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Abstract— Non-uniform prior probabilities between hidden
layers improved deep neural classifiers trained with bidirec-
tional backpropagation. The resulting Bayesian bidirectional
backpropagation algorithm jointly maximizes the forward and
backward network likelihoods along with the weight priors. The
backward direction exploits a hidden regression that ordinary
unidirectional backpropagation ignores. Simulations compared
Laplacian, Gaussian, Cauchy, and the new sinc-squared hidden
priors on the CIFAR-10 and CIFAR-100 balanced image data
sets. These hidden priors improved the classification accuracy
of deep neural classifiers compared with default uniform
priors and default unidirectional backpropagation. They did
so at little extra computational cost. Sinc-squared and Cauchy
multivariate priors often had the best classification accuracy.
Cauchy hidden priors gave sparse hidden weights similar to
the Laplacian priors associated with sparse lasso regression.

I. HIDDEN PRIORS IN BIDIRECTIONAL
BACKPROPAGATION

This paper extends the recent likelihood-based bidirec-
tional backpropagation [1] to the deep Bayesian case in
Figure 1. It puts prior probabilities on all the synaptic webs
that connect the hidden layers in the back-and-forth flow of
neural signals.

We also introduce a new multivariate prior probability
density called the sinc-squared probability density function
(pdf). We further study what appears to be the first use of a
multivariate Cauchy prior [2] in this deep Bayesian context.

The new sinc-squared pdf f has a median m and a
dispersion d > 0. It lacks a population mean and a finite
variance and higher moments as does the Cauchy pdf below.
Figure 2d plots the simplest sinc-squared pdf f with zero
median m = 0 and unit dispersion d = 1 for random variable
X ∼ f :

fX(x) =
1

π
sinc2(x) =

sin2(x)

πx2
(1)

for all nonzero real x. The pdf structure follows from the
nonnegativity of sinc2(x) and the extraordinary fact that

π =

∫ ∞
−∞

sinc(x) dx =

∫ ∞
−∞

sinc2(x) dx (2)

which follows in turn from integration by parts. The charac-
teristic function φX(ω) = EX

[
eiωX

]
is triangular:

φX(ω) = 1− |ω|
2

(3)
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if |ω| < 2 and φX(ω) = 0 else. Pdf products give a multivari-
ate sinc-squared pdf f(x1, . . . , xn) = fX1

(x1) · · · fXn(xn)
for independent sinc-squared random variables X1, . . . , Xn.

Figure 2 shows scalar versions of all priors used. It also
shows the contour plots for the log-priors of 2-dimensional
random vectors. Sinc-squared and Cauchy priors outper-
formed the traditional multivariate Gaussian and Laplacian
“regularizers” found in respective ridge [3], [4] and lasso
regression [5], [6] on the CIFAR-10 and CIFAR-100 image
test sets. Figure 2 shows that smaller dispersion values γ in
the Cauchy priors produced soft diamonds akin to the hard
diamond for the Laplace prior. This helps explain why the
Cauchy priors produced sparse or reduced weights as in lasso
regression. Figure 3 shows a 2-D sinc-squared prior.

Ordinary backpropagation (BP) iteratively maximizes the
forward likelihood pf (y|x,Θ) that maps an input pattern
vector x forward through several hidden layers of ReLU
or nonvanishing NoVa [7] or other neural units to a target
or output vector y. It ignores the backward probability
pb(x|y,Θ) that describes when a target or output vector y
maps back to the input pattern x at the input layer of identity
neurons.

The new bidirectional BP algorithm [1] maximizes the
network’s joint likelihood pf (y|x,Θ)pb(x|y,Θ) of a single
forward and backward learning epoch. The next section
shows that Bayesian bidirectional BP (B3) [8], [9] maxi-
mizes the total joint forward-and-backward posterior proba-
bility pf (y|x,Θ)hf (Θ|x)pb(x|y,Θ)hb(Θ|y).

Figure 1 shows that the identity neurons at the classifier’s
input layer give rise to a hidden backward regression or ordi-
nary function approximation. Feedforward classifiers ignore
this identity structure of the input neurons and just treat them
as data registers for input patterns. The forward pass defines a
one-shot multinomial probability or the roll of a K-sided die
because the output neurons are softmax. But the backward
pass defines a multivariate normal probability because the
input neurons are identity neurons. Taking negative loga-
rithms shows that bidirectional BP maximizes the joint sum
of a forward cross-entropy and a backward squared-error.
This bidirectional optimization uses the same training data
that unidirectional BP uses. The extra computational cost is
trivial.

