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Type-2 Fuzzy Logic Systems
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Abstract—We introduce a type-2 fuzzy logic system (FLS),
which can handle rule uncertainties. The implementation of this
type-2 FLS involves the operations of fuzzification, inference,
and output processing. We focus on “output processing,” which
consists of type reduction and defuzzification. Type-reduction
methods are extended versions of type-1 defuzzification methods.
Type reduction captures more information about rule uncertain-
ties than does the defuzzified value (a crisp number), however,
it is computationally intensive, except for interval type-2 fuzzy
sets for which we provide a simple type-reduction computation
procedure. We also apply a type-2 FLS to time-varying channel
equalization and demonstrate that it provides better performance
than a type-1 FLS and nearest neighbor classifier.

Index Terms—Channel equalization, fuzzy logic systems, inter-
val sets, type reduction, type-2 fuzzy sets, uncertainties.

I. INTRODUCTION

I N this paper, we introduce a new class of fuzzy logic
systems—type-2 fuzzy logic systems—in which the an-

tecedent or consequent membership functions are type-2 fuzzy
sets. The concept of atype-2 fuzzy setwas introduced by Zadeh
[44] as an extension of the concept of an ordinary fuzzy set
(henceforth called atype-1 fuzzy set). Such sets are fuzzy sets
whose membership grades themselves are type-1 fuzzy sets;
they are very useful in circumstances where it is difficult to
determine an exact membership function for a fuzzy set; hence,
they are useful for incorporating uncertainties.

Quite often, the knowledge used to construct rules in a
fuzzy logic system (FLS) is uncertain. This uncertainty leads to
rules having uncertain antecedents and/or consequents, which
in turn translates into uncertain antecedent and/or consequent
membership functions. For example:

1) A fuzzy logic modulation classifier described in [41]
centers type-1 Gaussian membership functions at con-
stellation points on the in-phase/quadrature plane. In
practice, the constellation points drift. This is analogous
to the situation of a Gaussian membership function
(MF) with an uncertain mean. A type-2 formulation can
capture this drift.

2) Previous applications of FL to forecasting do not ac-
count for noise in training data. In forecasting, since
antecedents and consequents are the same variable, the
uncertainty during training exists on both the antecedents
and consequents. If we have information about the
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level of uncertainty, it can be used when we model
antecedents and consequents as type-2 sets.

3) When rules are collected by surveying experts, if we first
query the experts about the locations and spreads of the
fuzzy sets associated with antecedent and consequent
terms, it is very likely that we will get different answers
from each expert. This leads to statistical uncertainties
about locations and spreads of antecedent and conse-
quent fuzzy sets. Such uncertainties can be incorporated
into the descriptions of these sets using type-2 member-
ship functions. In addition, experts often give different
answers to the same rule-question; this results in rules
that have the same antecedents but different consequents.
In such a case, it is also possible to represent the output
of the FLS built from these rules as a fuzzy set rather
than a crisp number. This can also be achieved within
the type-2 framework.

Recall that our accepted probabilistic modeling of random
uncertainty focuses to a large extent on methods that useat
least the first two moments of a probability density function
(pdf)—the mean and the variance. To just use the first-
order moments would not be very useful, because random
uncertainty requires an understanding of dispersion about the
mean and this information is provided by the variance. In fuzzy
logic (FL), we may view computing the defuzzified output of a
type-1 FLS as analogous to computing the mean of a pdf. Just
as variance provides a measure of dispersion about the mean
and is almost always used to capture more about probabilistic
uncertainty in practical statistical-based designs, FLS’s also
need some measure of dispersion to capture more about rule
uncertainties than just a single number. Type-2 FL provides
this measure of dispersion and seems to be as fundamental to
the design of systems that include linguistic and/or numerical
uncertainties that translate into rule uncertainties as variance
is to the mean. Just as one can work with higher than second-
order moments in probabilistic modeling, we can also use
higher than type-2 sets in fuzzy modeling; but, as we go on to
higher types, the complexity of the system increases rapidly.
So, in this work we deal just with type-2 sets.

Type-2 fuzzy sets allow us to handle linguistic uncertainties,
as typified by the adage “words can mean different things to
different people [27].” A fuzzy relation of higher type (e.g.,
type-2) has been regarded as one way to increase the fuzzi-
ness of a relation and, according to Hisdal [11], “increased
fuzziness in a description means increased ability to handle
inexact information in a logically correct manner.” According
to John [12], “Type-2 fuzzy sets allow for linguistic grades of
membership, thus assisting in knowledge representation and
they also offer improvement on inferencing with type-1 sets.”
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Fig. 1. The structure of a type-2 FLS. In order to emphasize the importance of the type-reduced set we have shown two outputs for the type-2 FLS,
the type-reduced set and the crisp defuzzified value.

Mizumoto and Tanaka [29] studied the set theoretic op-
erations of type-2 sets, properties of membership grades of
such sets and, examined the operations of algebraic product
and algebraic sum for them [30]. More details about algebraic
structure of type-2 sets are given in [32]. Dubois and Prade
[6]–[8] discussed fuzzy valued logic and give a formula for the
composition of type-2 relations as an extension of the type-1
sup-star composition, but this formula is only for minimum
norm. In this paper, we will give a general formula for the
extended sup-star composition of type-2 relations.

To date, type-2 sets and FLS’s have been used in decision
making [1], [43] solving fuzzy relation equations [38], survey
processing [17], [16], time-series forecasting [18], [28], func-
tion approximation [16], control of mobile robots [42], and
preprocessing of data [13]. We believe that other promising
areas in which type-2 FLS’s may be advantageous over
type-1 FLS’s include mobile communications, communication
networks, pattern recognition, and robust control, because
frequently the information to be processed in these areas is
uncertain. For example, in mobile communications, the fading
channel coefficients are uncertain during adjacent training
periods. Existing algorithms treat them as certain. In com-
munication networks, Tanaka and Hosaka [37] observed the
difficulties of obtaining appropriate MF’s for efficient network
control, which suggests that type-2 MF’s will be a better
way to represent the uncertainty in a network. Additionally,
present communication networks are dynamic and there is
great deal of uncertainty associated with the input traffic and
other environment parameters [10], which suggests that type-2
FLS’s will also be useful for them. In this paper, we apply a
type-2 FLS to time-varying nonlinear channel equalization.

