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Noisy Hidden Markov Models for Speech Recognition
Kartik Audhkhasi, Osonde Osoba, Bart Kosko

Abstract—We show that noise can speed training in hid- The simulations below confirm the theoretical prediction
den Markov models (HMMs). The new Noisy Expectation- that proper injection of noise can improve speech recognition.
Maximization (NEM) algorithm shows how to inject noise  Thjg anpears to be the first deliberate use of noise injection
when learning the maximume-likelihood estimate of the HMM . . .
parameters because the underlying Baum-Welch training algo- in the Spee(_:h data itself. Earlier efforts [22], [23] use(_j
rithm is a special case of the Expectation-Maximization (EM) annealed noise to perturb the model parameters and to pick
algorithm. The NEM theorem gives a sufficient condition for an alignment path between HMM states and the observed
such an average noise boost. The condition is a simple quadratic speech data. These earlier efforts neither added noise to the

constraint on the noise when the HMM uses a Gaussian mixture h dat ; ;
h - h nor found any theoretical rant f a noi
model at each state. Simulations show that a noisy HMM EZiee?it data nor found any theoretical guarantee of a noise

converges faster than a noiseless HMM on the TIMIT data . L .
set. An HMM is a popular probabilistic model for time

Index Terms—Hidden Markov model, Expectation Maxi- Series data. Its many applications include speech recogni-
mization algorithm, noisy EM algorithm, stochastic resonance, tion [24]-[26], computational biology [22], [27], [28], com-

speech recognition, noise injection puter vision [29], [30], wavelet-based signal processing [31],
and control theory [32]. HMMs are especially widespread
I. NOISEBENEFITS INSPEECHRECOGNITION in speech processing and recognition. All popular speech

L .. recognition toolkits use HMMs: Hidden Markov Model
We show that careful noise injection can speed the tra'n'nﬁ)olkit (HTK) [33], Sphinx [34], SONIC [35], RASR [36]
process for a hidden Markov model (HMM). The prope . i 137] atila [38], BYBLOS [39], and Watson [40].
noise appears to help the training process explore IeSSHMMs relate to neural networks in several ways. The

probable regions of the parameter space. We call the N algorithm of Baum-Welch HMM training resembles

system a noisy HMM or NHMM. Figure 1 describes th_ethe training of some recurrent neural networks [41]. Modern

NHMM archltegture ba_se_d on a nmse-en_hanced_ VETSIA) itomatic speech recognition also relies heavily on both
of the expectation-maximization (EM) algorithm. Figure 2HMMs and neural networks. Neural-HMM hybrid architec-

ihOV\t/.S thithn?'.f’? Erodtucesaﬁ% reolucttt:on n the nur?lt()elrhof tures have improved the performance of speech recognition
iterations that it takes to converge to the maximum-likelihoo many cases [42]-[46].

estimate. Figure 3 shows simulation instances where the,y . ot section reviews HMMs and the Baum-Welch
NHMM converges more quickly than does the standard CHﬁlgorithm that tunes them. Section Il reviews the NEM

noiseless HMM that uses Gaussian mixture models. F'gurea‘f'gorithm and Section IV presents the sufficient condition
further shows that the NHMM converges faster than an HMNL ! 2 hoise boost in HMMs. Section V tests the new NHMM

with simple annealed “blind noise” added to the training dataalgorithm for training monophone models on the TIMIT
Such blind noise does not satisfy the key sufficient conditiogorpus

in the noise-enhanced EM algorithm.

The new NHMM is a special case of the recent noisy Il. HIDDEN MARKOV MODELS
EM (NEM) model [1], [2]. The underlying NEM theorem HMMSs [24] are probabilistic latent variable models for
states that the noise-enhanced EM algorithm converges fasteultivariate time series data. An HMM consists of a time-
on average to the maximum-likelihood optimum than doelsomogeneous Markov chain with/ states and a single-step
the noiseless EM algorithm if the noise obeys a positivityransition matrixA. Let S : Z+ — Zj; denote a function
condition. The condition reduces to a quadratic constraititat maps time to state indices. Then
on the injected noise in the special but important case of a . .
Gaussian mixture model. The NEM algorithm gives rise to Aiy=PS(t+1)=5|S(t) =] 1
the NHMM because the Baum-Welch algorithm that trainsfor vt € Z* andVi, j € Z,;. Each state contains a proba-
the HMM parameters is itself a special case of the EMility density function (pdf) of the multivariate observations.
algorithm [3]. Theorem 1 below states the corresponding GMM is a common choice for this purpose [47]. The pdf
sufficient condition for an HMM noise boost. This is a typef; of an observatiom ¢ R” at statei is
of “stochastic resonance” effect where a small amount of

