
Neurocomputing 559 (2023) 126438

Available online 30 June 2023
0925-2312/© 2023 Published by Elsevier B.V.

Noise-boosted recurrent backpropagation

Olaoluwa Adigun a, Bart Kosko a,*

a Department of Electrical and Computer Engineering, Signal and Image Processing Institute, University of Southern California, Los Angeles, California 90089-2564, USA

A R T I C L E I N F O

Communicated by Zidong Wang

Keywords:
Recurrent backpropagation
Recurrent neural network
Generalized expectation maximization
Long short-term memory
Gated recurrent unit
NEM noise

A B S T R A C T

A statistical formulation of recurrent backpropagation (RBP) allows direct noise boosting for time-varying
classification and regression. The noise boost reduces training iterations and improves accuracy. The injected
noise is just that noise that makes the current signal more probable. This noise-boost result extends the two
recent results that backpropagation is a special case of the generalized expectation maximization (EM) algorithm
and that careful noise injection can always speed the average convergence of the EM algorithm to a local
maximum of the log-likelihood surface. The noise-benefit conditions differ for additive and multiplicative noise
in RBP. We tested noise-boosted RBP classifiers on 11 classes of sports video clips and tested RBP regressors on
predicting the dollar-rupee exchange rate. Injecting noisy-EM (NEM) noise outperformed injecting blind noise or
injecting no noise at all. Additive NEM noise usually outperformed multiplicative noise. The best case of NEM
noise injection with RBP training of a recurrent neural classification model speeded up its training by 60% and
improved its classification accuracy by 9.51% compared with noiseless RBP training and accuracy. The best
performance of the NEM noise with the RBP training of a recurrent neural regression model yielded a 38% speed-
up in training and also reduced the squared error by 49.3%. The injection of the additive NEM noise in the output
and hidden neurons performed best.

1. Noise Boosting Recurrent Backpropagation

We show that a statistical formulation of recurrent neural networks
can improve recurrent backpropagation (RBP) through noise injection
into the neurons. RBP remains the most popular algorithm for training
recurrent neural networks (RNNs) [1–5]. Proper randomization or noise
boosting speeds RBP convergence on average for both classification and
regression. It also improves classification accuracy. Fig. 1 shows the
additive noisy Expectation–Maximization (NEM) noise for a recurrent
neural classifier and how it benefits its RBP training.

The injected noise is not simple blind white noise or faint indepen-
dent Gaussian or uniform noise as with earlier neural-net noise-injection
schemes [6–8]. The noise is instead just that dependent noise that makes
the current signal more probable on average. Such noise can add to or
multiply the signals in the output or hidden neurons. The sufficient
conditions for an average noise benefit depend on the activation struc-
ture of the neurons in a layer. They also depend on whether the network
performs classification or regression.

The ubiquitous backpropagation algorithm underlies modern deep
learning [1,9–14]. We review its maximum-likelihood reformulation
below and state Theorem 1 from [15]. This result shows that

backpropagation is a form of the generalized Expectation–Maximization
(GEM) algorithm. Theorems 2 and 3 extend these results to the noise-
boosting of RBP for classification and regression by injecting noise
into the output neurons. Theorems 4 and 5 further extend these results to
allow noise injection into a deep network’s hidden units.

We tested RBP noise boosting on two types of classifier networks for
video recognition. The two types were long short-term memory (LSTM)
[3,16–20] and gated-recurrent-unit (GRU) [21,22] recurrent networks.
Fig. 2 shows the convolutional structure of the LSTM-RNN for video
classification. Fig. 7 shows a typical sampled video that the RNNs clas-
sified to one of 11 types of videos from the standard UCF-11 sports-ac-
tion YouTube video dataset [23,24]. Fig. 8 gives more detail on the
convolutional structure of the RNN classifier. Fig. 9 compares noiseless
and noise-boosted LSTM-RNN classifiers on the UCF-11 video dataset.

We also tested the noise effect on LSTM and GRU regression net-
works for time-series prediction of the dollar-rupee exchange rate. The
dataset contains the exchange rate from the US dollar to the Indian rupee
for 9,697 consecutive days. Fig. 3 shows the RNN regression structure
that predicts the dollar-rupee exchange rate given information about the
exchange rate on the previous 4 days. Fig. 10 shows the dollar-rupee
time-series data over this period of 9,697 days. The RNN regression

* Corresponding author.
E-mail address: kosko@usc.edu (B. Kosko).

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

https://doi.org/10.1016/j.neucom.2023.126438
Received 20 October 2021; Received in revised form 10 May 2023; Accepted 5 June 2023

mailto:kosko@usc.edu
www.sciencedirect.com/science/journal/09252312
https://www.elsevier.com/locate/neucom
https://doi.org/10.1016/j.neucom.2023.126438
https://doi.org/10.1016/j.neucom.2023.126438
https://doi.org/10.1016/j.neucom.2023.126438
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2023.126438&domain=pdf

Neurocomputing 559 (2023) 126438

2

models trained on exchange-rate data from day 0 to day 8,000. We then
tested the RNN regression models on exchange-rate data from day 8,001
to day 9,697. Fig. 11 compares these predicted exchange rates with the
actual exchange rates. Fig. 12 shows the noise benefits in the noise-
boosted LSTM-RNN regression models. Fig. 14 shows the related noise
benefits in the GRU-RNN regression models. The GRU-RNNs out-
performed the LSTM-RNNs in both speed of convergence and in
accuracy.

Simulations show that the noise-boosted recurrent systems
converged faster and with better accuracy than did either their noiseless
versions or simply injecting blind noise into the neurons. Blind-noise
injection did produce a small benefit in some cases as other re-
searchers have found in simpler neural networks [7,8]. This appears to
be a “stochastic resonance” or dithering noise benefit often found in
signal systems that use threshold-like units [25–37]. Additive noise in-
jection outperformed multiplicative noise injection in most cases. Mul-
tiplicative noise boosting did outperform additive noise boosting for the
GRU regressor.

We first extend the recent result that the popular backpropagation
algorithm [9,10] is a special case of the Expectation–Maximization (EM)
algorithm for maximum likelihood with hidden variables or missing
data [15,38]. RBP also admits such an EM statistical formulation. We use
the recent general result that noise can speed the average convergence of
the EM algorithm [39,40]. This produces different types of noise-
boosted RBPs that depend on the network architecture and function.

The neural network’s probabilistic structure does require that the
network obey what we call backpropagation invariance: the gradient of
the network’s log-likelihood function L must give back the same BP
learning laws. The next section explains BP invariance and shows how it
leads to the generalized EM algorithm. Then we can noise-boost RBP by
noise-boosting the generalized EM algorithm. This follows from the re-
sults [41,42] that show how EM-based noise injection improves some
forms of the GEM algorithm.

The next sections have the following form:

• Section 2 reviews the backpropagation algorithm as a form of
maximum-likelihood estimation (MLE). It shows in Theorem 1 that
backpropagation is an instance of the generalized EM algorithm
when backpropagation invariance holds at the neural layers.

• Section 3 presents the noisy Expectation–Maximization (NEM)
benefit for the maximum-likelihood estimation. It shows that the
noise samples that make the data more probable improve the per-
formance of the GEM algorithm.

• Section 4 presents recurrent backpropagation as a form of GEM. This
framework extends the NEM noise benefit to RBP.

• Section 5 states and proves the theorems for noise-boosting RBP.
Theorems 2 and 3 apply to noise-boosting RBP for recurrent neural
classifiers and for recurrent neural regression models by injecting
NEM noise into the output neurons. Theorems 4 and 5 extend the
NEM benefit to noise injection into the hidden units of LSTM-RNN
and GRU-RNN.

• Section 6 presents the simulation results that show that NEM noise
improves the performance of the RBP. The NEM noise injects into the
output layer or hidden units or into both. The NEM benefit holds for
both additive and multiplicative noise injection in recurrent neural
classifiers and regressors.

2. Backpropagation Invariance and the EM Algorithm

We first develop the main ideas behind the probabilistic formulation
of neural networks and the connection between BP and the EM
algorithm.

The key structure in the argument is the gradient identity ∇log p(y|x,
Θn) = ∇Q(Θn|Θn) in (18)–(19) below. BP invariance refers to the left
side of this gradient identity. BP invariance requires that the gradient
∇log p(y|x,Θn) must equal the same BP learning laws for a given network
architecture.

BP invariance holds for neural classifiers with softmax output neu-
rons if the network’s output likelihood p(y|x,Θn) is a one-shot multi-
nomial probability or categorical distribution. Then the network’s
output probability p(y|x,Θn) corresponds to the roll of a K-sided die. The
negative of the log-likelihood L = log p(y|x,Θn) of the output equals the
cross entropy. So minimizing the cross entropy maximizes the output
log-likelihood L.

BP invariance holds for a regression model if the output probability
p(y|x,Θn) is a vector normal density and if the output neurons are linear
or identity units. Then the output log-likelihood L is proportional to the
negative of the squared error. So minimizing the squared error equals
maximizing the output log-likelihood L. The parameter gradient ∇Θn L

Fig. 1. NEM noise benefit with additive noise injection in the output neurons of a neural network: The NEM positivity condition guarantees a NEM noise benefit with
backpropagation training. (a) shows the NEM hyperplane for injecting additive NEM noise in the output neurons of a neural classifier. The noise samples below the
NEM hyperplane satisfy the positivity condition and improve accuracy on average. The output activation vector is ay = [0.6, 0.3,0.1] for the target y = [1,0,0]. The
NEM noise differs from blind or dither noise. The NEM noise comes from picking random samples from a multivariate Gaussian density with mean vector 0 and
identity covariance I. These normal samples satisfy the positivity condition in (40). The blind noise samples lie inside the sphere centered at [0,0,0]. (b) compares the
effect of additive noise injection on the performance of LSTM-RNN classifiers trained on the YouTube sports-video UCF-11 test set. Injected NEM noise quickly
outperformed injected blind or dither noise as training proceeded.

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

3

gives back the same BP learning laws for updating the final layer of
synaptic weights.

BP invariance must also hold at each of the network’s k hidden layers
h1,…,hk for a given input x. A deep neural network has at least two such
hidden layers. We sometimes denote all or some of these hidden layers
with the single symbol h for convenience. So the output probability at
training iteration n has the form p(y|x,Θn) = p(y|h,x,Θn) = p(y|hk,…,h1,

x,Θn). The layer likelihood of the network’s penultimate layer hk is p(hk|

hk− 1,…,h1,x,Θn). The layer likelihood of the first hidden layer h1 is just
p(h1|x,Θn). The input data x can have its own prior p(x) or hyper-prior.
We assume here that p(x) = 1. Then the multiplication theorem of

elementary probability gives the total network likelihood p(y,hk,…,h1,

|x,Θn) as the product of the layer likelihoods [44]:

p(y, hk,…,h1|x,Θn) = p(y|hk,…,h1, x,Θn) × p(hk|hk− 1,…,h1, x,Θn) × ⋯

× p(h1|x,Θn).

(1)

Taking logarithms gives the network’s total log-likelihood Ltotal(y,h|
x,Θn) as the sum of the k + 1 layer log-likelihoods:

Ltotal(y,h|x,Θn) = log p(y, hk,…,h1|x,Θn) (2)

Fig. 2. Architecture of the long-short-term-memory (LSTM) recurrent neural network for the classification of the UCF-11 sports video dataset. We extracted image
frames from videos at the rate of 1.4 frames per seconds and sampled 7 image frames from a video over a period of 5s. The convolutional layers of the trained
convolutional neural network used the inception-v3 architecture [43]. The convolutional layers extracted features from the image frames and reduced the input space
of each frame from 299 × 299 × 3 to 2048× 1. The extracted features for the 7 frames per video fed into the input layer of LSTM-RNN. The network used 256 hidden
units. Weight matrix U connected the hidden memory to the output layer. The classifiers 11 output softmax neurons corresponded to the 11 pattern classes of videos
encoded as unit bit vectors of length 11.

Fig. 3. Network architecture of the RNN regression models for predicting the time-series exchange rate of the US-dollar to the Indian rupee. The window size was
T = 4 days. The trained LSTM-RNN and GRU-RNN regression models predicted the average exchange rate for a given date given the open price, high price, low price,
and the average price for the previous 4 days.

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

4

= L(y|x,Θn)+ L(hk|x,Θn)+⋯+ L(h1|x,Θn) (3)

where a given layer log-likelihood depends on the inputs from all the
prior layers. So the shorthand symbol L(hk|x,Θn) stands for log p(hk|hk− 1,

…,h1,x,Θn). We often just write L when discussing the log-likelihood at a
given layer.

The right side of the gradient identity ∇log p(y|x,Θn) = ∇Q(Θn|Θn)

in (18)–(19) describes the gradient step of the generalized EM algorithm
in its iterative maximum-likelihood estimation of the parameter vector
Θ. This result holds at each layer of the network even though for
simplicity we will just describe the EM structure from the vantage point
of the output layer.

The EM algorithm grows out of a simple rearrangement of the defi-
nition of conditional probability. Suppose measurable events A and B
have positive probability for some probability measure P. Suppose their
intersection or joint occurrence A ∩ B does as well: P(A ∩ B) > 0. Then
we can always rearrange the conditional probability P(B|A) from its
ratio definition

P(B|A) =
P(A ∩ B)

P(A)
(4)

as

P(A) =
P(A ∩ B)
P(B|A)

. (5)

So we can rewrite an arbitrary unconditional probability P(A) in
terms of any other measurable event B in the probability space’s sigma-
algebra. This “EM trick” lets us invoke hidden variables at will.

The EM algorithm averages against the hidden posterior P(B|A). The
posterior density P(B|A) conditions the hidden or unknown quantity B
on the known quantity A. Take the logarithm of (5). Then take the
expectation of this difference of logarithms with respect to the hidden
posterior P(B|A):

log P(A) = EB|A[log P(A ∩ B)] − EB|A[log P(B|A)] (6)

= Q(B|A)+H(B|A). (7)

The log-likelihood equality (7) follows because P(A) does not depend
on B:

EB|A[log P(A)] = P(B|A)log P(A)+P(Bc|A)log P(A) (8)

= log P(A)[P(B|A)+P(Bc|A)] (9)

= log P(A) (10)

where Bc is the set complement of B. The term
H(B|A) = EB|A[− log P(B|A)] is just the Shannon entropy of the condi-
tional probability P(B|A).

The Q term Q(B|A) = EB|A[log P(A ∩ B)] serves as the surrogate log-
likelihood in iterative versions of EM when we seek to maximize the
original log-likelihood log P(A). The entropy term H(B|A) does not
contribute to this local maximization in the so-called EM ascent property:
Maximizing Q(B|A) maximizes log P(A). We establish this ascent prop-
erty below. The Q term averages the joint or complete log-likelihood
log P(A ∩ B) by conditioning on the hidden posterior P(B|A). The EM
algorithm’s E-step computes or estimates the surrogate likelihood Q as it

Fig. 4. Multiplicative NEM noise injection into the output softmax neurons of a
recurrent neural classifier. The noise samples on the left side of the NEM hy-
perplane satisfied the NEM positivity condition in (23). The output activation
vector was ay = [0.6,0.3, 0.1] with target vector y = [1.0, 0.0, 0.0]. The NEM
noise came from picking random samples from a multivariate Gaussian proba-
bility density with mean vector 1, identity covariance I, and that satisfied the
NEM inequality in (41).

Fig. 5. Additive NEM noise injection into the output identity neurons of a
recurrent neural regression model. The output activation vector was ay = [1.0,
2.0,1.0] with target vector y = [2.0,3.0,2.0]. The noise samples inside the NEM
sphere satisfied the NEM positivity condition. This additive NEM noise came
from picking random samples from a multivariate Gaussian probability density
with mean vector 0, identity covariance I, and that satisfied the inequality
in (48).

Fig. 6. Multiplicative NEM noise injection into the output identity neurons of a
regression recurrent neural network. The output prediction or activation vector
was ay = [1.0, 2.0,1.0] with target vector y = [2.0, 3.0,2.0]. The noise samples
inside the NEM ellipsoid satisfied the NEM positivity condition. This additive
NEM noise came from picking random samples from a multivariate Gaussian
probability density with mean vector 1, identity covariance I, and that satisfied
the NEM inequality in (49).

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

5

estimates a parameter vector Θ given the current data as we explain
below in the context of a neural network. Then the M-step maximizes
Q(Θ|Θn) over all parameter choices of Θ given the current estimate of
Θn. Generalized EM weakens the total maximization of Q(Θ|Θn) to the

partial maximization of a gradient step based on ∇Q(Θ|Θn).
The EM algorithm replaces the event A with a neural-network con-

ditional probability density p(y|x,Θ) for network output y and input x.
The parameter vector Θ describes all network parameters. This includes

Fig. 8. Feature extraction with the convolutional layers of a trained inception-v3 network [43]: The convolutional layers consisted of convolutional masks, pooling
layers, and inception modules. Inception modules arranged the convolutional masks and pooling layers to extract features from images. (a) signal flow chart for using
the convolutional layers of inception-v3 network to extract features and to reduce the dimension of images. The process converted an input image of size 299× 229×

3 to the reduced size 2048× 1. (b) shows the architecture of the inception module 1. (c) shows the architecture of the inception module 3. (d) shows the architecture
of the inception module 2.

Fig. 7. Sample extracted image frames of a diver from the UCF-11 YouTube sports database. Sampling gave these diving images at a rate of 7 image frames in 5s. The
diving videos were from the 3rd of 11 video pattern categories. So the target output vector for this sampled video clip was the 1-in-K-coded bit vector [0, 0, 1, 0, 0, 0,
0, 0, 0, 0].

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

6

all synaptic weights between and among all layers of neurons. Then the
EM trick brings the network’s hidden variable h into the network
probability p(y|x,Θ):

p(y|x,Θ) =
p(h, y|x,Θ)

p(h|y, x,Θ)
. (11)

The hidden variable h collects all the information about the hidden units
or neurons. Then taking logarithms in (11) gives the basic log-likelihood
structure of any neural network or any other input–output system that
depends on parameters and hidden variables:

log p(y|x,Θ) = log p(h, y|x,Θ) − log p(h|y, x,Θ). (12)

EM works with a current estimate Θn of the network parameters at
time or iteration n. So it conditions current probabilistic knowledge of
the hidden units h on the current parameter estimate Θn and on the
known input x and the output y. The hidden posterior density p(h|y, x,
Θn) captures just this information. Taking the expectation of (12) with
respect to this EM density p(h|y, x,Θn) leads to the fundamental equality
between the log-likelihood logp(y|x,Θ) and the surrogate likelihood
Q(Θ|Θn) and the entropy H(Θ|Θn):

log p(y|x,Θ) = Eh|y,x,Θn [log p(y|x,Θ)] (13)

= Eh|y,x,Θn [log p(h, y|x,Θ)] − Eh|y,x,Θn [log p(h|y, x,Θ)] (14)

= Q(Θ|Θn)+H(Θ|Θn). (15)

The E-step of EM computes or estimates the surrogate likelihood
Q(Θ|Θn) at iteration n. This computation can involve sample-average
Monte Carlo or other approximation techniques because Q(Θ|Θn) is an
ensemble expectation. Then the M-step maximizes Q(Θ|Θn) over all Θ
values to give the next parameter estimate Θn+1 : Θn+1 =

argmaxΘQ(Θ|Θn). These two steps repeat until the algorithm converges
at or near the peak of the nearest hill of probability or log-likelihood.
Users often run several EM simulations from different random starting
points on the log-likelihood surface and then keep the solution that
corresponds to the highest probability peak.