In the sequel, we use the following notation and terminol-
ogy: is a type-1 fuzzy set and the membership grade (a
synonym for the degree of membership) of in is

, which is a crisp number in ; a type-2 fuzzy set
in is and the membership grade of in is

, which is a type-1 fuzzy set in ; the elements of
the domain of are calledprimary membershipsof in

and the memberships of the primary memberships in
are calledsecondary membershipsof in ; the latter defines
the possibilities for the primary membership, e.g., the type-2
fuzzy set has fuzzy grades (fuzzy sets in ),

that can be represented for each as

the primary membership having secondary membership equal
to one is called theprincipal MF; when the secondary MF’s of
a type-2 fuzzy set are type-1 Gaussian MF’s we call the type-2
fuzzy set aGaussian type-2 set(regardless of the shape of the
primary MF); when the secondary MF’s are type-1 interval
sets we call the type-2 set aninterval type-2 set; denotes
meetoperation; and denotesjoin operation. Meet and join
are defined and explained in great detail in [16], [19].

Section II presents a comparison of type-1 and type-2 FLSs;
Section III describes the inference in a type-2 FLS; type
reduction is discussed in detail in Section IV; defuzzification
is described in Section V; a simple type-reduction procedure
for interval type-2 FLS’s is described in Section VI; an appli-
cation of type-2 FLS’s to time-varying channel equalization
is presented in Section VII and, conclusions and future work
are given in Section VIII.

II. TYPE-2 FLSS: OVERVIEW

Fig. 1 shows the structure of a type-2 FLS. It is very similar
to the structure of a type-1 FLS [26]. For a type-1 FLS,
the output processingblock only contains the defuzzifier. We
assume that the reader is familiar with type-1 FLS’s, so that
here we focus only on the similarities and differences between
the two FLS’s.

The fuzzifier maps the crisp input into a fuzzy set. This
fuzzy set can, in general, be a type-2 set, however, in this
paper, we consider onlysingletonfuzzification, for which the
input fuzzy set has only a single point of nonzero membership.

In the type-1 case, we generally have “IF-THEN” rules,
where the th rule has the form “ : IF is and is

and and is , THEN is ,” where: s are
inputs; s are antecedent sets ( ); is the output;
and s are consequent sets. The distinction between type-1
and type-2 is associated with the nature of the membership
functions, which is not important while forming rules; hence,
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the structure of the rules remains exactly the same in the type-
2 case, the only difference being that now some or all of the
sets involved are of type-2; so, theth rule in a type-2 FLS has
the form “ : IF is and is and and is ,
THEN is .” It is not necessary that all the antecedents and
the consequent be type-2 fuzzy sets. As long as one antecedent
or the consequent set is type-2, we will have a type-2 FLS.

In a type-1 FLS, the inference engine combines rules and
gives a mapping from input type-1 fuzzy sets to output type-
1 fuzzy sets. Multiple antecedents in rules are connected
by the -norm (corresponding to intersection of sets). The
membership grades in the input sets are combined with those in
the output sets using thesup-starcomposition. Multiple rules
may be combined using the-conorm operation (corresponding
to union of sets) or during defuzzification by weighted summa-
tion. In the type-2 case, the inference process is very similar.
The inference engine combines rules and gives a mapping from
input type-2 fuzzy sets to output type-2 fuzzy sets. To do this
one needs to find unions and intersections of type-2 sets, as
well as compositions of type-2 relations.

In a type-1 FLS, the defuzzifier produces a crisp output
from the fuzzy set that is the output of the inference engine,
i.e., a type-0 (crisp) output is obtained from a type-1 set. In
the type-2 case, the output of the inference engine is a type-2
set; so we use “extended versions” (using Zadeh’s extension
principle [8], [16], [44]) of type-1 defuzzification methods.
This extended defuzzification gives a type-1 fuzzy set. Since
this operation takes us from the type-2 output sets of the FLS
to a type-1 set, we call this operation “type reduction” and the
type-reduced set so obtained a “type-reduced set.”

To obtain a crisp output from a type-2 FLS, we can defuzzify
the type-reduced set. The most natural way of doing this
seems to be by finding the centroid of the type-reduced
set, however, there exist other possibilities like choosing the
highest membership point in the type-reduced set.

From our discussions so far, we see that in order to develop
a type-2 FLS, one needs to be able to: 1) perform the set
theoretic operations ofunion, intersection, and complement
on type-2 sets [19]; 2) know properties (e.g.,commutativity,
associativity, identity laws) of membership grades of type-2
sets [19]; 3) deal with type-2 fuzzy relations and their compo-
sitions [19]; and 4) perform type reduction and defuzzification
to obtain a set-valued or crisp output from the FLS [16], [15].

III. I NFERENCE IN A TYPE-2 FLS

Consider a type-2 FLS having inputs, ,
, and one output . Let us suppose that

it has rules where theth rule has the form

IF is and is and and

is THEN is (1)

This rule represents a type-2 fuzzy relation between the input
space and the output space of
the FLS. We denote the membership function of this type-
2 relation as , where

denotes the Cartesian product of , , and
.

When an input is applied, the composition of the fuzzy
set to which belongs and the rule is found by using
the extended sup-star composition [19], [14], [16]

(2)

We use singleton fuzzification, hence, the fuzzy setis such
that it has a membership gradecorresponding to and
has zero membership grades for all other inputs; therefore, (2)
reduces to

(3)

We denote as , the output set
corresponding to theth rule. The right-hand side (RHS) of (3)
is computed using the implication membership function. Since
engineering applications generally use product or minimum
implication (see [26] for more details), corresponding to the
meetoperation with product or minimum-norm, (3) can be
rewritten as

(4)

The membership function for a Cartesian product of sets
is computed by finding themeet between the membership
functions of individual sets [19], [16]; hence, (4) can be
rewritten as

(5)

where we are using the same operation for the-norm and
the inference product or minimum and have used the fact
that type-2 membership functions commute for minimum or
product -norms [19], [16].

