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Abstract— We show that noise can speed training in hid-
den Markov models (HMMs). The new Noisy Expectation-
Maximization (NEM) algorithm shows how to inject noise
when learning the maximum-likelihood estimate of the HMM
parameters because the underlying Baum-Welch training algo-
rithm is a special case of the Expectation-Maximization (EM)
algorithm. The NEM theorem gives a sufficient condition for
such an average noise boost. The condition is a simple quadratic
constraint on the noise when the HMM uses a Gaussian mixture
model at each state. Simulations show that a noisy HMM
converges faster than a noiseless HMM on the TIMIT data
set.

Index Terms— Hidden Markov model, Expectation Maxi-
mization algorithm, noisy EM algorithm, stochastic resonance,
speech recognition, noise injection

I. NOISE BENEFITS IN SPEECHRECOGNITION

We show that careful noise injection can speed the training
process for a hidden Markov model (HMM). The proper
noise appears to help the training process explore less
probable regions of the parameter space. We call the new
system a noisy HMM or NHMM. Figure 1 describes the
NHMM architecture based on a noise-enhanced version
of the expectation-maximization (EM) algorithm. Figure 2
shows that noise produces a37% reduction in the number of
iterations that it takes to converge to the maximum-likelihood
estimate. Figure 3 shows simulation instances where the
NHMM converges more quickly than does the standard or
noiseless HMM that uses Gaussian mixture models. Figure 4
further shows that the NHMM converges faster than an HMM
with simple annealed “blind noise” added to the training data.
Such blind noise does not satisfy the key sufficient condition
in the noise-enhanced EM algorithm.

The new NHMM is a special case of the recent noisy
EM (NEM) model [1], [2]. The underlying NEM theorem
states that the noise-enhanced EM algorithm converges faster
on average to the maximum-likelihood optimum than does
the noiseless EM algorithm if the noise obeys a positivity
condition. The condition reduces to a quadratic constraint
on the injected noise in the special but important case of a
Gaussian mixture model. The NEM algorithm gives rise to
the NHMM because the Baum-Welch algorithm that trains
the HMM parameters is itself a special case of the EM
algorithm [3]. Theorem 1 below states the corresponding
sufficient condition for an HMM noise boost. This is a type
of “stochastic resonance” effect where a small amount of
noise improves the performance of a nonlinear system while
too much noise harms the system [4]–[21].
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The simulations below confirm the theoretical prediction
that proper injection of noise can improve speech recognition.
This appears to be the first deliberate use of noise injection
in the speech data itself. Earlier efforts [22], [23] used
annealed noise to perturb the model parameters and to pick
an alignment path between HMM states and the observed
speech data. These earlier efforts neither added noise to the
speech data nor found any theoretical guarantee of a noise
benefit.

An HMM is a popular probabilistic model for time
series data. Its many applications include speech recogni-
tion [24]–[26], computational biology [22], [27], [28], com-
puter vision [29], [30], wavelet-based signal processing [31],
and control theory [32]. HMMs are especially widespread
in speech processing and recognition. All popular speech
recognition toolkits use HMMs: Hidden Markov Model
Toolkit (HTK) [33], Sphinx [34], SONIC [35], RASR [36],
Kaldi [37], Attila [38], BYBLOS [39], and Watson [40].

HMMs relate to neural networks in several ways. The
forward algorithm of Baum-Welch HMM training resembles
the training of some recurrent neural networks [41]. Modern
automatic speech recognition also relies heavily on both
HMMs and neural networks. Neural-HMM hybrid architec-
tures have improved the performance of speech recognition
in many cases [42]–[46].

The next section reviews HMMs and the Baum-Welch
algorithm that tunes them. Section III reviews the NEM
algorithm and Section IV presents the sufficient condition
for a noise boost in HMMs. Section V tests the new NHMM
algorithm for training monophone models on the TIMIT
corpus.

