Fuzzy Logic

The binary logic of modern computers often falls short
when describing the vagueness of the real world.
Fuzzy logic offers more graceful alternatives

do. Computers “reason” when

\_4 they manipulate -precise facts
that have been reduced to strings of ze-
ros‘and ones and statements that are
eithér-true or false. The human brain
can ‘reason with vague assertions or

( : omputers do not reason as brains

claims that involve uncertainties 'or val-- -

ue judgments: “The air is cool,” or “That
speed is fast” or “She is young.” Unlike
computers, humans have comimon sense
that eénables them to reason in a world

where things are‘only partially true.
Fuzzy logic is a branch of machine
intelligence that helps computers paint
gray, commonsense pictures of an un-
certain world. Logicians in the 1920s
first broached its key concept: every-

~ thing is a matter of degree.

Fuzzy logic manipulates such vague
concepts as “warm” or “still dirty” and
- 30 helps engineers to build air condition-
ets, washing machines and other de-
vices that judge how fast they should
operate or shift from one setting to an-
other-even when the criteria for mak-
_ing those changes are hard to define.
When'mathematicians lack specific al-
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gorithms that dictate how a system
should respond to inputs, fuzzy logic
can control or describe the system by
using “commonsense” rules that refer
to indefinite quantities. No known math-
ematical model can back up a truck-

and-trailer rig from a parking lot to a

loading dock when the vehicle starts. ..

from a random spot. Both humans and
fuzzy systems can perform this nonlin-
ear guidance task by using practical but
imprecise rules such as “If the trailer
turns a little tg the léft, then tun it a
little to the right.” Fuzzy systems often
glean their rules from experts. When no
expert gives the rules, adaptive fuzzy
systems learn the rules- by observing
‘how peopleregulate real systems.

A recent wave of commercial fuzzy
products, most of them from Japan, has
popularized fuzzy logic. In 1980 the
contracting firm of F. L. Smidth & Com-
pany in Copenhagen first used a fuzzy
system to oversee the operation of a
cement kiln. In 1988 Hitachi turned over
control of a subway in Sendai, Japan,
to a fuzzy systerm. Since then, Japanese
companies have used fuzzy logic to di-
rect hundreds of household appliances
and.electronics products. The Ministry
of International Trade and Industry es-
timates that in 1992 Japan produced
about $2 billion worth of fuzzy prod-
ucts. U.S: and European companies still
lag far behind.

~ . Applications for fuzzy logic extend

beyond control systems. Recent theo-
rems show that in principle fuzzy logic
can be used to model any continuous
system, be it based in engineering or
physics.or biology or economics. Inves-
tigators in many fields may find that
fuzzy, commonsense models are more
useful or accurate than are standard
mathematical ones.

; t the heart of the difference be-
tween classical and fitzzy logic is
something Aristotle called the

law of the excluded middle. In standard

set theory, an object either does or does
not belong to a set. There is no middle

ground: the number five belongs fully
to the set of odd numbers and not at
all to the set of even numbers. In such
bivalent sets, an object cannot belong
to both a set and its complement set or
to neither of the sets. This prindple pre-
serves the structure of logic and avoids
the contradiction of an object that both
is and is not a thing at the same time.
Sets that are fuzzy, or multivalent,
break the law of the excluded middle—
to some degree. Items belong only par-
tially to a fuzzy set. They may also be-
long to more than one set. Even to just
one individual, the air may feel cool,
just right and warm to varying degrees.

‘Whereas the boundaries of standard

sets are exact, those of fuzzy sets are
curved or taper off, and this curvature
creates partial contradictions. The air
can be 20 percent cool—and at the
same time, 80 percent not cool.

Fuzzy degrees are not the same as
probability percentages, a point that has
eluded some critics of the field. Proba-
bilities measure whether something will
occur or not. Fuzziness measures the de-
gree to which something occurs or some
condition exists. The statement “There
is a 30 percent chance the weather will
be cool” conveys the probability of cool
weather. But “The morning feels 30 per-
cent cool” means that the air feels cool
to some extent—and at the same time,
just right and warm to varying extents.