Example 3.1:Fig. 2 shows an example of product and
minimum inference for an arbitrary single-input single-output
type-2 FLS using Gaussian type-2 sets. Uncertainty in the
primary membership grades of a type-2 MF consists of a dark
region that we call thefootprint of uncertaintyof a type-2
MF. The footprint of uncertainty represents the union of all
primary memberships. Darker areas indicate higher secondary
memberships. Theprincipal membership function, i.e., the set
of primary memberships having secondary membership equal
to one, is indicated with a thick line. The product inference
function (5) in Fig. 2(c) was obtained by finding themeet
[16], [19] under product -norm of the membership grade
of with the membership grade of every point of
the consequent function in Fig. 2(b). Similarly, the minimum
inference function (5) in Fig. 2(d) was obtained by finding the
meetunder minimum -norm [19], [16] of the membership
grade of with the membership grade of every point
of the consequent function. Observe that in both cases, the
result of the inference is a type-2 set [Fig. 2(c) and (d)]. We
can interpret the banded behavior about the output’s principal
membership function as an indication of combined antecedent
and consequent uncertainties.
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(a) (b)

(c) (d)

Fig. 2. Illustrations of product and minimum inference in the type-2 case. (a) Gaussian type-2 antecedent set for a single input system. The membership of
a certain inputx = 4 in the principal membership function is also shown, equal to�. (b) Consequent set corresponding to the antecedent set shown in (a).
(c) Scaled consequent set forx = 4 using product inference. Observe that the secondary membership functions of the consequent set also change depending
upon the standard deviation of the membership grade ofx. (d) Clipped consequent set forx = 4 using minimum inference.

IV. TYPE REDUCTION

In a type-1 FLS the output corresponding to each fired rule
is a type-1 set in the output space. The defuzzifier combines
the output sets corresponding to all the fired rules in some way
to obtain a single output set and then finds a crisp number that
is representative of this combined output set, e.g., the centroid
defuzzifier finds the union of all the output sets and uses the
centroid of the union as the crisp output.In all the defuzzifiers
of interest to us, the crisp number is obtained as the centroid
of some combined output set.

For type-1 defuzzification methods, we assume that the FLS
is type-1 (i.e., all the antecedent and consequent sets in (1) are
assumed type-1); and for type-reduction methods, we assume
that the FLS is type-2 (i.e., some or all of the antecedent and
consequent sets in (1) are assumed type-2). In each case, the
antecedent and consequent membership grades are assumed to
have a continuous domain and integrals indicate logical union.

The output set corresponding to each rule in (1) of the
type-2 FLS is a type-2 set (5). The type-reducer combines all
these output sets in some way (just like a type-1 defuzzifier
combines the type-1 rule output sets) and then performs a
centroid calculation on this type-2 set, which leads to a type-1
set that we call the “type-reduced” set.

The centroid of a type-1 set, whose domain is discretized
into points is given as

(6)

Similarly, the centroid of a type-2 set , whose domain is
discretized into points, can be defined using the extension
principle (see [16] and [20] for more details) as follows. We
let , so that

(7)

where . Equation (7) can be described in words as
follows. Each point of has a type-1 fuzzy membership
grade associated with it. To find the centroid, we
consider every possible combination such that

. For every such combination, we perform the type-1
centroid calculation in (6) by using in place of ; and
to each point in the centroid we assign a membership grade
equal to the -norm of the membership grades of thein the

. If more than one combination of gives us the same point
in the centroid, we keep the one with the largest membership
grade. If we let , then (7) can also
be written as

(8)

where are such that
and indicates the chosen-norm.

Every combination can be thought to form
the membership function of some type-1 set, which has
the same domain as . We call an embedded type-1 set
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Fig. 3. A type-2 FLS can be thought of as a collection of a large number of type-1 FLS’s. The type-reduced setY is a collection of the outputs of all these
embedded type-1 FLS’s. When the antecedent and consequent membership grades in the type-2 FLS have a continuous domain, the number of embedded
type-1 FLS’s is uncountable. This figure is drawn assuming that the membership grades have discrete (or discretized) domains. The memberships in the
type-reduced set represent the level of uncertainty associated with each embedded type-1 FLS. A crisp output can be obtained by aggregating the outputs
of all the embedded type-1 FLS’s by, for example, finding the centroid of the type-reduced set (see Section V).

in . The centroid is a type-1 set whose elements are
the centroids of all the embedded type-1 sets in. The
membership of an embedded set centroid in is calculated
as the -norm of the secondary memberships corresponding to

that make up that embedded set.
Observe that if the domain of and/or is

continuous, the domain of is also continuous. The number
of all the embedded type-1 sets inin this case is uncountable;
therefore, the domains of and each have
to be discretized for the calculation of (as explained in
Appendix A, we always use minimum-norm for the centroid
calculation of a type-2 set having a continuous domain even
though we use product-norm everywhere else). Observe from
(7) that if the domain of each is discretized into points,
the number of possible combinations is ,
which can be very large even for small and . If, however,
the membership functions of ’s have a regular structure
(e.g., uniform (interval type-1 sets), Gaussian, triangular), we
can obtain the exact or approximate centroid without having
to do all the calculations [16], [20]. For interval type-1 sets,
the actual centroid can be obtained relatively easily without
performing computations for all the combinations by using
the computational procedure described in Section VI.

The type-reduced set of a type-2 FLS is the centroid of
a type-2 output set for the FLS; consequently, each element
of the type-reduced set is the centroid of some type-1 set
embedded in the output set of the type-2 FLS. Each of these
embedded sets can be thought of as an output set of some type-
1 FLS and, correspondingly, the type-2 FLS can be thought
of as a collection of many different type-1 FLS’s. Each of
these type-1 FLS’s isembeddedin the type-2 FLS, sothe
type-reduced set is a collection of the outputs of all the type-1
FLS’s embedded in the type-2 FLS(see Fig. 3) and it lets us
represent the output of the type-2 FLS as a fuzzy set rather
than as a crisp number.

It can be shown from (5) that if all the antecedent and
consequent membership grades of the type-2 FLS are normal
and have only one point having unity secondary membership,
then the output set membership grade of every will
also be normal and will have only one point having unity

secondary membership. Consequently, the type-reduced set
will also be normal and will have only one point having unity
membership. This point will correspond to the centroid of the
principal membership function of the type-2 output set. If all
the type-2 uncertainties in this FLS were to collapse to type-
1 uncertainties, i.e., if all the type-2 membership functions
in the FLS were to collapse to their principal membership
functions, the antecedent and consequent membership grades
of each point would collapse to their unity membership points.
This would cause the type-reduced set to collapse to its unity
height point. This shows that all our results are valid when
all the type-2 uncertainties collapse to type-1 uncertainties, in
which case our type-2 FLS collapses to a type-1 FLS.

