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Abstract—We call causal variables phantom nodes in a fuzzy
cognitive map (FCM) if they affect the FCM but the FCM
does not include them in its web of nodes and causal edges.
Supervised and unsupervised learning schemes can estimate
the causal connections to a phantom node based on how the
learned causal edges affect the FCM’s equilibrium attractors.
We illustrate this technique with gradient descent on the well-
studied dolphin FCM. The process starts with the 5-node FCM
and finds its equilibrium limit cycles. Then we remove one of
the nodes and treat it as a phantom node and train. Gradient
learning trains the augmented FCM with samples from the FCM
edges using the known target limit cycles. The simulations used
squared error as the performance measure but other measures
can apply. The causal learning methodology extends to more than
one phantom node but at greater computational cost.

Index Terms—causal inference, fuzzy cognitive maps, hidden
variables, causal learning, AI hallucinations

I. THE SEARCH FOR PHANTOM NODES

How do we detect and model missing causal variables in a
causal model?

We call such missing or hidden variables phantom nodes
in rough analogy with the neural hallucination of missing
phantom limbs [1]. We here search for phantom nodes in
feedback fuzzy cognitive maps (FCMs) [2], [3].

Detecting phantom nodes involves a type of causal or AI
hallucination [4] in a process that resembles adding noise to a
nonlinear system in stochastic resonance [5]. A small amount
of causal hallucination can help estimate a missing relevant
node while too much hallucination tends to obscure it.

Even detecting causal phantom nodes is far from trivial.
These hidden or phantom variables can causally affect the
other variables in a causal model. This can change the causal
model’s dynamics and thus change its equilibrium causal
predictions [6]–[8].

These changes can change the dynamics of a feedback FCM
and thereby change its equilibrium attractors such as its fixed
points or limit cycles. These attractors act as the FCM’s what-if
predictions given input stimuli. This change in dynamics and
equilibrium structure can hint at the presence and nature of
the phantom variables. That is the idea behind the limit-cycle-
based algorithm in this paper that estimates the causal structure
of a phantom node from known target limit cycles. The known
limit cycles allow validation of the predicted causal edges to

and from the phantom concept node. They may correspond in
practice to a user’s desired policy outcome.

Fuzzy Cognitive Maps (FCMs) model causality in complex
feedback dynamical systems [2], [3], [3], [9]–[15]. The causal
variables of the FCM often come from domain experts who
model system dynamics. The matrix structure of their under-
lying signed digraph structure allows users to combine or mix
any number of related FCMs (augmenting with appropriate
rows and columns of zeroes for missing nodes) into a fused
or combined FCM. These combined FCMs can have much
richer dynamics and equilibria than do the individual FCMs
[11], [15].

We can search for these missing or phantom causal variables
by adding them to the FCM causal system and then learning
from the dynamics of the original system. This paper illustrates
the technique with supervised gradient descent on the squared
error between the current limit cycles and the known target
limit cycles. Figure 1 illustrates this approximation technique
and explains the limit-cycle approach that we use to estimate
a phantom node. Time-series data can also train differential
Hebbian learning [9], [16] or other unsupervised or supervised
causal learning algorithms.

Section II describes the FCM feedback model used in this
paper. The FCM models complex causal relationships among
expert-defined variables in a dynamical system as a directed
graph with fuzzy causal edges. The nodes of the graph define
the causal variables. The directed edges define the partial
signed causality between the variables. The FCM itself is
a cyclic signed fuzzy directed graph. So it is a feedback
dynamical system whose equilibrium attractors can be fixed
points, limit cycles, or even aperiodic or chaotic attractors for
maps with sufficiently complex node nonlinearities and edge
structure. Section II also introduces the well-studied Dolphin
FCM and its behavior as an example [10], [16].

Section III describes the concept of phantom nodes and
also describes the FCM augmented with phantom nodes. This
section also gives an example of a phantom node in the
Dolphin FCM.

Section IV describes a gradient-based learning scheme to
estimate phantom nodes. The phantom-node-augmented FCM
learns from the dynamics of the system it models and tries
to match its limit cycles. Section V presents the experimental
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Fig. 1. Causal phantom nodes augment a fuzzy cognitive map (FCM) and help approximate the FCM dynamics and its target equilibrium limit cycles. The
figures on the left show the FCMs and the figures on the right show their corresponding limit cycle. The figures on the top correspond to the original FCM
with 4 nodes. The figures on the bottom correspond to the augmented FCM with 4 observable nodes and one phantom node. The original FCM does not
approximate the limit cycles of the system it models. The FCM with the phantom node can approximate the target limit cycles with its own limit cycles.

results. The augmented FCM did approximate the limit cycles
despite not approximating the phantom edges.