The only constraint on fuzzy logic is
that an object’s degrees of membership
in complementary groups must sum to
unity. If the air seems 20 percent cool,
it must also be 80 percent not cool. In
this way, fuzzy logic just skirts the bi-
valent contradiction—that something
is 100 percent cool and 100 percent not
cool—that would destroy formal logic.
The law of the excluded middle holds
merely as a special case in fuzzy logic,
namely when an object belongs 100
percent Lo one group.

The modern study of fuzzy logic and
partial contradictions had its origins ear-
ly in this century, when Bertrand Rus-
sell found the ancient Greek paradox at



ihe core of modern set theory and log-
ic. According to the old riddle, a Cretan
asserts that all Cretans lie. So, is he ly-
ing? If he lies, then he tells the truth
and does not lie. If he does not lie, then
he tells the truth and so lies. Both cas-
es lead to a contradiction because the
statement is both true and false. Rus-
sell found the same paradox in set the-
ory. The set of all sets is a set, and so it
is a member of itself. Yet the set of all
apples is not a member of itself be-
cause its members are apples and not
sets. Perceiving the underlying contra-
diction, Russell then asked, “Is the set
of all sets that are not members of them-
selves a member of itself?" If it is, it isn't;
if it isn't, it is.

Faced with such a conundrum, classi-
cal logic surrenders. But fuzzy logic says
that the answer is- half true and half
false, a 50-50 divide. Fifty percent of
the Cretan's statements are true, and
50 percent are false. The Cretan lies 50
percent of the time and does not lie the
other half. When membership is less
than total, a bivalent system might sim-

plify the problem by rounding it down
to zero or up to 100 percent. Yet 50 per-
cent does not round up or down.

In the 1920s, independent of Rus-
sell, the Polish logician J: n kukasiewicz
worked out the principles of multival-
ued logic, in which statements can take
on fractional truth values between the
ones and zeros of binary logic. Ina 1937
article in Philosophy of Science, quantum
philosopher Max Black applied multi-
valued logic to lists, or sets of objects,
and in so doing drew the first fuzzy set
curves. Following Russell’s lead, Black
called the sets “vague.”

Almost 30 years later Lotfi A. Zadeh,
then chair of the electrical engineering
department at the University of Califor-
nia at Berkeley, published “Fuzzy Sets,”
a landmark paper that gave the field its
name. Zadeh applied Tukasiewicz’s log-
ic to every object in a set and worked
out a complete algebra for fuzzy sets.
Even so, fuzzy sets were not put to use
until the mid-1970s, when Ebrahim H.
Mamdani of Queen Mary College in Lon-
don designed a fuzzy controller for a

steam engine. Since then, the term “fuz-
2y logic” has come to mean any math-
ematical or computer system that rea-
sons with fuzzy sets.

uzzy logic is based on rules of
the form “if...then” that convert

inputs to outputs—one fuzzy set
into another. The controller of a car’s air
conditioner might include rules such as
“If the temperature is cool, then set the
motor speed on slow” and “If the tem-
perature is just right, then set the mo-
tor speed on medium.” The tempera-
tures (cool, just right) and the motor
speeds (slow, medium) name fuzzy sets
rather than specific values.

To build a fuzzy system, an engineer
might begin with a set of fuzzy rules
from an expert. An engineer might de-
fine the degrees of membership in vari-
ous fuzzy input and output sets with
sets of curves. The relation between the
input and output sets could then be
plotted. Given the rule “If the air feels
cool, then set the motor to slow,” the in-
puts (temperature) would be listed along
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one axis of a graph and the outputs
(motor speed) along a second axis. The
product of these fuzzy sets forms a
fuzzy patch, an area that represents the
set of all associations that the rule forms
between those inputs and outputs.

The size of the patch reflects the rule's
vagueness or uncertainty. The more
precise the fuzzy set, the smaller it be-
comes. If “cool” is precisely 68 degrees
Fahrenheit, the fuzzy set collapses to a
spike. If both the cool and slow fuzzy
sets are spikes, the rule patch is a point.