Table I shows the classification benefit of using these
non-uniform priors at the hidden layers of the deep neural
classifiers that trained on the CIFAR-10 image dataset. Table
II shows the same comparative benefit with neural classifiers
that trained on the CIFAR-100 image data set with non-
uniform hidden priors. Figures 4 and 6 show samples from
CIFAR-10 and CIFAR-100. Figures 5 and 7 compare the
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trained weights after B3 training and shows similar sparsity
for Cauchy and Laplace priors.

Tables I-III show that the Cauchy and sinc-priors per-
formed best in most cases. It also shows the benefit of using
both vector Gaussian hidden priors and Laplacian hidden
priors to train neural classifiers with B3 on CIFAR-10.

All four types of hidden priors did better than the default
uniform priors. The results also did best when the prior also
applied to the synaptic web from the input identity neurons
to the first hidden layer. Table III shows the comparative
benefit of classifiers after B3 on the CIFAR-100 image set.
Cauchy and Laplace priors produced the most sparse trained
synaptic weights but Cauchy priors had better classification
accuracy.

II. BAYESIAN BIDIRECTIONAL BACKPROPAGATION

Bayesian bidirectional backpropagation (B3) [8], [9]
jointly maximizes the neural network’s forward posterior
pf (Θ|y, x) and its backward posterior pb(Θ|x, y). Bayes’
theorem gives the forward posterior as

pf (Θ|y, x) =
pf (y|x,Θ)hf (Θ|x)∫
pf (y|x,Θ)hf (Θ|x) dΘ

(4)

and pf (Θ|y, x) ∝ pf (y|x,Θ)hf (Θ|x) where pf (y|x,Θ) is
the forward likelihood and hf (Θ|x) is the forward prior. The
backward posterior pb(Θ|x, y) is

pb(Θ|x, y) =
pb(x|y,Θ)hb(Θ|y)∫
pb(x|y,Θ)hb(Θ|y) dΘ

(5)

and pb(Θ|x, y) ∝ pb(x|y,Θ)hb(Θ|y) where pb(x|y,Θ) is
the backward likelihood and hb(Θ|y) is the backward prior.
Then the B3 solution ΘBMAP is

ΘBMAP = arg max
Θ

pf (Θ|y, x)pb(Θ|x, y) (6)

= arg max
Θ

pf (y|x,Θ)hf (Θ|x)pb(x|y,Θ)hb(Θ|y)

(7)
= arg max

Θ
log pf (y|x,Θ) + log pb(x|y,Θ)

+ log h(Θ) (8)

with joint bidirectional prior h(Θ) = hf (Θ|x)hb(Θ|y).
Bidirectional BP and its Bayesian extension B3 endows

a neural network N with bidirectional mappings between
the input space X and output space Y . Neural signals pass
forward through the synaptic weight matrices W and then
backward through the transposes WT of the same weight
matrices [10]. The forward pass propagates input vector x
from the input layer to the output layer. The output activation
at for the forward pass has the form at = N(x) where the
output activation vector at predicts the target t given input
x. The backward pass propagates t from the output layer
back through to the input layer. The input activation ax for
the backward pass has the form ax = NT (t).

The forward pass of a neural classifier with softmax
output activation uses a multinomial or categorical likelihood
pf (t|x,Θ) =

∏K
k=1(atk)tk for output target vector t where

atk is the activation of the kth output neuron and tk is
the target of the kth output neuron. The corresponding log-
likelihood is

log pf (t|x,Θ) =

K∑
k=1

tk log atk. (9)

The term atk gives the probability that x belongs to class k
with 0 ≤ atk ≤ 1 and

∑K
k=1 a

t
k = 1. The corresponding for-

ward error function Ef (Θ) is just the cross-entropy between
tk and atk:

Ef (Θ) = − log pf (t|x,Θ) = −
K∑
k=1

tk log atk. (10)

The backward pass of the neural classifier uses identity
input activations. So the input layer has a multivariate-normal

backward likelihood pb(x|t,Θ) = 1

2π
L
2

exp−
||ax−x||22

2 :

log pb(x|t,Θ) = −L
2

log 2π − 1

2
||ax − x||22 (11)

because pb(x|t,Θ) = N (x|ax, I). The corresponding back-
ward error Eb(Θ) follows from the negative log-likelihood:

Eb(Θ) = − log pb(x|t,Θ)− log(2π)
L
2 =

1

2
||ax − x||22

(12)

where u = −L2 log 2π does not depend on parameter vector
Θ. The B3 solution parameter Θ∗ for a neural classifier is