Figure 2 shows a simple version of the known Dolphin
FCM that models how a pod of dolphins responds to the
presence of a survival threat such as a shark. Figure 3 shows
the different nonlinear activation functions that the FCMs can
use. We use a rectified hyperbolic tangent (ReTanh) function
as our activation function because it is continuous and also
ensures that the node remains completely inactive unless it
gets a positive stimulus. Figure 4 shows a few limit cycles of
the dolphin FCM. These limit cycles show that the Dolphins
will alternate between periods of rest and running away from
the survival threat. Figure 5 shows the change in the limit
cycles that correspond to the change in the steepness of the
activation function.

Figure 6 shows the Dolphin FCM with one phantom node.
Figure 7 shows the effect of a phantom node “SURVIVAL
THREAT” on the dolphin FCM’s limit cycles. Figure 8 shows
the effect of detecting “bad” phantom nodes. Figure 9 shows
the gradient-based phantom-node causal learning process as
a flowchart. Figure 10 shows a limit cycle of the Dolphin
FCM and compares it to the approximated limit cycles of the
phantom-node augmented FCM. We present the results for just
one of the Dolphin-FCM phantom nodes since other choices
gave similar results.

II. FUZZY COGNITIVE MAPS (FCMS)

A Fuzzy Cognitive Map (FCM) connects concept nodes Ci

through directed fuzzy or partial causal edges eij . FCMs allow
feedback and thus nontrivial equilibrium dynamics unlike the
feedforward acylic DAGs found in Bayesian belief trees [17].

The edge weight eij ∈ [−1, 1] gives the degree to which Ci

causes Cj in how much it increases or decreases Cj :

eij = Degree(Ci → Cj) (1)

The FCM is a dynamical system and so the node values Ci ∈
[0, 1] change with time. Consider a discrete-time FCM. The
Cj(t + 1) depends on the values Ci(t) of nodes connected to
Ci. It also depends on the edges eij that connect Ci to Cj :

Cj(t + 1) = Φ

(
m∑
i=1

Ci(t)eij

)
(2)

where n is the number of nodes and Φ is a nonlinear function
that maps to [0, 1]. This nonlinear activation function Φ may
be a threshold function, a logistic sigmoid function, a rectified
hyperbolic tangent (ReTanh) function, or some other nonlinear
function. We used the ReTanh function:

Φ(x) = max(0, tanh(cx)) (3)

where c controls the steepness of the activation function Φ.



Consider the 5-node FCM in Figure 2. The FCM describes
the group behavior of a dolphin pod in the presence of a
survival threat such as a shark. Then the causal-edge matrix
E can represent this dolphin FCM:

E =


0 1 0 −1 0
0 0 1 0 −1
0 −1 0 1 −1
1 0 −1 0 1
−1 1 0 −1 0

 (4)

Suppose a shark appears. This corresponds to C4(0) = 1.
Let all other nodes be 0. Then the vector

(
0 0 0 1 0

)
is the initial state of the FCM. Equation (2) updates
the FCM to the state

(
1 0 0 0 1

)
using a simple

threshold at zero. The FCM keeps updating and enters the
limit cycle

(
0 0 0 1 0

)
→

(
1 0 0 0 1

)
→(

0 1 0 0 0
)

→
(
0 0 1 0 0

)
→(

0 0 0 1 0
)
. Figure 4 shows a some examples of

this FCM’s limit cycles.

Fig. 2. Dolphin FCM of dolphins near a threat such as a shark.

We use the truncated or Rectified hyperbolic Tangent (Re-
Tanh) function Φ to ensure that Φ(x) = 0 when x ≤ 0. The
dolphin FCM with rectified bipolar-logistic functions gives the
same limit cycles as the threshold-FCM. The limit cycles fade
out when c is small. Figure 5 shows the time evolution of
this FCM for initial state

(
0 0 0 1 0

)
and for different

values of c. It also compares these limit cycles to the limit
cycles of the threshold-FCM.

III. CAUSAL PHANTOM NODES IN FCMS

Consider a system where the experts do not know or cannot
estimate all the causal links. Then their FCM (likely the result
of a weighted mixing of their edge matrices) may well not
match the system’s true dynamics. So there may be one or

Fig. 3. The choices for the non-linear function. The simple threshold is in
blue. The logistic sigmoid is in red. The rectified hyperbolic tangent Φ is in
green. Here c = 2.

