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Abstract—A random rule foam grows and combines several
independent fuzzy rule-based systems by randomly sampling
input-output data from a trained deep neural classifier. The
random rule foam defines an interpretable proxy system for the
sampled black-box classifier. The random foam gives the complete
Bayesian posterior probabilities over the foam subsystems that
contribute to the proxy system’s output for a given pattern input.
It also gives the Bayesian posterior over the if-then fuzzy rules in
each of these constituent foams. The random foam also computes
a conditional variance that describes the uncertainty in its
predicted output given the random foam’s learned rule structure.
The mixture structure leads to bootstrap confidence intervals
around the output. Using the Bayesian posterior probabilities
to prune or discard low-probability sub-foams improves the
system’s classification accuracy. Simulations used the MNIST
image data set of 60,000 gray-scale images of ten hand-written
digits. Dropping the lowest-probability foams per input pattern
brought the pruned random foam’s classification accuracy nearly
to that of the neural classifier. Posterior pruning outperformed
simple accuracy pruning of a random foam and outperformed a
random forest trained on the same neural classifier.

Index Terms—XAI, additive fuzzy systems, rule foam, gener-
alized mixtures, Bayesian rule posteriors

I. XAI WITH RANDOM RULE FOAMS

We show how to use the inherent Bayesian posterior prob-
abilities of combined fuzzy rule-based systems to improve
classification accuracy. This approach gives an explainable
system that approximates a sampled neural classifier. An addi-
tive fuzzy system F sums and averages its m fired if-then rules
RA1→B1 , . . . , RAm→Bm for each vector input x. The m rules
define a probability mixture p(y|x) that mixes m likelihoods
[16]: p(y|x) = p1(x)pB1

(y|x) + · · · + pm(x)pBm
(y|x) in

accord with (1) - (2) below.
The first moment of the mixture p(y|x) gives the fuzzy

system itself as F (x) = E[Y |X = x] per (3). The mixture
structure gives each fuzzy subsystem its own output condi-
tional variance as well as a total system conditional variance.
The mixture also defines bootstrap confidence intervals around
the system output that further describe its uncertainty. The
result is a new and modular form of explainable AI (XAI)
[1], [4], [5], [8], [20], [22], [26], [29], [30].

Each rule foam system is an additive fuzzy system F of
m if-then rules RAj→Bj

and maps pattern inputs x to output
pattern classifications F (x) [13], [14], [17]. The system F is
again just the first moment (3) of the mixture p(y|x). A ran-
dom foam combines several independent foams by randomly

sampling with replacement (bootstrap sampling) from a trained
deep neural classifier. Adaptive vector quantization forms and
tunes the rules of each foam. The additive structure allows the
random foam to combine the constituent foams by combining
each foam’s rules rather than just by combining each foam’s
output. The random rule foam acts as an interpretable proxy
system for the sampled classifier.

Figure 1 shows an accuracy-pruned random foam that
approximates a deep neural classifier. The neural classifier
trained on the MNIST dataset of the ten handwritten digits
0, 1, . . . , 9. It had a 96.62% classification accuracy. The ran-
dom foam trained by randomly drawing bootstrap input-output
pairs from the neural classifier without replacement. The
resampling-trained random foam had 24 constituent foams and
was 95.95% accurate. Accuracy-based pruning permanently
removed the 13 foams that had the lowest accuracy. The
pruned random foam with the remaining 11 foams was 96.11%
accurate.

Posterior-based pruning performed better than accuracy-
based pruning. Posterior pruning removed the 13 sub-foams
with the smallest posterior probabilities from the combined
foam and did so for each input. It did not permanently remove
these sub-foams as with accuracy pruning. It removed them
only for the image-pattern input x and then tested on x.
This pruned random foam was 96.27% accurate. Its average
accuracy rose to 96.52% when it pruned the 20 smallest-
posterior-value foams per iteration.

II. ADDITIVE RULE FOAMS

A rule foam’s rules resemble bubbles in the input-output
product space that cover the graph of the function they
approximate [23]. Figure 1 shows this structure. The circles
represent the if-part sets of the rule foam. The radius of the
circle represents the dispersion of the if-part set. The if-part
dispersion characterizes the size of the rule. Rules are smaller
close to the class boundary and are larger away from the
boundary. The foam avoids covering empty regions of the
input space through Adaptive Vector Quantization (AVQ).

