthreshold gate voltage 

without additive noise would keep the detector in the OFF state – the drain–to–source current would be 

in the pico–amp range.  
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Figure S2: Nanotube experiment setup. The threshold detector was a p–type CNT–FET. The input was 

the gate voltage and the output was the current of the CNT–FET detector. The DAQ board updated the 

input symbols about once every 10 ms to allow the data acquisition and amplifier hardware to reach 

steady state. An estimate of each output symbol was the average of 10 measurements that the DAQ 

made near the end of the symbol interval. Each experiment applied one type of additive white noise for 

32 trials 1,000–symbol sequences and used 24 evenly spaced noise values that ranged from 0.001 to 1 

standard deviations (dispersions for infinite–variance Cauchy noise). 

 

 

The experiment generated digital signals in software and converted them to analog voltages to test 

the detector. An input S consisted of a sequence of binary symbols b plus white noise n: iii nbs += . 

Each b was independent, identically distributed (Bernoulli random variables), and took value A  with 

probability p or A  with probability 1–p. The noise n was independent of and synchronized with the 

binary symbols. Each n was independent and identically distributed. Three types of distributions were 
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available: Gaussian, uniform, and Cauchy. The binary symbols were subthreshold ( A  = – 1.8 V and A  

= – 1.6 V, for example) with respect to the threshold voltage. 

An output Y was the detector’s current in response to each input S at the gate. The p–type transistor 

model gave TVSTVSGY ≤−=  if )(  and zero otherwise.  

The experiment biased the nanotube at 200 mV and updated the input symbol about every 10 ms. 

The symbol interval was a compromise that produced data in quantity within limited lab time while 

allowing sufficient time for the preamplifier and DAQ to reach steady state. The experiment conducted 

32 trials for each noise type and strength and for each pair of binary symbols. Each trial consisted of a 

1000–symbol sequence. The data acquisition equipment measured and averaged ten samples of the 

detector output near the end of each symbol interval at a rate of 100 kilo–symbols per second to 

estimate the output symbol sequence. A comparison between the input sequence and the output 

sequence yielded the system performance. 

Cross correlation and mutual information provided comparison between the input and the output 

sequences and yielded two measures of detector performance. A cross correlation measured the 

similarity between the input and the output sequences. The correlation measure used the zero–lag value 

as a scalar representation of the cross correlation sequence between the input and the output:  

∑
=
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N

k
SY lkykslr

1
)()()(  (S2) 

∑
=

=
N

k
SY kyksr

1
)()()0(  (S3) 

A normalization scheme divided the zero–lag correlation by the square root of the energy of the input 

and the output sequences to give the normalized correlation measure where the energy of a sequence is 

the same as the zero–lag value of its autocorrelation:  
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This normalized correlation has the maximal value of one for any two identical sequences. 

The mutual information was the difference between the output entropy H (Y) and the conditional 

output entropy H (Y|S) conditioned on the input:  

)|()(),( SYHYHYSI −=  (S5)  
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A histogram of each output sequence gave the discrete probability density function to compute the 

entropies. The use of a histogram avoids imposing an artificial software threshold scheme on the data. 

The histogram applied a fixed set of bin edges to each output sequence so that the bins represented a 

fixed set of discrete symbols. The normalization ensured that symbol probability density functions 

summed to unity. 

The nanotube detector exhibited some hysteresis in its gate effect but not enough to prevent the SR 

effect. The hysteresis (figure S3) affected the transistor’s gate effect: threshold voltage shifted based 

on the direction of the input voltage change. Charge trapping by water molecules on the silicon dioxide 

surface was one possible mechanism of hysteresis 16. We kept the detector in vacuum to reduce the 



 Materials and Methods 8

hysteretic effect but some effect persisted even after 72 hours in vacuum. Again the device hysteresis 

did not prevent the observation of the SR effect.  