EM’s ascent property ensures that the sequence of parameter esti-
mates Θ0,Θ1,Θ2,… will converge to a local maximum-likelihood
parameter estimate Θ*. This convergence occurs even though the algo-
rithm updates only the surrogate likelihood function Q(Θ|Θn) and not
the likelihood function itself [45]. We now sketch the proof of the ascent
property both for its own sake and because of its close relationship to the
reduction of backpropagation to generalized EM in Theorem 1.

The EM ascent property depends on the fact that Shannon entropy
minimizes cross entropy: H(Θn|Θn)⩽H(Θ|Θn) for all parameter vectors Θ.
This entropy inequality follows in turn from Jensen’s inequality and the
concavity of the logarithm. Then the entropy inequality and (13)–(15)
imply that

log p(y|x,Θ) − log p(y|x,Θn)⩾Q(Θ|Θn) − Q(Θn|Θn)⩾0 (16)

for the Q-maximizing choice Θ = Θn+1. This gives the EM ascent prop-
erty because the log-likelihood can only increase at each iteration:

log p(y|x,Θn+1)⩾log p(y|x,Θn) (17)

when maximizing the surrogate likelihood: Q(Θn+1|Θn)⩾Q(Θ|Θn).
The same entropy-based argument shows why backpropagation is a

special case of generalized EM or GEM. GEM replaces the complete
maximization in the M-step with the partial maximization of taking a
gradient step up the log-likelihood surface. But the gradient of the en-
tropy H must be null at the Shannon-entropy minimum for a differen-
tiable entropy H : ∇H(Θn|Θn) = 0. This gives the master equation
∇log p = ∇Q for the backpropagation noise-boosting that follows:

∇log p(y|x,Θn) = ∇Q(Θn|Θn)+∇H(Θn|Θn) (18)

= ∇Q(Θn|Θn) (19)

since Shannon entropy minimizes cross entropy. We here restate this
recent result [15] as Theorem 1. We point out again that BP invariance
requires that this gradient log-likelihood identity hold at the output
layer and at each hidden layer.

Theorem 1. Backpropagation as Generalized Expectation
Maximization

The backpropagation update equation for a differentiable likelihood
function p(y|x,Θ) at epoch n

Θn+1 = Θn + η∇Θlog p(y|x,Θ)|Θ=Θn (20)

equals the GEM update equation at epoch n

Θn+1 = Θn + η∇ΘQ(Θ|Θn)|Θ=Θn (21)

where GEM uses the differentiable Q-function

Q(Θ|Θn) = Ep(h|y,x,Θn)[log p(h, y|x,Θ)] (22)

and η is the learning rate. The master gradient equation ∇log p(y|x,Θn)

= ∇Q(Θn|Θn) does require comment to see the connection to back-
propagation. The right-hand side ∇Q(Θn|Θn) describes the gradient step
of the GEM algorithm. The gradient ∇log p(y|x,Θn) on the left-hand-side
depends on the network probability density p(y|x,Θn). It thus depends on
the network structure as we discussed above. This paper focuses on the
two important cases of classification and regression. Classification picks
the network probability p(y|x,Θn) as a one-shot multinomial or cate-
gorical distribution for K output patterns or categories. So a pass through
the network corresponds to the roll of a K-sided die. This structure arises
in part from the 1-in-K encoding of the K target patterns or videos as K
unit bit vectors. It also arises from the use of softmax output neurons and

Fig. 9. Noise-boosted accuracy performance of LSTM-RNN classifiers trained on the UCF-11 sports-action YouTube video dataset. The best accuracy resulted from
additive NEM-noise injection in both the output and hidden neurons. (a) Noise injection in the output layer. (b) Noise injection in the hidden units. (c) Noise injection
in both the output neurons and hidden neurons.

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

7

a cross-entropy performance measure. Taking the logarithm of the one-
roll multinomial probabilities gives the log-likelihood as the negative
cross-entropy. So minimizing the cross-entropy maximizes the network
likelihood. A direct calculation shows that the gradient of this cross-
entropy gives back precisely the backpropagation learning laws [38].

The same backpropagation learning laws result for a regression
network if the network probability p(y|x,Θn) is a multidimensional
Gaussian probability and the output neurons have identity activation
functions. Therefore its log-likelihood is proportional to the negative
summed squared error if the covariance matrix is diagonal. Then mini-
mizing the summed squared error again maximizes the network likeli-
hood. Different network structures will give back the same invariant
backpropagation learning laws if the user picks the appropriate output
activation functions and performance measures.

We show next how to noise-boost backpropagation by way of noise-
boosting the EM algorithm.

3. Noise-Boosting the EM Algorithm

The Noisy EM Theorem shows that noise injection will speed up the
EM algorithm on average if the noise obeys the NEM positivity condition
[39,40]. The Noisy EM Theorem for additive noise states that a NEM
noise benefit holds on average at each iteration n if the following posi-
tivity condition holds:

Ex,h,N|Θ*

[

log
(

p(x + N,h|Θn)

p(x,h|Θn)

)]

⩾0. (23)

Then the surrogate-likelihood EM noise benefit

Q(Θn|Θ*)⩽QN(Θn|Θ*) (24)

holds on average at iteration n:

Ex,N|Θn [Q(Θn|Θ*) − QN(Θn|Θ*)]⩽Ex|Θn [Q(Θ*|Θ*) − Q(Θn|Θ*)] (25)

where Θ* denotes the maximum-likelihood vector of parameters. The
NEM positivity condition (23) has a simple form for Gaussian mixture
models [46] and for classification and regression networks [15,38]. The
intuition behind the NEM sufficient condition (23) is that some noise
realizations n make a signal x more probable:

f (x+n|Θ)⩾f (x|Θ). (26)

Taking logarithms gives the key log-likelihood ratio:

log
(

f (x + n|Θ)

f (x|Θ)

)

⩾0. (27)

Taking expectations gives a NEM-like positivity condition. The proof
of the NEM Theorem uses Kullback–Leibler divergence to show that the
noise-boosted likelihood is closer on average at each iteration to the
optimal likelihood function than is the noiseless likelihood [40]. The
proofs of Theorems 4 and 5 below appeal to the average noise-based
inequality (26).

The pointwise NEM inequality (26) also helps explain the observed
NEM-based accuracy improvement in the simulated recurrent neural
networks below. Consider the case of a classifier neural network N : Rn→
[0, 1]K with the usual 1-in-K encoding for the network’s K output neurons
with softmax or Gibbs activation. We assign each output training vector t
to exactly one of the K unit-bit basis vectors [1, 0,0,…,0], [0, 1,0,…,0],
…, [0, 0,…,1] based on the class membership of the corresponding input
pattern vector x. So we assign the input vector x from the kth pattern
class to the kth output basis vector that has a 1 in the kth slot and has 0s
elsewhere. The K softmax output neurons in (38) produce a discrete
length-K probability vector ay ∈ [0, 1]K. The softmax output neurons give
rise to an output probability p(y|x,Θ) =

∏K
j=1pj(yj|x,Θ) as a one-shot

multinomial probability density in accord with BP invariance. Then

(26) gives on average a NEM accuracy boost:

pj(yj + nj|x,Θ)⩾pj(yj|x,Θ). (28)

We measure the classifier’s accuracy on a test set of T samples by
dividing the number of correct classifications (true positives) by the
number T of trials. But an input x from category j leads to a correct
classification if and only if the corresponding output activation is such
that ay

j ⩾ay
i for all i where again the non-negative softmax activation ay

k

sum to unity for each input vector x. So the NEM-boost (28) from a
probability-increasing noise realization Nj = nj can only increase the
chance that the output activation a(y)NEM

k wins the output competition for
input x on average. The normalization effect of the softmax units like-
wise can only decrease the other K − 1 activations on average. A NEM-
based accuracy argument also follows from the likelihood structure of
the NEM sufficient condition in [38].

We also observe that the NEM positivity inequality (23) is not
vacuous. This holds because the expectation in (23) conditions on the
converged parameter vector Θ* rather than on the current estimated
parameter vector Θn. Vacuity would result in the usual case of averaging
a log-likelihood ratio. Take the expectation of the log-likelihood ratio
log f(x|Θ)

g(x|Θ)
with respect to the probability density function g(x|Θ) to give

Eg

[
log f(x|Θ)

g(x|Θ)

]
. Then Jensen’s inequality and the concavity of the loga-

rithm imply that Eg

[
log f(x|Θ)

g(x|Θ)

]
⩽log Eg

[
f(x|Θ)

g(x|Θ)

]
= log

∫

x
f(x|Θ)

g(x|Θ)
g(x|Θ)dx =

log
∫

xf(x|Θ)dx = log 1 = 0. So Eg

[
log f(x|θ)

g(x|θ)

]
⩽0 holds. But the expectation

in (23) does not in general lead to this cancellation of probability den-
sities because the integrating density in (23) depends on the optimal
maximum-likelihood parameter Θ* rather than on just Θn [40]. So
density cancellation occurs only when the NEM algorithm has converged
to a local likelihood maximum because then Θn = Θ*.

The NEM theorem simplifies for a classifier network with K softmax
output neurons. Then the additive noise must lie above the defining
NEM hyperplane [15]. A similar NEM result holds for regression except
that then the noise-benefit region defines a hypersphere. NEM noise can
also inject into the hidden neurons. Theorems 2–5 extend these NEM
results for recurrent classifiers and regression models.

4. Backpropagation Training of Recurrent Neural Networks

A recurrent neural network (RNN) has a form of controlled feedback
in its throughput structure. This internal feedback structure endows the

Fig. 10. Time-series data for the average daily exchange rate of the US dollar to
the Indian rupee over the 9,697 business days from January 1980 to August
2017. The recurrent neural networks trained on the data from day 0 to day
8,000–from January 1980 to February 2011. We tested the RNN models on the
exchange-rate data from day 8,001 to day 9,697–from March 2011 to
August 2017.

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

8

otherwise feedforward network with a dynamical structure. The feed-
back does not extend to the network output feeding back to become an
input to the network. So the network’s overall structure is still
feedforward.

An RNN’s internal feedback lets it process sampled time-varying
data. RNNs are suitable for data processing with long time-lag de-
pendencies [3] such as speech and large-language-model processing,
video classification, and stock price prediction [10]. An RNN takes an
input over a discretized time window T. The popular Long Short-Term
Memory (LSTM) network is a deep RNN that can process time-varying
data [3]. LSTM-RNNs have outperformed many other methods in
areas such as natural language processing, speech recognition, and
handwriting recognition [20,47,48]. A single LSTM unit consists of I
input neurons, J hidden units, and K output neurons. LSTM uses control
gates for the input, hidden, and output layers. An input gate controls the
input. A forget gate controls the hidden cells. An output gate controls the
output [3].

An alternative RNN architecture is the Gated Recurrent Unit (GRU)
network. A GRU network resembles an LSTM network because it also
uses a gating mechanism. But a GRU network does so with fewer pa-
rameters than does an LSTM network [21]. This makes GRU training
faster than LSTM training. A GRU network merges the output and forget
gates into a single gate. It also merges the hidden cell and memory unit
into one unit. GRU performance is similar to that of LSTM in areas such
as music modeling and speech recognition [22]. We develop noise-
boosted versions of both LSTM and GRU-RNNs. The simplest cases
inject NEM noise additively or multiplicatively into only the output
neurons. More complex versions inject NEM noise into the hidden units

as well as into the output neurons.

4.1. Long Short-Term Memory (LSTM) Recurrent Neural Networks

This section develops the RBP learning algorithm for an LSTM
recurrent network [3]. An LSTM network consists of I input neurons, J
hidden neurons, and K output neurons. It also uses control gates for the
input, hidden, and output layers. The input gate controls the input
activation, the forget gate controls the hidden unit, and the output gate
controls the output activation. These gates each have J neurons. The
LSTM network captures the time dependency of the input data where the
time index t takes values in {1, 2, ….., T}.

The backpropagation training of an LSTM network iterates the for-
ward pass of the input vector and the backward pass of the error. The
forward pass propagates the input vector from the input layer to the
output layer. The output layer has output activation a y. The backward
pass propagates the error from the output layer back to the input layer
and updates the network’s weights. We alternate these two directional
passes until the network’s weights or parameters converge. The RBP
seeks those weights that maximize the system performance or minimize
the error function E(Θ).

Appendix B presents RBP training algorithm for the LSTM-RNN.
Appendix B.1 shows the forward pass across an LSTM-RNN. The for-
ward pass propagates the input {x(t)}T

t=1 over the network from the input
layer through the gates and hidden units to the output layer. The choice
of output activation depends on the network architecture of the output
layer. The output neurons uses softmax activation if the network is a
classifier while the output activation for a regression model is an identity
function [49,50].

Appendix B.2 presents the backward pass of RBP training with an
LSTM-RNN. The backward pass shows the partial derivatives for
updating the parameters of the network. The update rule for the network
parameter Θ after n training epochs follows from the following equation:

Θn+1 = Θn − η∇ΘE(Θ)|Θ=Θn (29)

where η is the learning rate and Θ can be any of the network parameters.
Eqs. (B.15), (B.22), (B.23), (B.26)–(B.62), (B.64)–(B.67), (B.69)–(B.72),
(B.75)–(B.79), (B.81)–(B.84), (B.87)–(B.90), (B.92), (B.93) give the
partial derivatives of the LSTM-RNN parameters over the backward
pass. The partial derivatives form the update or learning rules for the
RBP training of an LSTM-RNN. The update or learning rules for the RBP
training is the same for both classifier and regression models because of
BP invariance.

4.2. Gated Recurrent Unit (GRU) Recurrent Neural Networks

Gated-recurrent-unit (GRU) models offer a recent alternative to the
LSTM recurrent networks [21]. GRU networks resemble LSTM because

Fig. 11. LSTM-RNN predictions of the dollar-rupee exchange rate for additive
NEM-noise injection in the output neurons, in the hidden neurons, and in both
output and hidden neurons.

Fig. 12. Noise-boosted prediction performance of LSTM-RNN regression models trained on the dollar-rupee exchange-rate dataset. The models used additive noise
samples. The best results used NEM-noise injection in both the output layer and hidden units. (a) Noise injection in only the output layer. (b) Noise injection only in
the hidden units. (c) Noise injection in both the the output neurons and hidden neurons.

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

9

they both use gating mechanisms. But GRU networks use comparatively
fewer gates. GRU networks merge the hidden cell and the hidden
memory into a single unit. This reduces both the number of parameters
and the computational cost. GRU networks also use an update gate and a
reset gate. So there is no forget gate. GRU networks combine the internal
cell and hidden memory into a single unit. This further reduces the
number of network parameters.

The RBP training of a GRU-RNN iterates the forward pass of the input
vector and the backward pass of the error over time index t. The forward
pass propagates the input vector from the input layer to the output layer
over the time index. The output layer has output activation ay(t) at time t.
The backward pass propagates the error from the output layer back to
the input layer and updates the network’s weights. We alternate these
two directional passes until the network’s weights or parameters
converge. RBP seeks those weights that maximize the system perfor-
mance or minimize the error function E(Θ).

Appendix C gives the RBP algorithm for the GRU-RNN. Appendix C.1
gives the forward pass across a GRU-RNN. The forward pass feeds the
input {x(t)}T

t=1 and propagates the input through the hidden units and
gates to the output layer. Similarly the output activation of the network
depends on the structure of the architecture of the output layer. A
classifier uses softmax activation and a regression model uses an identity
activation. Appendix C.2 gives the backward pass across a GRU-RNN.
The backward pass presents the partial derivatives and the update
rules for training the parameters of the GRU-RNN. These partial de-
rivatives form the update or learning rules for the RBP training of a GRU-
RNN. These partial derivatives form the update rules for training a GRU-
RNN with the RBP algorithm.

We turn next to noise-boosting RBP by way of BP invariance and the
BP-GEM gradient identity ∇log p(y|x,Θn) = ∇Q(Θn|Θn) from (18)–(19).

5. NEM Noise Injection in Recurrent Backpropagation

We now show how to inject NEM noise into the RBP training of a
recurrent neural network. The NEM noise can inject into both the output
neurons and any of the hidden neurons. Extensive simulations show that
classifiers tend to get the most benefit from noise injection into their
output neurons. Regression models tend to get more benefit from noise
injection into their hidden neurons. The sufficient condition for a NEM-
noise benefit differs for classifier and regression model networks
because these two types of networks have different output log-
likelihoods that arise from BP invariance. The conditions are similar
for additive and multiplicative noise injection.

The RBP trains RNNs so as to iteratively minimize some error func-
tion E(Θ). BP invariance implies that this is the same as iteratively

maximizing the network log-likelihood L. The time-sampled version of
the error function E(Θ) sums the error function’s corresponding time
slices

E(Θ) =
∑T

t=t0

E(t) (30)

where E(t) is the output error at time t and 1⩽t0⩽T. RBP uses gradient
descent or any of its variants to iteratively minimize E(Θ) with respect to
the weights or parameters of the RNN [42]. The output-layer time-slice
error E(t) equals the cross entropy for a classifier network [50] and
equals the squared error for a regression network at time t. The net-
work’s total output log-likelihood L(Θ) takes the logarithm of the output
conditional probability p(y|x,Θ) that itself factors in terms of both the
time slices and the K output neurons where t0 ∈ {1, …., T}. The error
function simplifies as follows:

E(Θ) =
∑T

t=t0

E(t) (31)

= −
∑T

t=t0

∑K

k=1
y(t)k log ay(t)

k (32)

= −
∑T

t=t0

log

(
∏K

k=1
pk(y(t) = y(t)k |x,Θ)

)

(33)

= −
∑T

t=t0

log p(y(t)|x,Θ) (34)

= − log
∏T

t=t0

p(y(t)|x,Θ) (35)

= − log p(y|x,Θ) (36)

= − L(Θ). (37)

So minimizing the error E(Θ) maximizes the log-likelihood L(Θ) for
classification or regression for any other type of recurrent network
whose global probability structure obeys BP invariance.

BP invariance ensures that the gradient ∇ΘL gives back the same BP
learning laws at a given layer. The output-layer probability density
function p(y(t)|x,Θ) for classification is a categorical or one-shot multi-
nomial probability density: y(t) ∼ Multinomial(ay(t)). So the recurrent
classifier’s total conditional probability at the output layer is p(y|x,Θ) =

Fig. 13. Noise-boosted prediction performance of LSTM-RNN regression models trained on the dollar-rupee exchange-rate dataset. The models used multiplicative
noise samples. The best results used NEM-noise injection in both the output layer and hidden units. (a) Noise injection in only the output layer. (b) Noise injection
only in the hidden units. (c) Noise injection in both the the output neurons and hidden neurons.