The SAM’s graph covering structure leads to rule explo-
sion. Rule foam mitigates rule explosion and allows fuzzy
systems to approximate high-dimensional pattern classifiers.
The foam’s rules do not cover the input space equally. The
rule foam concentrates its rules at the class boundaries. There
are a few large rules covering the class interior and a lot of
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Fig. 1. Random foam pruning. The top image shows a random foam that consists of 24 independent constituent foams. Each constituent foam trains by
random sampling with replacement from a neural classifier. The image on the right zooms in on one of the constituent foams and shows the foam-like structure
of its if-part fuzzy sets. This random foam classified the input MNIST pattern with 95.95% accuracy. The bottom image shows a pruned random foam. This
algorithm pruned 13 foams based on their accuracy. This pruned random foam was 96.11% accurate.

smaller rules covering the class boundary. This defines a foam
like structure of the rule if-part set bubbles.

A generalized mixture underlies rule foam. This allows
rule foam to measure the uncertainty in its output through
conditional variance. This also give a Bayesian posterior
distribution over the rules that shows the contribution of each
rule to the output. These posteriors may also be used to prune
rules. Foams can also combine to give random foams.

A. Generalized Mixture p(y|x) for a SAM Fuzzy System

Standard Additive Model (SAM) fuzzy system F : Rd → R
takes input pattern vector x and then sums and averages
its m if-then fuzzy rules RA1→B1

, . . . , RAm→Bm
to produce

output F (x) [14], [17]. The jth rule RAj→Bj
has fuzzy if-

part set Aj ⊂ Rd and fuzzy then-part set Bj ⊂ R with
respective multi-valued indicator functions aj : Rd → [0, 1]
and bj : R → [0, 1] such that aj(x) = Degree(x ∈ Aj) and
bj(y) = Degree(y ∈ Bj). The jth fired then-part set Bj(x)
has the set function bj(y|x) = aj(x)bj(y) because the system
is standard. The total firing set B(y|x) sums and weights the
fired rules to give b(y|x) = w1b1(y|x) + · · · + wmbm(y|x)
for rule weights wj ≥ 0. Then the SAM’s rules define the
generalized probability mixture [16]

p(y|x) = b(y|x)∫
b(y|x)dy

=

m∑
j=1

wjaj(x)Vj∑m
j=1 wjaj(x)Vj

bj(y)

Vj
(1)

=

m∑
j=1

pj(x)pBj (y) (2)

where Vj =
∫
bj(y)dy is the finite volume of then-part set

Bj . This mixture structure does not arise from the min-max
structure of earlier non-additive systems [27], [32].

The fuzzy system F arises naturally as the first non-central
moment E[Y |X = x] of the mixture p(y|x):

F (x) = E[Y |X = x] =

∫
y p(y|x)dy =

m∑
j=1

pj(x)cj (3)

where cj is the centroid of the jth then-part set Bj : cj =∫
y pBj

(y)dy. The output conditional variance V [Y |X = x]
in (7) is just the second moment of p(y|x).

An additive fuzzy system is an universal function approx-
imator [13], [14], [18]. It can uniformly approximate any
continuous function f on a compact domain using finite rules
even though this may involve exponential rule explosion [15].

B. Adaptive Vector Quantization (AVQ)

Adaptive Vector Quantization (AVQ) is a sample based
scheme for estimating an unknown data distribution [3]. We
use reinforcement version of AVQ to distribute rule if-part
sets. AVQ is a from of k-means clustering [10], [21] or
competitive learning [9] or self-organizing maps [11]. AVQ
gives Quantization Vectors (QVs) {x̂j}mj=1 whose distribution
approximates that of the data set {xn}Nn=1. The AVQ algorithm
cycles through the data set every epoch. It finds the QV x̂j
closest to the input vector x and either rewards it or punishes
it by moving it either towards or away from x. AVQ moves
x̂j closer to the x if they belong to the same class and moves
x̂j away from the x if they belong to different classes.