Fig. 4. Limit cycles from the Dolphin FCM. The time step is along the
x-axis. The nodes are along the y-axis. The images have 5 rows of pixels
because the FCM has 5 nodes and each row represents the time evolution
of one node. The color of the node represents its value. A bright color
corresponds to a high value. Yellow nodes have value 1. Purple nodes have
value 0. The top figure starts with the initial state

(
0 0 0 1 0

)
and the

bottom figure starts with the initial state
(
0 1 0 1 0

)
. They both fall

into the same limit cycle:
(
0 0 0 1 0

)
→

(
1 0 0 0 1

)
→(

0 1 0 0 0
)
→

(
0 0 1 0 0

)
→

(
0 0 0 1 0

)
. The

middle figure starts with initial state
(
0 0 0 1 1

)
and falls into

a different limit cycle:
(
1 0 0 1 0

)
→

(
1 1 0 0 1

)
→(

0 1 1 0 0
)
→

(
0 0 1 1 0

)
→

(
1 0 0 1 0

)
.

more hidden or phantom concept nodes that the experts missed
and that causally connect to the observable nodes and that may
affect their dynamics. These phantom edges augment the edge



Fig. 5. Time evolution of the Dolphin FCM that uses rectified hyperbolic
tangent (ReTanh) function Φ concept nodes. The time step is along the x-
axis. The nodes are along the y-axis. The color of the node represents its
value. Bright color represents high value. Yellow nodes have value 1. Purple
nodes have value 0. The initial state is

(
0 0 0 1 0

)
and converges

to a limit cycle in the ReTanh FCM. These limit cycles are similar to the
limit cycles of the threshold FCM in Figure 4. The last image shows the limit
cycle of the threshold FCM. The limit cycle decays for low values of c.

matrix E into a block matrix:

E =

(
EP EPO

EOP EO

)
(5)

where EO contains all the edges between observable nodes,
EP contains all the edges between phantom nodes, EPO

contains all the edges from a phantom node to an observable
one, and EOP contains all the edges from an observable node
to a phantom one.

Consider the Dolphin FCM. Suppose that an expert does
not know how herd clustering affects dolphin behavior. So the
herd-clustering node C1 does not appear in the expert’s FCM
even though the node does affect the system dynamics. Then
C1 acts a phantom node as Figure 6 shows. This would give

the terms EO, EP , EPO, and EOP as

EO =


0 1 0 −1
−1 0 1 −1
0 −1 0 1
1 0 −1 0

 (6)

EP =
(
0
)

(7)

EPO =
(
1 0 −1 0

)
(8)

ET
OP =

(
0 0 1 −1

)
. (9)

Consider next where the experts do not know or model

Fig. 6. The Dolphin FCM with a phantom node C1 that corresponds to
dolphin herd clustering. The domain expert or causal learning system does
not observe C1 or know the edges that correspond to C1.

the predators that also live in the sea. Their 4-node FCM
will not include the “SURVIVAL THREAT” node. This FCM
predicts that the resting dolphins will keep resting because
there are no predators. The actual behavior of the dolphins
will cycle between resting from fatigue and running away in
herd clusters. Explaining this cyclical behavior requires the
phantom node “SURVIVAL THREAT” as in Figure 7.

The learning system should detect correct or accurate phan-
tom nodes and not just any phantom nodes. So it needs
to accurately estimate the causal edge degeess EP , EOP ,
and EPO. Consider the Dolphin FCM with phantom node
“SURVIVAL THREAT”. Suppose an expert wrongly estimates the
respective causal edges EOP =

(
1 0 −1 1

)
and EPO =(

−1 0 1 −1
)

as
(
0 1 0 1

)
and

(
0 1 0 1

)
. Then

the resulting phantom node predicts that the dolphins will rest
in the presence of survival threats such as lethal sharks. But
actual dolphin behavior would differ because the dolphins will
flee and later rest in perhaps fall into a flee-rest cycle. Figure 8
shows this aberrant effect of a bad phantom node.



Fig. 7. Dolphin FCM limit cycles with and without phantom nodes. (a)
Limit cycle of the Dolphin FCM with “SURVIVAL THREAT” as a phantom
node. The FCM starts at the initial state

(
0 1 1 0 0

)
and then

goes through the cycle
(
0 1 1 0 0

)
→

(
0 0 1 1 0

)
→(

1 0 0 1 0
)
→

(
1 1 0 1 0

)
→

(
0 1 1 0 0

)
. (b)

This limit cycle corresponds to the cycle of the dolphins as they rest from
fatigue, face a survival threat while resting, cluster in a herd to evade the threat,
and get tired again from running away in a herd. (c) The limit cycle of the
Dolphin FCM without the “SURVIVAL THREAT” phantom node. The FCM
starts at the same initial state

(
0 1 1 0

)
. But it goes through the state(

0 0 1 0
)

and then gets stuck at the fixed-point state
(
0 0 0 0

)
.