The rules of a fuzzy system define a
set of overlapping patches that relate a
full range of inputs to a full range of
outputs. In that sense, the fuzzy sys-
tem approximates some mathematical
function or equation of cause and ef-
fect. These functions might be laws that
tell a microprocessor how to adjust the
power of an air conditioner or the speed
of a washing machine in response to
some fresh measurement.

Fuzzy systems can approximate any
continuous math function. One of us
(Kosko) proved this uniform conver-
gence theorem by showing that enough
small fuzzy patches can sufficiently cov-
er the graph of any function or input/
output relation. The theorem also shows
that we can pick in advance the maxi-
mum error of the approximation and be
sure there is a finite number of fuzzy
rules that achieve it. A fuzzy system rea-
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sons, or infers, based on its rule patches.
Two or more rules convert any incom-
ing number into some result because
the patches overlap. When data trigger
the rules, overlapping patches fire in
parallel—but only to some degree.

Imagine a fuzzy air conditioner that
relies on five rules and thus five patches
to match temperatures to motor speeds.
The temperature sets (cold, cool, just
right, warm and hot) cover all the pos-
sible fuzzy inputs. The motor speed sets
(very slow, slow, medium, fast and very
fast) describe all the fuzzy outputs. A
temperature of, say, 68 degrees F might
be 20 percent cool (80 percent not cool)
and 70 percent just right (30 percent
not just right). At the same time, the air
is also O percent cold, warm and hot.
The "if cool” and “if just right” rules
would fire and invoke both the slow and
medium motor speeds.

The two rules contribute proportion-
ally to the final motor speed. Because
the temperature was 20 percent cool,
the curve describing the slow engine
speed must shrink to 20 percent of its
height. The “medium” curve must shrink
to 70 percent. Summing those two re-
duced curves produces the final curve
for the fuzzy output set.

In its fuzzy form, such an output
curve does not assist controllers that
act on binary instructions. So the final
step is a process of defuzzification, in

FUZZY SET

100 COooL

(o]

T
50 60 70
AIR TEMPERATURE

0 T T 1
50 60 70
AIR TEMPERATURE

FUZZY SET AND ITS COMPLEMENT
COoOoL

NOT COOL

100> == we = mn s v o oew gy

MEMBERSHIP
(PERCENT)
&
|

NOT COOL

-

50
AIR TEMPERATURE (DEGREES FAHRENHEIT)

60 70

SET THEORY underlies the difference between standard and fuzzy logic. In stan-
dard logic, objects belong to a set fully or not at all (top left). Objects belong to a
fuzzy set only to some extent (top right) and to the set’s complement to some ex-
tent. Those partial memberships must sum to unity (bottom). If 55 degrees is 50
percent “cool,” it is also 50 percent “not cool.”
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which the fuzzy output curve is turned
into a single numerical value. The most
common technique is to compute the
center of mass, or centroid, of the area
under the curve. In this instance, the
centroid of the fuzzy output curve
might correspond to a motor speed of
47 revolutions per minute. Thus, begin-
ning with a quantitative temperature
input, the electronic controller can rea-
son from fuzzy temperature and mo-

“tor speed sets and arrive at an appro-

priate and precise speed output.

All fuzzy systems reason with this
fire-and-sum technique—or something
close to it. As systems become more
complex, the antecedents of the rules
may include any number of terms con-
Jjoined by “and” or disjoined by “or.” An
advanced fuzzy air conditioner might
use a rule that says, “If the air is cool
and the humidity is high, then set the
motor to medium.”

uzzy products use both micro-
processors that run fuzzy infer-

ence algorithms and sensors that
measure changing input conditions.
Fuzzy chips are microprocessors de-
signed to store and process fuzzy rules.
In 1985 Masaki Togai and Hiroyuki Wa-
tanabe, then working at AT&T Bell Lab-
oratories, built the first digital fuzzy
chip. It processed 16 simple rules in
12.5 microseconds, a rate of 0.08 mil-
lion fuzzy logical inferences per second.
Togai Infralogic, Inc., now offers chips
based on Fuzzy Computational Acceler-
ation hardware that processes up to two
million rules per second. Most micro-
processor firms currently have fuzzy
chip research projects. Fuzzy products
largely rely on standard microproces-
sors that engineers have programmed
with a few lines of fuzzy inference code.
Although the market for dedicated fuz-
zy chips is still tiny, the value of micro-
processors that include fuzzy logic al-
ready exceeds $1 billion.