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

10

∏T
t=t0
∏K

k=1
(
ay(t)

k
)y(t)k . The probability density function of y(t) for regres-

sion is the vector normal density: y(t) ∼ N (y(t)|ay(t), I) with population
mean vector ay(t) and identity covariance matrix I. So the recurrent
regression model’s total output conditional probability at the output
layer is p(y|x, Θ) =

∏T
t=t0 N (y(t)|ay(t), I). This layer likelihood can also

approximate the likelihood of a hidden layer of rectified-linear-unit or
ReLU neurons because such activations have the truncated-identity form
max(0,x). The likelihood function of a layer of logistic-sigmoid neurons
has the from of a double cross entropy.

5.1. NEM Noise Injection in Recurrent Network’s Output Neurons

The sufficient condition for a NEM-noise benefit in a recurrent
network depends on the output log-likelihood L because of BP invari-
ance. So it depends both on the error function and the structure of the
output neurons. Noise injection in hidden layers treats such layers as
modified output layers in the recursive training [38]. So the NEM suf-
ficient condition for a given layer also depends on that layer’s log-
likelihood and thus in turn on that layer’s error function and the acti-
vation structure of the neurons in that layer in accord with (2)–(3).

We first derive the NEM noise-benefit conditions for noise injection
into the output neurons of a recurrent classifier network and a recurrent
regression network. The benefit condition for additive noise injection
leads at once to a similar condition for multiplicative noise injection.
This result generalizes to any measurable combination of the signal and
noise because of the corresponding general result for noise-boosting
[40].

5.1.1. Noise-boosting an RBP Classifier
Recurrent neural classifiers also use Gibbs or softmax activation

functions for their K output neurons:

ay(t)
k =

exp
(
oy(t)

k

)

∑K

l=1
exp
(
oy(t)

l

)
(38)

where ay(t)
k is the activation of the kth output neuron and oy(t)

k is the input
to the kth output neuron at time t. The classifier scheme also uses 1-in-K
encoding for the time-varying patterns from the K pattern classes. So the
ideal classifier maps a time-varying pattern from the kth pattern class to
the kth basis vector ek where the unit bit vector ek has a 1 in the kth slot
and has 0s elsewhere.

We represent a time-varying signal or pattern x with its T-many or-
dered samples or time slices. Then the recurrent classifier’s error

function E(Θ) sums the output cross entropy over the T time slices for a
given input x:

E(Θ) = −
∑T

t=t0

∑K

k=1
y(t)k log ay(t)

k (39)

where y(t)k ∈ {0,1}. BP invariance requires that the recurrent classifier’s
output conditional probability p(y|x,Θ) is a time-factored one-shot

multinomial probability p(y|x,Θ) =
∏T

t=t0
∏K

k=1
(
ay(t)

k
)y(t)k . Then the cor-

responding output log-likelihood L is just the negative of the cross en-
tropy E(Θ) from (31)–(37) and thus L(Θ) = − E(Θ). So RBP iteratively
maximizes the log-likelihood function for a RNN classifier. We now
restate the NEM theorem for an RNN classifier [42]. The theorem gives a
sufficient condition for injecting beneficial additive noise in the classi-
fier’s output neurons.

Theorem 2. NEM Noise Benefit for an RNN Classifier with Additive
Noise Injection into the Output Neurons

The NEM noise-benefit positivity condition (23) holds for the maximum-
likelihood training of a classifier recurrent neural network with additive noise
injection into its K output softmax neurons if the following hyperplane con-
dition holds:

Ey,h,n|x,Θ*

[
∑T

t=to

(n(t))
T log ay(t)

]

⩾0 (40)

where the additive noise n(t) injects into the output neurons and ay(t) is the
output activation. Appendix A.1 shows the proof for Theorem 2.
Fig. 1a shows the additive noise samples that inject in the output neu-
rons of a classifier. The noise samples satisfy the inequality in (40). The
noise samples below the NEM hyperplane satisfies the NEM positivity
condition in (23) with respect to ay = [0.6,0.3, 0.1] and y = [1.0, 0.0,
0.0]. The additive NEM noise samples in this case are the random sam-
ples from a multivariate Gaussian probability density function with
mean vector 0, identity covariance I, and satisfy the corresponding
inequality condition in (40) with respect to ay and y. The additive NEM
noise condition is not limited to Gaussian noise samples.

NEM noise can also inject multiplicatively into the output neurons of
the recurrent classifier. Theorem 2 simplifies to the next corollary for
multiplicative NEM noise injected into the output neurons of recurrent
neural classifiers.

Corollary 1. Multiplicative NEM-Noise Injection into the Output
Neurons of a Classifier

The NEM positivity condition (23) holds for the maximum-likelihood

Fig. 14. Noise-boosted prediction performance of GRU-RNN regression models trained on the dollar-rupee exchange-rate dataset. The best predictions in terms of
least average squared error resulted from the Additive NEM-noise injection in both the output and hidden neurons. (a) Additive noise injection in only the output
layer. (b) Noise injection in only the hidden units. (c) Noise injection in both the output neurons and hidden neurons.

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

11

training of a recurrent classifier neural network with multiplicative noise
injection into the output softmax neurons if the following condition holds:

Ey,h,n|x,Θ*

[
∑T

t=to

((n(t) − 1)∘y(t))
T log ay(t)

]

⩾0 (41)

where n(t) is the NEM noise that multiplies the output neuron with the output
activation ay(t) and ∘ is the Hadamard product. The proof in this mul-
tiplicative case tracks the proof for additive NEM noise in a classifier’s
output neurons from Appendix A.1. The proof replaces p(y+n,h|x,Θ)

with p(y∘n, h|x,Θ) in (A.2)–(A.6) where y∘n denotes the pairwise
multiplication of the signal vector y and the noise vector n. The result
gives the equivalent NEM positivity condition in (41).

Fig. 4 shows the multiplicative noise samples that inject into the
output neurons of a recurrent neural classifier. The noise samples on left
side of the NEM hyperplane satisfy the NEM positivity condition in (23)
with respect to ay = [0.6,0.3, 0.1] and y = [1.0, 0.0, 0.0]. The multipli-
cative NEM noise samples in this case are the random samples from a
multivariate Gaussian density with mean vector 1, identity covariance
matrix I, and satisfy the corresponding inequality condition in (41) with
respect to ay and y. The multiplicative NEM condition is not limited to
Gaussian noise samples.

5.1.2. NEM Noise Injection in a Recurrent Regression Network
Regression networks approximate functions that take values in real

vector spaces. A time-varying pattern defines a curve in such a space. Its
sampled version defines a point in a finite product of such vector spaces.

The regression approximation entails that the network’s output need
not define a length-K probability vector in general. Each output neuron
should be free to equal any real number. So regression networks use
identity activation for output neurons. The output activations can also
be linear or affine. The output activation ay(t) for a regression network is
the identity activation because it equals its own input:

ay(t)
k = oy(t)

k . (42)

The error function is the squared error E(Θ) over all the time slices:

E(Θ) =
∑T

t=to

||y(t) − ay(t)||
2
. (43)

The output log-likelihood L of the RNN regressor is

L(Θ) = log
∏T

t=to

p(y(t)|x,Θ) (44)

= log
∏T

t=to

1
(2π)

K
2

exp

(

−
||y(t) − ay(t)||

2

2

)

(45)

= log
∏T

t=to

∏K

k=1

1̅̅
̅̅̅

2π
√ exp

(

−
|y(t)k − ay(t)

k |
2

2

)

(46)

= −
∑T

t=to

(
K
2

log 2π +
1
2
||y(t) − ay(t)||

2
)

. (47)

RBP trains the RNN regression model by iteratively maximizing the
log-likelihood L(Θ) in (47). We point out again that BP invariance re-
quires that this likelihood maximization occur successively at each
hidden layer as well as at the output layer. We show next how to inject
beneficial additive NEM noise into the output neurons of a RNN
regression model. We then extend this hyper-spherical result to NEM
noise injection into the hidden neurons.

Theorem 3. RBP Noise Benefit for a Regression RNN with Additive
Noise Injection into the Output Neurons.

The NEM positivity condition (23) holds for the maximum-likelihood

training of a regression recurrent neural network with Gaussian target vec-
tor y(t) ∼ N (y(t)|ay(t), I) and with additive noise injection into the output
identity neurons if the following hyper-spherical inequality condition holds:

Ey,h,n|x,Θ*

[
∑T

t=t0

||y(t) + n(t) − ay(t)||
2

]

− Ey,h,n|x,Θ*

[
∑T

t=t0

||y(t) − ay(t)||
2

]

⩽0 (48)

where the noise n(t) injects additively into the output neurons and where
ay(t) is the output activation.

Appendix A.1 gives the proof of Theorem 3 and derives the hyper-
spherical NEM condition.

Fig. 5 shows the additive noise samples that inject in the output
neurons of a neural regression network and obey the hyper-spherical
NEM-noise condition of Theorem 3. The noise samples inside the NEM
sphere satisfy the NEM positivity condition in (23) with respect to ay =

[1.0, 2.0,1.0] and y = [2.0,3.0,2.0]. The additive NEM noise samples in
this case come from random samples from a multivariate Gaussian
density with mean vector 0, identity covariance I, and satisfy the cor-
responding inequality condition in (48) with respect to ay and y. We
point out again that the additive NEM condition is not limited to
Gaussian noise samples.

Multiplicative NEM noise can also inject into the output neurons of
the recurrent regression model. Theorem 3 implies the next corollary
that shows how to inject multiplicative NEM noise into the output
neurons of a recurrent regression network.

Corollary 2. Multiplicative NEM Noise Injection into the Output
Neurons of a Regression RNN.

The NEM positivity condition (23) holds for the maximum-likelihood
training of a regression recurrent neural network with Gaussian target vec-
tor y(t) ∼ N (y(t)|ay(t), I) and multiplicative noise injection into the output
neurons if the following inequality condition holds:

Ey,h,n|x,Θ*

[
∑T

t=t0

(
2y(t) + 2n(t) − ay(t))T n(t)

]

⩽0 (49)

where n(t) is the multiplicative noise injected into the output neurons and ay(t)

is the output activation at time t. The proof tracks the proof for injecting
additive NEM noise in a regression network from Appendix A.1. We just
replace p(y+n, h|x,Θ) with p(y∘n,h|x,Θ) in (A.16)–(A.20). The result
reduces the NEM positivity condition to the inequality in (49). Fig. 6
shows the multiplicative noise samples that inject into the output neu-
rons of a regression recurrent neural network. The noise samples inside
the NEM ellipsoid satisfies the inequality condition in (49) with respect
to ay = [1.0, 2.0, 1.0] and y = [2.0, 3.0, 2.0]. The multiplicative NEM
noise samples come from picking random samples from a multivariate
Gaussian density with mean vector 0, identity covariance I, and satisfy
the corresponding inequality in (49) with respect to ay and y. The
definition of the multiplicative NEM condition is not restricted to
Gaussian distribution samples.

5.2. NEM Noise Injection into a RNN’s Hidden Layers

We show next how to inject beneficial NEM noise into the hidden
units of a RNN. This noise injection applies to both the LSTM and GRU-
RNNs. The proof technique extends that in [38]. The RBP algorithm
trains RNNs by iteratively maximizing the log-likelihood function L(Θ).
Theorem 1 above states that the backpropagation is a form of general-
ized expectation maximization. Then maximizing the log-likelihood
logp(y|x,Θ) maximizes the differentiable Q-function

Q(Θ|Θn) = Ep(z|y,x,Θn)[log p(z, y|x,Θ)] (50)

where z denotes the hidden or latent variables.
RBP depends on the time index t. The RBP log-likelihood L(Θ) equals

the product of time-indexed log-likelihood functions. Then (37) shows

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

12

that the log-likelihood L(Θ) for RBP and the update rule for the nth

training epoch with RBP and learning rate η is

Θn+1 = Θn + η∇ΘL(Θ)|Θ=Θn (51)

= Θn + η∇Θ

∑T

t=t0

L(Θ)
(t)
|Θ=Θn (52)

= Θn + η
∑T

t=t0

∇Θlog p(y(t)|x,Θ)|Θ=Θn (53)

= Θn + η
∑T

t=t0

∇ΘQ(Θ|Θn)
(t)
|Θ=Θn (54)

because Theorem 1 shows that

∇Θlog p(y(t)|x,Θ)|Θ=Θn = ∇ΘQ(Θ|Θn)
(t)
|Θ=Θn . (55)

The surrogate likelihood Q-function for time t has the form

Q(Θ|Θn)
(t)

=
∑

z(t)
p(z(t)|y(t), x,Θn)log p(z(t), y(t)|x,Θ) (56)

where z(t) is the latent variable for the hidden units at time t. The
computational cost of computing p(z(t)|y(t), x,Θn) is high because it re-
quires T × 2J samples over the entire time window T. We can use Monte
Carlo importance sampling to approximate Q(Θ|Θn)

(t) as in [38]. This
approximation assumes Bernoulli random variable for latent variable
z(t). This means that z(t)j can take up either 0 or 1 and the conditional
probabilities are

p(z(t)j = 1|x,Θ) = az(t)
j (57)

p(z(t)j = 0|x,Θ) = 1 − az(t)
j (58)

where az(t)
j is the activation of the jth neuron in the hidden unit z(t). The

neurons in each single unit are independent so the joint probability
density function factors into product of marginals

p(z(t)|x,Θn) =
∏J

j=1
p(z(t)j |x,Θn) (59)

=
∏J

j=1

(
az(t)

j

)z(t)j
(

1 − az(t)
j

)1− z(t)j
(60)

where z(t)j ∈ {0, 1}. The conditional probability p(z(t)|y(t), x,Θn) for the
hidden unit z(t) is as follows:

p(z(t)|y(t), x,Θn) =
p(z(t), y(t)|x,Θn)

p(y(t)|x,Θn)
(61)

=
p(y(t)|z(t), x,Θn)p(z(t)|x,Θn)
∑

z(t)
p(y(t)|z(t), x,Θn)p(z(t)|x,Θn)

. (62)

Monte Carlo can approximate p(z(t)|x,Θn) with M independent and
identically distributed Bernoulli samples. Then the approximation con-
verges almost surely to the desired probability density function p(z(t)|x,
Θn) in accord with the strong law of large numbers because the
approximation is just a sample mean or a random sample [51]:

p(z(t)|x,Θn) ≈
1
M

∑M

m=1
δK(z(t) − zm(t)) (63)

where δK is the J-dimensional Kronecker delta and where zm(t) is the mth

sample at time t. We approximate p(z(t)|y(t), x,Θn) by using the Monte

Carlo estimator of p(z(t)|x,Θn) in (62). The importance-sampling
approximation for the conditional probability density function is

p(z(t)|y(t), x,Θn) ≈

∑M

m=1
δK(z(t) − zm(t))p(y(t)|z(t), x,Θn)

∑M

m1=1
p(y(t)|zm1(t), x,Θn)

(64)

=
∑M

m=1
δK(z(t) − zm(t))γm(t) (65)

where the parameter γm(t) is

γm(t) =
p(y(t)|zm(t), x,Θn)

∑M

m=1
p(y(t)|zm(t), x,Θn)

(66)

and zm(t) is the mth samples for latent variable z at time t. The term γm(t)

measures the relative importance of sample zm(t) with respect to other
samples. The Monte Carlo approximation for Q(Θ|Θn)

(t) is

Q(Θ|Θn)
(t)

≈
∑

z(t)

∑M

m=1

(
γm(t)δK(z(t) − zm(t)) ×

[
log p(z(t)|x,Θ)

+ log p(y(t)|z(t), x,Θ)
])

(67)

≈
∑M

m=1
γm(t)[log p(zm(t)|x,Θ) + log p(y(t)|zm(t), x,Θ)

]
. (68)

The Monte Carlo approximation for the noisy surrogate likelihood
QN(Θ|Θn) is

QN(Θ|Θn)
(t)

≈
∑

z(t)

∑M

m=1

(
γm(t)δK(z(t) − zm(t)) ×

[
log p(y(t)|z(t), x,Θ)

+ log p(z(t) + n(t)|x,Θ)
])

(69)

≈
∑M

m=1
γm(t)[log p(zm(t) + n(t)|x,Θ) + log p(y(t)|zm(t), x,Θ)

]
. (70)

We saw above that the log-likelihood factors as follows:
logp(y|x,Θ) = Q(Θ|Θn)+H(Θ|Θn) for the entropy term H(Θ|Θn) =

− Ez|y,x,Θn [log p(z|y, x,Θ)]. Then the log-likelihood L(Θ) for the RNN is

L(Θ) =
∑T

t=t0

log p(y(t)|x,Θ) (71)

=
∑T

t=t0

(
Q(Θ|Θn)

(t)
+ H(Θ|Θn)

(t)
)

(72)

= Q(Θ|Θn)+H(Θ|Θn) (73)

where Q(Θ|Θn) sums the time-indexed surrogate likelihoods Q(Θ|Θn)
(t)

over 1⩽t0⩽T. We next derive sufficient conditions for NEM noise injec-
tion in the hidden units of LSTM and GRU recurrent networks.

5.2.1. NEM Noise Injection into the Hidden Units of a Long Short-Term
Memory (LSTM) RNN

The next result shows how to inject NEM noise into the hidden units
of an LSTM network. An LSTM-RNN uses three sigmoidal gates: the
input, forget, and output gates. The hidden variable z(t) denotes the
gates. The terms i(t), f(t), and o(t) represent the respective activations for
input, forget and output gates. These gates are statistically independent.
The terms z(t)i , z(t)f , and z(t)o are the respective latent variables for the
input, forget, and output gates. The conditional probability density
function p(z(t)|x,Θ) is

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

13

p(z(t)|x,Θ) = p(z(t)i , z(t)f , z(t)o |x,Θ) (74)

= p(z(t)i |x,Θ)p(z(t)f |x,Θ)p(z(t)o |x,Θ) (75)

because of the statistical independence. The terms n(t)
i ,n(t)

f , and n(t)
o are

the respective noise injections into the input, forget, and output gates.
Then the noise-injected likelihood has the form

p(z(t) + n(t)|x,Θ) = p(z(t)i + n(t)
i , z(t)f + n(t)

i , z(t)o + n(t)
o |x,Θ) (76)

= p(z(t)i + n(t)
i |x,Θ)p(z(t)f +n(t)

f |x,Θ) × p(z(t)o + n(t)
o |x,Θ). (77)

Putting (56) in (51) gives the surrogate likelihood Q(Θ|Θn)
(t) for an

LSTM-RNN. Putting (57) in (52) gives the noisy surrogate likelihood
QN(Θ|Θn)

(t) for an LSTM-RNN. These results lead to the next theorem.

Theorem 4. Injecting NEM Noise into the Hidden Neurons of an LSTM-
RNN.

A NEM noise benefit holds for the iterative maximum-likelihood training
of an LSTM-RNN with additive noise injection into the hidden units (gates) if
the following positivity condition holds:

Ez,n|y,x,Θ*

[

log
(

p(z + n|y, x,Θ)

p(z|y, x,Θ)

)]

⩾0. (78)

This inequality reduces to

Ez,n|y,x,Θ*

[
∑T

t=t0

((
n(t)

i

)T
log

i(t)

1 − i(t)
+
(

n(t)
f

)T
log

f(t)

1 − f(t)

+
(
n(t)

o

)T log
o(t)

1 − o(t)

)]

⩾0 (79)

where the noises n(t)
i , n(t)

f , and n(t)
o inject additively into the respective input,

forget, and output gates at time t. The terms i(t), f(t), and o(t) denote the ac-
tivations for the respective input, forget, and output gates. Appendix A.2
presents the proof for Theorem 4. The NEM noise can also inject
multiplicatively into the hidden units (gates) of the LSTM-RNN. Theo-
rem 4 simplifies to the following corollary with multiplicative NEM
noise into the gates of the LSTM-RNN.