Let x̂(t)j denote the jth QV after the tth iteration. Let x̂(t)j
be the closest QV to the data point xn. Let x̂(t)j belong to the
class Cj . AVQ updates x̂(t)j as

x̂
(t+1)
j = x̂

(t)
j + ηt(xn − x̂(t)j )rj(xn) (4)



for decreasing learning rates ηt. The bipolar reinforcement
function rj is the indicator difference [12]

rj(xn) = ICj
(xn)−

∑
C 6=Cj

IC(xn). (5)

It gives rj(xn) = +1 if xn ∈ Cj and rj(xn) = −1 otherwise.
So the jth QV looks a little more like the current sample point
xn if rj(xn) = 1 and a little less like it if rj(xn) = −1.

The distribution x̂j’s approximates the distribution of the
input vectors. So there are no x̂j’s in empty regions of input
space. We center the foam’s if-part sets around x̂j’s and avoid
covering the empty input space.

C. Rule Importance through Bayesian Posteriors

The generalised mixture in equation (2) is a form of total
probability. The mixing weights pj(x) define prior probabili-
ties and the pBj

(y) define likelihoods. Then the theorem on
total probability gives the Bayes posteriors

p(j|y, x) =
pj(x)pBj

(y)∑m
j=1 pj(x)pBj

(y)
(6)

of the jth rule firing. These posteriors also give the contribu-
tion of each rule to the final output. Figure 2 shows a snapshot
of the rule posteriors for a CIFAR-10 image input. The x-
axis lists the rule numbers that correspond to the 7 highest
posteriors. The 621st rule contributed most to the classification
of the input image.

Suppose a foam misclassifies the input x. The foam still
shows the rule most responsible for the mistake. This makes
the fuzzy rule-based system interpretable. Users can also use
these posteriors to later prune or modify the rule base.

Fig. 2. Bayesian posterior p(j|y, x) over the fired rules when input pattern x
produced output y. The input image is on the left. The 7 largest rule-posterior
values for the input are on the right. The if-part set centroids of these rules
are also on the right. The rule foam had 1000 rules. The x-axis lists the rule
number. The y-axis lists the corresponding posterior probability of rule firing.
The histogram shows the posterior density when the foam correctly classified
an input from class ‘Deer’. The 621st rule (j = 621) contributed the most to
classifying this input pattern.

D. System Confidence though Conditional variance
The foam measures the uncertainty in its output through the

conditional variance

V [Y |X = x] =

m∑
j=1

pj(x)σ
2
Bj

+

m∑
j=1

pj(x)(cj − F (x))2 (7)

where σBj
is the jth rule’s then-part dispersion. The second

term in (7) imposes an interpolation penalty on the system
for guessing with respect to the given set of rules. We are
confident in the system’s output if the variance is low and we
do not trust the system’s output when the variance is high.

Consider a foam that approximates the simple function f
representing a classifier. A simple function maps a space to a
finite number of values [25]. The classifier’s output has lower
conditional variance in the class interior and has higher con-
ditional variance at the class boundary. The misclassification
rate is also higher in regions of high conditional variance.
Conditional variance is a good measure of system confidence.

This feature is absent in the neural classifiers. Foams that
train on a neural network’s output can measure the uncertainty
in the network’s classification.

Figure 3 shows the conditional variance of a 2-class fuzzy
rule based classifier. The conditional variance is high near the
class boundary. The misclassification rate is also high close to
the class boundary.

Fig. 3. Output uncertainty of the rule-foam classifier. The correctly classified
points are in black. The misclassified points are in white. The background
color shows the conditional variance. The color bar gives the value of
V [Y |X = x] that corresponds to the color: The variance is highest where
the pattern classes overlap.

III. RANDOM FOAMS

A random foam combines several fuzzy rule foams that train
on random subsets of a data set. This method resembles how
a random forest combines the output of several trees [2], [7],
[28] but the combination technique differs because it combines
throughput rules or mixtures. The random foam also performs
better than its constituent foams.



A. Foam Combination

Foams combine by taking the sum of their then-part sets.
Consider q foams that each approximate the function f . The
kth SAM uses mk rules and has weight vk. Then we can
combine knowledge from multiple experts and also combine
closed form knowledge [16], [31] with the soft knowledge. The
additive structure of a SAM also give a governing generalized
mixture p(y|x):

p(y|x) =
q∑

k=1

mk∑
j=1

vkwkj a
k
j (x)V

k
j∑q

k=1

∑mk

j=1 v
kwkj a

k
j (x)V

k
j

bkj (y)

V kj
(8)

=

q∑
k=1

mk∑
j=1

pkj (x)pBk
j
(y). (9)