II. H IDDEN MARKOV MODELS

HMMs [24] are probabilistic latent variable models for
multivariate time series data. An HMM consists of a time-
homogeneous Markov chain withM states and a single-step
transition matrixA. Let S : Z

+ → ZM denote a function
that maps time to state indices. Then

Ai,j = P [S(t + 1) = j|S(t) = i] (1)

for ∀t ∈ Z
+ and∀i, j ∈ ZM . Each state contains a proba-

bility density function (pdf) of the multivariate observations.
A GMM is a common choice for this purpose [47]. The pdf
fi of an observationo ∈ R

D at statei is

fi(o) =
K

∑

k=1

wi,kN (o; µi,k,Σi,k) (2)

where wi,1, . . . , wi,K are convex coefficients and
N (o; µi,k,Σi,k) denotes a multivariate Gaussian pdf
with population meanµi,k and covariance matrixΣi,k.
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Fig. 1. The training process of the NHMM: The NHMM algorithm adds annealed noise to the observations during the M-step in the EM algorithm if the
noise satisfies the NEM positivity condition. This noise changes the GMM covariance estimate in the M-step.

A. The Baum-Welch Algorithm for HMM Parameter Estima-
tion

The Baum-Welch algorithm [3] is an EM approach for
maximum likelihood (ML) estimation of HMM parame-
ters. Let O = (o1, . . . ,oT ) denote a multivariate time
series of lengthT . Let S = (S(1), . . . , S(T )) and Z =
(Z(1), . . . , Z(T )) be the respective latent state and Gaussian
index sequences. Then the ML estimateΘ∗ of the HMM
parameters is

Θ∗ = argmax
Θ

log
∑

S,Z

P [O,S,Z|Θ]. (3)

The sum over latent variables makes it difficult to directly
maximize the objective function (3). EM uses Jensen’s in-
equality [48] and the concavity of the logarithm to obtain the
following lower-bound on the observed data log-likelihood
log P [O|Θ] at the current parameter estimateΘ(n):

log P [O|Θ] ≥ EP [S,Z|O,Θ(n)] log P [O,S,Z|Θ]

= Q(Θ|Θ(n)) (4)

The complete data log-likelihood for an HMM factors as

log P [O,S,Z|Θ] =
M
∑

i=1

I(S(1) = i) logpi(1)+

T
∑

t=1

M
∑

i=1

K
∑

k=1

I(S(t) = i, Z(t) = k)
{

log wi,k+

logN (ot|µi,k,Σi,k)
}

+

T−1
∑

t=1

M
∑

i=1

M
∑

j=1

I(S(t + 1) = j, S(t) = i) logAi,j (5)

whereI(.) is an indicator function andpi(1) = P [S(1) =
i]. TheQ-function requires computing the following sets of

variables:

γ
(n)
i (1) = P [S(1) = i|O, Θ(n)] (6)

η
(n)
i,k (t) = P [S(t) = i, Z(t) = k|O, Θ(n)] (7)

ζ
(n)
i,j (t) = P [S(t + 1) = j, S(t) = i|O, Θ(n)] (8)

for ∀t ∈ {1, . . . , T}, i, j ∈ {1, . . . , M}, andk ∈ {1, . . . , K}.
The Forward-Backward algorithm is a dynamic programming
approach that efficiently computes these variables [24]. The
resultingQ-function is

Q(Θ|Θ(n)) =

M
∑

i=1

γ
(n)
i (1) logpi(1)+

T
∑

t=1

M
∑

i=1

K
∑

k=1

η
(n)
i,k (t)

{

log wi,k + logN (ot|µi,k,Σi,k)
}

+

T−1
∑

t=1

M
∑

i=1

M
∑

j=1

ζ
(n)
i,j (t) log Ai,j . (9)

Maximizing the auxiliary functionQ(Θ|Θ(n)) with respect
to the parametersΘ subject to sum-to-one constraints leads
to the re-estimation equations for the M-step at iterationn:

p
(n)
i (1) = γ

(n)
i (1) (10)

A
(n)
i,j =

∑T−1
t=1 ζ

(n)
i,j (t)

∑T−1
t=1 γ

(n)
i (t)

(11)

w
(n)
i,k =

∑T

t=1 η
(n)
i,k (t)

∑T
t=1 γ

(n)
i (t)

(12)

µ
(n)
i,k =

∑T

t=1 η
(n)
i,k (t)ot

∑T

t=1 γ
(n)
i (t)

(13)

Σ
(n)
i,k =

∑T

t=1 η
(n)
i,k (t)(ot − µ

(n)
i,k )(ot − µ

(n)
i,k )T

∑T

t=1 γ
(n)
i (t)

. (14)
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We next review the NEM algorithm.