The experimental data exhibited a gate effect consistent with a transistor in a plot of input sequence 

versus output sequence (figure 1 (b) of main text). The figure suggested that the signal sequences in the 

experiment encountered little changes in the threshold effect. The experiment used subthreshold 

Bernoulli symbols and signals that had short hold times, rapid voltage transitions, and small voltage 

changes. This voltage scheme differs from the large voltage range and slow voltage–sweep transitions 

that characterized the hysteresis in figure S3. The experiment yielded evidence of the SR effect in spite 

of the hysteretic mechanisms. 

 

 

 

Figure S3: Nanotube transistor gate effect. A semiconductor parameter analyzer produced the I–VG 

curve that showed the transistor current as a function of gate voltage. The gate effect showed some 
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hysteresis: the threshold voltage and the transconductance varied depending on the direction of the gate 

voltage sweep. The hysteretic effect did not prevent observation of the SR effect. This set of the I–VG 

curve shows a threshold shift in contrast to the effective I–VG curve (figure 1 (b) in main text) that the 

detector produced in response to the experiment’s noisy input signal. 

 

 

Two statistical tests confirmed that the SR–curves were nonmonotonic. A goodness-of-fit test 

measures how well a candidate probability density function (pdf) matches a benchmark pdf given a set 

of data from the candidate pdf. The null hypothesis H0 states that the two pdfs are the same. The test 

rejects the null hypothesis if a test statistic exceeds a critical value for a given significance level α. The 

significance level α denotes the probability of a Type-I error--the probability of rejecting the null 

hypothesis when it is true. The p–value measures the credibility of the null hypothesis H0 given the 

data. A statistical test rejects the null hypothesis H0 at the significance level α if the p–value is less 

than the significance level: Reject H0 if p–value < α. Two types of goodness-of-fit tests rejected the 

match between either SR curve and a monotonically decreasing function based on a β–pdf. The β–pdf 

(fig. S4 (a)) defines a monotone decreasing function if its two parameters are α = 0.5 and β = 5. It has 

the form  

( )βα

βα

βα ,
)1(      )(

11

, B
xxxf

−− −
=   (S6) 

for [ ]1 ,0∈x  and positive parameters 0>α  and 0>β . The denominator term B(α, β) is  

( ) ( ) ( )
( )∫ +Γ

ΓΓ
=−= −−

1

0

11       )1(      ,
βα
βαβα βα dxxxB   (S7) 

with Γ function  
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( ) ( )∫
∞

− Γ==+Γ
0

            1 nndueun un   (S8) 

for n > 0 ( ( ) 11 =Γ  and with ( ) !1 nn =+Γ  if n is a positive integer). The β–pdf contrasts with the SR–

curves because it is nonzero only for [ ]1 ,0∈x  and because it decreases monotonically to zero as x 

increases to 1 for the parameters α = 0.5 and β = 5.  

The goodness-of-fit tests converted each averaged SR–curve to its equivalent pdf fSR(k). The 

conversion interpolated 25 averaged values so that the SR–curves had a uniform increment of ∆x = 

0.001 and were nonzero only in the interval [0, 1]. The conversion integrated (via discrete 

approximation) and normalized the SR–curves so that they integrated to one: 

( ) ( ) ( ) 1                  
1

1

0

=∆≈= ∑∫∫
=

∞

∞−

N

k
SRSRSR xkfdxxfdxxf  (S9) 

where fSR is the normalized SR–curve. 

A χ2–test compared the SR–pdfs (mutual information and correlation measure) to the β–pdf in figure 

S4 (a). We converted the pdf f(k) to the cumulative distribution function (CDF) F(k) by integration (via 

discrete approximation): 

( ) ( ) ( ) ( )kFxjfduufduufxF
k

j

xx

            )(            
10

=∆≈== ∑∫∫
=∞−

 (S10) 

The CDF appeared in both a χ2–test and a Kolmogorov–Smirnov (KS) test: the tests compared the SR–

generated CDF to the β–CDF in figure S4 (b). 