K
noise improves the performance of a nonlinear system while filo) = E wi kN (05 p; s i) )
. 5 sy Fiko ,
too much noise harms the system [4]-[21]. 1
here w;i,...,w; x are convex coefficients and
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Fig. 1. The training process of the NHMM: The NHMM algorithrdds annealed noise to the observations during the M-stdpeifEM algorithm if the
noise satisfies the NEM positivity condition. This noise ref@s the GMM covariance estimate in the M-step.

A. The Baum-Welch Algorithm for HMM Parameter Estimavariables:
tion

7M@) = PS(1) = il0,6)] (6)
The Baum-Welch algorithm [3] is an EM approach for (n) ) )
maximum likelihood (ML) estimation of HMM parame- k(1) = PIS(8) =14, 2(t) = k|0,0™] @)
ters. Let© = (o4,...,0r) denote a multivariate time §.<”.)(t) = P[S(t+1)=j,5(t) =i0,06™]  (8)
series of IengtHT Let S = (S(1),...,S(T)) and 2 = o
(Z(1),...,Z(T)) be the respective latent state and Gaussidf ¥t € {1+, T}.4,j € {1,..., M}, andk € {1,..., K}.
index sequences. Then the ML estim&@é of the HMM The Forward Backward algorrthm is a dynamic programmrng
parameters is approach that efficiently computes these variables [24¢ Th
resulting@-function is
0 = argmgxlogZP[(’),S, Z|0]. 3)
5.2 Q(ele™) Zv(" )log pi(1)+

The sum over latent variables makes it difficult to directly v K

maximize the objective function (3). EM uses Jensen’s in- (n)

equality [48] and the concavity of the logarithm to obtaig th Z DD i { log w; i +log N (0¢|pt; k, Zi.x )}+
following lower-bound on the observed data log-likelihood ‘=" ='*=!

log P[0|©)] at the current parameter estimaié™: — i i (1) log A ©
log P[O|O] > Eps, zj0,00m log PO, S, Z|0)] t=1 i=1 j=1
= Q(ele™M) (4) Maximizing the auxiliary functionQ(©|©(™)) with respect

o to the parameter® subject to sum-to-one constraints leads
The complete data log-likelihood for an HMM factors as  to the re-estimation equations for the M-step at iteration

M (1) =M1 10
log P[0, S, Z|0] = ZI i)logpi(1)+ pi (1) . )C(n)() (10)
t
(n) _ t 1
T M K Aij = -1y 11)
SOSTSTIS() =i, 2() = k){ log wi i+ s
t=1 i=1 k=1 n) Zt:l i (1)
log N (o¢|; 1, Ei,k)}+ =17 ()
B T (n)
T-1 M M (n) _ Zt:l i k (t)ot 13
SODISt+1) =5 S(t) = i)log Ai,;  (5) Mok = ST (13)
t=1 i=1 j=1 T: (:z) (n) (n)\T
_n. . (t)(or — 0oy —
where(.) is an indicator function ang;(1) = P[S(1) = ng,? = 2z M (B0 (n) o= i)t (14)
i]. The Q-function requires computing the following sets of Et 1Y (@)
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We next review the NEM algorithm. Gaussian mixture model (GMM) parameter estimation
greatly simplifies the NEM positivity condition in (17) [1].
1. THE NOISY EXPECTATION-MAXIMIZATION Consider the GMM pdf in (2). The model satisfies the
THEOREM positivity condition (17) when the additive noise sample=
The Noisy Expectation-Maximization (NEM) algorithm (Ny, ..., Np) for each observation vectas = (o1, ...,0p)
[1], [2] modifies the EM scheme and achieves faster convesatisfies the following quadratic constraint [1], [2]:
gence times on average. The NEM algorithm injects additive
noise into the data at each EM iteration. The noise must Na[Na =2 (pika—0a)) <0 forallk. — (18)
decay with the iteration count to guarantee convergence IV. THE NOISE-ENHANCED HMM

to the optimal parameters of the original data model. The Thea state sequenc and the Gaussian indeg are the

additive noise must also satisfy the NEM condition belowatant variables” for an HMM. The noisyQ-function for
The condition guarantees that the NEM parameter estimatgs, NHMM is

will climb faster up the likelihood surface on average.