III. T HE NOISY EXPECTATION-MAXIMIZATION

THEOREM

The Noisy Expectation-Maximization (NEM) algorithm
[1], [2] modifies the EM scheme and achieves faster conver-
gence times on average. The NEM algorithm injects additive
noise into the data at each EM iteration. The noise must
decay with the iteration count to guarantee convergence
to the optimal parameters of the original data model. The
additive noise must also satisfy the NEM condition below.
The condition guarantees that the NEM parameter estimates
will climb faster up the likelihood surface on average.

A. NEM Theorem

The NEM Theorem [1], [2] states a general sufficient con-
dition when noise speeds up the EM algorithm’s convergence
to the local optimum of the likelihood surface. The NEM
Theorem uses the following notation. The noise random vari-
ableN has pdff(n|o). So the noiseN can depend on the ob-
served dataO. L are the latent variables in the model.{Θ(n)}
is a sequence of EM estimates forΘ. Θ∗ is the converged
EM estimate forΘ: Θ∗ = limn→∞ Θ(n). Define the noisy
QN function QN(Θ|Θ(n)) = EL|O,Θ(n) [ln f(o + N,L|Θ)].
Assume that all random variables have finite differential
entropy. Assume further that the additive noise keeps the
data in the likelihood function’s support. Then we can state
the NEM theorem [1], [2].

Theorem 1. Noisy Expectation Maximization (NEM)
The EM estimation iteration noise benefit

Q(Θ∗|Θ∗)−Q(Θ(n)|Θ∗) ≥ Q(Θ∗|Θ∗)−QN(Θ(n)|Θ∗)
(15)

or equivalently

QN(Θ(n)|Θ∗) ≥ Q(Θ(n)|Θ∗) (16)

holds on average if the followingpositivity condition holds:

EO,L,N|Θ∗

[

ln

(

f(O + N,L|Θ(n))

f(O,L|Θ(n))

)]

≥ 0 . (17)

The NEM Theorem states that each iteration of a suitably
noisy EM algorithm gives higher likelihood estimates on
average than the noiseless EM algorithm gives ateach
iteration. So the NEM algorithm converges faster than EM
does if we can identify the data model. The faster NEM
convergence occurs both because the likelihood function has
an upper bound and because the NEM algorithm takes larger
average steps up the likelihood surface.

Many latent-variable models (such as GMM and HMM)
are not identifiable [49], [50] and thus do not have global
likelihood optima. The EM and NEM algorithms converge to
local optima in these cases. But the added noise in the NEM
algorithm may cause the NEM estimates to search nearby
local optima. The NEM Theorem still guarantees that NEM
estimates have higher likelihood on average than the EM
estimates have for such non-identifiable models.

Gaussian mixture model (GMM) parameter estimation
greatly simplifies the NEM positivity condition in (17) [1].
Consider the GMM pdf in (2). The model satisfies the
positivity condition (17) when the additive noise sampleN =
(N1, ..., ND) for each observation vectoro = (o1, ..., oD)
satisfies the following quadratic constraint [1], [2]:

Nd [Nd − 2 (µi,k,d − od)] ≤ 0 for all k . (18)

IV. T HE NOISE-ENHANCED HMM

The state sequenceS and the Gaussian indexZ are the
latent variablesL for an HMM. The noisyQ-function for
the NHMM is

QN (Θ|Θ(n)) =

M
∑

i=1

γ
(n)
i (1) logpi(1) +

T
∑

t=1

M
∑

i=1

K
∑

k=1

η
(n)
i,k (t)

{

log wi,k + logN (ot + nt|µi,k,Σi,k)
}

+

T−1
∑

t=1

M
∑

i=1

M
∑

j=1

ζ
(n)
i,j (t) log Ai,j (19)

wherent ∈ RD is the noise vector for the observationot.
Then thedth elementnt,d of this noise vector satisfies the
following positivity constraint:

nt,d[nt,d − 2(µ
(n−1)
i,k,d − ot,d)] ≤ 0 for all k (20)

whereµ
(n−1)
i,k is the mean estimate at iterationn− 1.