If we think of a type-2 FLS as a “perturbed” version of a
type-1 FLS, due to uncertainties in the membership functions,
the type-reduced set of the type-2 FLS can then be thought
of as representing the uncertainty in the crisp output due
to uncertainties in the membership functions. Some measure
of the spread of the type-reduced set may then be taken
to indicate the possible variation in the crisp output due
to variations in the membership function parameters. This
is analogous to using confidence intervals in a stochastic-
uncertainty situation; however, what we have developed is for
linguistic uncertainties.

In the following subsections, we present details for centroid,
height, and center-of-sets type reduction. Details for modified
height and center-of-sums type reduction can be found in [16].

A. Centroid Type Reduction

The centroid defuzzifier [21] combines the output type-1
sets using a-conorm and then finds the centroid of this set.
If we denote the composite output fuzzy set as, the centroid
defuzzifier is given as

(9)

where the output set is discretized into points.
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The centroid type-reducer combines all the output type-2
sets by finding their union. The membership grade of
is given as

(10)

where is as defined in (5). The centroid type-reducer
then calculates the centroid of. The expression for the
centroid type-reduced set is an extended version of (9), i.e.,

(11)

where and . Let

(12)

(13)

The computation of involves computing the tuple
many times. Suppose, for example, is computed times;
then we can view the computation of as the computation
of the tuples , , , , . Important
information from type reduction is the domain of the’s,
i.e., and , where and ,

, because it is the bound that we
associate with a linguistic confidence interval. Only storing
and instead of all reduces the storage requirements
a lot. How to efficiently use all and to perform
defuzzification is discussed in Section V.

The sequence of computations needed to obtain is
as follows.

1) Compute the combined output set using (10). This is
possible, because we can first compute

for all using (5). Theorem 1 (or
Theorem 2) in [19] is used to compute (10).

2) Discretize the output spaceinto points, , , .
3) Discretize the domain of each

into a suitable number of points.
4) Enumerate all the embedded sets. For example, if each

is discretized into points, there will be
embedded sets.

5) Compute the centroid type-reduced set using (11), i.e.,
compute the tuples ,
where and are given in (12) and (13), respectively.
We must use the minimum-norm here, as explained in
Appendix A.

In step 5, the centroid and membership computation has to
be repeated times and so, in general, will involve an
enormous amount of computation. Computational complexity
and ways to reduce it are discussed in Section IV-E for all
three of the type-reduction methods described herein.

B. Height Type Reduction

The height defuzzifier [5] replaces each rule output set
by a singleton at the point having maximum membership in
that output set and then calculates the centroid of the type-
1 set comprised of these singletons. The output of a height
defuzzifier is given as

(14)

where is the point having maximum membership in theth
output set (if there is more than one such point, their average
can be taken as ); and its membership grade in theth output
set is given as [26]

(15)

where and indicate the chosen-norm (assuming the
inference uses the same operation as the-norm product
or minimum).

The height type reducer replaces each output set by a type-2
singleton, i.e., by a fuzzy set whose domain consists of a single
point, the membership of which is a type-1 set in . The
th output set is replaced by a singleton situated at, where

can be chosen to be the point having the highest membership
in the principal membership function of output set. If is
such that a principal membership function cannot be defined,
one may choose as the point having the highest primary
membership with a secondary membership equal to one or
as a point satisfying some similar criterion. The membership
grade of in the type-2 case is obtained from (5) as follows:

(16)

If we let , the expression for the type-reduced
set is obtained as an extension of (14) as

(17)

where for . In this case,
and is still given by (13).

The sequence of computations needed to obtain is
as follows.

1) Choose for each output set and
compute in (16).
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2) Discretize the domain of each into a suitable
number of points. The discretization is carried out in
a manner similar to that for centroid type reduction,
the only difference is that the number of points on the
horizontal axis is now instead of .

3) Enumerate all the possible combinations
such that . For example, if is
discretized into points, there will be
combinations.

4) Compute the height type-reduced set using (17). Since
the domain of the combined output set is discrete, we
can now use product or minimum-norm in (17), as
explained in Appendix A.

In step 4, the weighted sum and membership computations
in (17) have to be repeated times; but, generally,

(where is the number of discrete
points in case of centroid type reduction), so computing

the height type-reduced set involves much fewer computations
than computing the centroid type-reduced set. Our discussion
about storing and in Section IV-A applies here as well.

C. Center-of-Sets Type Reduction

For reasons that will be explained in Section IV-D, we
introduce a new center-of-sets defuzzification method in which
we replace each rule consequent set by a singleton situated
at its centroid and then find the centroid of the type-1 set
comprised of these singletons. The expression for the output
is given as

(18)

where indicates the chosen-norm and is the centroid
of the th consequent set. Observe that if each consequent set
is symmetric, normal and convex, and
for ; hence, in this (special but important) case,

.
The center-of-sets type reducer replaces each consequent set

by its centroid (which itself is a type-1 set if the consequent
set is type-2) and finds a weighted average of these centroids,
where the weight associated with theth centroid is the degree
of firing corresponding to theth rule, namely .
The expression for the type-reduced set is the following
extension of (18):

(19)

where and indicate the chosen-norm; the
centroid of the th consequent set and ,

the degree of firing associated with theth consequent set for
. In this case, and

.
The sequence of computations needed to obtain is

as follows.

1) Discretize the output space into a suitable number of
points and compute the centroid of each consequent
set on the discretized output space using (7). This is
possible because we know
for all . These consequent centroid sets can be
computed ahead of time and stored for future use.

2) Compute the degree of firing asso-
ciated with the th consequent set using the results in
[16], [19] .

3) Discretize the domain of each into a suitable
number of points, say .

4) Discretize the domain of each into a suitable number
of points, say .

5) Enumerate all the possible combinations
such that and

. The total number of combinations will be
.

6) Compute the type-reduced set using (19).

In step 6, the weighted sum and-norm operations in
(19) have to be repeated times. Observe, from
Sections IV-A and IV-B, that this number is, in general, larger
than that required for a height type reducer, but is less than
that required for a centroid type reducer. Our discussion about

and in Section IV-A applies here as well.

D. Comparison of Height and Center-of-Sets Type Reducers

In a type-1 FLS, height defuzzification is computationally
inexpensive and gives satisfactory results (see, for example,
[5] and [39]). In a type-2 FLS, however, height type reduction
may not perform so well. Center-of-sets type reduction does a
better job. Here we explain why this is so.