(d) This corresponds to the dolphins staying at rest because there is no threat.

IV. LEARNING PHANTOM EDGE-WEIGHTS FROM
LIMIT-CYCLES

The fixed points, limit cycles and chaotic attractors char-
acterize a dynamical system ẋ = f(x). Differential Hebbian
learning can approximate the edge values from the node values
on either side of the edge without sampling from the limit
cycles. But we do not have samples from the phantom node.
We can instead learn from the observed equilibrium attractors
themselves. We can learn the phantom edges that approximate
the observed fixed points and limit cycles if we augment the
observed FCM.

Consider a FCM with n observable nodes. Let C(t) ∈
[0, 1]n denote the state vector of the observable nodes at time
t. Let Ĉ(t) ∈ [0, 1]n denote the vector of the observable node
values at time t that the experts’ FCM gives when augmented
with the phantom nodes. The k-step squared error in the limit-

Fig. 8. (a) A limit cycle of the Dolphin FCM with a “bad” phantom
node for “SURVIVAL THREAT”. The FCM starts at the same initial state(
0 1 1 0 0

)
. But it goes through the state

(
0 0 1 1 0

)
and then gets stuck at the fixed point state

(
0 0 0 0 0

)
. (b) This

corresponds to the dolphins staying at rest even in the presence of a
“SURVIVAL THREAT” such as a shark.

cycle approximation is

L =

k∑
t=1

||C(t)− Ĉ(t)||22 (10)

if || ||2 denotes the l2 norm of the n-dimensional vector. Let
ΘP denote the edges of the phantom nodes present in EP ,
EPO, and EOP . Then the optimal value of ΘP is

Θ∗
P = argmin

ΘP

k∑
t=1

||C(t)− Ĉ(t)||22 (11)

Gradient algorithms can give locally optimal values of Θ∗
P .

Figure 9 shows this causal learning method based on mini-
mizing the error between target and augmented limit cycles.

V. EXPERIMENTAL RESULTS

We ran the Dolphin FCM with the 4 observable nodes C2,
C3, C4, and C5 and one phantom node C1 using 10,000
random initial states. The phantom-edge approximator trained
on the node vector C(t) for the first k = 2 steps of each FCM
run and approximated ΘP with Θ∗

P . This Θ∗
P augmented the

observable edge matrix EO to give

E∗ =

(
E∗

P E∗
PO

E∗
OP EO

)
(12)

=


0 0.6685 0.4392 0.0066 0.8296

0.6685 0 1 0 −1
0.4392 −1 0 1 −1
0.0066 0 −1 0 1
0.8296 1 0 −1 0

 (13)

This edge matrix E∗ differs somewhat from the original
Dolphin edge matrix E in (4). But their equilibrium dynamics
are similar because E∗ gives a FCM that had similar limit
cycles to the original Dolphin FCM. Figure 10 shows an
instance of this causal learning.



Fig. 9. Phantom node learning through gradient descent on sampled limit-cycle equilibria. The gradient-based updates minimize the squared error between
the target limit cycle and the augmented FCM’s limit cycle over k consecutive steps.

Fig. 10. The approximated limit cycles through phantom-node causal learning.
The time step is along the x-axis. The 4 observable nodes lie along the y-
axis. The color of the node represents its value. Bright color represents high
value. Yellow nodes have value 1. Purple nodes have value 0. The initial
state is

(
1 1 0 0

)
and converges to limit cycles in both FCMs. These

approximated limit cycles are similar to the limit cycles of the Dolphin FCM.

VI. CONCLUSION

Detecting and absorbing phantom nodes is a difficult prob-
lem in causal modeling. New causal nodes change the equi-
librium outcomes of feedback causal models such as FCMs.
This paper shows one way to learn a phantom node’s causal
edge structure in the supervised case where the user knows or
estimates the equilibrium limit cycles of the full FCM. Learn-
ing phantom nodes in this case may give some confidence
in time-series training based on differential Hebbian or other
unsupervised learning schemes. Many other supervised and
unsupervised learning schemes can apply to learn one or more
phantom nodes given some knowledge of the causal edges or
of the limit cycles. These schemes can add extra computational
cost when the number of phantom nodes increases.
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