Maximizing the noisyQ-function (19) gives the update
equations for the M-step. Only the GMM mean and covari-
ance update equations differ from the noiseless EM because
the noise enters the noisyQ-function (19) only through the
Gaussian pdf. But the NEM algorithm requires modifying
only the covariance update equation (14) because it uses
the noiseless mean estimates (13) to check the positivity
condition (20). Then the NEM covariance estimate is

Σ
(n)
i,k =

∑T

t=1 η
(n)
i,k (t)(ot + nt − µ

(n)
i,k )(ot + nt − µ

(n)
i,k )T

∑T

t=1 γ
(n)
i (t)

.

(21)

V. SIMULATION RESULTS

We modified the Hidden Markov Model Toolkit
(HTK) [33] to train the NHMM. HTK provides a tool called
“HERest” that performs embedded Baum-Welch training for
an HMM. This tool first creates a large HMM for each
training speech utterance. It concatenates the HMMs for
the sub-word units. The Baum-Welch algorithm tunes the
parameters of this large HMM.

The NHMM algorithm used (21) to modify covariance
matrices in HERest. We sampled from a suitably trun-
cated Gaussian pdf to produce noise that satisfied the
NEM positivity condition (20). We used noise variances in
{0.001, 0.01, 0.1, 1}. A deterministic annealing factorn−τ

scaled the noise variance at iterationn. The noise decay rate
was τ > 0. We usedτ ∈ {1, . . . , 10}. We then added the
noise vector to the observations during the update of the
covariance matrices (21).
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(a) 16-component GMM at each HMM state
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(b) 32-component GMM at each HMM state

Fig. 3. Noise benefit in NHMM training: The plots show the per-frame log-likelihoods for NHMM and HMM with16 and 32 GMM components per
state during successive iterations of Baum-Welch training. The horizontal black lines denote the log-likelihoods forthe HMM at iterations10, 20, and30.
Error bars show one standard deviation above and below the median log-likelihood over5 NHMM training runs. Noise produces a1.5% and1.0% median
increase in log-likelihood per iteration over30 iterations for the NHMM with respective16 and32 GMM components.
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Fig. 2. Reduction in convergence time for the NHMM: The bar graph
shows the percent reduction in the number of Baum-Welch iterations with
respect to the HMM log-likelihood at iterations10, 20, and 30. Noise
significantly reduces the number of iterations for8-, 16-, and32-component
GMMs. Noise also produces greater reduction for iterations20 and 30

due to the compounding effect of the log-likelihood improvement for the
NHMM at each iteration. Noise produces only a marginal reduction for the
4-component GMM case at10 iterations and no improvement for20 and30

iterations. This pattern of decreasing noise benefits comports with the data
sparsity analysis in [2]. The probability of satisfying theNEM sufficient
condition increases with fewer data samples for ML estimation.

The simulations used the TIMIT speech dataset [51] with
the standard setup in [52]. We parameterized the speech
signal with12 Mel-Frequency Cepstral Coefficients (MFCC)
computed over20-msec Hamming windows with a10-msec
shift. We also appended the first- and second-order finite
differences of the MFCC vector with the energies of all
three vectors. We used3-state left-to-right HMMs to model
each phoneme with aK-component GMM at each state. We
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Fig. 4. NHMM versus HMM with “blind noise”: This figure compares
the per-frame log-likelihoods of an NHMM with a blind noise-added HMM
for 16 GMM components per state during successive iterations of Baum-
Welch training. We did not constrain the blind noise samplesto satisfy
the noise benefit inequality in (20). We drew them from an un-truncated
Gaussian distribution with identical mean and variance as the NEM noise.
The annealed blind noise followed the same cooling scheduleas the NEM
noise. This figure shows that NHMM gives significantly betterlog-likelihood
than the blind noise HMM.

variedK over{1, 4, 8, 16, 32} for the experiments and used
two performance metrics to compare NHMM with HMM.
The first metric was the percent reduction in EM iterations
for the NHMM to achieve the same per-frame log-likelihood
as does the noiseless HMM at iterations10, 20, and30. The
second metric was the median improvement in per-frame log-
likelihood over30 training iterations.