The first moment of p(y|x) again gives the system F :

F (x) = E[Y |X = x] =

q∑
k=1

mk∑
j=1

pkj (x)c
k
j (10)

where ckj is the kth SAM’s jth then-part centroid. This
SAM combination also measures the uncertainty in its output
through its conditional variance V [Y |X = x]:

V [Y |X = x] =

q∑
k=1

mk∑
j=1

pkj (x)σ
2
Bk

j
+

q∑
k=1

mk∑
j=1

pkj (x)(c
k
j − F (x))2

(11)

where σ2
Bk

j
is the variance of the kth SAM’s jth then-part set.

This mixture p(y|x) gives the telescoped Bayesian posterior

p(j, k|y, x) =
pkj (x)pBk

j
(y)∑q

k=1

∑mk

j=1 p
k
j (x)pBk

j
(y)

(12)

of the kth SAM’s jth rule firing.
We combine the foams in two ways. The first and older way

combines their outputs. The second way combines the rules
or throughputs using (9). Random forests do not allow such
throughput combination because of their tree structure.

B. Combining Outputs and Throughputs

Let the k-th foam approximate f with Fk using mk rules.
Then equation (3) gives the function approximation Fk:

Fk(x) =

mk∑
j=1

wkj a
k
j (x)V

k
j∑mk

j=1 w
k
j a
k
j (x)V

k
j

ckj (13)

Then the average of the individual foam outputs gives the
random foam output Favg(x):

Favg(x) =
1

q

q∑
k=1

Fk(x) . (14)

We combine the throughputs of the q SAMs using equation
(9). We choose weight each SAM equally by uk = 1/q. So
the random foam output is

Fcom(x) =

q∑
k=1

mk∑
j=1

pkj (x)c
k
j (15)

where

pkj (x) =
(1/q)wkj a

k
j (x)V

k
j∑q

k=1

∑mk

j=1(1/q)w
k
j a
k
j (x)V

k
j

(16)

=
wkj a

k
j (x)V

k
j∑q

k=1

∑mk

j=1 w
k
j a
k
j (x)V

k
j

. (17)

C. Telescoping posteriors and variance

A random foam trains and combines several independent
foams. It measures its uncertainty through its conditional vari-
ance in (11) and perhaps through other higher-order moments.
It also measures the confidence of each constituent foam in
their outputs through (7). Random foam gives the contribution
of all the rules through the Bayesian posteriors in (12). It also
measures the contribution of each constituent foam through a
posterior distribution over all the foams:

p(k|y, x) =
mk∑
j=1

p(j, k|y, x) =

∑mk

j=1 p
k
j (x)pBk

j
(y)∑q

k=1

∑mk

j=1 p
k
j (x)pBk

j
(y)

(18)
Figure 4 shows an example of these telescoping posteriors for
a 10-foam random foam trained on the MNIST dataset.

D. Bootstrap Confidence Intervals for Random Foam Outputs

The random foam’s mixture p(y|x) can also describe the
uncertainty in the scalar output y through a bootstrap con-
fidence interval for a given input x. Independently sample
{yi}ni=1 from p(y|x) for a given x. Sort these samples to get
the increasing sequence of order statistics

y(1), y(2), ... , y(n) (19)

where y(i) is the ith smallest sample. Then the (1 − α)%
bootstrap confidence interval is

(y(nα/2), y(n(1−α/2))). (20)

We are (1− α)% confident that f(x) lies inside this interval.
A K-dimensional vector function f has K scalar component

functions fk. K random foams can respectively approximate
its K component scalar functions. So we can give a bootstrap
confidence interval for each component yk of the vector output
y.

IV. PRUNING FOAMS

A random foam combines the throughputs of several inde-
pendent foams. The foams do not contribute equally to a given
output. Some foams tend to harm the performance. They tend
to have low accuracy on the dataset. They may also have a low
foam-posterior for the given input-output pair (x, y). Pruning
such foams reduces the number of parameters and may also
increase the performance.