M T M K
A. NEM Theorem Qn(e]0™) = Z%(n)(l) logpi(1) +> 775,71?(15)
The NEM Theorem [1], [2] states a general sufficient con- =t e
dition when noise speeds up the EM algorithm’s convergence { log w; k. +log N(0f + n¢|p; ., Ez‘,k)}
to the local optimum of the likelihood surface. The NEM T-1 M M
Theorem uses the following notation. The noise random vari- T Z Z Zgi(fj‘.)(t) log A;; (19)
ableN has pdff(n|o). So the noiséN can depend on the ob- t=1 i=1 j=1

served dat&@. £ are the latent variables in the modgh (™)}
is a sequence of EM estimates fer ©* is the converged
EM estimate for@: ©* = lim,_.., ©. Define the noisy
Qn function Qn(010™) = E. o o [In f(0 + N, L|O)].
Assume that all random variables have finite differential Ny qlne,d —Q(ME,TL,_;) —0,4)] <0 forall k (20)
entropy. Assume further that the additive noise keeps the (n—1)

data in the likelihood function's support. Then we can statéherep; . is the mean estimate at iteration— 1.
the NEM theorem [1], [2]. Maximizing the noisyQ-function (19) gives the update

equations for the M-step. Only the GMM mean and covari-

wheren, € RP is the noise vector for the observation.
Then thed! elementn, 4 of this noise vector satisfies the
following positivity constraint:

Theorem 1. Noisy Expectation Maximization (NEM) ance update equations differ from the noiseless EM because

The EM estimation iteration noise benefit the noise enters the noigy-function (19) only through the

0,10,) - 0O™e,) > 0,10, — oMo, Gaussian pdf. But the NEM algorithm requires modifying
Q(0:6.) = Q( 6. 2 Q6.]0.) = Onl |(15)) only the covariance update equation (14) because it uses
) the noiseless mean estimates (13) to check the positivity
or equivalently condition (20). Then the NEM covariance estimate is

Qv©eM™0,) > QB™e.) (16) =0 _ S @) (o + 0 — pi)) (0 + g — pi)T
ik oy :
S @)

holds on average if the followingositivity condition holds:

F(O+ N,C|@(”))>]
E « |In >0. 17
O£NIO [ ( (O, Ljem) - a7 V. SIMULATION RESULTS

The NEM Theorem states that each iteration of a suitably We modified the Hidden Markov Model Toolkit
noisy EM algorithm gives higher likelihood estimates on(HTK) [33] to train the NHMM. HTK provides a tool called
average than the noiseless EM algorithm giveseath “HERest” that performs embedded Baum-Welch training for
iteration. So the NEM algorithm converges faster than ENn HMM. This tool first creates a large HMM for each
does if we can identify the data model. The faster NEMraining speech utterance. It concatenates the HMMs for
convergence occurs both because the likelihood functisn hthe sub-word units. The Baum-Welch algorithm tunes the
an upper bound and because the NEM algorithm takes largerameters of this large HMM.
average steps up the likelihood surface. The NHMM algorithm used (21) to modify covariance

Many latent-variable models (such as GMM and HMM)matrices in HERest. We sampled from a suitably trun-
are not identifiable [49], [50] and thus do not have globatated Gaussian pdf to produce noise that satisfied the
likelihood optima. The EM and NEM algorithms converge toNEM positivity condition (20). We used noise variances in
local optima in these cases. But the added noise in the NEf.001,0.01,0.1,1}. A deterministic annealing factor—"
algorithm may cause the NEM estimates to search nearbgaled the noise variance at iterationThe noise decay rate
local optima. The NEM Theorem still guarantees that NEMvas 7 > 0. We usedr € {1,...,10}. We then added the
estimates have higher likelihood on average than the ERbise vector to the observations during the update of the
estimates have for such non-identifiable models. covariance matrices (21).