Θ∗ = arg max
Θ

pf (t|x,Θ) pb(x|t,Θ) h(Θ) (13)

= arg max
Θ

log pf (t|x,Θ) + log pb(x|t,Θ) + log h(Θ)

(14)
= arg min

Θ
Ef (Θ) + Eb(Θ)− log h(Θ) (15)

where h(Θ) depends on the choice of prior probability.
Bayesian B-BP generalizes to the Bayesian unidirectional

BP with zero backward error. So Eb(Θ) = 0. Therefore the
Bayesian unidirectional BP training simplifies as follows:

Θ̂ = arg max
Θ

pf (t|x,Θ) h(Θ) (16)

= arg min
Θ

Ef (Θ)− log h(Θ) (17)

where Θ̂ is the Bayesian unidirectional BP solution.

III. PRIOR LAYER STRUCTURE

Let N be a neural network with J hidden layers. The
prior h(Θ) factors into the product of input prior, hidden
priors, and output prior. The input prior hx(Θ|h1,x) con-
trols the weights that connect the input layer to the first
hidden layer h1. The hidden prior h(Θ|hj+1,hj) controls
the weights between any two contiguous hidden layers where
j ∈ {1, 2, ..., J − 1}. The output prior hy(Θ|y,hJ) controls
the synaptic weights between the hidden layer hJ and the
output layer.
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BAYESIAN BIDIRECTIONAL  BACKPROPAGATION

Bayesian B-BP:

Forward Pass

Backward Pass

Input layer Output layer

Backward likelihood Forward likelihoodHidden priors

Input 𝒙
Output  𝒚

𝒉1 𝒉2 𝒉3 𝒉4

𝑝𝑓(𝒚|𝒙, ϴ) 𝑝𝑏(𝒙|𝒚, ϴ)

Fig. 1: Bayesian Bidirectional Backpropagation learning: B3 maximizes the network’s joint log-posterior or the log-likelihood of the
forward network likelihood pf (y|x,Θ), the backward likelihood pb(x|y,Θ), and the weight prior h(Θ). Here the weight prior splits into
one input prior, three hidden priors, and one output prior. The input and output priors are uniform while the hidden priors are the new
sinc-squared multivariate priors. This network runs as a classifier in the forward direction and as a regressor or function approximator in
the backward direction. The output layer uses softmax neurons and so has a multinomial likelihood and thus a cross-entropy error on the
forward pass. The input layer uses identity neurons and so has a vector normal likelihood and thus a squared error on the backward pass.

The prior h(Θ) factors over the neural layers:

h(Θ) = hx(Θ|h1,x)︸ ︷︷ ︸
Input prior

J−1∏
j=1

h(Θ|hj+1,hj)︸ ︷︷ ︸
Hidden priors

hy(Θ|y,hJ)︸ ︷︷ ︸
Output prior

.

(18)

All experiments used a uniform output prior for the weights
from the final hidden layer to the output layer of softmax
neurons. So the output prior dropped out of the gradient
optimization. This gave the log prior as

log h(Θ) = log
(
hx(Θ|h1,x)

J−1∏
j=1

h(Θ|hj+1,hj)
)

(19)

= log hx(Θ|h1,x) +

J−1∑
j=1

log h(Θ|hj+1,hj).

(20)

IV. BETWEEN-LAYER PRIORS

The simulations used four non-uniform hidden priors:
Laplacian, Gaussian, Cauchy, and the new sinc-squared prior.

These vector priors factor into a product of marginals be-
cause we assume that the underlying random variables are
independent and identically distributed (i.i.d.).

A. Gaussian Prior:

The Gaussian random vector Θ ∼ N (Θ|0, σI) gives

log h(Θ) = log (2πσ2)
−L2 exp−

||Θ||22
2σ2 (21)

= −L
2

log (2πσ2)− ||Θ||
2
2

2τ2
(22)