The most famous fuzzy application
is the subway car controller used in
Sendai, which has outperformed both
human operators and conventional au-
tomated controllers. Conventional con-
trollers start or stop a train by reacting
to position markers that show how far
the vehicle is from a station. Because
the controllers are rigidly programmed,
the ride may be jerky: the automated
controller will apply the same brake
pressure when a train is, say, 100 me-
ters from a station, even if the train is
going uphill or downhill.

In the mid-1980s engineers from Hi-
tachi used fuzzy rules to accelerate,
slow and brake the subway trains more
smoothly than could a deft human op-
erator. The rules encompassed a broad
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APPLICATION OF FUZZY LOGIC to the control of an air con-
ditioner shows how manipulating vague sets can yield pre-
cise instructions. The air conditioner measures air tempera-
ture and then calculates the appropriate motor speed. The
system uses rules that associate fuzzy sets of temperatures,
such as “cool,” to fuzzy sets of motor outputs, such as “slow.”
Fach rule forms a fuzzy patch. A chain of patches can approx-
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imate a performance curve or other function (top). If a tem-
perature of 68 degrees Fahrenheit is 20 percent “cool” and 70
percent “just right” (bottom left), two rules fire, and the sys-
tem tries to run its motor at a speed that is 20 percent “slow”
and 70 percent “medium” (bottom right). The system arrives
at an exact motor speed by finding the center of mass, or cen-
troid, for the sum of the motor output curves.

range of variables about the ongoing
performance of the train, such as how
frequently and by how much its speed
changed and how close the actual speed
was to the maximum speed. In simulat-
ed tests the fuzzy controller beat an au-
tomated version on measures of riders’
comfort, shortened riding times and
even achieved a 10 percent reduction in
the train’s energy consumption. Today
the fuzzy system runs the Sendai sub-
way during peak hours and runs some
Tokyo trains as well. Humans operate
the subway during nonpeak hours to
keep up their skills.

Companies in Japan and Korea are
building an array of fuzzy consumer
goods that offer more precise control
than do conventional ones. Fuzzy wash-

ing machines adjust the wash cycle to
every set of clothes, changing strategies
as the clothes become clean. A fuzzy
washing machine gives a finer wash
than a “dumb” machine with fixed com-
mands. In the simplest of these ma-
chines, an optical sensor measures the
murk or clarity of the wash water, and
the controller estimates how long it
would take a stain to dissolve or satu-
rate in the wash water. Some machines
use a load sensor to trigger changes in
the agitation rate or water temperature.
Others shoot bubbles into the wash
to help dissolve dirt and detergent. A
washing machine may use as few as 10
fuzzy rules to determine a wide variety
of washing strategies.

In cameras and camcorders, fuzzy

logic links image data“to various lens
settings. One of the first fuzzy camcord-
ers, the Canon hand-held H800, which
was introduced in 1990, adjusts the au-
tofocus based on 13 fuzzy rules. Sen-
sors measure the clarity of images in six
areas. The rules take up about a kilobyte
of memory and convert the sensor data
to new lens settings. < T
Matsushita relies on more rules to
cancel the image jitter that a shaking
hand causes in its small Panasonic cam-
corders. The fuzzy rules infer where the
image will shift. The rules heed local
and global changes in the image and
then compensate for them. In contrast,
camcorder controllers based on'mathe-
matical models can compensate for no
more than a few types of image jitter. -
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Systems with fuzzy controllers are of-
ten more energy efficient because they
calculate more precisely how much pow-
er is needed to get a job done. Mitsu-
bishi and Korea’s Samsung report that
their fuzzy vacuum cleaners achieve
more than 40 percent energy savings
over nonfuzzy designs. The fuzzy sys-
tems use infrared light-emitting diodes
to measure changes in dust flow and so
to judge if a floor is bare. A four-bit mi-
croprocessor measures the dust flow to
calculate the appropriate suction pow-
er and other vacuum settings.