(21)
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Fig. 3. Noise benefit in NHMM training: The plots show the fireme log-likelihoods for NHMM and HMM with16 and 32 GMM components per
state during successive iterations of Baum-Welch trainifite horizontal black lines denote the log-likelihoods tlee HMM at iterations10, 20, and30.
Error bars show one standard deviation above and below tiiéaméng-likelihood overs NHMM training runs. Noise producesia5% and1.0% median
increase in log-likelihood per iteration ova0 iterations for the NHMM with respectivé6 and 32 GMM components.
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Fig. 2. Reduction in convergence time for the NHMM: The baapgr  Fig- 4. NHMM versus HMM with “blind noise™ This figure compes
shows the percent reduction in the number of Baum-Welchtiters with ~ the per-frame log-likelihoods of an NHMM with a blind noiseided HMM
respect to the HMM log-likelihood at iterations0, 20, and 30. Noise for 16 GMM components per state during successive iterations ofrBa
significantly reduces the number of iterations $ey 16-, and32-component ~ Welch training. We did not constrain the blind noise sampiessatisfy
GMMs. Noise also produces greater reduction for iteratidfsand 30  the noise benefit inequality in (20). We drew them from an rundated
due to the compounding effect of the log-likelihood impnment for the Gaussian distribution with identical mean and variancenasNEM noise.

NHMM at each iteration. Noise produces only a marginal réidacfor the ~ The annealed blind noise followed the same cooling scheakiithe NEM
4-component GMM case d0 iterations and no improvement fap and30 ~ noise. This figure shows that NHMM gives significantly bette-likelihood
iterations. This pattern of decreasing noise benefits coimpdth the data than the blind noise HMM.
sparsity analysis in [2]. The probability of satisfying thEM sufficient
condition increases with fewer data samples for ML estiomati
varied K over{1,4, 8,16, 32} for the experiments and used
two performance metrics to compare NHMM with HMM.
The simulations used the TIMIT speech dataset [51] witfihe first metric was the percent reduction in EM iterations
the standard setup in [52]. We parameterized the speeftr the NHMM to achieve the same per-frame log-likelihood
signal with12 Mel-Frequency Cepstral Coefficients (MFCC)as does the noiseless HMM at iteratiars 20, and30. The
computed oveR0-msec Hamming windows with &80-msec second metric was the median improvement in per-frame log-
shift. We also appended the first- and second-order finitkelihood over30 training iterations.
differences of the MFCC vector with the energies of all Figure 2 shows the percent reduction in the number of
three vectors. We usettstate left-to-right HMMs to model training iterations for the NHMM compared to the HMM
each phoneme with &-component GMM at each state. Welog-likelihood at iterationg0, 20, and30. Noise substantially
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Algorithm NHMM Noise-Injection Training
1: Initialize parameters: 0w — Ot

2: for n =1 — nmax do
3:  function E-STER(O, ©()

4: fort=1—-T,i,5=1— M,andk=1— K
do

5. 7 (1) — P[S(1) = i]0,0)]

6 0 (8) — P[S(t) =i, Z(t) = k|0, 0]

7 <) — P[S(t+1) = j, S(t) = i]0, 0]

8: function M-STEP(O,~v,n,(, T)

9 for i,j=1— M andk =1 — K do
10 p" (1) — 7 (1)

STt )

PRI )

ST @

11 AEZ) —

(n)

12: w; ;. =
bk RO
(n)
(77,) Z?:l Mk (t)ot
13: N — === nr '
Hok & S0
14: n, «— GENERATE-NOISEL!"}, 01, n""0%)
15 251) _ X 7751)(t)(0t+;t*i‘(»£212)(°t+nt*l"5jlk)>T
o =17 (1)
16:  function GENERATE-NOISE(u'}, o¢, o)
17: n; — N(0,0%)
18: for d=1— D do
19: if nealnea — Q(MET};}) — 0t,4)] > 0 for somek
then
20: Nt.d = 0
21: return n;

reduced the number of iterations fo6- and 32-component
GMMs. But it only marginally improved the other cases.
This holds because the noise is more likely to satisfy th

Simulated annealing and blind annealed noise injection als
do not guarantee the faster-than-EM convergence that NEM
guarantees. The figures in the paper show that NEM gives
better likelihoods at each iteration and that NEM converges
faster in the long run.

