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A fuzzy system approximates a function by covering the graph of the function with
fuzzy rule patches and averaging patches that overlap. But the number of rules grows
exponentially with the total number of input and output variables. The best rules cover
the extrema or bumps in the function—they patch the bumps. For mean-squared approxi-
mation this follows from the mean value theorem of calculus. Optimal rules can help
reduce the computational burden. To find them we can find or learn the zeroes of the
derivative map and then center input fuzzy sets at these points. Neural systems can
then both tune these rules and add rules to improve the function approximation. © 1995
John Wiley & Sons, Inc.

I. FUZZY FUNCTION APPROXIMATION AND THE
CURSE OF DIMENSIONALITY

A fuzzy system needs too many fuzzy rules to approximate most functions.
The number of rules grows exponentially with the number of input and output
variables. In the end this “‘curse of dimensionality’’ can defeat an expert who
guesses at the rules or a neural system that tries to learn the rules from data.

The rule geometry shows the problem. The rules define fuzzy patches that
can cover part of the graph of the function. An additive fuzzy system adds or
averages patches that overlap and can always approximate a continuous func-
tion on a compact set with a finite number of rules.' For f: R — R it takes k
rule patches in the plane to cover the graph. For f: R> — R it takes on the
order of k?* rules to cover the surface in some 3-D rectangle. In general for f:
R" — RP it takes on the order of k"*?~! rules to cover the graph of f.

Optimal rules can reduce the number of rules used to approximate a func-
tion. Neural learning tends to find some of these rules? and so can prune the
rule set as well as tune it. In theory we can find the best rules by minimizing
the mean-squared error of the approximation for a given fuzzy architecture. A
complete closed-form solution depends on the shape of the fuzzy sets and how
the system converts inputs to outputs.
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Figure 1. Optimal fuzzy rule patches cover the extrema of a function. A lone rule
defines a flat line segment that cuts the graph of the local extremum in at least two
places. The mean value theorem implies that the extremum lies between these points.

A natural place to put the rule patches is at the extrema or bumps of the
function (including its endpoints). We show that this is the best place in the
mean-squared sense. Figure | shows how the rules might patch the bumps in
a smooth function.

This result gives a new way to approximate f: X — Y. First find the zeroes
of the derivative map f'. Neural or direct methods can estimate f' from the
difference of noisy samples (x, f(x)). Then Newton's method* or other iterative
or contraction maps can find some or all of the root values £ such that f'(xX) =
0. Then center the input fuzzy sets at these roots and perhaps add fuzzy sets
centered between the roots. Or clustering algorithms can estimate the bumps
directly. Supervised or unsupervised learning can further tune the rules.

II. FUZZY SYSTEMS WITH ONE FUZZY RULE

A fuzzy system is a set of fuzzy rules that maps inputs to outputs. So a
fuzzy system Fisamap F: X — Y.

We want F to approximate some function f: X — Y in the sense of least
squares.” We want to minimize the total squared error E over all x in X:

E=[ (f&) - F)Ydx (M
X

= [ () = Fa)y @

when X = [u, v] for real constants « and v. We will work with the scalar case
for simplicity.

Consider first the minimal fuzzy system with just one fuzzy rule of the
form “If X is A, then Y is B” for fuzzy sets A and B. Suppose A is nonzero
on some subinterval [x —a, x + b] of [u, v] and zero elsewhere for some x in
[u, v] and for constants @ and b. The constants a and b are non-negative. For
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each x either @ > 0 or b > 0 or both. The cases a = 0 and b = 0 deal with
endpoint extrema.

The shape of fuzzy set A does not matter. We just need m(z) > 0 for z
in the subinterval and m,(z) = 0 on its complement in [«, v]. Here m: [u, v]
— [0, 1] is the indicator function or set of fuzzy set A.

Suppose fuzzy set B is not empty. So my(y) > 0 for at least one y in the
real output space Y. The shape of B does not matter for correlation-product
inference® or ‘‘scaling.”” B must be symmetric for correlation-minimum infer-
ence of “‘min clipping’” since then B has the same centroid as B’ = min(m ,(z),
B) for all z in the subinterval. In practice B is connected. It need not be. But
then we could view the rule “‘If X is A, then Y is B"" as two or more rules of
the form “‘If X is A, then Yis B,"" and “'If X is A, then Y is B,"" where B, and
B, are two of the disjoint components of B. So assume B is connected. Then
the rule patch A X B is connected and a patch proper.