Corollary 3. Multiplicative NEM Noise Injection into the Hidden
Neurons of an LSTM-RNN.

A NEM noise benefit holds for iterative maximum-likelihood training of
an LSTM-RNN with multiplicative noise injection into the hidden units (gates)
if the following positivity condition holds:

Ez,n|y,x,Θ*

[

log
(

p(z∘n|y, x,Θ)

p(z|y, x,Θ)

)]

⩾0. (80)

This inequality reduces to

Ez,n|y,x,Θ*

[
∑T

t=t0

((
z(t)i ∘n(t)

i − z(t)i

)T
log

i(t)

1 − i(t)

+
(

z(t)f ∘n(t)
f − z(t)f

)T
log

f(t)

1 − f(t)

+
(
z(t)o ∘n(t)

o − z(t)o

)T log
o(t)

1 − o(t)

)]

⩾0

(81)

where ∘ is the Hadamard product, the noises n(t)
i , n(t)

f , and n(t)
o inject multi-

plicatively into the respective input, forget, output gates at time t. The terms
i(t), f(t), and o(t) are the activations for the respective input, forget, and output
gates. The proof for Corollary 3 follows from replacing the additive
noise with a multiplicative version in Appendix A.2. The proof replaces
p(z+n,h|x,Θ) with p(z∘n, h|x,Θ) in (A.26)–(A.32). The result gives the
positivity condition in (81).

5.2.2. NEM Noise Injection into the Hidden Units of a Gated-Recurrent-
Unit GRU-RNN

Noise injection into the hidden units of a GRU-RNN has the same
form as in the case of an LSTM-RNN. The GRU gating mechanism differs
from that of the LSTM because the GRU uses two gates (update and
reset) instead of three gates. The terms d(t) and r(t), and represent the
respective activations for update and reset gates. The terms z(t)d , and z(t)r

are the respective latent variables for the update and reset gates. These
gates are also statistically independent. Then the likelihood p(z(t)|y, x,Θ)

has the factored form

p(z(t)|y, x,Θ) = p(z(t)d , z(t)r |y, x,Θ) (82)

= p(z(t)d |y, x,Θ)p(z(t)r |y, x,Θ). (83)

The terms n(t)
d and n(t)

r are the respective noise injections into the
update and reset gates. The noise likelihood p(z(t) +n(t)|y, x,Θ) has the
related factored form

p(z(t) +n(t)|y, x,Θ) = p(z(t)d + n(t)
d , z(t)r +n(t)

r |y, x,Θ) (84)

= p(z(t)d + n(t)
d |y, x,Θ)p(z(t)r + n(t)

r |y, x,Θ). (85)

Theorem 5. Injecting NEM Noise into the Hidden Neurons a GRU-
RNN.

A NEM noise benefit holds for the iterative maximum-likelihood training
of a GRU-RNN with noise injection into the hidden units (gates) if the
following positivity condition holds:

Ez,n|y,x,Θ*

[

log
(

p(z + n|y, x,Θ)

p(z|y, x,Θ)

)]

⩾0. (86)

The inequality reduces to

Ez,n|y,x,Θ*

[
∑T

t=t0

((
n(t)

d

)T
log

d(t)

1 − d(t) +
(
n(t)

r

)T log
r(t)

1 − r(t)

)]

⩾0 (87)

where the noises n(t)
d and n(t)

r inject into the respective update and reset gates.
The terms d(t) and r(t) are the activations for the respective update and reset
gates at time t. Appendix A.2 presents the proof for Theorem 5. The
NEM noise can also inject multiplicatively into the hidden units (gates)
of a GRU-RNN. Theorem 4 simplifies to the following corollary with
multiplicative NEM noise into the gates of a GRU-RNN.

Corollary 4. Multiplicative NEM Noise Injection into the Hidden
Neurons of a GRU-RNN.

A NEM noise benefit holds for the iterative maximum-likelihood training
of a GRU-RNN with multiplicative noise injection into the hidden units
(gates) if the following positivity condition holds:

Ez,n|y,x,Θ*

[

log
(

p(z∘n|y, x,Θ)

p(z|y, x,Θ)

)]

⩾0 (88)

and this simplifies to

Ez,n|y,x,Θ*

[
∑T

t=t0

((
z(t)d ∘n(t)

d − z(t)d

)T
log

d(t)

1 − d(t)

+
(
z(t)r ∘n(t)

r − z(t)r

)T log
r(t)

1 − r(t)

)]

⩾0 (89)

where ∘ is the Hadamard product, n(t)
d and n(t)

r are the respective multipli-
cative noise injections into the update and reset gates at time t. The terms d(t)

and r(t) are the respective activations for update and reset gates. The proof
for Corollary 4 follows from replacing the additive noise with a multi-
plicative version in Appendix A.2. The proof replaces p(z+n,h|x,Θ) with

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

14

p(z∘n, h|x,Θ) in (A.26)–(A.32). The result gives the positivity condition
in (89). Algorithm 1 summarizes the process of injecting the additive
NEM noise into the hidden and output neurons of a GRU classifier. This
also extends to other modifications such as GRU regression model,
multiplicative noise, and LSTM-RNNs with the appropriate
modifications.

Algorithm1: The NEM-RBP algorithm for a GRU classifier with additive NEM noise
injection in the hidden and output neurons.

Data: M time-dependent input vectors {x1 ,…,xM}, the corresponding M target label
1-in-K vectors {y1,…,yM}, number of training epochs R, time offset t0, and the time
window T

Result: Trained GRU classifier weights Θ
While epoch r : 1→R do

While training data number m : 1→M do

• Compute the forward pass of the input data xm = {x(t)m }
T
t=1 forward through the

GRU classifier using (C.1)–(C.8)
• Compute the corresponding output softmax activation vector ay

m = {ay(t0)
m ,…,

ay(T)
m } using (38)
• Noise injection in the output neurons
For t=t0,…,T do
• Generate output noise vector n(t)

m

if n(t)T

m log(ay(t)
m)⩾0 then

• Add NEM noise: y(t)m ←y(t)m + n(t)
m ;

else
• Do nothing

• Compute the cross entropy between ay
m and ym = {y(t)m ,…, y(T)m } using (39)

• Back-propagate the error
• Noise injection in the input and output gates
For t=1,…,T do
• Generate hidden noise vectors nm(t)

d and nm(t)
r

If nm(t)T

d log
d(t)

m

1 − d(t)
m

⩾0 then

• Add NEM noise: d(t)
m ←d(t)

m + nm(t)
d

else
• Do nothing

If n(t)
r

T
log

r(t)m

1 − r(t)m
⩾0 then

• Add NEM noise: r(t)m ←r(t)m + nm(t)
r

else
• Do nothing

• Update the network parameter Θ using (29)

6. Simulation Results

We simulated the NEM noise algorithms for RBP training on recur-
rent classifiers and regression models. The recurrent classifiers had
either a long-short-term-memory or gated-recurrent-unit structure. The
same held for the recurrent regression models. We first present the
simulation results for the recurrent classifiers.

We trained recurrent neural classifiers on the standard UCF-11
sports-action YouTube video dataset [23,24]. The dataset consists of
11 categories of videos. The simulated RNNs had both long-short-term-
memory (LSTM) and gated-recurrent-unit (GRU) architectures. We
injected both additive and multiplicative NEM noise during the RBP
training of the RNN video classifiers. Fig. 2 shows the architecture of the
RNN classifiers.

We extracted 30,000 training samples from the UCF-11 videos that
consist of the following 11 categories: basketball shooting, cycling,
diving, golf-swing, horse riding, soccer juggling, swinging, tennis
swinging, trampoline jumping, volleyball spiking, and walking. We used
5:1 data splits for training and testing. So we used 6,000 video-clip
samples for testing the network after training. Each training instance
had 7 image frames from a sports-action video at the rate of 1.4 frames
per second. Each image frame in the dataset had 299× 299× 3 pixels. So
the size of each input was 299× 299× 3× 7.

Convolutional filters in the RNN extracted features from the images
and reduced the dimension of the input pattern space. Fig. 8 shows the
structure of the convolutional layers. The convolutional layers of a

trained inception-v3 network [43] extracted the features. It reduced the
dimension of each image to 2048× 1. This reduced the dimension of
each input to 2048× 1× 7. We fed the extracted features into the input
neurons of the RNN classifier and tried different numbers of hidden
neurons.

The hidden gates and memory all had the same number of neurons
for each trial. The output layer had 11 softmax neurons that coded for
the 11 categories of sports actions in the dataset. Fig. 7 shows 7 sampled
consecutive frames from a video in the diving category.

We compared RBP training without noise, RBP training with blind
noise, and RBP training with NEM noise. We also compared noise in-
jection in the output layer only, in the hidden layers only, and in both
the output and hidden neurons. We found the best performance with
NEM noise injection in both the hidden and output units.

6.1. Noise-boosted LSTM-RNN classifiers

We trained noise-boosted recurrent LSTM classifiers on the UCF-11
sports-video dataset [23,24]. Table 1 shows the classification accuracy
for different noise-boosted RBP training regimens.

Injecting additive blind noise had little effect on the RNN’s classifi-
cation accuracy. It slightly increased the classification accuracy in some
cases and it reduced it in others. Total blind-noise injection in the hidden
and output neurons decreased the classification accuracy by 1.15%. This
accuracy change used noiseless RBP as the baseline. The noiseless case
had a classification accuracy of 87.21% with LSTM-RNN.

Fig. 9 shows that additive NEM noise improved classification accu-
racy in all cases compared with noiseless RBP and blind-noise injection.
Additive NEM noise also outperformed multiplicative NEM noise in all
cases. The best performance occurred with total additive NEM-noise
injection in both the output neurons and in all hidden units. This gave
96.70% classification accuracy. This was an increase of 9.51% over the
noiseless classification accuracy. The extra computation involved in the
NEM-noise injection was slight.

Table 2 shows that additive NEM noise injection speeded up training
more than did multiplicative noise. Both gave far more pronounced
speed-ups than did blind-noise injection. The best speed-up occurred
with total additive NEM-noise injection in both the output neurons and
in all hidden units. This total NEM-noise injection took 60 fewer training
epochs to reach the baseline value than did noiseless RBP. Total multi-
plicative NEM-noise injection took nearly 18 fewer epochs to reach the
same value.

6.2. Noise-boosted Gated-Recurrent-Unit Classifiers

We also trained noise-boosted recurrent GRU classifiers on the UCF-
11 sports-video dataset [23,24]. Table 3 shows the classification accu-
racy for different RBP training regimens. Additive injection of NEM
noise in both the hidden and output neurons increased the classification
accuracy by 3.02%. Multiplicative NEM-noise injection in both the
hidden and output neurons increased the accuracy by 2.25%. Injecting
blind noise or dither only slightly improved the classification accuracy.

Table 4 shows that NEM noise injection also speeded up the training
of the GRU RBP classifier. The best speed-up came from additive NEM-
noise injection in both the hidden and output neurons. It took 28% fewer
epochs than the noiseless RBP to reach the baseline accuracy value of
92.10%. The baseline value was the cross entropy value that noiseless
RBP achieved on the test set after training for 100 epochs. Multiplicative
NEM-noise injection in the same neurons took 21% fewer epochs than
the noiseless RBP to reach the baseline value.

6.3. Noise-boosted RNN Regression Model

We tested how well RNN regression models predicted a known time
series of currency exchange rates [52]. The RNN regressors trained and
tested on the dollar-rupee exchange rates from January 1980 to August

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

15

2017. The dataset gives the daily average exchange rate for the US dollar
to the Indian rupee over 9,697 business days. The exchange-rate data
came from the currency website: https://www.investing.com/currencie
s/usd-inr-historical-data.

The RNNs trained on the exchange-rate data from day 0 until day
8,000—from January 1980 to February 2011. We tested the RNN
regression models on the exchange-rate data from day 8,001 until day
9,697—from March 2011 to August 2017. The trained RNN regression
models predicted the dollar-rupee exchange rate for the ith day D (i)

given data from the 4 previous days. The inputs were the open price,
high price, low price, and average price from the 4 previous days D (i− 1),

D (i− 2),D (i− 3), and D (i− 4). Each RNN regression models trained over 100
epochs of RBP learning with or without noise injection. The RNNs used
50 neurons each for the hidden units and the gates.

6.3.1. Noise-boosted LSTM-RNN Regression
Simulations showed that NEM-noise boosted LSTM RBP with NEM

noise outperformed ordinary noiseless RBP and outperformed RBP with
injected blind noise. Fig. 12 and Table 5 show these squared-error results
for the additive noise injection. The same relationships held for additive
and multiplicative noise injection. Fig. 13 shows the performance for the
multiplicative noise injection. The baseline squared error was the
average squared error of the noiseless LSTM-RNN that had trained for
100 epochs.

Blind noise also reduced the error but not as much as NEM-noise
injection did. The best exchange-rate prediction in terms of the

averaged squared error came from injecting additive NEM noise in both
the hidden and output neurons. This also gave the fastest convergence in
training. It took fewer training epochs for the NEM-noise-boosted RNN
to reach the baseline squared-error value of 2.087. Table 6 shows the
training speed-up from noise injection.

RBP training with blind noise outperformed RBP without noise. This
result held for noise injection in the output layer only, in the hidden
layer only, and in both the hidden and output layers. Fig. 11 shows that
the best result was for additive NEM injection in both the hidden and
output layers. This blind-noise benefit may reflect some form of a
stochastic-resonance noise benefit for threshold-like systems [25,28,31].
Tables 5 and 6 show that blind noise injection helped slightly but not as
much as NEM-noise injection helped. The tables also show that the best
LSTM RBP performance was with NEM noise injection in both the hid-
den and output layers. This held both for reducing the average squared

Table 1
Classification accuracy of LSTM on the UCF-11 sports-action YouTube video dataset with injected blind noise and NEM noise with RBP training. The baseline accuracy
of noiseless RBP was 87.21% and all training was for 100 epochs. Additive NEM noise outperformed multiplicative NEM noise. Both outperformed injecting blind
noise. The best NEM-noise injection increased the accuracy by 9.51% over noiseless RBP.

Training Algorithm Additive Noise Multiplicative Noise

Output Hidden Output & Hidden Output Hidden Output & Hidden

RBP with blind noise 85.50% 91.17% 89.61% 85.43% 86.93% 86.98%
RBP with NEM noise 93.55% 95.66% 96.70% 87.30% 87.26% 87.78%

Table 2
Training speed-up of recurrent LSTM classifiers trained on the UCF-11 sports-
action YouTube video dataset for injected blind noise and NEM noise with RBP
training. All training was for 100 epochs where the baseline was the noiseless
RBP cross-entropy value after 100 epochs. Additive NEM noise outperformed
multiplicative NEM noise. Both outperformed injecting blind noise. Additive
NEM-noise injection into all output and hidden neurons gave a relative 60%
speed-up in training.

Training
Algorithm

Additive Noise Multiplicative Noise

Output Hidden Output
&

Hidden

Output Hidden Output
&

Hidden

RBP with
blind
noise

− 8% 26% 20% − 6% 3% 9%

RBP with
NEM
noise

40% 56% 60% 15% 13% 18%

Table 3
Classification accuracy of GRU on the UCF-11 YouTube sports-video dataset for injected blind noise and NEM noise with RBP training. The baseline accuracy of
noiseless RBP was 92.10%. Additive NEM noise outperformed multiplicative NEM noise. Both outperformed injecting multiplicative blind noise. The best NEM-noise
result increased the accuracy by 3.02% over noiseless RBP. The models trained over 100 epochs.

Training Algorithm Additive Noise Multiplicative Noise

Output Hidden Output & Hidden Output Hidden Output & Hidden

RBP with blind noise 93.83% 93.62% 94.93% 93.03% 90.55% 92.17%
RBP with NEM noise 94.92% 94.52% 95.12% 94.23% 94.10% 94.35%

Table 4
Training speed-up due to noise injection in recurrent GRU classifiers trained on
the UCF-11 sports-video YouTube dataset. All training was for 100 epochs. The
baseline cross entropy was the cross entropy of noiseless RBP after 100 epochs.

Training
Algorithm

Additive Noise Multiplicative Noise

Output Hidden Output
&

Hidden

Output Hidden Output
&

Hidden

RBP with
blind
noise

26% 11% 16% 10 % − 10 % 8%

RBP with
NEM
noise

26% 15% 28% 20% 18% 21%

Table 5
Predictive accuracy of noise-injected LSTM-RNN regression models that trained
on the dollar-rupee exchange-rate dataset. Each entry shows the average
squared error after training for 100 epochs. The baseline squared-error value of
2.087 was the squared error of noiseless RBP after 100 training epochs. Additive
NEM-noise injection in both hidden and output neurons gave the best
performance.

Training
Algorithm

Additive Noise Multiplicative Noise

Output Hidden Output
&

Hidden

Output Hidden Output
&

Hidden

Blind noise 1.689 2.465 2.988 2.310 1.756 2.359
NEM noise 1.490 1.636 1.059 1.170 1.191 1.147

O. Adigun and B. Kosko

https://www.investing.com/currencies/usd-inr-historical-data
https://www.investing.com/currencies/usd-inr-historical-data

Neurocomputing 559 (2023) 126438

16

error and for reducing the number of training epochs that the system

took to reach the baseline noiseless squared-error value.

6.3.2. Noise-boosted GRU-RNN Regression
This final section shows how injecting NEM noise improved the

predictive accuracy of GRU-RNN regression models. Fig. 14 shows that
injecting NEM noise in the GRU-RNN for regression outperformed
injecting blind noise and outperformed noiseless RBP. The RBP with
blind noise outperformed RBP without noise.

Fig. 14 shows that NEM-noise injection in both the GRU-RNN’s
hidden and output neurons outperformed injecting NEM noise in either
its hidden neurons or output neurons separately. Injecting NEM noise
outperformed injecting blind noise. But injecting blind noise did sub-
stantially better than injecting no noise at all. Tables 7 and 8 give the
resulting squared-error values of the predictions. Table 7 shows the
noise benefits in terms of the average squared errors of the predictions.
Additively injecting NEM noise in both the hidden and output neurons
gave the best squared-error performance for prediction. But multipli-
cative NEM-noise injection gave the best training speed-up to the
baseline squared-error value of 1.508 of noiseless RBP after 100 training
epochs. This was the only case where multiplicative NEM-noise injection
outperformed additive injection.

7. Conclusion

Careful noise injection improved the convergence and the accuracy
of recurrent backpropagation for both classification and regression with
LSTM and GRU recurrent neural networks. Simulations confirmed the
noise benefits that the corresponding noise-benefit theorems predicted
will hold on average. These results extend the recent noise-boosting of
the simple backpropagation algorithm. The noise-boosting itself de-
pends on the facts that the backpropagation algorithm is a special case of
the generalized Expectation–Maximization algorithm and that noise can
always boost the EM algorithm on average. This NEM formulation of
recurrent backpropagation confirms that the algorithm is a statistical
model.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Appendix A. Proof of Theorems

This section presents the proofs for the theorems that state NEM noise benefit condition for noise injection into the output and hidden units of RNNs
with recurrent backpropagation training.