Automobiles also benefit from fuzzy
logic. General Motors uses a fuzzy trans-
mission in jts Saturn. Nissan has pat-
ented a fuzzy antiskid braking system,
fuzzy transmission system and fuzzy
fuel injector. One set of fuzzy rules in
an on-board microprocessor adjusts the
fuel flow. Sensors measure the throttle
setting, manifold pressure, radiator wa-
ter temperature and the engine’s revolu-
tions per minute. A second set of fuzzy
rules times the engine ignition based on
the revolutions per minute, water tem-
perature and oxygen concentration.

One of the most complex fuzzy sys-
tems is a model helicopter, designed
by Michio Sugeno of the Tokyo Insti-
tute of Technology. Four elements of
the craft—the elevator, aileron, throttle
and rudder—respond to 13 fuzzy voice
commands, such as “up,” “land” and
“hover.” The fuzzy controller can make
the craft hover in place, a difficult task
even for human pilots.

A few fuzzy systems manage infor-
mation rather than devices. With fuzzy
logic rules, the Japanese conglomerate
Omron oversees five medical data bases

in a health management system for
large firms. The fuzzy systems use 500
rules to diagnose the health of some
10,000 patients and to draw up person-
alized plans to help them prevent dis-
ease, stay fit and reduce stress. Other
companies, including Hitachi and Ya-
maichi Securities, have built trading pro-
grams for bonds or stock funds that
use fuzzy rules to react to changes in
economic data.

he Achilles’ heel of a fuzzy sys-
tem is its rules. Almost all the
fuzzy consumer products now
on the market rely on rules supplied by
an expert. Engineers then engage in a
lengthy process of tuning those rules
and the fuzzy sets. To automate this
process, some engineers are building
adaptive fuzzy systems that use neural
networks or other statistical tools to
refine or even form those initial rules.
Neural networks are collections of
“neurons” and “synapses” that change
their values in response to inputs from
surrounding neurons and synapses.
The neural net acts like a computer be-
cause it maps inputs to outputs. The
neurons and synapses may be silicon
components or equations in software
that simulate their behavior. A neuron
adds up all the incoming signals from
other neurons and then emits its own
response in the form of a number. Sig-
nals travel across the synapses, which
have numerical values that weight the
flow of neuronal signals. When new in-
put data fire a network’s neurons, the
synaptic values can change slightly. A
neural net “learns” when it changes the
value of its synapses.

Depending on the available data, net-
works can learn patterns with or with-
out supervision. A supervised net learns
by trial and error, guided by a teacher.
A human may point out when the net-
work has erred—when it has emitted a
response that differs from the desired
output. The teacher will correct the re-
sponses to sample data until the net-
work responds correctly to every input.

Supervised networks tune the rules
of a fuzzy system as if they were syn-
apses. The user provides the first set
of rules, which the neural net refines
by running through hundreds of thou-
sands of inputs, slightly varying the fuz-
zy sets each time to see how well the
system performs. The net tends to keep
the changes that improve performance
and to ignore the others.

A handful of products in Japan now
use supervised neural learning to tune
the fuzzy rules that control their oper-
ation. Among them are Sanyo’s micro-
wave oven and several companies’ wash-
ing machines. Sharp employs this tech-
nique to modify the rules of its fuzzy
refrigerator so that the device learns
how often its hungry patron is likely to
open the door and adjusts the cooling
cycle accordingly. So far the neural net
must learn “off-line” in the laboratory,
from small samples of behavior by av-
erage customers. In time, researchers
at such groups as Japan's Laboratory for
International Fuzzy Engineering and the
Fuzzy Logic Systems Institute hope to
build fuzzy systems that will adapt to
the needs of each consumer.