A fuzzy system F with one rule defines a rectangular pulse. F(z) =
Centroid(B) for all z in the subinterval [x — a, x + b]. Else F(z) = 0. This holds for
both centroid and mode defuzzification. Consider first centroid defuzzification.
Then y = F(x) = Centroid(B') = Centroid(m,(z) B) = Centroid(B) on the
subinterval since

[ maGyma(y) y dy

F(z) ==+ 3)
j m ,(2) my(y) dy
Y
ma@ [ my)y dy
= L (4)
mA(Z)J mpg(y) dy
) 4
= Centroid(B) (5)

for all z such that m4(z) > 0.

For mode defuzzification y = F(z) if mg(y) = sup mg(w) where the supre-
mum ranges over all w in the output space Y. But sup m,(z) mg(y) = m,(2)
sup mp(w). Mode defuzzification will give the centroid for symmetric B and
correlation-min inference but in general there will be a symmetric locus of mode
points on each side of the centroid.

To minimize the local mean-squared error of the approximation the centroid
of B should lie at the centroid c¢(x) of the function f on the subinterval:

l x+b
W) =— f SOy dw. (6)

The centroid minimizes the mean-squared error of approximation’ on the subin-
terval since it equals the conditional expectation evaluated at the subinterval:

c(x) = E[f|[x — a,x + b]] (7)
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for f restricted to the subinterval. [Eq. (7) also follows 7 by differentiating (2)
with respect to ¢ if F = ¢ on the subinterval.] Then we can view' the fuzzy set
B as a random set or locus of two-point conditional probability densities. Then
my(y) = p(y € B|Y = y) and mpc(y) = p(y & B|Y = y).

The mean value theorem (MVT) of calculus® and (6) imply that c(x) = f(z)
for at least one point z in the subinterval. The MVT states that if fis continuous
on an interval [d, e] and differentiable on its interior (d, e), then there is at
least one point z in (d, e) such that

o f(e) — f(d)
flg=—2—as (8)

where ' = ;i_jZ" The integral in (6) gives c(x) (@ + b) = F(x + b) — F(x — a).

So ¢(x) = F'(z) = f(z) for some z in the subinterval since a + b = (x + b) —
(x — a).

The centroid line ¢(x) cuts f'in just one place if f* > 0 or f' < 0 and thus
if £ is monotone on the subinterval. Else it cuts f for two or more distinct
arguments e and d in the interval. So f(e) = f(d) since the centroid line has
zero slope, and (8) becomes Rolle’s theorem and gives f'(z) = 0 for some z in
(e, d) and thus for some z in (x — a, x + b). So f has an extremum in the
subinterval and m ,(z) > 0. We can always widen B and keep the same centroid
value B to make the rule patch A X B cover the extremum value f(z) of the
graph of the function. This use of the MVT is the key idea in the proof in the
next section.

III. OPTIMAL FUNCTION APPROXIMATION WITH
LONE FUZZY RULES: PATCH THE BUMPS

Where do we put the lone rule patch A X B to minimize the squared error
E in (1)? We have to pick the best subinterval I(x) = [x — a, x + b] of [u, v].
We slide the base of fuzzy set A across the interval [«, v] and bring it to rest
at the argument X that minimizes E.

Equations (5)-(7) imply that F(z) = c(x) for z in I(x) and F(z) = 0 for z
outside of I(x). So each x in [u, v] defines a unique fuzzy system F,. Each F_
uses the centroid or local mean-squared optimum. We need to find a mean-
squared optimum F; in the indexed family of fuzzy systems {F }.cy.