A.1. NEM Noise Injection into Output Neurons.

Theorem 2. NEM Noise Benefit for an RNN Classifier with Additive Noise Injection into the Output Neurons.
The NEM noise-benefit positivity condition (23) holds for the maximum-likelihood training of a classifier recurrent neural network with additive noise

injection into its K output softmax neurons if the following hyperplane condition holds:

Ey,h,n|x,Θ*

[
∑T

t=to

(n(t))
T log ay(t)

]

⩾0 (A.1)

where the additive noise n(t) injects into the output neurons and ay(t) is the output activation.

Proof. Eqs. (31) and (37) show that the RNN classifier’s output cross entropy E(Θ) equals the sum of the negative log-likelihood functions over time
t ∈ {t0, t0 +1,…,T} where t0 ∈ {1,….,T}. So p(y|x,Θ) = exp(− E(Θ)). This shows again that minimizing the cross entropy E(Θ) maximizes the log-
likelihood L(Θ).

Table 6
Training speed-up due to noise injection in LSTM-RNN regression models
trained on the dollar-rupee exchange-rate dataset. All training was for 100
epochs. Additive NEM-noise injected into the hidden and output neurons gave
the best performance. It reached the baseline squared-error value 2.087 in 38%
fewer steps than did noiseless RBP.

Training
Algorithm

Additive Noise Multiplicative Noise

Output Hidden Output
&

Hidden

Output Hidden Output
&

Hidden

Blind noise − 24% -12% − 24% − 11% − 24% − 11%
NEM noise 20% 36% 38% 31% 30% 29%

Table 7
Predictive accuracy of noise-injected GRU-RNN regression models that trained
on the dollar-rupee exchange-rate dataset. Each entry shows the average
squared error after training for 100 epochs. The baseline squared-error value of
1.508 was the squared error of noiseless RBP after 100 training epochs. Additive
NEM-noise injection in both hidden and output neurons gave the best
performance.

Training
Algorithm

Additive Noise Multiplicative Noise

Output Hidden Output
&

Hidden

Output Hidden Output
&

Hidden

Blind noise 1.566 1.463 1.461 1.558 1.483 1.461
NEM noise 1.425 1.362 1.280 1.422 1.161 1.151

Table 8
Training speed-up due to noise injection in GRU-RNN regression models trained
on the dollar-rupee exchange-rate dataset. All training was for 100 epochs.
Multiplicative NEM-noise injected into the hidden and output neurons gave the
best performance. It speeded up training by 37% over noiseless RBP while ad-
ditive NEM-noise injection speeded training by 32%.

Training
Algorithm

Additive Noise Multiplicative Noise

Output Hidden Output
&

Hidden

Output Hidden Output
&

Hidden

Blind noise − 10% 10% 4% − 10 % 18 % 22%
NEM noise 28% 27% 32% 18% 36% 37%

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

17

The NEM sufficient condition (23) simplifies to the product of exponentiated output activations over time t and each with K output neurons. Then
additive noise injection gives

p(y + n, h|x,Θ)

p(y,h|x,Θ)
=

p(y + n, h|x,Θ) p(h|x,Θ)

p(h|x,Θ) p(y, h|x,Θ)
(A.2)

=
p(y + n|h, x,Θ)

p(y|h, x,Θ)
(A.3)

=

∏T
t=t0 p(y(t) + n(t)|h, x,Θ)
∏T

t=t0 p(y(t)|h, x,Θ)
(A.4)

=
∏T

t=t0

⎛

⎜
⎜
⎜
⎝

∏K
k=1 (a

y(t)
k)

n(t)k +y(t)k

∏K
k=1 (a

y(t)
k)

y(t)k

⎞

⎟
⎟
⎟
⎠

(A.5)

=
∏T

t=t0

(
∏K

k=1
(ay(t)

k)
n(t)k

)

. (A.6)

So the NEM positivity condition in (23) becomes

Ey,h,n|x,Θ*

[

log
∏T

t=t0

(
∏K

k=1
(ay(t)

k)
n(t)k

)]

⩾0. (A.7)

This simplifies to the inequality

Ey,h,n|x,Θ*

[
∑T

t=t0

(
∑K

k=1
n(t)

k log(ay(t)
k)

)]

⩾0. (A.8)

The inner sum is the inner product of n(t) with log ay(t). Then we can rewrite (A.8) as the hyperplane inequality

Ey,h,n|x,Θ*

[
∑T

t=t0

n(t)T log ay(t)

]

⩾0. (A.9)

□

Theorem 3. RBP Noise Benefit for a Regression RNN with Additive Noise Injection into the Output Neurons.
The NEM positivity condition (23) holds for the maximum-likelihood training of a regression recurrent neural network with Gaussian target vector y(t) ∼

N (y(t)|ay(t), I) and with additive noise injection into the output identity neurons if the following inequality condition holds:

Ey,h,n|x,Θ*

[
∑T

t=t0

||y(t) + n(t) − ay(t)||
2

]

− Ey,h,n|x,Θ*

[
∑T

t=t0

||y(t) − ay(t)||
2

]

⩽0 (A.10)

where the noise n(t) injects additively into the output neurons and where ay(t) is the output activation.

Proof. The error function E(Θ) is the squared error for a regression network [15]. We first show that minimizing the squared error E(Θ)is the same as
maximizing the likelihood function L(Θ):

E(Θ) =
∑T

t=t0

E(t) (A.11)

= −
∑T

t=t0

−
||y(t) − ay(t)||

2

2
(A.12)

= −
∑T

t=t0

log

[

exp

(

−
||y(t) − ay(t)||

2

2

)]

(A.13)

= − (T − t0) log(2π)−
K
2 +(T − t0) log(2π)−

K
2 −

∑T

t=t0

log

[

exp

(

−
||y(t) − ay(t)||

2

2

)]

(A.14)

= − L(Θ)+ (T − t0) log(2π)−
K
2 (A.15)

where the network’s output probability density function p(y = y(t)|x,Θ) is the vector normal density N (y(t)|a(t),I). So minimizing E(Θ) is the same as
maximizing L(Θ) with respect to Θ. Injecting additive noise into the output neurons gives

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

18

p(y + n, h|x,Θ)

p(y,h|x,Θ)
=

p(y + n, h|x,Θ) p(h|x,Θ)

p(h|x,Θ) p(y, h|x,Θ)
(A.16)

=
p(y + n|h, x,Θ)

p(y|h, x,Θ)
(A.17)

=

∏T
t=t0 p(y(t) + n(t)|h, x,Θ)
∏T

t=t0 p(y(t)|h, x,Θ)
(A.18)

=
∏T

t=t0

p(y(t) + n(t)|h, x,Θ)

p(y(t)|h, x,Θ)
(A.19)

=
∏T

t=t0

exp
(

1
2||
(

y(t) − ay(t)||
2
)

exp
(

1
2||
(

y(t) + n(t) − ay(t)||
2
) . (A.20)

Then the NEM positivity condition in (23) reduces to

Ey,h,n|x,Θ*

⎡

⎢
⎣log

∏T

t=t0

exp(1
2||y

(t) − ay(t)||
2
)

exp(1
2||y(t) + n(t) − ay(t)||

2
)

⎤

⎥
⎦⩾0. (A.21)

This positivity condition reduces to the following hyperspherical inequality:

Ey,h,n|x,Θ*

[
∑T

t=1
||y(t) + n(t) − ay(t)||

2

]

− Ey,h,n|x,Θ*

[
∑T

t=1
||y(t) − ay(t)||

2

]

⩽0. (A.22)

□

A.2. NEM Noise Injection into Hidden Units of Recurrent Neural Networks.

Theorem 4. Injecting NEM Noise into the Hidden Neurons of LSTM-RNN.
A NEM noise benefit holds for the iterative maximum-likelihood training of an LSTM-RNN with additive noise injection into the hidden units (gates) if the

following positivity condition holds:

Ez,n|y,x,Θ*

[

log
(

p(z + n|y, x,Θ)

p(z|y, x,Θ)

)]

⩾0. (A.23)

This inequality reduces to

Ez,n|y,x,Θ*

[
∑T

t=t0

((
n(t)

i

)T
log

i(t)

1 − i(t)
+
(

n(t)
f

)T
log

f(t)

1 − f(t)
+
(
n(t)

o

)T log
o(t)

1 − o(t)

)]

⩾0 (A.24)

where the noises n(t)
i , n(t)

f , and n(t)
o inject additively into the respective input, forget, and output gates at time t. The terms i(t), f(t), and o(t) are the activations for the

respective input, forget, and output gates.

Proof. The inequality (A.23) comes from the Noisy EM Theorem [39,40] and implies that the following holds on average:

p(z(t) + n(t)|y, x,Θ)⩾p(z(t)|y, x,Θ) (A.25)

where the noises n(t)
i , n(t)

f , and n(t)
o inject into the respective input, forget, and output gates at time t. The conditional probability function

p(z(t) +n(t)|y, x,Θ) factors in (77) just as p(z(t)|y, x,Θ) factors in (75). Then dividing by the noiseless term and taking logarithms gives

log
(

p(z(t) + n(t)|y, x,Θ)

p(z(t)|y, x,Θ)

)

= log

(
p(z(t)i + n(t)

i |y, x,Θ)

p(z(t)i |y, x,Θ)

)

+ log

(
p(z(t)f + n(t)

f |y, x,Θ)

p(z(t)f |y, x,Θ)

)

+ log

(
p(z(t)o + n(t)

o |y, x,Θ)

p(z(t)o |y, x,Θ)

)

. (A.26)

LSTM uses sigmoid activations for the gates. The Monte Carlo approximation above assumes that a Bernoulli distribution describes the latent
variables z(t)i , z(t)f , and z(t)o . This gives

log

(
p(z(t)i + n(t)

i |y, x,Θ)

p(z(t)i |y, x,Θ)

)

= log
∏T

t=t0

⎛

⎜
⎝
∏J

j=1

(i(t)j)
z(t)ij

+n(t)ij (1 − i(t)j)
1− z(t)ij

− n(t)ij

(i(t)j)
z(t)ij (1 − i(t)j)

1− z(t)ij

⎞

⎟
⎠ (A.27)

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

19

= log
∏T

t=t0

⎛

⎝
∏J

j=1

(i(t)j)
n(t)ij

(1 − i(t)j)
ni(t)

j

⎞

⎠ (A.28)

=
∑T

t=to

∑J

j=1
n(t)

ij

(
log(i(t)j) − log(1 − i(t)j)

)
(A.29)

=
∑T

t=t0

(
n(t)

i

)T
log

i(t)

1 − i(t)
(A.30)

for the input gates. The same approach also extends to forget and output gates and we have the following:

log

(
p(z(t)f + n(t)

f |y, x,Θ)

p(z(t)f |y, x,Θ)

)

=
∑T

t=t0

(
n(t)

f

)T
log

f(t)

1 − f(t)
(A.31)

log

(
p(z(t)o + n(t)

o |y, x,Θ)

p(z(t)o |y, x,Θ)

)

=
∑T

t=t0

(
n(t)

o

)T log
o(t)

1 − o(t) (A.32)

because they also use sigmoid activations. Taking the appropriate NEM averages gives

Ez,n|y,x,Θ*

[

log
(

p(z + n|y, x,Θ)

p(z|y, x,Θ)

)]

= Ez,n|y,x,Θ*

[
∑T

t=t0

((
n(t)

i

)T
log

i(t)

1 − i(t)
+
(

n(t)
f

)T
log

f(t)

1 − f(t)
+
(
n(t)

o

)T log
o(t)

1 − o(t)

)]

⩾0 (A.33)

from (A.23), (A.26), (A.30), (A.31), and (A.32). □

Theorem 5. Injecting NEM Noise into the Hidden Neurons a GRU-RNN.
A NEM noise benefit holds for the iterative maximum-likelihood training of a GRU-RNN with noise injection into the hidden units (gates) if the following

positivity condition holds:

Ez,n|y,x,Θ*

[

log
(

p(z + n|y, x,Θ)

p(z|y, x,Θ)

)]

⩾0. (A.34)

The inequality reduces to

Ez,n|y,x,Θ*

[
∑T

t=t0

((
n(t)

d

)T
log

d(t)

1 − d(t) +
(
n(t)

r

)T log
r(t)

1 − r(t)

)]

⩾0 (A.35)

where the noises n(t)
d and n(t)

r inject into the respective update and reset gates. The terms d(t) and r(t) are the activations for the respective update and reset gates at
time t.

Proof. The NEM condition (A.34) entails that on average

p(z(t) + n(t)|y, x,Θ)⩾p(z(t)|y, x,Θ). (A.36)

This above likelihood factorizations give

p(z(t)d + n(t)
d |x,Θ) p(z(t)r + n(t)

r |x,Θ)⩾p(z(t)d |x,Θ) p(z(t)r |x,Θ). (A.37)

The proof now proceeds as in the above case of the LSTM-RNN since the sigmoid activations correspond to a Bernoulli probability structure. The
corresponding expressions for the reset and update gates follow from extending the simplification under (A.27)–(A.30) to these gates. Then the log-
likelihood ratio becomes

log
(

p(z(t) + n(t)|y, x,Θ)

p(z(t)|y, x,Θ)

)

= log

(
p(z(t)d + n(t)

d |y, x,Θ)

p(z(t)d |y, x,Θ)

)

+ log

(
p(z(t)r + n(t)

r |y, x,Θ)

p(z(t)r |y, x,Θ)

)

(A.38)

=
∑T

t=t0

((
n(t)

d

)T
log

d(t)

1 − d(t) +
(
n(t)

r

)T log
r(t)

1 − r(t)

)

. (A.39)

So the NEM positivity condition reduces to

Ez,n|y,x,Θ*

[

log
(

p(z + n|y, x,Θ)

p(z|y, x,Θ)

)]

= Ez,n|y,x,Θ*

[
∑T

t=t0

((
n(t)

d

)T
log

d(t)

1 − d(t) +
(
n(t)

r

)T log
r(t)

1 − r(t)

)]

⩾0 (A.40)

from (A.34) and (A.39). □

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

20

Appendix B. Recurrent Backpropagation Training with Long Short-Term Memory (LSTM)

We now present the RBP learning algorithm for training an LSTM recurrent network [3]. These learning laws are applicable to both regression and
classification networks with the LSTM architecture because of BP invariance.

The parameters for an LSTM network are as follows. The J × I matrix Wx connects the input unit x(t) to the hidden unit oc(t). The J × J matrix Vh

connects the hidden state ah(t− 1) to oc(t) and bx is the bias for oc(t). The J × I matrices Wγ,Wϕ, and Wω connect the input unit x(t) to the respective input,
forget, and output gates. The J × J matrices Vγ ,Vϕ, and Vω connect the previous hidden state ah(t− 1) to the respective input, forget, and output gates at
time t. The terms bγ ,bϕ, and bω are the bias for the respective input, hidden, and output gates. The K × J matrix Uy connects the output unit oy(t) to the
hidden state ah(t). The term by is the bias of the output unit. We initialize the hidden state ah(0) to 0. We also initialize the internal cell s(0) to 0.

B.1. Forward Pass

Forward pass over an LSTM-RNN is the propagation of input x(t) from the input layer to the output layer through the hidden units. The input oc(t)
j to

the jth hidden unit of an LSTM unit at time t is

oc(t)
j =

∑I

i=1
wx

jia
x(t)
i +

∑J

l=1
vh

jla
h(t− 1)
j + bx

j (B.1)

where the input unit uses identity activation ax(t)
i = x(t)

i . The hidden unit ac(t)
j uses hyperbolic tangent activation so we have

ac(t)
j = tanh

(
oc(t)

j

)
=

expoc(t)
j − exp− oc(t)

j

expoc(t)
j + exp− oc(t)

j

. (B.2)

The input oγ(t)
j of the jth input gate at time t is as follows:

oγ(t)
j =

∑I

i=1
wγ

jia
x(t)
i +

∑J

l=1
vγ

jla
h(t− 1)
j + bγ

j (B.3)

and the corresponding activation is the logistic sigmoid function so we have

aγ(t)
j =

1

1 + exp− oγ(t)
j

. (B.4)

The input oϕ(t)
j of the jth forget gate at time t is as follows:

oϕ(t)
j =

∑I

i=1
wϕ

ji a
x(t)
i +

∑J

l=1
vϕ

jl a
h(t− 1)
j + bϕ

j (B.5)

and the corresponding activation is

aϕ(t)
j =

1

1 + exp− oϕ(t)
j

. (B.6)

The input oω(t)
j of the jth output gate at time t is

oω(t)
j =

∑I

i=1
wω

ji a
x(t)
i +

∑J

l=1
vω

jl a
h(t− 1)
j + bω

j (B.7)

and the corresponding activation is

aω(t)
j =

1

1 + exp− oω(t)
j

. (B.8)

The term s(t)j represents the input of the jth internal cell at time t. We have the following:

s(t)j =
(

ac(t)
j aγ(t)

j

)
+
(

s(t− 1)
j aϕ(t)

j

)
(B.9)

and the corresponding activation is

as(t)
j = tanh

(
s(t)j

)
=

exps(t)j − exp− s(t)j

exps(t)j + exp− s(t)j

. (B.10)

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

21

The input ah(t)
j of the jth hidden state at time t is

ah(t)
j = as(t)

j aω(t)
j . (B.11)

The input oy(t)
k of the kth output neuron at time t is

oy(t)
k =

∑J

j=1
uy

kja
h(t)
j + by

k. (B.12)

The output activation depends on the structure of the network. The output neurons use softmax activations for a classification network [50,15]. So the
kth output neuron ay(t)

k at time t has the softmax form

ay(t)
k =

exp
(
oy(t)

k

)

∑K

l=1
exp
(
oy(t)

l

)
. (B.13)

The softmax ratio structure produces a length-K output probability vector. So the softmax output’s normalization structure enforces a winner-take-all
structure ay(t)

k = 1 if any output neuron achieves a maximal activation. The output layer uses identity activation for a regression network. We have

ay(t)
k = oy(t)

k . (B.14)

B.2. Backward Pass

The network probability p(y|x,Θ) for a classifier defines a one-shot multinomial or categorical probability density function because of (B.13) and
because we use 1-in-K encoding. Taking logarithms gives the network’s output log-likelihood L as the sum of probabilities times the logarithm of
probabilities. This sum is precisely the cross entropy E(t) = −

∑K
k=1y(t)k log ay(t)

k [15]. Then summing over the time slices gives the system error or
performance measure E(Θ) as the sum of cross-entropies

E(Θ) =
∑T

t=t0

E(t) = −
∑T

t=t0

∑K

k=1
y(t)k log ay(t)

k . (B.15)

The chain rule gives the partial derivative of the error E(t) with respect to the weight uy
kj is as follows:

∂E(t)

∂uy
kj
=

∂E(t)

∂oy(t)
k

∂oy(t)
k

∂uy
kj

(B.16)

=

(
∑K

l=1

∂E(t)

∂ay(t)
l

∂ay(t)
l

∂oy(t)
k

)
∂oy(t)

k

∂uy
kj

(B.17)

= −

(
y(t)k

ay(t)
k

∂ay(t)
k

∂oy(t)
k

+
∑K

l∕=k

y(t)l

ay(t)
l

∂ay(t)
l

∂oy(t)
k

)
∂oy(t)

k

∂uy
kj

(B.18)

= −

(
y(t)k

ay(t)
k

ay(t)
k (1 − ay(t)

k) +
∑K

l∕=k

y(t)l

ay(t)
l

ay(t)
l ay(t)

k

)
∂oy(t)

k

∂uy
kj

(B.19)

= −

(

y(t)k − ay(t)
k

∑K

l=1
y(t)l

)
∂oy(t)

k

∂uy
kj

(B.20)

= −
(

y(t)k − ay(t)
k

) ∂oy(t)
k

∂uy
kj

(B.21)

= −
(

y(t)k − ay(t)
k

)
ah(t)

j . (B.22)

The chain rule likewise gives the partial derivative of E(t) with respect to the bias by
k as

∂E(t)

∂by
k
=

(
∑K

l=1

∂E(t)

∂ay(t)
l

∂ay(t)
l

∂oy(t)
k

)
∂oy(t)

k

∂by
k
= −

(
y(t)k − ay(t)

k

)
. (B.23)

Let E(t)′ denote the partial derivative of E(t) with respect to the hidden-unit activation ah(t)
j . Then the partial derivative has the form

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

22

E(t)′ =
∂E(t)

∂ah(t)
j

(B.24)

=
∑K

k=1

(
∑K

l=1

∂E(t)

∂ay(t)
l

∂ay(t)
l

∂oy(t)
k

)
∂oy(t)

k

∂ah(t)
j

(B.25)

= −
∑K

k=1
(y(t)k − ay(t)

k)uy
kj. (B.26)

A regression network uses squared error as its cost function. Therefore the error function for a regression network with the LSTM architecture is

E(t) =
∑T

t=t0

∑K

k=1

(
y(t)k − ay(t)

k

)2
. (B.27)

The partial derivatives in (B.22)–(B.26) stays the same if we replace the sum of cross-entropies (B.15) with the sum of squared errors (B.27) because of
the BP invariance.