VI. CONCLUSIONS

Careful addition of noise can speed the average conver-
gence of iterative ML estimation for HMMs. The NEM
theorem gives a sufficient condition for generating such
noise. This condition reduces to a simple quadratic coimstra
in the case of HMMs with a GMM at each state. Experiments
on the TIMIT data set show a significant improvement in
per-frame log-likelihood and in time to convergence for the
NHMM as compared with the HMM. Future work should
develop algorithms to find the optimal noise variance and
annealing decay factor. It should also explore noise benefit
at other stages of EM training in an HMM.

REFERENCES

[1] O. Osoba, S. Mitaim, and B. Kosko, “Noise Benefits in the
Expectation-Maximization Algorithm: NEM theorems and Mgl
in The International Joint Conference on Neural Networks (N3
IEEE, 2011, pp. 3178-3183.

[2] O. Osoba, S. Mitaim, and B. Kosko,
Maximization Algorithm,” in review 2012.

[3] L.E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maxitiza
technique occurring in the statistical analysis of prolistis functions
of Markov chains,” The Annals of Mathematical Statistigsp. 164—
171, 1970.

[4] B. Kosko, Noise Viking, 2006.

[5] A. Patel and B. Kosko, “Levy Noise Benefits in Neural Signa
Detection,” inAcoustics, Speech and Signal Processing, 2007. ICASSP
2007. IEEE International Conference 08007, vol. 3, pp. I11-1413
—Ill-1416.

[6] A. Patel and B. Kosko, “Stochastic Resonance in Contisuand
Spiking Neurons with Levy Noise,”IEEE Transactions on Neural
Networks vol. 19, no. 12, pp. 1993—-2008, December 2008.

[7] M. Wilde and B. Kosko, “Quantum forbidden-interval threms for
stochastic resonanceJournal of Physical A: Mathematical Thegry
vol. 42, no. 46, 2009.

[8] A. Patel and B. Kosko, “Error-probability noise benefitsthreshold
neural signal detectionNeural Networksvol. 22, no. 5, pp. 697-706,
2009.

[9] A. Patel and B. Kosko, “Optimal Mean-Square Noise Besgefit

Quantizer-Array Linear EstimationEEE Signal Processing Letters

vol. 17, no. 12, pp. 1005 —1009, Dec. 2010.

A. Patel and B. Kosko, “Noise Benefits in Quantizer-Ar@orrelation

Detection and Watermark Decoding/EEE Transactions on Signal

Processingvol. 59, no. 2, pp. 488 -505, Feb. 2011.

@1] B. Franzke and B. Kosko, “Noise Can Speed Convergendéarkov

Chains,” Physical Review Evol. 84, no. 4, pp. 041112, 2011.

“The Noisy Expectation

(10]

NEM positivity condition when the number of data sampleg: )
is small relative to the number of parameters [2]. Figure 3
compares the per-frame log-likelihood of the training data [13]
the HMM and the NHMM. The NHMM has a substantially
higher log-likelihood than does the HMM for th&-and32-  [14]
component GMM cases.

Figure 4 shows the comparison between NHMM angis]
HMM with blind noise added to the training data. We did not
constrain the blind noise samples to satisfy the noise denefi
inequality in (20). The annealed blind noise followed thegie]

AR Bulsara, RD Boss, and EW Jacobs, “Noise effects inlact®nic
model of a single neuron,Biological cyberneticsvol. 61, no. 3, pp.
211-222, 1989.

L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesor8tothastic
resonance,Reviews of Modern Physicgol. 70, no. 1, pp. 223, 1998.
R. Benzi, A. Sutera, and A. Vulpiani, “The mechanism tdchastic
resonance,Journal of Physics A: mathematical and genenadl. 14,
no. 11, pp. L453, 1999.