Figure 2 shows the percent reduction in the number of
training iterations for the NHMM compared to the HMM
log-likelihood at iterations10, 20, and30. Noise substantially
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Algorithm NHMM Noise-Injection Training

1: Initialize parameters: Θ(1) ← Θinit

2: for n = 1→ nmax do

3: function E-STEP(O, Θ(n))

4: for t = 1→ T , i, j = 1→M , andk = 1→ K

do

5: γ
(n)
i (1)← P [S(1) = i|O, Θ(n)]

6: η
(n)
i,k (t)← P [S(t) = i, Z(t) = k|O, Θ(n)]

7: ζ
(n)
i,j (t)← P [S(t + 1) = j, S(t) = i|O, Θ(n)]

8: function M-STEP(O, γ, η, ζ, τ )

9: for i, j = 1→M andk = 1→ K do

10: p
(n)
i (1)← γ

(n)
i (1)

11: A
(n)
i,j ←

PT−1
t=1 ζ

(n)
i,j (t)

PT−1
t=1 γ

(n)
i

(t)

12: w
(n)
i,k ←

P

T
t=1 η

(n)
i,k

(t)
P

T
t=1 γ

(n)
i (t)

13: µ
(n)
i,k ←

PT
t=1 η

(n)
i,k

(t)ot

P

T
t=1 γ

(n)
i

(t)

14: nt ← GENERATE-NOISE(µ(n)
i,k ,ot, n

−τσ2
N )

15: Σ
(n)
i,k =

PT
t=1 η

(n)
i,k

(t)(ot+nt−µ
(n)
i,k

)(ot+nt−µ
(n)
i,k

)T

P

T
t=1 γ

(n)
i

(t)

16: function GENERATE-NOISE(µ(n)
i,k ,ot, σ

2)

17: nt ← N (0, σ2)

18: for d = 1→ D do

19: if nt,d[nt,d − 2(µ
(n−1)
i,k,d − ot,d)] > 0 for somek

then

20: nt,d = 0

21: return nt

reduced the number of iterations for16- and32-component
GMMs. But it only marginally improved the other cases.
This holds because the noise is more likely to satisfy the
NEM positivity condition when the number of data samples
is small relative to the number of parameters [2]. Figure 3
compares the per-frame log-likelihood of the training datafor
the HMM and the NHMM. The NHMM has a substantially
higher log-likelihood than does the HMM for the16-and32-
component GMM cases.

Figure 4 shows the comparison between NHMM and
HMM with blind noise added to the training data. We did not
constrain the blind noise samples to satisfy the noise benefit
inequality in (20). The annealed blind noise followed the
same cooling schedule and used the same mean and variance
as the NEM noise. This figure shows that NHMM gives
significantly better log-likelihood than the blind noise HMM.

Simulated annealing and blind annealed noise injection also
do not guarantee the faster-than-EM convergence that NEM
guarantees. The figures in the paper show that NEM gives
better likelihoods at each iteration and that NEM converges
faster in the long run.

VI. CONCLUSIONS

Careful addition of noise can speed the average conver-
gence of iterative ML estimation for HMMs. The NEM
theorem gives a sufficient condition for generating such
noise. This condition reduces to a simple quadratic constraint
in the case of HMMs with a GMM at each state. Experiments
on the TIMIT data set show a significant improvement in
per-frame log-likelihood and in time to convergence for the
NHMM as compared with the HMM. Future work should
develop algorithms to find the optimal noise variance and
annealing decay factor. It should also explore noise benefits
at other stages of EM training in an HMM.
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