The term ac(t)′
j denotes the partial derivative of ac(t)

j with respect to the input oc(t)
j . We have

ac(t)′
j =

∂ac(t)
j

∂oc(t)
j

= 1 −
(

ac(t)
j

)2
(B.28)

and the partial derivative as(t)′
j of the cell state is as follows:

as(t)′
j =

∂as(t)
j

∂s(t)j

= 1 −
(

as(t)
j

)2
. (B.29)

The partial derivative aγ(t)′
j of the input gate activation with respect to its input is

aγ(t)′
j =

∂aγ(t)
j

∂oγ(t)
j

= aγ(t)
j
(
1 − aγ(t)

j
)

(B.30)

and the corresponding derivative aϕ(t)′
j of the forget gate activation with respect to its input is

aϕ(t)′
j =

∂aϕ(t)
j

∂oϕ(t)
j

= aϕ(t)
j
(
1 − aϕ(t)

j
)
. (B.31)

The partial derivative aω(t)′
j of the output gate activation is as follows:

aω(t)′
j =

∂aω(t)
j

∂oω(t)
j

= aω(t)
j

(
1 − aω(t)

j

)
. (B.32)

We now present the derivatives with respect to the weights that connect the input gate units to the input and hidden units. The partial derivative of
ah(t)

l with respect to weight wγ
ji is as follows:

∂ah(t)
l

∂wγ
ji
= aω(t)

l
∂as(t)

l

∂wγ
ji
+ as(t)

l
∂aω(t)

l

∂oω(t)
l

∂oω(t)
l

∂wγ
ji

(B.33)

= aω(t)
l as(t)′

l
∂s(t)l

∂wγ
ji
+ as(t)

l aω(t)′
l

∑J

m=1
vω

lm
∂ah(t− 1)

m

∂wγ
ji

(B.34)

and

∂s(t)l

∂wγ
ji
= ac(t)

l
∂aγ(t)

l

∂wγ
ji
+ aγ(t)

l
∂ac(t)

l

∂wγ
ji
+ aϕ(t)

l
∂s(t− 1)

l

∂wγ
ji

+ s(t− 1)
l

∂aϕ(t)
l

∂wγ
ji

(B.35)

= ac(t)
l aγ(t)′

l

(

ax(t)
i +

∑J

m=1
vγ

lm
∂ah(t− 1)

m

∂wγ
ji

)

+ aγ(t)
j ac(t)′

j

∑J

m=1
vh

lm
∂ah(t− 1)

m

∂wγ
ji

+ aϕ(t)
j

∂s(t− 1)
j

∂wγ
ji

+ s(t− 1)
l aϕ(t)′

l

∑J

m=1
vϕ

lm
∂ah(t− 1)

m

∂wγ
ji

. (B.36)

This gives a recursive expression for computing the derivative from t = 0 to t = T. The initial condition is

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

23

∂s(0)l

∂wγ
ji
=

∂ah(0)
l

∂wγ
ji

= 0 (B.37)

where l ∈ {1,…,J}. The derivative of s(t)l with respect to wγ
ji for t ∈ {1,…,T} follows from applying (B.34)–(B.37). Therefore the recursive expression

for the derivative of E(t) with respect to wγ
ji follows from (B.26) and (B.34)–(B.38)

∂E(t)

∂wγ
ji
=
∑J

l=1

∂E(t)

∂ah(t)
l

∂ah(t)
l

∂wγ
ji
. (B.38)

The derivative of E(t) with respect to the bias bγ
j of the input gate follows from replacing ax(t)

i with 1 and wγ
ji with bγ

j in (B.33)–(B.38). So we have:

∂ah(t)
l

∂bγ
j
= aω(t)

l as(t)′
l

∂s(t)l

∂bγ
j
+ as(t)

l aω(t)′
l

∑J

m=1
vω

lm
∂ah(t− 1)

m

∂bγ
j

(B.39)

and

∂s(t)l

∂bγ
j
= ac(t)

l aγ(t)′
l

(

1 +
∑J

m=1
vγ

lm
∂ah(t− 1)

m

∂bγ
j

)

+ aγ(t)
l ac(t)′

l

∑J

m=1
vh

lm
∂ah(t− 1)

m

∂bγ
j

+ aϕ(t)
l

∂s(t− 1)
l

∂bγ
j

+ s(t− 1)
l aϕ(t)′

l

∑J

m=1
vϕ

lm
∂ah(t− 1)

m

∂bγ
j

. (B.40)

Therefore we have the following initial condition:

∂s(0)l

∂bγ
j
=

∂ah(0)
l

∂bγ
j

= 0. (B.41)

So the recursive expression for the partial derivative of E(t) with respect to bγ
j follows from (B.39)–(B.42)

∂E(t)

∂bγ
j
=
∑J

l=1

∂E(t)

∂ah(t)
l

∂ah(t)
l

∂bγ
j
. (B.42)

The partial derivative of the hidden activation ah(t)
m with respect to weight vγ

jl follows from replacing every occurrence of subscript l with m and wγ
ji

with vγ
jl in (B.33). The derivative of s(t)m also follows from replacing subscript l with m and wγ

ji with vγ
jl in (B.35). These substitutions give the following:

∂ah(t)
m

∂vγ
jl

= aω(t)
m as(t)′

m
∂s(t)m

∂vγ
jl
+ as(t)

m aω(t)′
m

∑J

p=1
vω

jp

∂ah(t− 1)
p

∂vγ
jl

(B.43)

and

∂s(t)m

∂vγ
jl
= ac(t)

m aγ(t)′
m

(

ah(t− 1)
l +

∑J

p=1
vγ

mp

∂ah(t− 1)
p

∂vγ
jl

)

+ aγ(t)
m ac(t)′

m

∑J

p=1
vh

mp

∂ah(t− 1)
p

∂vγ
jl

+ aϕ(t)
m

∂s(t− 1)
m

∂vγ
jl

+ s(t− 1)
m aϕ(t)′

m

(
∑J

p=1
vγ

mp
∂ah(t− 1)

m

∂vγ
jl

)

. (B.44)

Therefore we have the following initial conditions for the derivatives

∂s(0)m

∂vγ
jl
=

∂s(1)m

∂vγ
jl
= 0 (B.45)

∂ah(0)
m

∂vγ
jl

=
∂ah(1)

m

∂vγ
jl

= 0 (B.46)

where m ∈ {1,…,J}. This is so because ah(0) is equal to 0 and s(0) is equal to 0. So the recursive expression for the derivative of E(t) with respect to vγ
jl

follows from (B.26) and (B.43)–(B.47)

∂E(t)

∂vγ
jl
=
∑J

m=1

∂E(t)

∂ah(t)
m

∂ah(t)
m

∂vγ
jl
. (B.47)

We now present the derivatives for the weights that connect the forget gate units to the input and output. This partial derivative of ah(t)
l with respect

to wϕ
ji follows from replacing wγ

ji with wϕ
ji in (B.33). This gives the following:

∂ah(t)
l

∂wϕ
ji
= aω(t)

l as(t)′
l

∂s(t)l

∂wϕ
ji
+ as(t)

l aω(t)′
l

∑J

m=1
vω

lm
∂ah(t− 1)

m

∂wϕ
ji

. (B.48)

The derivative of s(t)l with respect to wϕ
ji follows from replacing wγ

ji with wϕ
ji in (B.35). This gives the following:

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

24

∂s(t)l

∂wϕ
ji
= ac(t)

l aγ(t)′
l

∑J

m=1
vγ

lm
∂ah(t− 1)

m

∂wϕ
ji

+ aγ(t)
l ac(t)′

l

∑J

m=1
vh

lm
∂ah(t− 1)

m

∂wϕ
ji

+ s(t− 1)
l aϕ(t)′

l

(

δ(j − l)ax(t)
i +

∑J

m=1
vϕ

lm
∂ah(t− 1)

m

∂wϕ
ji

)

+ aϕ(t)
l

∂s(t− 1)
l

∂wϕ
ji

(B.49)

where δ represents the Kronecker delta function. The initial conditions are

∂s(0)l

∂wϕ
ji
=

∂s(1)l

∂wϕ
ji
= 0 (B.50)

∂ah(0)
l

∂wϕ
ji

=
∂ah(1)

l

∂wϕ
ji

= 0 (B.51)

because ah(0) is equal to 0 and s(0) is equal to 0. So the recursive expression for the derivative of E(t) with respect to wϕ
ji follows from (B.26) and (B.48)–

(B.52)

∂E(t)

∂wϕ
ji
=
∑J

l=1

∂E(t)

∂ah(t)
l

∂ah(t)
l

∂wϕ
ji
. (B.52)

The derivatives of ah(t)
l and s(t)l with respect to the forget bias bϕ

j follow from replacing ax(t)
i with 1 and wϕ

ji in (B.48)–(B.52). So we have

∂ah(t)
l

∂bϕ
j

= aω(t)
l as(t)′

l
∂s(t)l

∂bϕ
j
+ as(t)

l aω(t)′
l

∑J

m=1
vω

lm
∂ah(t− 1)

m

∂bϕ
j

(B.53)

and

∂s(t)l

∂bϕ
j
= ac(t)

l aγ(t)′
l

∑J

m=1
vγ

lm
∂ah(t− 1)

m

∂bϕ
j

+ aγ(t)
l ac(t)′

l

∑J

m=1
vh

lm
∂ah(t− 1)

m

∂bϕ
j

+ aϕ(t)
l

∂s(t− 1)
l

∂bϕ
j

+ s(t− 1)
l aϕ(t)′

l

(

1 +
∑J

m=1
vϕ

lm
∂ah(t− 1)

m

∂bϕ
j

)

. (B.54)

Therefore we have the following initial condition:

∂s(0)l

∂bϕ
j
=

∂s(1)l

∂bϕ
j
=

∂ah(0)
l

∂bϕ
j

=
∂ah(1)

l

∂bϕ
j

= 0. (B.55)

So the recursive expression for the partial derivative of E(t) with respect to bϕ
j follows from (B.53)–(B.56)

∂E(t)

∂bϕ
j
=
∑J

l=1

∂E(t)

∂ah(t)
l

∂ah(t)
l

∂bϕ
j
. (B.56)

The partial derivative of the hidden activation ah(t)
m with respect to weight vϕ

jl follows from replacing subscript l with m and wγ
ji with vϕ

jl in (B.33). This
gives the following:

∂ah(t)
m

∂vϕ
jl

= aω(t)
m as(t)′

m
∂s(t)m

∂vϕ
jl

+ as(t)
m aω(t)′

m

∑J

p=1
vω

mp

∂ah(t− 1)
p

∂vϕ
jl

(B.57)

and the derivative of s(t)m follows from replacing subscript l with m and wγ
ji with vγ

jl in (B.35)

∂s(t)m

∂vϕ
jl

= ac(t)
m aγ(t)′

m

(

ah(t− 1)
l +

∑J

p=1
vγ

mp

∂ah(t− 1)
p

∂vϕ
jl

)

+ aϕ(t)
m

∂s(t− 1)
m

∂vϕ
jl

+ s(t− 1)
m aϕ(t)′

m

(
∑J

p=1
vϕ

mp
∂ah(t− 1)

m

∂vϕ
jl

)

+ aγ(t)
m ac(t)′

m

∑J

p=1
vh

mp

∂ah(t− 1)
p

∂vϕ
jl

. (B.58)

Therefore we have the following initial condition:

∂s(0)m

∂vϕ
jl

=
∂s(1)m

∂vϕ
jl

=
∂ah(0)

m

∂vϕ
jl

=
∂ah(1)

m

∂vϕ
jl

= 0 (B.59)

where m ∈ {1,…,J}. The recursive expression for the derivative of E(t) with respect to vϕ
jl follows from (B.26) and (B.57)–(B.60)

∂E(t)

∂vϕ
jl

=
∑J

m=1

∂E(t)

∂ah(t)
m

∂ah(t)
m

∂vϕ
jl

. (B.60)

We now present the derivatives for the weights that connect the output gate units to the input and output. The partial derivative of ah(t)
l with respect

to the weight wω
ji follows from replacing wγ

ji with wω
ji in (B.33)

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

25

∂ah(t)
l

∂wω
ji
= aω(t)

l as(t)′
l

∂s(t)l

∂wω
ji
+ as(t)

l aω(t)′
l

(

ax(t)
i

∑J

m=1
vω

lm
∂ah(t− 1)

m

∂wω
ji

)

(B.61)

and the derivative of s(t)l with respect to wω
ji comes from replacing wγ

ji with wω
ji in (B.35)

∂s(t)l

∂wω
ji
= ac(t)

l aγ(t)′
l

∑J

m=1
vγ

lm
∂ah(t− 1)

m

∂wω
ji

+ aγ(t)
l ac(t)′

l

∑J

m=1
vh

lm
∂ah(t− 1)

m

∂wω
ji

+ aϕ(t)
l

∂s(t− 1)
j

∂wω
ji

+ s(t− 1)
l aϕ(t)′

l

∑J

m=1
vϕ

lm
∂ah(t− 1)

m

∂wω
ji

. (B.62)

Therefore the initial condition is

∂s(0)l

∂wω
ji
=

∂s(1)l

∂wω
ji
=

∂ah(0)
l

∂wω
ji

= 0 (B.63)

∂ah(1)
l

∂wω
ji

= as(1)
l aω(1)′

l ax(1)
i (B.64)

because ah(0) = 0 and s(0) = 0. Therefore the recursive expression for the derivative of E(t) with respect to wω
ji follows from (B.26) and (B.61)–(B.65)

∂E(t)

∂wω
ji
=
∑J

l=1

∂E(t)

∂ah(t)
l

∂ah(t)
l

∂wω
ji
. (B.65)

The derivatives of ah(t)
l and s(t)l with respect to the output gate bias bω

j follow from replacing ax(t)
i with 1 and wϕ

ji in (B.48)–(B.52). Therefore we have

∂ah(t)
l

∂bω
j

= aω(t)
l as(t)′

l
∂s(t)l

∂bω
j
+ as(t)

l aω(t)′
l

(

1 +
∑J

m=1
vω

lm
∂ah(t− 1)

m

∂bω
j

)

(B.66)

∂s(t)l

∂bω
j
= ac(t)

l aγ(t)′
l

∑J

m=1
vγ

lm
∂ah(t− 1)

m

∂bω
j

+ aγ(t)
l ac(t)′

l

∑J

m=1
vh

lm
∂ah(t− 1)

m

∂bω
j

+ aϕ(t)
l

∂s(t− 1)
l

∂bω
j

+ s(t− 1)
l aϕ(t)′

l

∑J

m=1
vϕ

lm
∂ah(t− 1)

m

∂bω
j

. (B.67)

Therefore we have the following initial conditions:

∂s(0)l

∂bω
j
=

∂s(1)l

∂bω
j
=

∂ah(0)
l

∂bω
j

= 0 (B.68)

∂ah(1)
l

∂bω
j

= as(1)
l aω(1)′

l (B.69)

because ah(0) = 0and s(0) = 0. The recursive expression for the derivative of E(t) with respect to bω
j follows from (B.26) and (B.66)–(B.70)

∂E(t)

∂bω
j
=
∑J

l=1

∂E(t)

∂ah(t)
l

∂ah(t)
l

∂bω
j
. (B.70)

The partial derivative of the hidden activation ah(t)
m with respect to weight vω

jl follows from replacing every occurrence of subscript l with m and wγ
ji

with vω
jl in (B.33)

∂ah(t)
m

∂vω
jl

= aω(t)
m as(t)′

m
∂s(t)m

∂vω
jl
+ as(t)

m aω(t)′
m

(

ah(t− 1)
m +

∑J

p=1
vω

mp

∂ah(t− 1)
p

∂vω
jl

)

(B.71)

and the derivative of s(t)m follows from replacing the subscript l with m and wγ
ji with vω

jl in (B.35)

∂s(t)m

∂vω
jl
= ac(t)

m aγ(t)′
m

(
∑J

p=1
vγ

jp
∂ah(t− 1)

p

∂vω
jl

)

+ aγ(t)
m ac(t)′

m

∑J

p=1
vh

jp

∂ah(t− 1)
p

∂vω
jl

+ aϕ(t)
m

∂s(t− 1)
m

∂vω
jl

+ s(t− 1)
m aϕ(t)′

m

(
∑J

p=1
vϕ

jp
∂ah(t− 1)

m

∂vω
jl

)

. (B.72)

Therefore we have the following initial conditions:

∂s(0)m

∂vω
jl
=

∂s(1)m

∂vω
jl
=

∂s(2)m

∂vω
jl
= 0 (B.73)

∂ah(0)
m

∂vω
jl

=
∂ah(1)

m

∂vω
jl

= 0 (B.74)

∂ah(2)
m

∂vω
jl

= as(1)
m aω(1)′

m ah(1)
l . (B.75)

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

26

The recursive expression for the derivative of E(t) with respect to vϕ
jl follows from Eqs. (B.26) and (B.71)–(B.76)

∂E(t)

∂vϕ
jl

=
∑J

m=1

∂E(t)

∂ah(t)
m

∂ah(t)
m

∂vϕ
jl

. (B.76)

The partial derivative for the weights connecting the input units to the hidden units follows from replacing wγ
ji with wx

ji in (B.33). Therefore the

partial derivative of ah(t)
l with respect to the weight wx

ji is as follows:

∂ah(t)
l

∂wx
ji
= aω(t)

l as(t)′
l

∂s(t)l

∂wx
ji
+ as(t)

l aω(t)′
l

∑J

m=1
vγ

lm
∂ah(t− 1)

m

∂wx
ji

(B.77)

and the derivative of s(t)l with respect to wx
ji comes from replacing wγ

ji with wx
ji is

∂s(t)l

∂wx
ji
= ac(t)

l aγ(t)′
l

∑J

m=1
vγ

lm
∂ah(t− 1)

m

∂wx
ji

+

aγ(t)
l ac(t)′

l

(

ax(t)
i δ(j − l) +

∑J

m=1
vh

lm
∂ah(t− 1)

m

∂wx
ji

)

+

aϕ(t)
l

∂s(t− 1)
l

∂wx
ji

+ s(t− 1)
l aϕ(t)′

l

∑J

m=1
vϕ

lm
∂ah(t− 1)

m

∂wx
ji

.