For expressions for the height and center-of-sets type-
reduced sets, see (17) and (19), respectively. When only one
rule is fired corresponding to , the height type-reduced
set is (assuming maximum-conorm and normal membership
grades)

(20)

Equation (20) shows that when a single rule is fired, the height
type-reduced set collapses to a single point! This is certainly
undesirable because it means that when the input is such that
only one rule is fired, no uncertainty is associated with the
output, which is generally not true.

We invented the center-of-sets type-reducer to avoid this
problem. It is easy to see that even when only a single rule is
fired, is a type-1 fuzzy set that equals the centroid of
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TABLE I
COMPUTATION COMPLEXITY FOR EACH PARALLEL PROCESSOR OFDIFFERENT TYPE REDUCERS. THE NUMBER OF FIRED RULES IS M .

THE NUMBER OF ANTECEDENTS IS p. THE FIRED PRIMARY MEMBERSHIP DEGREE�~F (x) (i = 1; � � � ;M; j = 1; � � � ; p) IS

SAMPLED TO Nij POINTS. THE CONSEQUENT MEMBERSHIP DEGREE�~B(yk) (k = 1; � � � ; N) IS SAMPLED TO Mk POINTS.
THE CENTER OF THE iTH CONSEQUENT SET CONTAINS Ki POINTS. THE TOTAL OUTPUT DOMAIN IS SAMPLED TO N POINTS

the type-2 output set corresponding to the fired rule, i.e.,

(21)

where we have again assumed that the degree of firing
associated with theth consequent is normal. (If each
is normal, will also be normal (see [16] and
[19] for a detailed discussion of themeetoperation.)

Finally, note that in order to measure the effects ofboth
antecedent and consequent measurements when only one rule
is fired, one needs to use centroid type reduction.

E. Computational Complexity

We have introduced three type-reduction methods. Unfor-
tunately, they have high-computation complexity. Fortunately,
however, a type-2 FLS can be thought of as a collection of a
large number of type-1 FLS’s. As described in the beginning
of Section IV, the type-reduced set is a collection of the
outputs of all these embedded type-1 FLS’s, as shown in
Fig. 3. The operations for each type-1 FLS can be processed
in parallel; hence, the computational complexity for each
type-1 FLS is the same as its corresponding defuzzification
operation. The number of parallel processors depends on
how many type-1 FLS’s are needed for a specific type-
reduction method and this depends on the sampling rates in the
primary membership and output domains. The computations
for in (12) show the computational complexity in terms of
multiplications, additions, and divisions; and the computations
for in (13) give the number of operations for-norm. The
number of parallel processors equals the number of tuples

. In Table I, we summarize the computation complexity
for the three type reducers described above. For example, in
centroid type reduction, there are -norm operations,

multiplications, additions and one division,
and parallel processors are required. In actual
computation, not all rules are fired, so the computation
will be simplified a lot.

V. DEFUZZIFICATION

We defuzzifythe type-reduced set to get a crisp output from
the type-2 FLS. The most natural way of doing this seems
to be by finding the centroid of the type-reduced set. Finding
the centroid is equivalent to finding a weighted average of
the outputs of all the type-1 FLS’s embedded in the type-2
FLS, where the weights correspond to the memberships in the
type-reduced set (see Fig. 3). If the type-reduced setfor an
input is discrete and consists of points, the expression
for its centroid is

(22)

If the type-reduced set has only one point having unity
membership and if we wish to reduce computational complex-
ity, we may think that a more straightforward choice for the
defuzzified value is the unity membership point in the type-
reduced set. Choosing the unity membership point, however,
means that we are doing away with all the type-2 analysis and
are choosing the output corresponding to only the principal
membership function type-1 FLS that is embedded in the type-
2 FLS. Since it conveys no information about membership
function uncertainties, it does not make sense to use the unity
height point as the crisp output; unless, of course, the type-
reduced set is convex and symmetric in which case the unity
height point is the same as the centroid. In general, for arbitrary
membership functions, the type-reduced set is not symmetrical
and the centroid location is different from the location of the
unity height point.

Since parallel processing is possible for type reduction,
the output of each processor can be aggregated using the
centroid defuzzifier in (22) to obtain a crisp value; therefore,
data storage will not be a problem. Currently, however, most
researchers still depend on software for simulations and cannot
make use of parallel processing. We can, however, use a
recursive method to vastly reduce the memory needed for
storing the data needed to compute the defuzzified output.
Examining (22), we compute

(23)

(24)

for . After the th iteration, the defuzzified
output is . By this means, we just need
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to store and in each iteration. Note that in (23)
and (24) is the same asin (13).

VI. TYPE REDUCTION FOR INTERVAL TYPE-2 FLS

A general type-2 FLS is very complicated because of type
reduction. The most general form to compute the type-reduced
set is given by

(25)

where and both indicate the-norm used product or
minimum, , and for .

Things simplify a lot when the secondary MF’s are interval
sets in which case we call the type-2 FLS aninterval type-2
FLS. In this section, we focus on type reduction for interval
type-2 FLS’s. We present a computational procedure that lets
us compute the type-reduced set for an interval type-2 FLS
without actually having to consider all the combinations of
the ’s and ’s.

For an interval type-2 FLS, each and
in (25) is an interval type-1 set; then using the fact that

, (25) can be rewritten as

(26)

so, in this case, type reduction means only computingin
(12) since in (13) is unity.

Since all the memberships in an interval type-1 set are crisp,
in the sequel, we represent an interval set just by its domain
interval, which can be represented by its left and right end
points as or by its center and spread as ,
where and .

In a general interval type-2 FLS, each in (26) is an
interval type-1 set having center and spread
and each is also an interval type-1 set with center and
spread , (we assume that so that
for . is also an interval type-1 set; therefore,
we only need to compute its two endpoints and . As
shown in [16] and [20], only depends on and on one
of the two endpoints of and only depends on and
on one of the two endpoints of . Next, we state an iterative
procedure to compute and for an interval type-2 FLS.
The derivation of this procedure is given in [16] and [20].

For convenience, we let

(27)

where and for
and . The maximum of , , is obtained as
follows. We set and, without loss
of generality, assume that the’s are arranged in ascending
order, i.e., . Then

1) set for and compute
using (27);

2) find such that ;
3) set for and for

and compute
using (27);

4) check if ; if yes, stop. is the maximum value
of ; if no, go to step 5;

5) set equal to ; go to step 2.