Supervised networks do have draw-
backs. Tuning such systems can take
hours or days of computer time be-

Fuzzy Sets and Paradoxes

‘ Relations between sets show the paradox at the heart
, of fuzzy logic. In standard sets, an object either does
I or does not belong to a set: the glass of water is either
| empty or full. Fuzzy sets cover a continuum of partial sets,

such as glasses only half full (Jeft).

i Two objects or two sets define a two-dimensional space
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(right). Standard set theory holds only at the corners of
the square, where the values are either 1 or 0. The mid-
point, the fuzziest point in the square, cannot be rounded
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Fuzzy sets of two objects are points of the square, such
as the point A. The union and intersection of a fuzzy set A
and its complement A~ lie at the corners of an interior
square. In contrast, the union or intersection of a stan-
dard set and its complement results in the total set or the
empty set at the square’s corners, respectively.
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How Fuzzy Systems Learn Rules

daptive systems called neural networks can help fuz-

\ zy systems learn rules. A neural network accepts
pairs of input and output data, such as temperatures and
motor speeds for air conditioners, and groups them into
a small number of prototypes, or classes. Within the net-
work, each prototype acts as a quantization vector—a
list of numbers—that stands for the synapses feeding into

a neuron. When a new data point enters the network,
it stimulates the neuron associated with the prototype
that matches the data most closely. The values of the
“winning” synapses adjust to reflect the data they are re-
ceiving. As the data cluster, so do the quantization vec-
tors, which define rule patches. More data lead to more
numerous and precise patches.
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cause networks may converge on an in-
appropriate solution or rule or may fail
to converge at all. Neural researchers
have proposed hundreds of schemes to
alleviate this problem, but none has
removed it. Even after a lengthy tuning
session, the final rules may not be much
better than the first set.

Rather than relying on an expert to
supply a training set of data and cor-
rect a network in the process of learn-
ing, unsupervised neural networks learn
simply by observing an expert’s deci-
sions. In this way, an adaptive fuzzy
system can learn to spot rule patterns
in the incoming data. Broad rule patch-
es form quickly, based on a few inputs.
Those patches are refined over time.

nsupervised neural networks

blindly cluster data into groups,

the members of which resemble
one another. There may be no given
right or wrong response or way to orga-
nize the data. The algorithms are sim-
pler, and, at least in theory, the network
need run through the data just once. (In
some cases, when data are sparse, the
neural net must cycle through them re-
peatedly.) Unsupervised learning is thus
much faster than supervised learning.
With numerical inputs and outputs sup-
plied by an expert or a physical pro-

cess or even an algorithm, an unsuper-
vised neural network can find the first
set of rules for a fuzzy system. The
quality of the rules depends on the
quality of the data and therefore on
the skills of the expert who generates
the data. At this point, there are fewer
unsupervised than supervised adaptive
fuzzy systems. Because unsupervised
networks are best used to create rules
and supervised networks are better at
refining them, hybrid adaptive fuzzy
systems include both.

Most fuzzy systems have been con-
trol systems with few variables. That
trend happened because most of the
first fuzzy logic engineers were con-
trol theorists and because a control loop
regulates most consumer products. The
challenge for the next generation of fuz-
zy research will be tackling large-scale,
nonlinear systems with many variables.
These problems can arise when people
try to supervise manufacturing plants
or schedule airline flights or model the
economy. No experts may be able to
describe such systems. Common sense
may falter or not apply. The neural nets
that must learn the rules for modeling
these hard problems may have little or
no data to go on.

A further problem is that, like any
other mathematical or computer mod-

el, fuzzy logic falls prey to the “curse
of dimensionality”: the number of fuz-
zy rules tends to grow exponentially as
the number of system variables increas-
es. Fuzzy systems must contend with a
trade-off. Large rule patches mean the
system is more manageable but also
less precise. Even with that trade-off,
fuzzy logic can often better model the
vagueness of the world than can the
black-and-white concepts of set theory.
For that reason, fuzzy logic systems may
well find their way into an ever grow-
ing number of computers, home appli-
ances and theoretical models. The next
century may be fuzzier than we think.
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