(B.78)

Therefore we have the following initial conditions:

∂s(0)l

∂wx
ji
=

∂ah(0)
l

∂wx
ji

= 0 (B.79)

∂s(1)l

∂wx
ji
= aγ(1)

j ac(1)′
j ax(1)

i (B.80)

∂ah(1)
l

∂wx
ji

= aω(1)
l as(1)′

j aγ(1)
j ac(1)′

j ax(1)
i . (B.81)

The recursive expression for the derivative of E(t) with respect to wx
ji follows from (B.26) and (B.77)–(B.82)

∂E(t)

∂wx
ji
=
∑J

l=1

∂E(t)

∂ah(t)
l

∂ah(t)
l

∂wx
ji
. (B.82)

The derivative of ah(t)
l and s(t)l with respect to the forget bias bx

j follows from replacing ax(t)
i with 1 and wx

ji with bx
j in (B.77)–(B.81). We have

∂ah(t)
l

∂bx
j
= aω(t)

l as(t)′
l

∂s(t)l

∂bx
j
+ as(t)

l aω(t)′
l

∑J

m=1
vω

lm
∂ah(t− 1)

m

∂bx
j

(B.83)

∂s(t)l

∂bx
j
= ac(t)

l aγ(t)′
l

∑J

m=1
vγ

lm
∂ah(t− 1)

m

∂bx
j

+ aγ(t)
l ac(t)′

l

(

1 +
∑J

m=1
vh

lm
∂ah(t− 1)

m

∂bx
j

)

+ aϕ(t)
l

∂s(t− 1)
l

∂bx
j

+ s(t− 1)
l aϕ(t)′

l

∑J

m=1
vϕ

lm
∂ah(t− 1)

m

∂bx
j

. (B.84)

So we have the following initial conditions:

∂s(0)l

∂bγ
j
=

∂ah(0)
l

∂bγ
j

= 0 (B.85)

∂s(1)l

∂wx
ji
= aγ(1)

j ac(1)′
j (B.86)

∂ah(1)
l

∂wx
ji

= aω(1)
l as(1)′

j aγ(1)
j ac(1)′

j . (B.87)

The recursive expression for the partial derivative of E(t) with respect to bx
j follows from (B.83)–(B.88)

∂E(t)

∂bx
j
=
∑J

l=1

∂E(t)

∂ah(t)
l

∂ah(t)
l

∂bx
j
. (B.88)

The partial derivative of the hidden activation ah(t)
m with respect to weight vh

jl follows from replacing subscript l with m and wγ
ji with vh

jl in (B.33). This
gives the following:

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

27

∂ah(t)
l

∂vh
jl

= aω(t)
l as(t)′

l
∂s(t)l

∂vh
jl
+ as(t)

l aω(t)′
l

∑J

m=1
vω

lm
∂ah(t− 1)

m

∂vh
jl

(B.89)

and the derivative of s(t)m with respect vh
jl is the following:

∂s(t)m

∂vh
jl
= ac(t)

m aγ(t)′
m

∑J

p=1
vγ

mp

∂ah(t− 1)
p

∂vh
jl

+ aγ(t)
m ac(t)′

m

∑J

p=1

(

ah(t− 1)
p δ(m − p) + vh

mp

∂ah(t− 1)
p

∂vh
jl

)

+ aϕ(t)
m

∂s(t− 1)
m

∂vh
jl

+ s(t− 1)
m aϕ(t)′

m

(
∑J

p=1
vϕ

mp
∂ah(t− 1)

m

∂vh
jl

)

. (B.90)

Therefore we have the following initial conditions:

∂s(0)m

∂vh
jl
=

∂s(1)m

∂vh
jl
= 0 (B.91)

∂ah(0)
m

∂vh
jl

=
∂ah(1)

m

∂vh
jl

= 0. (B.92)

The recursive expression for the derivative of E(t) with respect to vh
jl follows from (B.26) and (B.89)–(B.93)

∂E(t)

∂vh
jl
=
∑J

m=1

∂E(t)

∂ah(t)
m

∂ah(t)
m

∂vh
jl
. (B.93)

RBP uses gradient descent or any of its variants for training. The update rule for weight θ ∈ {wx
ji, vh

jl, b
x
j ,w

ϕ
ji , v

ϕ
jl , b

ϕ
j ,w

γ
ji, v

γ
jl, b

γ
j ,wω

ji , vω
jl , b

ω
j , u

y
ji, b

y
j } is as

follows:

θn+1 = θn − η ∂E
∂θ

|θ=θn = θn − η
∑T

t=t0

∂E(t)

∂θ
|θ=θn (B.94)

where η is the learning rate, θn is the weight after n training epochs, and t0 ∈ {1,2,…,T}. The above partial derivatives form the update or learning
rules and the RBP training algorithm for LSTM-RNN.

Appendix C. Recurrent Backpropagation Training with Gated Recurrent Unit (GRU)

This section develops the RBP learning algorithm for a GRU recurrent networks [21]. The GRU network consists of I input neurons, J hidden
neurons, and K output neurons. The GRU network captures the time dependency of the input data where the time index t takes values in {1, 2, ….., T}.
We now define the parameters for a GRU network.

The J × I matrices Wz and Wr connect the input unit ax(t) to the respective update and reset gates. The J × J matrices Vz and Vr connect the hidden
unit ah(t− 1) to the respective update and reset gates. The J × I matrix Wx connects ax(t) to the input to the hidden unit oc(t) and bx is the bias to for the
hidden unit. The J × J matrix Vh connects the previous hidden unit ah(t− 1) to oc(t). The K × J matrix Uy connects the hidden unit ah(t) to the output layer
ay(t) and by is the bias of the output layer. The initial value for the hidden state ah(0) is 0.

C.1. Forward Pass

Forward pass over an GRU-RNN is the propagation of input x(t) from the input layer to the output layer through the hidden units. The input uses an
identity activation so ax(t)

i = x(t)
i where x(t)

i is the input of the ith input neuron at time t. The input oz(t)
j to the jth update gate unit is

oz(t)
j =

∑I

i=1
wz

jia
x(t)
i +

∑J

l=1
vz

jla
h(t− 1)
l + bz

j (C.1)

where bz
j is the bias of the update gate. The corresponding activation az(t)

j of the update gate unit is the logistic sigmoid function

az(t)
j =

1

1 + exp− oz(t)
j

. (C.2)

The input or(t)
j to the jth reset gate unit is

or(t)
j =

∑I

i=1
wr

jia
x(t)
i +

∑J

l=1
vr

jla
h(t− 1)
l + br

j (C.3)

where br
j is the bias of the jth reset gate unit. The activation ar(t)

j of the reset gate unit is

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

28

ar(t)
j =

1

1 + exp− or(t)
j

. (C.4)

The input oc(t)
j to the jth hidden unit is

oc(t)
j =

∑I

i=1
wx

jia
x(t)
i +

∑J

l=1
vh

jl

(
ah(t− 1)

l ar(t)
j

)
+ bx

j (C.5)

where bx
j is the bias of the jth hidden unit. The corresponding activation ac(t)

j is

ac(t)
j = tanh

(
oc(t)

j

)
=

expoc(t)
j − exp− oc(t)

j

expoc(t)
j + exp− oc(t)

j

. (C.6)

The hidden memory ah(t)
j at time t is

ah(t)
j =

(
ac(t)

j az(t)
j

)
+
((

1 − az(t)
j

)
ah(t− 1)

j

)
. (C.7)

The input oy(t)
k to the kth output neuron is

oy(t)
k =

∑J

j=1
uy

kja
y(t)
j + by

k. (C.8)

The corresponding output activation is the same as Eq. (B.13) for a classifier network. Regression network uses identity activation at the output
layer from (B.14).

C.2. Backward Pass

We now present the update for RBP with GRU-RNN. The error function for a classifier is a cross-entropy and this follows from Eq. (B.15). The error
for a regression network with GRU architecture is a sum of squared error and this follows from (B.27).

The update rules for some weights are similar with GRU-RNN and LSTM-RNN. The update rules for uy
kj and by

k follow from (B.22) and (B.23). The

derivatives E(t)′ and ac(t)′
j follow from the definitions in (B.26) and (B.28). The derivative of the activations for the update and reset gates are

az(t)′
j =

∂az(t)
j

∂oz(t)
j

= az(t)
j

(
1 − az(t)

j

)
(C.9)

ar(t)′
j =

∂ar(t)
j

∂or(t)
j

= ar(t)
j

(
1 − ar(t)

j

)
. (C.10)

The derivative of activation ah(t)
l with respect to the weight wx

ji connecting the input unit and hidden memory is

∂ah(t)
l

∂wx
ji
=
(
1 − az(t)

l

) ∂ah(t− 1)
l

∂wx
ji

− ah(t− 1)
l

∂az(t)
l

∂wx
ji
+ az(t)

l
∂ac(t)

l

∂wx
ji
+ ac(t)

l
∂az(t)

l

∂wx
ji

(C.11)

=
(
1 − az(t)

l

) ∂ah(t− 1)
l

∂wx
ji

−
(
ah(t− 1)

l − ac(t)
l

)
az(t)

l
′∑J

m=1
vz

lm
∂ah(t− 1)

m

∂wx
ji

+ az(t)
l ac(t)

l
′
[

ax(t)
i +

∑J

m=1
vh

lm

(

ar(t)
l

∂ah(t− 1)
m

∂wx
ji

+ ah(t− 1)
m ar(t)

l
′∑J

p=1
vr

lp

∂ah(t− 1)
p

∂wx
ji

)]

. (C.12)

Therefore we have the following initial conditions:

∂ah(0)
l

∂wx
ji

= 0 (C.13)

∂ah(1)
l

∂wx
ji

= az(1)
l ac(1)′

l ax(1)
l . (C.14)

The recursive expression for the partial derivative of E(t) with respect to wx
ji follows from (C.12)–(C.15)

∂E(t)

∂wx
ji
=
∑J

l=1

∂E(t)

∂ah(t)
l

∂ah(t)
l

∂wx
ji
. (C.15)

The derivative of ah(t)
l with respect to the bias bx

j follows from replacing ax(t)
i with 1 and wx

ji with bx
j in (C.12)–(C.15). Therefore we have

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

29

∂ah(t)
l

∂bx
j
=
(
1 − az(t)

l

) ∂ah(t− 1)
l

∂bx
j

−
(
ah(t− 1)

l − ac(t)
l

)
az(t)

l
′∑J

m=1
vz

lm
∂ah(t− 1)

m

∂bx
j

+ az(t)
l ac(t)

l
′
[

1 +
∑J

m=1
vh

lm

(

ar(t)
l

∂ah(t− 1)
m

∂bx
j

+ ah(t− 1)
m ar(t)

l
′∑J

p=1
vr

lp

∂ah(t− 1)
p

∂bx
j

)]

. (C.16)

We have the following initial conditions:

∂ah(0)
l

∂bx
j

= 0 (C.17)

∂ah(1)
l

∂bx
j

= az(1)
l ac(1)′

l . (C.18)

The recursive expression for the partial derivative of E(t) with respect to bx
j follows from (C.16)–(C.19)

∂E(t)

∂wx
ji
=
∑J

l=1

∂E(t)

∂ah(t)
l

∂ah(t)
l

∂wx
ji
. (C.19)

The derivative of ah(t)
m with respect to vh

jl is as follows:

∂ah(t)
m

∂vh
jl

=
(
1 − az(t)

m

) ∂ah(t− 1)
m

∂vh
jl

− ah(t− 1)
m

∂az(t)
m

∂vh
jl
+ az(t)

m
∂ac(t)

m

∂vh
jl
+ ac(t)

m
∂az(t)

m

∂vh
jl

(C.20)

=
(
1 − az(t)

m

) ∂ah(t− 1)
m

∂vh
jl

−
(
ah(t− 1)

m − ac(t)
m

)
az(t)

m
′∑J

p=1
vz

mp

∂ah(t− 1)
p

∂vh
jl

+ az(t)
m ac(t)

m
′
[

ah(t− 1)
m ar(t)

m +
∑J

p=1
vh

mp

(

ar(t)
p

∂ah(t− 1)
p

∂vh
jl

+ ah(t− 1)
p ar(t)

p
′∑J

q=1
vr

mq

∂ah(t− 1)
q

∂vh
jl

)]

. (C.21)

Therefore we have the following initial conditions:

∂ah(0)
m

∂vh
jl

=
∂ah(1)

m

∂vh
jl

= 0 (C.22)

∂ah(2)
m

∂vh
jl

= az(2)
m ac(1)′

m ah(1)
l ar(2)

j (C.23)

and the recursive expression for computing the derivative of E(t) with respect to vh
jl for t ∈ {1,….,T} follows from (C.21)–(C.24)

∂E(t)

∂vh
jl
=

∂E(t)

∂ah(t)
j

∂ah(t)
j

∂vh
jl
. (C.24)

The derivative of activation ah(t)
l with respect to weight wr

ji connecting the reset gate to the input unit follows from replacing wx
ji in Eq. (C.11) with

wr
ji. This gives the following:

∂ah(t)
l

∂wr
ji
=
(
1 − az(t)

l

) ∂ah(t− 1)
l

∂wr
ji

−
(
ah(t− 1)

l − ac(t)
l

)
az(t)

l
′∑J

m=1
vz

lm
∂ah(t− 1)

m

∂wr
ji

+ az(t)
l ac(t)

l
′
[
∑J

m=1
vh

lm

(

ar(t)
l

∂ah(t− 1)
m

∂wr
ji

+ ah(t− 1)
m ar(t)

l
′∑J

p=1
vr

lp

∂ah(t− 1)
p

∂wr
ji

)]

. (C.25)

Therefore we have the following initial condition:

∂ah(0)
l

∂wr
ji

= 0. (C.26)

The recursive expression for the partial derivative of E(t) with respect to wx
ji follows from (C.25)–(C.27)

∂E(t)

∂wr
ji
=
∑J

l=1

∂E(t)

∂ah(t)
l

∂ah(t)
l

∂wr
ji
. (C.27)

The derivative of activation ah(t)
l with respect to br

j follows from replacing wr
ji with br

j and ax(t)
i with 1 in (C.25). We have

∂ah(t)
l

∂br
j
=
(
1 − az(t)

l

) ∂ah(t− 1)
l

∂br
j

−
(
ah(t− 1)

l − ac(t)
l

)
az(t)

l
′∑J

m=1
vz

lm
∂ah(t− 1)

m

∂br
j

+ az(t)
l ac(t)

l
′
[
∑J

m=1
vh

lm

(

ar(t)
l

∂ah(t− 1)
m

∂br
j

+ ah(t− 1)
m ar(t)

l
′∑J

p=1
vr

lp

∂ah(t− 1)
p

∂br
j

)]

. (C.28)

The initial condition is

∂ah(0)
l

∂br
j

= 0. (C.29)

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

30

The recursive expression for computing the derivative of E(t) with respect to the bias br
j follows from (C.28)–(C.30)

∂E(t)

∂br
l
=
∑J

l=1

∂E(t)

∂ah(t)
l

∂ah(t)
l

∂br
j
. (C.30)

The derivative of ah(t)
m with respect to vr

jl follows from replacing wx
ji with vr

jl and ah(t)
l with ah(t)

m in (C.11)

∂ah(t)
m

∂vr
jl

=
(
1 − az(t)

m

) ∂ah(t− 1)
m

∂vr
jl

−
(
ah(t− 1)

m − ac(t)
m

)
az(t)

m
′∑J

p=1
vz

mp

∂ah(t− 1)
p

∂vr
jl

+ az(t)
m ac(t)

m
′
[
∑J

p=1
vh

mp

(

ar(t)
m

∂ah(t− 1)
p

∂vr
jl

+ ah(t− 1)
p ar(t)

m
′
(

ah(t− 1)
l +

∑J

q=1
vh

mq

∂ah(t− 1)
q

∂vr
jl

))]

. (C.31)

This gives the following:

∂ah(0)
j

∂vr
jl

= 0. (C.32)

The recursive expression for computing the derivative of E(t) with respect to the weight vr
jl follows from (C.32)–(C.33)

∂E(t)

∂vr
jl
=
∑J

j=1

∂E(t)

∂ah(t)
j

∂ah(t)
j

∂vr
jl
. (C.33)

The derivative of activation ah(t)
l with respect to wz

ji follows from replacing wx
ji in (C.11) with wz

ji. We have the following:

∂ah(t)
l

∂wz
ji
=
(
1 − az(t)

l

) ∂ah(t− 1)
l

∂wz
ji

−
(
ah(t− 1)

l − ac(t)
l

)
az(t)

l
′
(

ax(t)
i +

∑J

m=1
vz

jm
∂ah(t− 1)

m

∂wz
ji

)

+ az(t)
l ac(t)

l
′
(
∑J

m=1
vh

lmar(t)
m

∂ah(t− 1)
m

∂wz
ji

)

. (C.34)

This gives the following:

∂ah(0)
l

∂wz
ji

= 0 (C.35)

∂ah(0)
l

∂wz
ji

= ac(1)
l az(1)′

l ax(1)
i . (C.36)

The recursive expression for computing the derivative of E(t) with respect to the weight wz
ji follows from (C.34)–(C.37)

∂E(t)

∂wz
ji
=
∑J

j=1

∂E(t)

∂ah(t)
j

∂ah(t)
j

∂wz
ji
. (C.37)

The derivative of ah(t)
l with respect to bz

j follows from replacing wz
ji with bz

j and ax(t)
i with 1 in Eq. (C.34). We have

∂ah(t)
l

∂bz
j
=
(
1 − az(t)

l

) ∂ah(t− 1)
l

∂bz
j

−
(
ah(t− 1)

l − ac(t)
l

)
az(t)

l
′
(

1 +
∑J

m=1
vz

jm
∂ah(t− 1)

m

∂bz
j

)

+ az(t)
l ac(t)

l
′
(
∑J

m=1
vh

lmar(t)
m

∂ah(t− 1)
m

∂bz
j

)

. (C.38)

We have the following:

∂ah(0)
l

∂bz
j

=
∂ah(1)

l

∂bz
j

= 0. (C.39)

The recursive expression for computing the derivative of E(t) with respect to the weight wz
ji follows from (C.39)–(C.40)

∂E(t)

∂bz
j
=
∑J

j=1

∂E(t)

∂ah(t)
l

∂ah(t)
l

∂bz
j
. (C.40)

The derivative of activation ah(t)
m with respect to vz

jl follows from replacing vz
jl with vz

jl in (C.11). We have the following:

∂ah(t)
m

∂vz
jl

=
(
1 − az(t)

m

) ∂ah(t− 1)
m

∂vz
jl

−
(
ah(t− 1)

m − ac(t)
m

)
az(t)

m
′
(

ah(t− 1)
m +

∑J

p=1
vz

mp

∂ah(t− 1)
p

∂vz
jl

)

+ az(t)
m ac(t)

m
′
(
∑J

p=1
vh

mpar(t)
p

∂ah(t− 1)
p

∂vz
jl

)

. (C.41)

The initial condition is

∂ah(0)
m

∂vz
jl

=
∂ah(1)

m

∂vz
jl

= 0. (C.42)

O. Adigun and B. Kosko

Neurocomputing 559 (2023) 126438

31

The recursive expression for computing the derivative of E(t) with respect ot the weight vz
jl follows from (C.41)–(C.43)

∂E(t)

∂vz
jl
=
∑J

m=1

∂E(t)

∂ah(t)
m

∂ah(t)
m

∂vz
jl
. (C.43)

RBP uses gradient descent or any of its variants for training. The update rule for the following network parameters θ ∈ {wx
ji, vh

jl, b
x
j ,wz

ji, vz
jl, b

z
j ,wr

ji, vr
jl,

br
j , u

y
ji, b

y
j } is as follows:

θn+1 = θn − η ∂E
∂θ

|θ=θn = θ(n) − η
∑T

t=t0

∂E(t)

∂θ
|θ=θn (C.44)

where η is the learning rate, θn is the weight after n training epochs, and t0 ∈ {1,2,…,T}. These partial derivatives form the update rules for training a
RNN with a GRU architecture using the RBP algorithm.

