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Type-2 Fuzzy Logic Systems

Nilesh N. Karnik, Jerry M. Mendelfellow, IEEE and Qilian Liang

Abstract—We introduce a type-2 fuzzy logic system (FLS), level of uncertainty, it can be used when we model
which can handle rule uncertainties. The implementation of this antecedents and consequents as type-2 sets.
type-2 FLS involves the operations of fuzzification, inference, 3) When rules are collected by surveying experts, if we first

and output processing. We focus on “output processing,” which .
consists of type reduction and defuzzification. Type-reduction query the experts about the locations and spreads of the

methods are extended versions of type-1 defuzzification methods. fuzzy sets associated with antecedent and consequent
Type reduction captures more information about rule uncertain- terms, it is very likely that we will get different answers
ties than does the defuzzified value (a crisp number), however, from each expert. This leads to statistical uncertainties
it is computationally intensive, except for interval type-2 fuzzy about locations and spreads of antecedent and conse-

sets for which we provide a simple type-reduction computation

procedure. We also apply a type-2 FLS to time-varying channel quent fuzzy sets. Such uncertainties can be incorporated

equalization and demonstrate that it provides better performance into the descriptions of these sets using type-2 member-

than a type-1 FLS and nearest neighbor classifier. ship functions. In addition, experts often give different
Index Terms—Channel equalization, fuzzy logic systems, inter- answers to the same rule-question; Fh|$ results in rules

val sets, type reduction, type-2 fuzzy sets, uncertainties. that have the same antecedents but different consequents.

In such a case, it is also possible to represent the output
of the FLS built from these rules as a fuzzy set rather

than a crisp number. This can also be achieved within

N this paper, we introduce a new class of fuzzy logic the type-2 framework.

systems—type-2 fuzzy logic systemsn which the an-  pacay that our accepted probabilistic modeling of random
tecedent or consequent membership fu_nctlons are type-2 f“ﬁﬂ(zertainty focuses to a large extent on methods thatatise
sets. The concept _oft;xpe-z fuzzy savas mtroduc_ed by Zadeh leastthe first two moments of a probability density function
[44] as an extension of the concept of an ordinary fuzzy s, df)—the mean and the variance. To just use the first-
(henceforth called &ype-1 fuzzy sptSuch sets are fuzzy SetSorder moments would not be very useful, because random

whose membership grades themselves are type-1 fuzzy Sﬁf‘ﬁ:ertainty requires an understanding of dispersion about the

they are very useful in circumstances where it is difficult tfhean and this information is provided by the variance. In fuzzy

determine an exact membershlp function for_a fuzzy set; henFoegic (FL), we may view computing the defuzzified output of a
they are useful for incorporating uncertainties.

. ._type-1 FLS as analogous to computing the mean of a pdf. Just
Quite often, the knowledge used to construct rules in P g puting b

fuzzy logic system (FLS) is uncertain. This uncertainty leads {Q variance provides a measure of dispersion about the mean
ylogic sy j y nﬁ is almost always used to capture more about probabilistic

rules having uncertain antecedents and/or consequents, Whu'ﬁ(%ertainty in practical statistical-based designs, FLS’s also