The total squared-error in (1) now depends on x and we write it as the
function E(x). It depends on each one-rule fuzzy system F.. Each F, is a
rectangular pulse and that gives E(x) as a sum of three integrals that depend
on x:

EG) = [ (f00) = F,(0)) dw ©)

x—a x+b v
= [ F2(w) dw + f (fw) = c(x))? dw + f fw)dw  (10)
" § X+b

X—a



OPTIMAL FUZZY RULES 253

The optimal fuzzy system F; zeroes the derivative of E:
p= D) (11)
dx

=(fix—a)— fx+ b))+ d%fb (f(w) = c(x))* dw (12)

= (f2%x —a) = flx+ D)+ (fx+ b) — e(x)* = (F(x — a)—é(x))* 13

x+b
-2 j - (fon) - c(x))%dw

by Leibniz’s rule for differentiating under an integral sign
=(fAx—a) = fAx + b)) + (f(x + b) — c(x)?* = (fx — @) — c(x))* (14)

since the integral in (13) evaluates to zero:

x+b x+b x+b

f (0 = ) %dw = Z—§ f Fow)dw — c(x) % j v (15)

a - i F(x+ b)— F(x —a)

=(flx+b) - flx a))[ —ry ]
(16)
_paflet b)— flx—a)

c(x) T (a + b)

=(f(x +b) — f(x —a)) (c(x) = c(x)) = 0. (17
Then '

o= dfjf’ = 2c() Lf(x + b) — f(x — a)] (18)

In general the case ¢(X) = 0 also leads to f(X¥ + b) — f(¥ — a) = 0. (Mono-
tone functions f have only endpoint extrema on [«, v] and the case ¢(x) = 0 =
(f(x + b) = f(x — a) gives an inflection point.)

So the error is minimized when f(x + b) = f(x — a). Then the mean value
theorem implies that there is some z in (x — a, x + b) such that f'(z) = 0. So
the extremal value z belongs to fuzzy set A to some nonzero degree. Then the
rule patch A X B covers the extremum point (z, f(z)) for a wide enough fuzzy
set B: m,,p(z, f(2)) > 0. This optimal rule patches the bump (z, f(z)).

IV. OPTIMAL ADDITIVE FUZZY SYSTEMS WITH MANY RULES

An additive fuzzy system can have m rules (A, B,),. . . ,(A,, B,,). The
ith if-part fuzzy set A; covers a subinterval [x; — a;, x; + b;]. The ith then-part
fuzzy set B, has centroid c¢; that equals the local centroid of f(x) over [x; — a;,
x; + b;]. The vector x = (x;, . . . , x,,) picks a fuzzy system F,. This gives
an approximation error E(x) in (9).



254 KOSKO

In general the subintervals overlap. Then each input z “‘fires”” more than
one rule or belongs to more than one set A; to nonzero degree. The disjoint
case gives lone rules and the analysis proceeds as above for a lone rule.

The number of rules m can differ from the number of extrema. In practice
m is larger. Rule patches can interpolate between the flat extremal rule patches.
We show that the fuzzy set A; should “‘peak’ above x;. The optimal fuzzy
system should equal the centroid of B; when the input is x,. Fy(x;) = ¢;. In
practice this means contiguous fuzzy sets should not overlap too much.

An additive fuzzy system® F, takes the centroid of the sum of scaled then-
part fuzzy sets:

F(z) = Centroid(m, (z)B, +. . . + my (2)B,) (19)

2 Volume (m, (2)B;) Centroid(B)) 2 Vim, (2)c;
B L |

(20)

m

,21 Volume (m, (z)B;) 121 Vim, (2)

where the area or volume V; = f mg, (y) dy. So (20) reduces to (5) if z belongs
only to A, to nonzero degree

To ﬁnd the % that minimizes E(x) we take the gradient of E with respect
to x and set it equal to the null vector and solve. Each integrand now involves
F(w) instead of just the constant F(x;) as in (10) since the if-part sets overlap:

3B (s oo
0= ax; = ax ), (f(w) — F(w))* dw
(21)
+ L[ ) = Fony? = f () = FOo) d
axi Xi—a; , \'-r
xtb; F
=2 (fo0) - Fop £ (“’)d @)
Then % = (0 when f = F or when
= aF _ dmA, m m
So the approximation error is minimized when
dm,
e =0 (24)

or when
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m

2 V,-mAjcj
Py | — (25)

i m

> Vim,
j=1 g

Then (20) and (25) imply that F¢(¥,) = c;. A neural or other adaptive system
may move the peak of A; away from x; as long as (25) still holds.

These optimality results let us apply the lone-rule result for minimizing an

error function with isolated extrema. First we try to find the bumps f'(z;) = 0.
Then we center if-part sets A; at these points: &; = % Then we add more if-
part sets A; that both maintain (24) and (25) and that patch the bumps of the
new residual error function.
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