References

[1] P.J. Werbos, Backpropagation through time: what it does and how to do it, Proc.
IEEE 78 (10) (1990) 1550–1560, https://doi.org/10.1109/5.58337.

[2] P.J. Werbos, Generalization of backpropagation with application to a recurrent gas
market model, Neural Networks 1 (4) (1988) 339–356, https://doi.org/10.1016/
0893-6080(88)90007-X.

[3] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Computation 9 (8)
(1997) 1735–1780, https://doi.org/10.1162/neco.1997.9.8.1735.

[4] M.C. Mozer, A focused back-propagation algorithm for temporal pattern
recognition, Complex systems 3 (4) (1989) 349–381.

[5] M.C. Mozer, A focused backpropagation algorithm for temporal, Backpropagation:
Theory, architectures, and applications 137.

[6] R. Reed, S. Oh, R. Marks, et al., Regularization using jittered training data, in:
International joint conference on neural networks, Vol. 3, 1992, pp. 147–152. doi:
10.1109/IJCNN.1992.227178.

[7] C.M. Bishop, Training with noise is equivalent to Tikhonov regularization, Neural
computation 7 (1) (1995) 108–116, https://doi.org/10.1162/neco.1995.7.1.108.

[8] R. Reed, R. Marks, S. Oh, Similarities of error regularization, sigmoid gain scaling,
target smoothing, and training with jitter, IEEE Trans. Neural Networks 6 (3)
(1995) 529–538, https://doi.org/10.1109/72.377960.

[9] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-
propagating errors, Nature 323 (6088) (1986) 533–536, https://doi.org/10.1038/
323533a0.

[10] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436–444,
https://doi.org/10.1038/nature14539.

[11] M. Jordan, T. Mitchell, Machine learning: trends, perspectives, and prospects,
Science 349 (2015) 255–260, https://doi.org/10.1126/science.aaa8415.

[12] G. Hinton, Deep learning–a technology with the potential to transform health care,
Journal of the American Medical Association 320 (11) (2018) 1101–1102, https://
doi.org/10.1001/jama.2018.11100.

[13] J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks
61 (2015) 85–117, https://doi.org/10.1016/j.neunet.2014.09.003.

[14] K.P. Murphy, Machine learning: a probabilistic perspective, Adaptive computation
and machine learning series, MIT press, 2012.

[15] K. Audhkhasi, O. Osoba, B. Kosko, Noise-enhanced convolutional neural networks,
Neural Networks 78 (2016) 15–23.

[16] F.A. Gers, J. Schmidhuber, F. Cummins, Learning to forget: Continual prediction
with LSTM, Neural Computation 12 (10) (2000) 2451–2471, https://doi.org/
10.1162/089976600300015015.

[17] K. Greff, R.K. Srivastava, J. Koutník, B.R. Steunebrink, J. Schmidhuber, LSTM: A
search space odyssey, IEEE transactions on neural networks and learning systems
28 (10) (2016) 2222–2232, https://doi.org/10.1109/TNNLS.2016.2582924.

[18] S. Hochreiter, J. Schmidhuber, LSTM can solve hard long time lag problems,
Advances in neural information processing systems (1996) 473–479.

[19] L. Arras, J. Arjona-Medina, M. Widrich, G. Montavon, M. Gillhofer, K.-R. Müller,
S. Hochreiter, W. Samek, Explaining and interpreting lstms, in: Explainable ai:
Interpreting, explaining and visualizing deep learning, Vol. 11700, Springer, 2019,
pp. 211–238, https://doi.org/10.1007/978-3-030-28954-6_11.

[20] A. Graves, A.-R. Mohamed, G. Hinton, Speech recognition with deep recurrent
neural networks, in: 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing, IEEE, 2013, pp. 6645–6649, https://doi.org/10.1109/
ICASSP.2013.6638947.

[21] C. Junyoung, G. Caglar, C. Kyunghyun, B. Yoshua, Gated feedback recurrent neural
networks, in: Proceedings of the 32nd International Conference on Machine
Learning, Vol. 37 of JMLR Workshop and Conference Proceedings, JMLR.org,
2015, pp. 2067–2075.

[22] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical evaluation of gated recurrent
neural networks on sequence modeling, arXiv preprint arXiv:1412.3555.

[23] D.M. Rodriguez, J. Ahmed, M. Shah, Action mach: A spatio-temporal maximum
average correlation height filter for action recognition, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, IEEE Computer Society,
2008. doi:10.1109/CVPR.2008.4587727.

[24] K. Soomro, A.R. Zamir, Action recognition in realistic sports videos, in: Computer
vision in sports, Springer, 2015, pp. 181–208.

[25] B. Kosko, Noise, Penguin, 2006.
[26] S. Mitaim, B. Kosko, Adaptive stochastic resonance, Proceedings of the IEEE 86

(11) (1998) 2152–2183, https://doi.org/10.1109/5.726785.
[27] A. Patel, B. Kosko, Stochastic Resonance in Continuous and Spiking Neurons with

Levy Noise, IEEE Transactions on Neural Networks 19 (12) (2008) 1993–2008,
https://doi.org/10.1109/TNN.2008.2005610.

[28] M. McDonnell, N. Stocks, C. Pearce, D. Abbott, Stochastic resonance: from
suprathreshold stochastic resonance to stochastic signal quantization, Cambridge
University Press, 2008.

[29] M. Wilde, B. Kosko, Quantum forbidden-interval theorems for stochastic
resonance, Journal of Physical A: Mathematical Theory 42 (46). doi:10.1088/
1751-8113/42/46/465309.

[30] A. Patel, B. Kosko, Error-probability noise benefits in threshold neural signal
detection, Neural Networks 22 (5) (2009) 697–706, https://doi.org/10.1016/j.
neunet.2009.06.044.

[31] A. Patel, B. Kosko, Optimal Mean-Square Noise Benefits in Quantizer-Array Linear
Estimation, IEEE Signal Processing Letters 17 (12) (2010) 1005–1009, https://doi.
org/10.1109/LSP.2010.2059376.

[32] A. Patel, B. Kosko, Noise Benefits in Quantizer-Array Correlation Detection and
Watermark Decoding, IEEE Transactions on Signal Processing 59 (2) (2011)
488–505, https://doi.org/10.1109/TSP.2010.2091409.

[33] B. Franzke, B. Kosko, Noise Can Speed Convergence in Markov Chains, Physical
Review E 84 (4) (2011), 041112 , https://doi.org/10.1103/PhysRevE.84.041112.

[34] A.R. Bulsara, R.D. Boss, E.W. Jacobs, Noise Effects in an Electronic Model of a
Single Neuron, Biological Cybernetics 61 (1989) 211–222, https://doi.org/
10.1007/BF00198768.

[35] L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Stochastic Resonance, Reviews
of Modern Physics 70 (1) (1998) 223–287, https://doi.org/10.1103/
RevModPhys.70.223.

[36] F. Chapeau-Blondeau, X. Godivier, Theory of Stochastic Resonance in Signal
Transmission by Static Nonlinear System, Physical Review E 55 (2) (1997)
1478–1495, https://doi.org/10.1103/PhysRevE.55.1478.

[37] S. Mitaim, B. Kosko, Noise-benefit forbidden-interval theorems for threshold signal
detectors based on cross correlations, Physical Review E 90 (5) (2014), 052124 ,
https://doi.org/10.1103/PhysRevE.90.052124.

[38] B. Kosko, K. Audhkhasi, O. Osoba, Noise can speed backpropagation learning and
deep bidirectional pretraining, Neural Networks 129 (2020) 359–384, https://doi.
org/10.1016/j.neunet.2020.04.004.

[39] O. Osoba, S. Mitaim, B. Kosko, The noisy Expectation–Maximization algorithm,
Fluctuation and Noise Letters 12 (3) (2013) 1350012–1–1350012–30. doi:
10.1142/S0219477513500120.

[40] O. Osoba, B. Kosko, The noisy Expectation-Maximization algorithm for
multiplicative noise injection, Fluctuation and Noise Letters 15 (01) (2016)
1650007, https://doi.org/10.1142/S0219477516500073.

[41] O. Adigun, B. Kosko, Noise-boosted bidirectional backpropagation and adversarial
learning, Neural Networks 120 (2019) 9–31, https://doi.org/10.1016/j.
neunet.2019.09.016.

[42] O. Adigun, B. Kosko, Using noise to speed up video classification with recurrent
backpropagation, in: International Joint Conference on Neural Networks, IEEE,
2017, pp. 108–115, https://doi.org/10.1109/IJCNN.2017.7965843.

[43] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception
architecture for computer vision, in: Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 2818–2826. doi:10.1109/
CVPR.2016.308.

[44] O. Adigun, B. Kosko, High capacity neural block classifiers with logistic neurons
and random coding, in: 2020 International Joint Conference on Neural Networks
(IJCNN), IEEE, 2020, pp. 1–9, https://doi.org/10.1109/
IJCNN48605.2020.9207218.

[45] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data
via the EM algorithm, Journal of the royal statistical society. Series B
(methodological) (1977) 1–38. URL:http://www.jstor.org/stable/2984875.

[46] K. Audhkhasi, O. Osoba, B. Kosko, Noisy hidden Markov models for speech
recognition, in: Neural Networks (IJCNN), The 2013 International Joint
Conference on, IEEE, 2013, pp. 1–6, https://doi.org/10.1109/
IJCNN.2013.6707088.

O. Adigun and B. Kosko

https://doi.org/10.1109/5.58337
https://doi.org/10.1016/0893-6080(88)90007-X
https://doi.org/10.1016/0893-6080(88)90007-X
https://doi.org/10.1162/neco.1997.9.8.1735
http://refhub.elsevier.com/S0925-2312(23)00561-1/h0020
http://refhub.elsevier.com/S0925-2312(23)00561-1/h0020
https://doi.org/10.1162/neco.1995.7.1.108
https://doi.org/10.1109/72.377960
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/nature14539
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1001/jama.2018.11100
https://doi.org/10.1001/jama.2018.11100
https://doi.org/10.1016/j.neunet.2014.09.003
http://refhub.elsevier.com/S0925-2312(23)00561-1/h0070
http://refhub.elsevier.com/S0925-2312(23)00561-1/h0070
http://refhub.elsevier.com/S0925-2312(23)00561-1/h0075
http://refhub.elsevier.com/S0925-2312(23)00561-1/h0075
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1109/TNNLS.2016.2582924
http://refhub.elsevier.com/S0925-2312(23)00561-1/h0090
http://refhub.elsevier.com/S0925-2312(23)00561-1/h0090
https://doi.org/10.1007/978-3-030-28954-6_11
https://doi.org/10.1109/ICASSP.2013.6638947
https://doi.org/10.1109/ICASSP.2013.6638947
http://refhub.elsevier.com/S0925-2312(23)00561-1/h0120
http://refhub.elsevier.com/S0925-2312(23)00561-1/h0120
http://refhub.elsevier.com/S0925-2312(23)00561-1/h0125
https://doi.org/10.1109/5.726785
https://doi.org/10.1109/TNN.2008.2005610
http://refhub.elsevier.com/S0925-2312(23)00561-1/h0140
http://refhub.elsevier.com/S0925-2312(23)00561-1/h0140
http://refhub.elsevier.com/S0925-2312(23)00561-1/h0140
https://doi.org/10.1016/j.neunet.2009.06.044
https://doi.org/10.1016/j.neunet.2009.06.044
https://doi.org/10.1109/LSP.2010.2059376
https://doi.org/10.1109/LSP.2010.2059376
https://doi.org/10.1109/TSP.2010.2091409
https://doi.org/10.1103/PhysRevE.84.041112
https://doi.org/10.1007/BF00198768
https://doi.org/10.1007/BF00198768
https://doi.org/10.1103/RevModPhys.70.223
https://doi.org/10.1103/RevModPhys.70.223
https://doi.org/10.1103/PhysRevE.55.1478
https://doi.org/10.1103/PhysRevE.90.052124
https://doi.org/10.1016/j.neunet.2020.04.004
https://doi.org/10.1016/j.neunet.2020.04.004
https://doi.org/10.1142/S0219477516500073
https://doi.org/10.1016/j.neunet.2019.09.016
https://doi.org/10.1016/j.neunet.2019.09.016
https://doi.org/10.1109/IJCNN.2017.7965843
https://doi.org/10.1109/IJCNN48605.2020.9207218
https://doi.org/10.1109/IJCNN48605.2020.9207218
http://refhub.elsevier.com/S0925-2312(23)00561-1/h0225
http://refhub.elsevier.com/S0925-2312(23)00561-1/h0225
http://refhub.elsevier.com/S0925-2312(23)00561-1/h0225
https://doi.org/10.1109/IJCNN.2013.6707088
https://doi.org/10.1109/IJCNN.2013.6707088

Neurocomputing 559 (2023) 126438

32

[47] G. Alex, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, J. Schmidhuber, A novel
connectionist system for unconstrained handwriting recognition, IEEE
Transactions on Pattern Analysis and Machine Intelligence (2009) 855–868.

[48] G. Alex, M. Liwicki, S. Fernandez, H. Bunke, J. Schmidhuber, A novel connectionist
system for unconstrained handwriting recognition, Proceedings of the 20th
International Conference on Neural Information Processing System (2007)
577–584.

[49] R.O. Duda, P.E. Hart, D.G. Stork (Eds.), Pattern Classification, Vol. 2nd, 2000.
[50] C.M. Bishop, Pattern recognition and machine learning, springer, 2006.
[51] R.V. Hogg, J. McKean, A.T. Craig, Introduction to Mathematical Statistics, (7th

edition),, Pearson, 2013.
[52] Y. Perwej, A. Perwej, Forecasting of Indian Rupee/US Dollar currency exchange

rate using artificial neural networks, International Journal of Computer Science,
Engineering and Applications 2 (2).

Dr. Olaoluwa (Oliver) Adigun is a lecturer at the Department of Electrical and Computer
Engineering at the University of Southern California. He received a Bachelor of Science
degree in electronic and electrical engineering from Obafemi Awolowo University, Ife,
Nigeria. He received a Master of Science degree and a Ph.D. degree in Electrical Engi-
neering from the Department of Electrical and Computer Engineering, Signal and Image
Processing Institute, University of Southern California, Los Angeles, CA, USA.

Dr. Bart Kosko is a professor of Electrical and Computer Engineering, and Law, at the
University of Southern California. He is a Fellow of the IEEE and of the International
Neural Network Society (INNS), and received the INNS Hebb Award for neural learning.
He received degrees in philosophy, economics, applied mathematics, electrical engineer-
ing, and law. He is a past Director of USC’s Signal and Image Processing Institute and a
licensed attorney. He has published the textbooks Neural Networks and Fuzzy Systems,
and Fuzzy Engineering, the trade books Fuzzy Thinking, Heaven in a Chip, and Noise, the
edited volume Neural Networks and Signal Processing, the co-edited volume Intelligent
Signal Processing, and the novels Nanotime and Cool Earth.

O. Adigun and B. Kosko

http://refhub.elsevier.com/S0925-2312(23)00561-1/h0235
http://refhub.elsevier.com/S0925-2312(23)00561-1/h0235
http://refhub.elsevier.com/S0925-2312(23)00561-1/h0235
http://refhub.elsevier.com/S0925-2312(23)00561-1/h0250
http://refhub.elsevier.com/S0925-2312(23)00561-1/h0255
http://refhub.elsevier.com/S0925-2312(23)00561-1/h0255

	Noise-boosted recurrent backpropagation
	1 Noise Boosting Recurrent Backpropagation
	2 Backpropagation Invariance and the EM Algorithm
	3 Noise-Boosting the EM Algorithm
	4 Backpropagation Training of Recurrent Neural Networks
	4.1 Long Short-Term Memory (LSTM) Recurrent Neural Networks
	4.2 Gated Recurrent Unit (GRU) Recurrent Neural Networks

	5 NEM Noise Injection in Recurrent Backpropagation
	5.1 NEM Noise Injection in Recurrent Network’s Output Neurons
	5.1.1 Noise-boosting an RBP Classifier
	5.1.2 NEM Noise Injection in a Recurrent Regression Network

	5.2 NEM Noise Injection into a RNN’s Hidden Layers
	5.2.1 NEM Noise Injection into the Hidden Units of a Long Short-Term Memory (LSTM) RNN
	5.2.2 NEM Noise Injection into the Hidden Units of a Gated-Recurrent-Unit GRU-RNN

	6 Simulation Results
	6.1 Noise-boosted LSTM-RNN classifiers
	6.2 Noise-boosted Gated-Recurrent-Unit Classifiers
	6.3 Noise-boosted RNN Regression Model
	6.3.1 Noise-boosted LSTM-RNN Regression
	6.3.2 Noise-boosted GRU-RNN Regression

	7 Conclusion
	Declaration of Competing Interest
	Appendix A Proof of Theorems
	A.1 NEM Noise Injection into Output Neurons.
	A.2 NEM Noise Injection into Hidden Units of Recurrent Neural Networks.

	Appendix B Recurrent Backpropagation Training with Long Short-Term Memory (LSTM)
	B.1 Forward Pass
	B.2 Backward Pass

	Appendix C Recurrent Backpropagation Training with Gated Recurrent Unit (GRU)
	C.1 Forward Pass
	C.2 Backward Pass

	References