It can easily be shown thatthis iterative procedure converges
in at most iterations[16], [20], where one iteration consists
of one pass through steps 2) to 5).

The minimum of can be obtained by using a
procedure similar to the one just described. Only two changes
need to be made: 1) we must set for
and 2) in Step 3) we must set for and

for to compute the weighted average
.

This computational procedure can be used to compute
the type-reduced set for all of the type reducers, with a
vast reduction in computational complexity. and can
be computed in parallel and regardless of the kind of type
reduction used, only two processors are needed. This is quite
different from the general results in Table I.

Next, we explain exactly how to apply this four-step proce-
dure to centroid, height, and center-of-sets type reduction.

1) Centroid type reduction: For an interval type-2 FLS, the
degree of firing corresponding to every rule as well as
the output set for every rule are interval type-1 sets, so
that (11) reduces to

(28)

where all the symbols have the same meaning as in
(11). Let be the domain of . To use the
computational procedure described in this section, note
that the sum in (27) now goes fromto instead of
from to ; plays the role of ; for all since

is crisp; ; and .
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2) Height type reduction: For an interval type-2 FLS, (17)
reduces to

(29)

where all the symbols have the same meaning as in (17).
Here, plays the role of ; for all since
is crisp; and the output set membership of,
plays the role of . If the domain of each
is represented as , then and

.
3) Center-of-sets type reduction: For an interval type-2

FLS, (19) reduces to

(30)

where all the symbols have the same meaning as in (19).
In this case, our computational procedure needs to be
applied in two stages. In the first stage, we compute the
centroid of each interval type-2 consequent set. The
centroid of an interval type-2 set is given as [see (7)]

(31)

where each belongs to some interval in . To use
the computational procedure described above to compute

, observe that and in (31) play the role of
and in (27), respectively. In this case, eachis zero
because each is crisp.

In the second stage, we compute the type-reduced
set using (30). When computing the type-reduced set,

plays the role of in (26). If the domain of
is the interval , then and

. The degree of firing plays the
role of . If the domain of is the interval ,
then and .

In each of the above cases, a crisp output for the type-2 FLS
can be found by computing the centroid of the type-reduced
set. Since the type-reduced set is an interval, the centroid is
the midpoint of its domain.

Example 6.1: In this example, we illustrate the use of the
just-described type-reduction methods for an interval type-2
FLS. We consider a single-input single-output type-2 FLS
using product-norm and product inference, which has rules of
the form: : IF is , THEN is , where .

Fig. 4(a) and (b) depicts the antecedent and consequent sets.
The footprints of uncertainty are uniformly shaded, because
the secondary MF’s are interval sets. Each of these sets can

TABLE II
RESULTS FOR THEEXAMPLE 6.1

be described by two Gaussians, which have the same mean and
standard deviation. The two Gaussians are scaled to different
heights. The maximum height reached by the taller Gaussian
is unity, whereas that reached by the shorter Gaussian is. If
the mean and standard deviation of the Gaussians isand ,
respectively, the membership grade of a domain pointis an

interval , . The
values for each of the antecedent sets, , and are 2, 5,
and 8, respectively; the values are 1, 1, and 1, respectively;
and the values are 0.8, 0.6, and 0.9, respectively. For the
three consequent sets, , , and , the values are 6, 2,
and 9, respectively; the values are 1, 1.2, and 1, respectively;
and, the values are 0.75, 0.75, and 0.8, repectively.

The applied input is [shown in Fig. 4(a)]. It has
nonzero memberships in two antecedentsand so that
two rules are fired.

The type-reduction results for this example are collected in
Table II, where each interval type-reduced set is represented
using its center and spread and the center is the defuzzified
output of for each type-reduction method. For comparison, in
Table II, we also give the defuzzified output of a type-1 FLS
where for all the antecedent and consequent MF’s.
The difference between the output of the type-1 FLS and the
defuzzified output of the comparable type-2 FLS reflects the
flow of antecedent and consequent uncertainties through the
type-2 FLS.

Just as different defuzzification methods provide different
results, different type-reduction methods also provide different
results. Which type-reduction method to choose is an open
issue, as is which defuzzification method to choose.

VII. A PPLICATION TO TIME-VARYING

CHANNEL EQUALIZATION

Wang and Mendel [40] applied a type-1 FLS to time-
invariant nonlinear channel equalization and demonstrated that
the bit error rates (BER) of the fuzzy equalizers are close
to that of the optimal equalizer [40]. Sarwal and Srinath
[35] observed that a transversal filter requires a much larger
training set to achieve the same error rate as compared to
a fuzzy logic equalizer. Lee [22] proposed a complex fuzzy
adaptive filter for QAM constellation channel equalization.
Patra and Mulgrew used a fuzzy adaptive filter to implement a
Bayesian equalizer [33] and also used it to eliminate cochannel
interference [34].

All the above fuzzy approaches in the area of adaptive
equalization are focused on time-invariant channels. In today’s
communication world (such as mobile communications) the
channels are time-varying and nonlinear. Observing this, we
apply our type-2 FLS to this challenging area and compare it
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(a)

(b)

Fig. 4. (a) Antecedent sets (the vertical axis shows the primary memberships ofx in the antecedent sets) and (b) consequent sets (the vertical axis shows
the primary memberships ofy in the consequent sets) for the interval type-2 FLS in Example 6.1. The applied input(x = 4) is shown in (a).

Fig. 5. Block diagram of a base-band communication system subject to ISI
and AGN.

with the methods based on a type-1 FLS [33] and a nearest
neighbor classifier (NNC) [36]. The NNC approach [36] has
been successfully used in a global system for mobile com-
munications (GSM) receiver and no complicated optimization
method [such as recursive least squares (RLS) or least means
squares (LMS)] has been used in it. We also design our type-2
FLS based on a clustering method, and do not use the RLS
or LMS methods.

A block diagram of a base-band communication system
subject to intersymbol interference (ISI) and additive Gaussian
noise (AGN) is shown in Fig. 5, where is the symbol
to be transmitted, is the noise-free signal, is the
noise, the channel order is taps), and time-varying
tap coefficients are ; so can be
represented as (we assume the channel delay

(32)

where denotes time index. Here we assume that is
binary, either or with equal probability. Our channel
equalization goal is to recover the input sequence based
on a sequence of values without knowing (estimating)
the channel coefficients—the .