= −L
2

log (2πσ2)− λ||Θ||22 (23)

where Θ = [θ1, θ2, ..., θL]. Figure 2a shows the density
function of a scalar version of Gaussian prior. The log joint
density function h(θ1, θ2) of two i.i.d. Gaussian and scalar
random variables with mean µ = 0 and standard deviation
σ is

log h(θ1, θ2) = − log 2πσ2 − λ||θ||22 − 2σ2 (24)

where θ = [θ1, θ2] and where θ1 and θ2 are the scalar
components of the 2-D vector random variable θ.
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Fig. 2: Scalar probability density functions of the non-uniform priors and the contour plots of their log-priors. Non-uniform priors:
Gaussian, Laplacian, Cauchy, and sinc-squared priors. These contours result from taking the logarithm of 2-D i.i.d. densities and dropping
the constant terms. (a) density function of a Gaussian prior with µ = 0 and σ = 1. The Gaussian bell curve has thin exponential tails. (b)
density function of a Laplacian prior with µ = 0 and b = 1. (c) density function of a Cauchy prior with m = 0 and γ = 1. The Cauchy
bell curve has thicker power-law tails and so rare events are more frequent. (d) density function of a sinc-squared prior with d = 1. (e)
contour plot for a Gaussian prior with equation θ21 +θ22 = 1. (f) contour plot for a Laplacian prior with equation |θ1|+|θ2| = 1. (g) contour
plots for Cauchy priors with equation log(γ2 +θ21)+log(γ2 +θ22)−2 log γ = 1. The case γ = 0.5 gives a “soft diamond” compared with
the Laplacian’s hard diamond. (h) contour plots for sinc-squared priors with equation log sinc2

(
θ1
d

)
+ log sinc2

(
θ2
d

)
= −1. (i) Cauchy

“soft diamond” solution contour for γ = 0.05 and c = 1. (j) Cauchy “soft diamond” solution contour for γ = 0.3 and c = 1. (k) Cauchy
“soft diamond” solution contour for γ = 1 and c = 1. (l) Cauchy solution contour for γ = 1.5 and c = 1.

The corresponding contour equation for this log-prior with
respect to θ1 and θ2 is

λ||θ||22 = λ(θ1
2 + θ2

2) = c (25)

where c ≥ 0. Figure 2e shows the corresponding contour
plot with c = 1 and λ = 1.

B. Laplacian Prior:

The Laplacian parameter vector Θ ∼ Laplace(Θ|0, τI)
gives

log h(Θ) = log
(

(2τ)
−L

exp−
||Θ||1
τ

)
(26)

= −L log (2τ)− ||Θ||1
τ

(27)

= −L log (2τ)− λ||Θ||1 (28)

with τ > 0 and Θ = [θ1, θ2, ..., θL]. The log density
function h(θ1, θ2) of two i.i.d. Laplacian random variables
with parameter τ is

log h(θ1, θ2) = −2 log(2τ)− λ||θ||1 (29)

368



θ1

−6 −4 −2
0

2
4

6

θ2

−6

−4
−2

0
2

4
6

g
(θ

1
,θ

2
)

0.000

0.005

0.010

0.015

0.020

0.025

0.005

0.010

0.015

0.020

Fig. 3: Sinc-squared multivariate prior: Joint distribution of inde-
pendent and identically distributed random variables θ1 and θ2 with
the new sinc-squared probability density function for dispersion
d = 2.5.

where θ = [θ1, θ2], and where θ1 and θ2 are the scalar
components of the 2-D vector random variable θ. The
corresponding contour equation for this log-prior is

λ||θ||1 = λ(|θ1|+ |θ2|) = c (30)

where c ≥ 0. Figure 2f shows the corresponding contour plot
with c = 1 and λ = 1.

C. Cauchy Prior:

The Cauchy random vector Θ also has a density that
factors into marginals for the infinite-variance random vari-
ables θl ∼ Cauchy(Θl|0, γ) for l = {1, 2, ..., L} where
Θ = {Θl}Ll=1. Then

log h(Θ) = log

L∏
l=1

γ

π(θ2
l + γ2)

=

L∑
l=1

log
γ

π(θ2
l + γ2)

.

(31)

The log of Cauchy joint-prior for L = 2 is

log h(θ1, θ2) = 2 log γ − 2 log π −
2∑
l=1

log(θl + γ2) (32)

where θ1 and θ2 are the respective realizations of Θ1 and
Θ2. The corresponding contour plot for this log-prior with
respect to θ1 and θ2 is

−2 log γ +

2∑
l=1

log(θl
2 + γ2) = c . (33)

Figure 2g shows two Cauchy prior contour plots for c = 1.0
with γ = 0.5 and γ = 1.4.