in turn translates into uncertain antecedent and/or consequent \ oo measure of dispersion to capture more about rule
membership funcyons. For .example:. ) ) . uncertainties than just a single number. Type-2 FL provides
1) A fuzzy logic modulation classifier described in [41}his measure of dispersion and seems to be as fundamental to
centers type-1 Gaussian membership functions at Cqfg gesign of systems that include linguistic and/or numerical
stellation points on the in-phase/quadrature plane. |pcoqainties that translate into rule uncertainties as variance
practice, the constellation points drift. This is analogoys y, e mean. Just as one can work with higher than second-
tf\)/”;he 'srlltuatlon of a Gauss,lin mer;l;)ershllp .functlo&der moments in probabilistic modeling, we can also use
( t) W'tth?n (l;pf(t:ertam mean. A type-2 formulation CarPﬂgher than type-2 sets in fuzzy modeling; but, as we go on to
capture this antt. . higher types, the complexity of the system increases rapidly.
2) Previous applications of FL to forecasting do not a4 in this work we deal just with type-2 sets
c?&mt fé)rn?OISﬁdln trr]amlng nq[ata.r Ir;hforecrisu\r/]g;i St')'?ce Type-2 fuzzy sets allow us to handle linguistic uncertainties,
antecedents and consequents are the same varia e’a@ ypified by the adage “words can mean different things to
uncertainty during training exists on both the anteceden&ﬁ‘ferent people [27]. A fuzzy relation of higher type (e.g.
and consequents. It we have information about trhe/pe—Z) has been regarded as one way to increase the fuzzi-
ness of a relation and, according to Hisdal [11], “increased
Manuscript received August 2, 1999. This work was supported by tr_(gzzmegs na Qesgrlptlon _means increased ablllty to he.mdle
National Science Foundation under Grant MIP 9419386. inexact information in a logically correct manner.” According
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of Electrical Engineering-Systems, University of Southern California, Lorsnembership thus assisting N knowledge representation and
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TYPE-2 FUZZY LOGIC SYSTEM

________________ I OUTPUT CRISP
PROCESSING OUTPUT

INPUT
——>| FUZZIFIER
[
| | INFERENCE |[—+—— SET
! ' FUZZY OUTPUT

FUZZY INPUT L _.__ 1
SETS SETS

Fig. 1. The structure of a type-2 FLS. In order to emphasize the importance of the type-reduced set we have shown two outputs for the type-2 FLS,
the type-reduced set and the crisp defuzzified value.

Mizumoto and Tanaka [29] studied the set theoretic ope; () that can be represented for eacte X as
erations of type-2 sets, properties of membership grades of
such sets and, examined the operations of algebraic producty; (z) = fo(u1)/u1 + fo(u2)/uz + -+ foltm)/tm
and algebraic sum for them [39]. Mgre details abput algebraic _ Zf;;(m)/m, w € J,
structure of type-2 sets are given in [32]. Dubois and Prade -

[6]-[8] discussed fuzzy valued logic and give a formula for the

composition of type-2 relations as an extension of the typetfle primary membership having secondary membership equal
sup-star composition, but this formula is only for minim#m to one is called therincipal MF; when the secondary MF’s of
norm. In this paper, we will give a general formula for the type-2 fuzzy set are type-1 Gaussian MF's we call the type-2
extended sup-star composition of type-2 relations. fuzzy set aGaussian type-2 sétegardless of the shape of the

To date, type-2 sets and FLS’s have been used in decisigimary MF); when the secondary MF's are type-1 interval
making [1], [43] solving fuzzy relation equations [38], survegets we call the type-2 set anterval type-2 setr denotes
processing [17], [16], time-series forecasting [18], [28], funaneetoperation; and. denotesjoin operation. Meet and join
tion approximation [16], control of mobile robots [42], andare defined and explained in great detail in [16], [19].
preprocessing of data [13]. We believe that other promising Section Il presents a comparison of type-1 and type-2 FLSs;
areas in which type-2 FLS's may be advantageous ov8ection Ill describes the inference in a type-2 FLS; type
type-1 FLS’s include mobile communications, communicatiofeduction is discussed in detail in Section IV; defuzzification
networks, pattern recognition, and robust control, becaugedescribed in Section V; a simple type-reduction procedure
frequently the information to be processed in these areasfds interval type-2 FLS's is described in Section VI; an appli-
uncertain. For example, in mobile communications, the fadingtion of type-2 FLS’s to time-varying channel equalization
channel coefficients are uncertain during adjacent trainifg presented in Section VII and, conclusions and future work
periods. Existing algorithms treat them as certain. In corare given in Section VIII.
munication networks, Tanaka and Hosaka [37] observed the
difficulties of obtaining appropriate MF's for efficient network
control, which suggests that type-2 MF's will be a better IIl. TYPE-2 FLSS: OVERVIEW
way to represent the uncertainty in a network. Additionally, Fig. 1 shows the structure of a type-2 FLS. It is very similar
present communication networks are dynamic and theretds the structure of a type-1 FLS [26]. For a type-1 FLS,
great deal of uncertainty associated with the input traffic arlle output processindplock only contains the defuzzifier. We
other environment parameters [10], which suggests that typ@ssume that the reader is familiar with type-1 FLS'’s, so that
FLS’s will also be useful for them. In this paper, we apply &ere we focus only on the similarities and differences between
type-2 FLS to time-varying nonlinear channel equalization. the two FLS's.