A. Why a Type-2 FLS Is Needed for
Time-Varying Channel Equalization

In a FLS-based equalizer (such as in [40]), the antecedents
are , , , , where is the equalizer
order (number of taps in the equalizer). We let

(33)

and

(34)

where is called thechannel state[2] and there are
channel states [2].

A normalized Bayesian equalizer has been devel-
oped in [33] as

(35)
where is the standard deviation (std) of the additive
noise, and is the th element of the th

channel state. The decision output of
this equalizer is based on the sign of . A type-1
FLS with Gaussian antecedent MF’s, product inference, and
height defuzzifier [as in (14)] can be used to implement the
normalized Bayesian equalizer in (35) perfectly [33] because
it has the same structure as (14).
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(a) (b)

(c) (d)
Fig. 6. For the channel in (36): (a) time-invariant channela1 = 1 and a2 = 0:5. (b) Channel states (noise free) of time invariant channel,� denotes
the categoryr̂(k) is +1, and + denotes the categorŷr(k) is �1. (c) Example of time-varying channel with� = 0:1. (d) Channel states (noise
free) of the time-varying channel in (c).

TABLE III
NOMINAL CHANNEL STATES FOR CHANNEL MODEL (36) WITH BINARY SYMBOLS. THE CHANNEL

DELAY d = 0 AND p = 2. THE CHANNEL STATE CATEGORY IS DETERMINED BY s(k)

In this paper, we chose the following channel model that
was used in [40]:

(36)

where nominal values for the channel’s coefficients are
and , shown in Fig. 6(a). In this paper, we also assume
that we know that the channel has two taps, i.e., . We
also chose the number of equalizer taps to be equal to ,
i.e., . The nominal channel states are given in Table III
and are plotted in Fig. 6(b). Observe that the nominal channel
states are eight single points.

We focus on the case when the channel is time-varying, i.e.,
when and in (36) are time-varying coefficients. The time
variations of the two coefficients were simulated, as in [4], by
using a second-order Markov model in which two independent
white Gaussian noise sources drive a second-order Butterworth
low-pass filter (LPF). We used the functionbutterprovided by
the Matlab Signal Processing Toolbox to generate a second-
order low-pass digital Butterworth filter with cutoff frequency
0.1; then the functionfilter was used to generate a colored
Gaussian sequence, which we then used as the time-varying
channel coefficients. Note that we centered about 1 and

about 0.5. The input to the Butterworth filter is a white
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Gaussian sequence with standard deviation (std). The source
code for the time-varying coefficients is
[B,A]=butter(2,0.1)
% B (numerator) and A (denominator) of LPF
a1=1+filter(B,A,beta*randn(1,1000))
a2=0.5+filter(B,A,beta*randn(1,1000)).

Realizations of the time-varying coefficients and channel states
are plotted in Fig. 6(c) and (d), respectively, for .
Observe that the channel states are now eight clusters instead
of eight single points. These clusters illustrate that is
uncertain for all . Each cluster has category or

, as determined by (see Table III); this establishes the
value of as or in (35), as determined by the Bayesian
decision boundary [2], [33].

B. Designing the Type-2 FLS Equalizer

In our type-2 FLS design, there are eight rules (each rule
describes one channel state corrupted by additive noise) and
the th rule is expressed as

IF is and is THEN is

where and are type-2 Gaussian MF’s with uncertain
means and is a type-1 Gaussian MF with mean or
as determined by the channel-state category. For rule, the
range of the mean of antecedent corresponds to the
horizontal (vertical) projection of theth cluster in Fig. 6(d).
We used height type reduction (which, in this case, is the same
as center-of-sets type reduction because the rule consequent
is type-1) as described in Section IV-B, so (29) defines the
structure of our type-2 FLS equalizer whereequals or
(center of ,

(37)

(see Fig. 7) and . In order to specify these MF’s, we
need to specify their parameters, namely, , , and .
Below, we let , and , .

We used a clustering approach to estimate and ,
because it is computationally simple. Here we briefly summa-
rize this approach. Suppose the number of training prototypes

, is where from Table III, we see that
determines to which cluster

belongs. So , , are classi-
fied into clusters, where in this example,
. Suppose training prototypes belong to theth cluster,

. The mean and std of these are and ,
respectively. We let

(38)

(39)

Consequently, is the range of the mean of the
type-2 antecedent Gaussian MF ; similarly, is
the range of the mean of . For the type-1 FLS design, we

used (i.e., as the centers of type-1 Gaussian
antecedent MF’s.

Fig. 7. The type-2 MF’s for time-varying channel equalization. The shaded
regions are the footprints of uncertainty for interval secondaries. For illus-
trative purpose, we show the centers of Gaussian MF’s varying from 4.5 to
5.5.

To complete the specification of the MF’s in (37), we also
need to estimate the std of the noise,. In [3], it is shown
that equalizer performance is not very sensitive to the value

. In our simulations, we assumed that the value ofis
known exactly. How to handle the situation when this is not
true will be reported on in a future publication.

Because we used an interval type-2 FLS, computation was
greatly simplified, i.e., we used the type reduction computation
procedure described in Section VI.

C. Simulations

We compared our type-2 FLS with the type-1 FLS in [33]
and the -nearest neighbor (NN) classifier in [36]. If the
number of training prototypes is , then is the
optimal choice of [9]. The parameters of the type-1 and
type-2 FLS’s were set using the training sequence and we
then determined the bit error rate (BER) of the three equalizers
using the testing sequence. We performed our simulations for
two cases, a small number of training prototypes and a large
number of training prototypes.

1) Small Number of Training Prototypes:In this simula-
tion, the training sequence we used is of length 81 and the
testing sequence is of length 919. In our experiment, we
fixed the and ran simulations for five different
ranging from to ( ). We
ran 100 Monte Carlo (MC) simulations for eachvalue. In
each realization, the channel coefficients and additive noise
were uncertain. In Fig. 8, we plot the average BER for the
100 MC realizations.

In our second experiment, we fixed and ran
simulations for seven different signal-to-noise ratios (SNR’s)
ranging from SNR dB to SNR dB ( ).
We ran 100 MC simulations for each SNR value. In Fig. 9,
we plot the average BER for 100 MC realizations.