D. Sinc-squared Prior:

The probability density function h of a scalar sinc-squared
random variable θ with zero median m = 0 is

h(θ) =
1

πd
sinc2

(
θ

d

)
=

d

πθ2
sin2

(
θ

d

)
(34)

for dispersion d > 0. The density structure follows from∫ ∞
−∞

sinc2

(
x

d

)
dx = πd =

∫ ∞
−∞

sinc

(
x

d

)
dx (35)

where d > 0. Therefore h(θ) ≥ 0 and
∫
h(θ) dθ = 1 for

θ ∈ (−∞,∞). Figure 2d shows the density function for
d = 1. The corresponding derivative of this prior is

h′(θ) =
d

dθ

1

πd
sinc2

(
θ

d

)
(36)

=
2

πd
sinc

(
θ

d

)
d

dθ
sinc

(
θ

d

)
(37)

=
2

πd
sinc

(
θ

d

)(
θ cos

(
θ
d

)
− d sin

(
θ
d

)
θ2

)
(38)

=
2 sinc

(
θ
d

)(
θ cos

(
θ
d

)
− d sin

(
θ
d

))
πdθ2

. (39)

The sinc-squared random vector Θ has a joint density
function that factors into the product of marginals of sinc-
squared random variables Θl ∼ sinc-squared(Θl|m = 0, d)
for l ∈ {1, 2, ..., L} where Θ = {Θl}Ll=1. Figure 3 shows the
joint probability density function for a sinc-squared random
vector with L = 2 and d = 2.5. The corresponding log-
likelihood for the random vector Θ is

log h(Θ) = log

L∏
l=1

1

πd
sinc2

(θl
d

)
(40)

=

L∑
l=1

log
1

d
− log π + log

(
sinc2

(θl
d

))
(41)

= −L(log d+ log π) +

L∑
l=1

log
(

sinc2
(θl
d

))
(42)

where θl is a realization of Θl for all l.
The log joint-prior for L = 2 is

log h(θ1, θ2) = −2(log d+ log π) +

2∑
l=1

log
(

sinc2
(θl
d

))
.

(43)

The corresponding contour equation for this log-prior with
respect to θ1 and θ2 is

log
(

sinc2
(θ1

d

))
+ log

(
sinc2

(θ2

d

))
= c (44)

where c ≤ 0. Figure 2h shows two sinc-squared contour plots
for d = 2.0 and d = 1.

Fig. 4: CIFAR-10 images: 10 samples from the CIFAR-10 dataset
that contains 10 pattern classes and a total of 60,000 sample images
with 6,000 images per class.
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TABLE I: Classification accuracy of Bayesian bidirectional backpropagation training with non-uniform hidden priors on the CIFAR-10
image dataset for Gaussian, Laplacian, Cauchy, and sinc-squared priors. The neural classifiers used uniform input and output priors. They
also used 1,000 ReLU neurons per hidden layer.

Network structure Unidirectional BP
Bayesian Bidirectional BP (Hidden Priors)

Uniform Prior Gaussian Prior Laplacian Prior Cauchy Prior Sinc-squared Prior

2 hidden layers 59.88% 60.61% 61.69% 61.70% 61.66% 62.18%
4 hidden layers 61.36% 61.11% 61.63% 61.52% 61.39% 62.38%
6 hidden layers 60.48% 61.07% 61.13% 61.14% 61.13% 62.41%
8 hidden layers 59.74% 60.08% 61.46% 61.25% 61.59% 62.21%
10 hidden layers 60.03% 60.46% 60.67% 60.10% 60.27% 60.94%
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Fig. 5: Weight sparsity with Bayesian bidirectional backpropagation training on CIFAR-10: The figures show the weight distribution of
the deep-neural classifier after it trained over 100 epochs. The classifiers used 8 hidden layers with 1,000 ReLU neurons per hidden
layer. The plots divide the real line R into 5 segments: Seg. 1 denotes (−∞,−0.2), Seg. 2 denotes [−0.2,−0.002), Seg. 3 denotes
[−0.002, 0.002), Seg. 4 denotes [0.002, 0.2), and Seg. 5 denotes [0.2,∞). The Cauchy prior used γ = 0.3.

Fig. 6: CIFAR-100 images: This figure shows 100 samples from
the CIFAR-100 dataset that contains 100 pattern classes with 600
images per class.

V. NEURAL NETWORK SIMULATIONS

The simulated deep classifiers used two image datasets.
The first was the CIFAR-10 dataset [11] and the second was
the CIFAR-100 dataset [11].

The CIFAR-10 test set consists of 60,000 color images
from 10 categories (K = 10). Each image has size 32 ×
32 × 3. The 10 pattern categories are airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck [11]. Figure
4 shows sample images with one image per class.