 

 



 Materials and Methods 11

 

Figure S4 (a) The β probability density function (pdf) and the SR–pdfs. The reference pdf (top green 

curve) had a β distribution with the parameters α = 0.5 and β = 5 ( ))5 ,5.0(β  and decreased 

monotonically. A normalization scheme converted the SR–curves in figure 1 into their equivalent pdfs 

fSR (red for information and blue for correlation). A test statistic that exceeded a critical value rejected 

the null hypothesis H0: SR–pdfs ~ β(0.5,5) and so confirmed that the SR–curves were nonmonotonic. 
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Figure S4 (b) The SR–cumulative distribution functions (CDF) and the β(0.5,5) CDF. Integrating the 

pdfs gave the CDFs. The β(0.5,5) pdf gave the top green CDF. The SR–pdfs gave the red (information) 

and blue (correlation) CDFs. The CDF–based statistical tests removed a potential defect in the pdf–

based test: the tail of the pdf could skew the test statistic if it gave near–zero values in its denominator. 

Rejecting the null hypothesis H0: SR–CDFs ~ β(0.5,5) confirmed that the SR–curves were 

nonmonotonic. 

 

 

The goodness-of-fit test applied a χ2–test with the null hypothesis ( )550~pdfsSR  : ,.- β0H at the 

smallest level of significance α = 0.001: 

( )
( )550~pdfSR  : 

550~pdfsSR  :
,.s-
,.-

a β
β

/H
H0  
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The test rejected the null hypothesis if the test statistic exceeded the critical value. The test statistic 

had the form  

( )∑ −
=

i i

ii
test E

EO 2
2       χ  (S11) 

where Oi was an observed value in the SR–pdfs and Ei was an expected value in the reference β–pdf. 

The critical value was 2679.482 =criticalχ  for the smallest level of significance α = 0.001 and for degree 

of freedom ν = (k – 1 – m) = (25 – 1 – 2) = 22 where k was the number of data and m was the number 

of parameters in the test. The test statistic was 112 10632.2 ×=PDFtestχ  for the mutual–information pdf 

and was 112 10648.1 ×=PDFtestχ  for the correlation–measure pdf. So the χ2–test showed that the 

monotonically decreasing β–pdf differed substantially from both the SR–pdfs with p–value p < 0.001. 

A second χ2–test based on the CDF removed a potential confounding factor in the pdf–based test: the 

small values in the tail of the pdf might skew the test statistic if it gave near–zero values in its 

denominator. The CDF–based goodness-of-fit test applied the same hypotheses as the pdf–based test 

but changed the test statistic to use the observed and expected CDF values: 

( )
( )550~CDFsSR  : 

550~CDFsSR  :
,.-
,.-

a β
β

/H
H0  

instead of the pdf. The test statistic was 2559.892 =CDFtestχ  for the mutual–information CDF and was 

1207.1292 =CDFtestχ  for the correlation–measure CDF. Both test statistics greatly exceeded the critical 

value 2679.482 =criticalχ . So the χ2–test also showed that the β–CDF differed substantially from both 

SR–CDFs with p–value < 0.001. 

The Kolmogorov–Smirnov (KS) test for goodness-of-fit also tested how well the SR–CDFs matched 

a β–CDF:  
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( )
( )550~CDFsSR  : 

550~CDFsSR  :
,.-
,.-

a β
β

/H
H0  

by comparing the CDF–based test statistic to the critical value 32.0=criticalKS  for the smallest 

significance level α = 0.01 and for n = 25 (number of data). The test statistic equaled the largest 

difference between the observed and the expected CDF values: 

( )iiitest EOKS −= max  (S12) 

where Oi was an observed value in the SR–CDF and Ei was an expected value in the reference β–CDF. 

Both test statistics exceeded the critical value: 3955.0=testKS  for the mutual–information CDF and 

4997.0=testKS  for the correlation–measure CDF. So the KS–test rejected the null hypothesis and 

showed that the monotonic decreasing β–CDF differed from both the SR–CDFs with p–value < 0.01. 

 