R. K. Adair, R. D. Astumian, and J. C. Weaver, “DetectiohWeak
Electric Fields by Sharks, Rays and Skate§haos: Focus Issue on
the Constructive Role of Noise in Fluctuation Driven Tram$pand
Stochastic Resonanceol. 8, no. 3, pp. 576-587, 1998.

T. R. Albert, A. R. Bulsara, G. Schmera, and M. Inchios&An

same Coollng schedule and used the same mean and variance Evaluation of the Stochastic Resonance Phenomenon as atiBlote

as the NEM noise. This figure shows that NHMM gives
significantly better log-likelihood than the blind noise WM

Tool for Signal Processing,” irConference Record of the Twenty-

Seventh Asilomar Conference on Signals, Systems & Corsputer

November 1993, vol. 1, pp. 583-587.

2742



(17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(39]

(36]

[37]

(38]

[39]

(40]

V. S. Anishchenko and T. Kapitaniak, “Chaotic ResorearBirth of
Double-Double Scroll Attractor,” iiAIP Conference Proceedings 375:
Chaotic, Fractal, and Nonlinear Signal Processing, 1985 A. Katz,
Ed., 1996, pp. 420-428.

F. Apostolico, L. Gammaitoni, Marchesoni, and S. Saaiiu‘Resonant
Trapping: A Failure Mechanism in Switch Transitions,Physical
Review Evol. 55, no. 1, pp. 36-39, January 1997.

A. S. Asdi and A. H. Tewfik, “Detection of Weak Signals dgi
Adaptive Stochastic Resonance,” Rroceedings of the 1995 IEEE
International Conference on Acoustics, Speech, and Sigradessing
(ICASSP-95)May 1995, vol. 2, pp. 1332-1335.

R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani, “A Thgoof
Stochastic Resonance in Climatic Changg&l/AM Journal on Applied
Mathematics vol. 43, no. 3, pp. 565-578, June 1983.

R. Benzi, A. Sutera, and A. Vulpiani, “The Mechanism dbé&hastic
Resonance,”Journal of Physics A: Mathematical and Genergobl.
14, pp. L453-1457, 1981.

A. Krogh, M. Brown, |.S. Mian, K. Sjolander, and D. Haies
“Hidden Markov models in computational biology: Applicatis to
protein modeling,”Journal of molecular biologyvol. 235, no. 5, pp.
1501-1531, 1994.

S.R. Eddy et al., “Multiple alignment using hidden Mavkmodels,”
in Proc. ISMB 1995, vol. 3, pp. 114-120.

L.R. Rabiner, “A tutorial on hidden Markov models andested
applications in speech recognitior?roceedings of the IEE&oI. 77,
no. 2, pp. 257286, 1989.

S.E. Levinson, “Continuously variable duration hidddarkov models
for automatic speech recognitionComputer Speech And Language
vol. 1, no. 1, pp. 29-45, 1986.

J.G. Wilpon, L.R. Rabiner, C.H. Lee, and ER Goldman, t@matic
recognition of keywords in unconstrained speech usingdnddarkov

[41]

[42]

[43]

(44]

[45]

[46]

[47]
(48]
(49]
(50]

[51]

models,”|[EEE Transactions on Acoustics, Speech and Signal Process-

ing, vol. 38, no. 11, pp. 1870-1878, 1990.

S.R. Eddy, “Profile hidden Markov modelsBioinformatics vol. 14,
no. 9, pp. 755-763, 1998.

K. Karplus, C. Barrett, and R. Hughey, “Hidden Markov dets for
detecting remote protein homologies.Bioinformatics vol. 14, no.
10, pp. 846-856, 1998.

J. Yamato, J. Ohya, and K. Ishii, “Recognizing humarnaactn time-
sequential images using hidden Markov model,Pioc. CVPRIEEE,
1992, pp. 379-385.

M. Brand, N. Oliver, and A. Pentland, “Coupled hidden rkiav
models for complex action recognition,” Proc. CVPR IEEE, 1997,
pp. 994-999.

M.S. Crouse, R.D. Nowak, and R.G. Baraniuk, “Wavelaséd
statistical signal processing using hidden Markov motel$EEE
Transactions on Signal Processjngpl. 46, no. 4, pp. 886—902, 1998.
R.J. Elliott, L. Aggoun, and J.B. MooreHidden Markov models:
Estimation and Controlvol. 29, Springer, 1994.