2) Large Number of Training Prototypes:In this simula-
tion, the training sequence we used is of length 169 and the
testing sequence is of length 831. In our first experiment,
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Fig. 8. The average BER of type-1 FLS, nearest neighbor classifier (NNC),
and type-2 FLS versus� whenSNR = 20 dB and the number of training
prototypes is 81. Each point corresponds to an average over 100 realizations.

Fig. 9. The average BER of type-1 FLS, nearest neighbor classifier (NNC),
and type-2 FLS versus SNR when� = 0:1 and the number of training
prototypes is 81. Each point corresponds to an average over 100 realizations.

we again fixed the SNR and ran simulations for
eight different ranging from to
( ). We ran 100 Monte Carlo (MC)
simulations for each value. In Fig. 10, we plot the average
bit error rate (BER) for the 100 MC realizations. In our second
experiment, we again fixed and ran the simulations
for seven different SNR’s ranging from SNR dB to
SNR dB ( ). We ran 100 MC simulations
for each SNR value. In Fig. 11, we plot the average BER for
100 MC realizations.

3) Remarks:

1) From Figs. 8–11, we see that our type-2 FLS performs
better than the NNC and type-1 FLS in all experiments.

2) The NNC does not obtain good performance when the
number of training prototypes is small, but it can perform
better than a type-1 FLS when the number of training
prototypes is large.

Fig. 10. The average BER of type-1 FLS, nearest neighbor classifier (NNC),
and type-2 FLS versus� when SNR= 20 dB and the number of training
prototypes is 169. Each point corresponds to an average over 100 realizations.

Fig. 11. The average BER of type-1 FLS, nearest neighbor classifier (NNC),
and type-2 FLS versus SNR when� = 0:1 and the number of training
prototypes is 169. Each point corresponds to an average over 100 realizations.

3) A type-1 FLS is able to handle the additive noise (Figs. 8
and 10), but it does not handle channel coefficient
uncertainties as well. In Figs. 9 and 11, we see that for
higher SNR’s, (which means the channel uncertainties
are due primarily to uncertain channel coefficients), the
performance of the type-2 FLS is much better than that
of the type-1 FLS.

VIII. C ONCLUSIONS AND FUTURE WORK

In this paper, we have developed a type-2 FLS as a natural
extension of a type-1 FLS and have focused on the operations
of inference, type reduction and defuzzification for a type-2
FLS. Type reduction is a new operation for a FLS; it reduces
to defuzzification when all uncertainties disappear; and it is
computationally intensive, except for interval type-2 FLS’s.
In that important case, we have provided a simple five-step
iterative procedure for computing the type-reduced set, and
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have shown that the complexity of an interval type-2 FLS has
been tremendously reduced.

We have applied type-2 FLS’s to time-varying channel
equalization, for which channel uncertainty cannot be captured
with a type-1 FLS, whereas it can be captured by a type-2 FLS.
Simulation results show that our type-2 FLS outperforms a
type-1 FLS and a NNC. This application suggests that type-2
FLS’s are very promising for engineering applications where
uncertainties are present.

The interval type-2 FLS we discussed in this paper uses a
singleton fuzzifier. Mouzouris and Mendel [31] presented the
theory of a type-1 FLS with nonsingleton fuzzification and
applied it to Mackey–Glass chaotic time series forecasting
when the time-series is corrupted by measurement noise. In
actual time series such as the price curve for the United States
dollar versus the German mark, market volatility can change
noticeably over the course of time, so that the variance of
the noise component, which is related to volatility, need not
be constant [25]. In this case, we cannot fuzzify the crisp
input as a type-1 fuzzy set, because type-1 MF’s cannot
fully represent the uncertainty associated with this linguistic
knowledge. We believe that in this important case,the input
should be fuzzified into a type-2 fuzzy set, i.e., a nonsingleton
type-2 FLS should be used. The theory and design for an
interval type-2 nonsingleton FLS is reported on in [24].

The two most popular fuzzy logic systems (models) used
by engineers today are the Mamdani and TSK systems. The
type-2 FLS’s we presented in this paper are Mamdani systems.
We have developed a type-2 TSK FLS [23], and are exploring
the design and applications of interval type-2 TSK FLS’s.

Finally, MATLAB files for performing type-2 com-
putations discussed in this paper are available at URL:
http://sipi.usc.edu/˜mendel/software.

APPENDIX A
CENTROID COMPUTATION USING PRODUCT -NORM

When a product-norm is used to calculate the centroid of a
type-2 set that has a continuous domain and whose secondary
memberships are not all unity, we obtain an unexpected result.
Here we discuss this problem and suggest a remedy.

We concentrate on type-2 sets that have a continuous
domain and whose secondary membership functions are such
that for any domain point, only one primary membership
has a secondary membership equal to one, e.g., Gaussian or
triangular type-2 sets. Let be such a set. In the discussion
associated with (7), we assumed that the domain ofis
discretized into points. The true centroid of (assuming
has a continuous domain) is the limit of in (7) as .
When we use the product-norm

.
Let be an embedded type-1 set in. The centroid of

is computed as

(40)

and the membership of in [denoted as ] is

(41)

where are the primary memberships that make
up the type-1 set . Also, let denote the principal mem-
bership function of . Obviously, . Observe the
following.

1) is nonzero only if differs from
in at most a finite number of points. For all other

embedded sets , the product of an infinite number of
quantities less than one will cause to go to zero
as .

2) For any embedded set whose membership function
differs from that of in only a finite number of points
[i.e., when for only a finite number
of points ] . This can be explained as
follows. The (true) centroid of is the limit of (40)
as , i.e., ,
where . Since and share the same domain
(both are embedded sets in , ;
and since and differ only in a finite
number of points and

; therefore, .

From these two observations, we can see that the only
point having nonzero membership in is equal to ;
and its membership grade is equal to the supremum of the
membership grades of all the embedded type-1 sets which have
the same centroid, which is equal to one [since ].
In other words, , i.e., the centroid of ,
will be equal to a crisp number the centroid of its principal
membership function!

This problem occurs because under the product-norm,
, unless

only a finite number of ’s are less than one. The
minimum -norm does not cause such a problem. To avoid this
problem,we will always use the minimum-norm to calculate
the centroid of a type-2 set having a continuous domain.

Finally, note that while performing algebraic operations on
interval sets, the choice of-norm does not matter, because
all the memberships are equal to one; therefore, the problem
described above does not appear in the case of interval type-2
sets [16], [19].
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