Fig. 4. Telescoping Bayesian posteriors in a random foam. (a) The random foams trained 10 independent foams and then combined them. The random foam
then correctly classified the input pattern from class ‘3’. (b) The random foam give a Bayesian posterior over all its constituent foams for this input. The
foam numbers lie along x-axis and their probabilities lie along the y-axis. Foam 3 contributed most to the classification. (c) The random foam also gave a
posterior density over the rules present inside the foams. The image shows the 10 rules with the highest posterior probabilities. The x-axis lists the foam
numbers and the rule numbers. The y-axis lists their probability. ‘F3 R273’ refers to the 273rd rule in the 3rd foam. This rule contributed the most to the
classification among all the Foam-3 rules. The rule if-part centroids appear as the images below their posteriors.

A. Accuracy based pruning

We sort the constituent foams based on their accuracy and
then prune the least accurate foams. This process is similar to
the overproduce-and-choose technique in ensemble learning
[24]. Slight pruning gets rid of the inaccurate foams and
slightly boosts the accuracy. So the random foam accuracy
increases with slight pruning and then falls as the pruning
continues.

B. Bayesian Posterior based Pruning

A constituent foam’s contribution to the output varies with
each input. The foam posterior in (12) gives this contribution.
A foam that does not contribute much to the classification of
input x1 may contribute a lot to classification of a different
input x2. Each input x gives a different list of foams to
be pruned based on the Bayesian posteriors. Posterior-based
pruning prunes the random foam differently for each input
pattern while accuracy-based pruning removes the same set of
foams for every input. This process is similar to the dynamic
overproduce-and-choose technique in ensemble learning [6].
Random forests do not allow this kind of pruning because
they do not have a posterior structure over the trees [7].

Posterior-based pruning algorithm calculates the foam pos-
teriors for each input. It prunes the foams with lowest poste-
riors for each input. This method does not reduce the number
of parameters because each foam may be used for some input
pattern. But this method does increase the accuracy beyond
accuracy-based pruning.

V. EXPERIMENTS WITH MNIST DATASET

We tested the random foam on the MNIST data set [19]. The
MNIST data set consists of 60,000 28×28 gray-scale images
of handwritten digits from 0 to 9. The random foam trained 30
rule foams on random subsets of MNIST data with bootstrap

resampling. Each subset had 10,000 MNIST images. Each
individual foam used 1000 rules was about 93.5% accurate.
The random foam then combined these foams in both ways.

The output-averaged random foam was 96.06% accurate
while the throughput-averaged random was was 96.80% accu-
rate. We trained a random forest with 30 trees for comparison.
The random forest was 96.55% accurate and thus less accurate
than the throughput-combined random foam trained on the
same MNIST data. Figure 5 compares the foam accuracies
against the number of foams in the random foams. It also
shows the performance of the random forest against the
number of trees.
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Fig. 5. Accuracy of the random foams: Random foam with throughput
averaging performed best. Accuracy of the throughput-combined foam Fcom

in red. Accuracy of the output-averaged foam Favg in blue. The accuracy
of the individual foams Fk in green. The accuracy of the random forest in
black.

The same 96.62% neural classifier trained a 95.90% accu-
rate random foam with 24 constituent foams. The accuracy



rose to 96.03% when the five least accurate foams were
pruned. Accuracy decreased with further pruning. Figure 6
shows this trend in accuracy upon pruning.

The pruned foam’s accuracy continued to rise with
posterior-based pruning. The accuracy rose to 96.52% when
20 foams with lowest posteriors were dropped for each input.
Posterior-based pruning brought the pruned foam’s accuracy
close to the neural classifier that the random foam trained on.
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Fig. 6. Pruning effect on random-foam accuracy. The x-axis lists the
number of pruned foams. The y-axis lists the accuracy of the corresponding
pruned random foam. Slight pruning increased accuracy but too much pruning
decreased accuracy. The red dotted line shows the accuracy of the random
foam before pruning.

VI. CONCLUSION

Careful pruning can improve a random rule foam because
it consists of so many constituent foam systems. A large-scale
random foam can combine hundreds or thousands of these
rule-foam subsystems. The Bayesian posteriors in each random
foam gives a natural and sample-by-sample measure of the rel-
ative importance of the constituent foam systems and of their
rules. Dropping low-posterior foams for a given pattern input
increased the pruned random foam’s accuracy and brought
it closer to the accuracy of the underlying classifier. Such
Bayesian posterior pruning also outperformed permanently
pruning the random foam based on just the accuracy of each
foam subsystem. Future pruning schemes can combine this
posterior information with output variances and other foam or
classifier properties.
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