S. Young, G. Evermann, D. Kershaw, G. Moore, J. OdellQDason,
V. Valtchev, and P. Woodland, “The HTK bookZambridge University
Engineering Departmentol. 3, 2002.

W. Walker, P. Lamere, P. Kwok, B. Raj, R. Singh, E. Goyveaolf,
and J. Woelfel, “Sphinx-4: A flexible open source framewodk f
speech recognition,” 2004.

B. Pellom and K. Hacioglu, “Recent improvements in thg SONIC
ASR system for noisy speech: The SPINE task,” Proc. ICASSP
IEEE, 2003, vol. 1, pp. I-4.

D. Rybach, C. Gollan, G. Heigold, B. Hoffmeister, J.dfpR. Schliter,
and H. Ney,
recognition system,” irProc. Interspeech2009, pp. 2111-2114.
D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glefkh¥. Goel,
M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, et al., “TradK
speech recognition toolkit,” ifProc. ASRY 2011.

H. Soltau, G. Saon, and B. Kingsbury, “The IBM Attila soh
recognition toolkit,” inProc. SLT IEEE, 2010, pp. 97-102.

Y. Chow, M. Dunham, O. Kimball, M. Krasner, G. KubalaMakhoul,
P. Price, S. Roucos, and R. Schwartz, “BYBLOS: The BBN carirs
speech recognition system,” iroc. ICASSPIEEE, 1987, vol. 12,
pp. 89-92.

V. Goffin, C. Allauzen, E. Bocchieri, D. Hakkani-Tur, ALjolje,
S. Parthasarathy, M. Rahim, G. Riccardi, and M. Saracldne“AT&T
Watson speech recognizer,” Rroc. ICASSP2005, pp. 1033-1036.

(52]

“The RWTH Aachen University open source speech

J. S. Bridle, “Alpha-Nets: A recurrent neural networklagitecture with
a hidden Markov model interpretation3peech Communicatipwol.
9, no. 1, pp. 83-92, 1990.

Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdedtinan
Mohamed, Navdeep Jaitly, Andrew Senior, Vincent VanhouBletrick
Nguyen, Tara Sainath, et al., “Deep neural networks for stiou
modeling in speech recognitionfJEEE Signal Processing Magazine
2012.

T.N. Sainath, B. Kingsbury, B. Ramabhadran, P. FousekNovak,
and A.R. Mohamed, “Making deep belief networks effective l&oge
vocabulary continuous speech recognition,” Rmoc. ASRU IEEE,
2011, pp. 30-35.

A. Mohamed, G. Dahl, and G. Hinton, “Deep belief netwsrior

phone recognition,” inProc. NIPS Workshop on Deep Learning for

Speech Recognition and Related Applicatja2309.
A. Mohamed, G.E. Dahl, and G. Hinton, “Acoustic modglinsing

deep belief networks,” IEEE Transactions on Audio, Speech, and

Language Processingol. 20, no. 1, pp. 14-22, 2012.
A.R. Mohamed, T.N. Sainath, G. Dahl, B. Ramabhadraik,. Glinton,
and M.A. Picheny, “Deep belief networks using discriminatieatures

for phone recognition,” inAcoustics, Speech and Signal Processing

(ICASSP), 2011 IEEE International Conference ¢EE, 2011, pp.
5060-5063.

L. Rabiner and B.H. Juang, “Fundamentals of speechgrmtion,”

1993.

S. Boyd and L. VandenbergheConvex optimization Cambridge
university press, 2004.

H. Teicher, “On the mixture of distributions,” The Annals of
Mathematical Statistigspp. 55—73, 1960.

H. Teicher, “Identifiability of finite mixtures,” The Annals of
Mathematical Statisticsvol. 34, no. 4, pp. 1265-1269, 1963.

J.S. Garofolo, TIMIT: Acoustic-phonetic Continuous Speech Corpus

Linguistic Data Consortium, 1993.

A.K. Halberstadt and J.R. Glass, “Heterogeneous douseasure-
ments for phonetic classification,” Broc. Eurospeechl997, vol. 97,
pp. 401-404.

2743