CIFAR-100 dataset is a set of 60,000 color images with
image size 32 × 32 × 3. The images are from 100 pattern
classes with 600 images per class. Each class is made up of
500 training images and 100 testing images. Figure 6 shows
sample images with one image per class.

The deep neural classifiers trained on CIFAR-10 and
CIFAR-100 with the B3 algorithm. Each classifier network
used 1000 neurons per hidden layer and used K softmax or
Gibbs output activations. The hidden neurons used rectified
linear unit (ReLU) activation. The input layer used identity
neurons. We varied the size of the hidden layers and the
choice of hidden prior. The competing hidden priors were
uniform, Laplacian, Gaussian, Cauchy, and sinc-squared. B3

minimized the cross entropy in the forward direction and
minimized the squared-error in the backward direction.

Tables I-III show that the non-uniform hidden priors
improved the performance of neural classifiers and allowed
deeper neural classifiers. Specifically: The Cauchy and sinc-
squared priors outperformed others. This held for both the
CIFAR-10 and the CIFAR-100 balanced datasets.

Figures 5 and 7 show that the Cauchy hidden priors
increased the weight sparsity of the deep neural classifiers.
Most of the weight parameters were close to 0 in this case.
Small dispersion value increased the sparsity of the weights.
Cauchy hidden priors achieved the highest level of sparsity.

VI. CONCLUSIONS

Non-uniform hidden priors improved the classification
accuracy of Bayesian bidirectional backpropagation. The
benefit of using non-hidden priors was most pronounced in
very deep neural classifiers where uniform priors performed
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TABLE II: Classification accuracy of Bayesian bidirectional backpropagation training with non-uniform hidden priors on the CIFAR-
100 image dataset for Gaussian, Laplacian, Cauchy, and sinc-squared priors on the CIFAR-100 image dataset. The neural classifiers used
uniform input and output priors. They also used 1,000 ReLU neurons per hidden layer

Network structure Unidirectional BP
Bayesian Bidirectional BP (Hidden Priors)

Uniform Prior Gaussian Prior Laplacian Prior Cauchy Prior Sinc-squared Prior

2 hidden layers 30.75% 30.54% 35.59% 31.96% 35.09% 35.44%
4 hidden layers 31.87% 32.00% 32.55% 33.01% 32.36% 34.02%
6 hidden layers 31.64% 31.02% 31.88% 32.07% 32.26% 32.44%
8 hidden layers 30.50% 30.32% 31.13% 30.36% 31.23% 31.10%
10 hidden layers 26.93% 27.30% 27.71% 27.35% 27.44% 27.58%

TABLE III: Bayesian bidirectional backpropagation training with non-uniform hidden and input priors on the CIFAR-100 image dataset
for Gaussian, Laplacian, Cauchy, and sinc-squared priors. The neural classifiers used uniform output priors. We compared non-uniform
input and hidden priors on classification accuracy. The neural classifiers used 1,000 ReLU neurons per hidden layer.

Network structure Unidirectional BP
Bayesian Bidirectional BP (Input & Hidden Priors)

Uniform Prior Gaussian Prior Laplacian Prior Cauchy Prior Sinc-squared Prior

2 hidden layers 30.75% 30.54% 35.89% 32.23% 36.00% 35.97%
4 hidden layers 31.87% 32.00% 34.26% 33.51% 34.17% 34.34%
6 hidden layers 31.64% 31.02% 32.55% 33.07% 32.92% 32.72%
8 hidden layers 30.50% 30.32% 30.67% 30.74% 31.08% 30.83%
10 hidden layers 26.93% 27.30% 27.45% 27.31% 27.95% 27.77%
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Fig. 7: Weight sparsity with Bayesian bidirectional backpropagation training on the CIFAR-100 image dataset: The figures show the
weight distribution of the deep-neural classifier after it trained over 100 epochs. The classifiers used 8 hidden layers with 1,000 ReLU
neurons per hidden layer. The plots divide the real line R into 5 segments: Seg. 1 denotes (−∞,−0.2), Seg. 2 denotes [−0.2,−0.002),
Seg. 3 denotes [−0.002, 0.002), Seg. 4 denotes [0.002, 0.2), and Seg. 5 denotes [0.2,∞). The plots show that non-uniform hidden priors
promote sparsity. Cauchy hidden priors gave the sparsest weights.

poorly. Cauchy and sinc-squared priors often did best. The
non-uniform priors also promoted weight sparsity. Cauchy
“soft diamond” hidden priors produced the sparsest weights.
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