In the sequel, we use the following notation and terminol- The fuzzifier maps the crisp input into a fuzzy set. This
ogy: A is a type-1 fuzzy set and the membership grade fazzy set can, in general, be a type-2 set, however, in this
synonym for the degree of membership) ofe X in A is paper, we consider onlsingletonfuzzification, for which the
pa(x), which is a crisp number if0, 1]; a type-2 fuzzy set input fuzzy set has only a single point of nonzero membership.
in X is A and the membership grade ef € X in A is In the type-1 case, we generally have “IF-THEN” rules,
px(z), which is a type-1 fuzzy set if0, 1]; the elements of where thelth rule has the form R': IF z; is F{ and z is
the domain ofz () are calledprimary membershipsf z in  F, and --- and z,, is Fj, THEN y is G!,” where: z;s are
A and the memberships of the primary membershigs;itw) inputs;Fis are antecedent sets= 1, -, p); v is the output;
are calledsecondary memberships$ = in A; the latter defines and G's are consequent sets. The distinction between type-1
the possibilities for the primary membership, e.g., the typedhd type-2 is associated with the nature of the membership
fuzzy setA € X has fuzzy grades (fuzzy setsih C [0,1]), functions, which is not important while forming rules; hence,
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the structure of the rules remains exactly the same in the typeWhen an inputx' is applied, the composition of the fuzzy
2 case, the only difference being that now some or all of tiset X to whichx  belongs and the rul&’ is found by using
sets involved are of type-2; so, thi rule in a type-2 FLS has the extended sup-star composition [19], [14], [16]

the form “R%: IF =y is 'Y andz. is I} and- - - andx,, is [,

THEN y is GL.” It is not necessary that all the antecedents and HX7 0Tt s x L — Gt (u)

the consequent be type-2 fuzzy sets. As long as one antecedent = Uex g () Mpp e e (X))

or the consequent set is type-2, we will have a type-2 FLS. ! ?

‘In atype-1 FLS, the inference engine combines rules apge yse singleton fuzzification, hence, the fuzzyXets such
gives a mapping from input type-1 fuzzy sets to output tyPgnat it has a membership gradieorresponding tox = x~ and

1 fuzzy sets. Multiple antecedents in rules are connectggs zero membership grades for all other inputs; therefore, (2)
by the ¢-norm (corresponding to intersection of sets). Thgsduces to

membership grades in the input sets are combined with those in

the output sets using thsup-starcomposition. Multiple rules Pk oft st st (U) = BEt s Bt oyt (x',y). 3)
may be combined using tileconorm operation (corresponding ' ? ' ?

to union of sets) or during defuzzification by weighted summave denoteX’ o F! x --- x 15;) — G! asB!, the output set

tion. In the type-2 case, the inference process is very similgbrresponding to th&h rule. The right-hand side (RHS) of (3)

The inference engine combines rules and gives a mapping friitomputed using the implication membership function. Since
input type-2 fuzzy sets to output type-2 fuzzy sets. To do thigineering applications generally use product or minimum
one needs to find unions and intersections of type-2 sets,j@plication (see [26] for more details), corresponding to the

well as compositions of type-2 relations. . meetoperation with product or minimumnorm, (3) can be
In a type-1 FLS, the defuzzifier produces a crisp outpdbwritten as

from the fuzzy set that is the output of the inference engine,
i.e., a type-0 (crisp) output is obtained from a type-1 set. In Pzt (W) = Ipt oo (x') M e (y)- (4)
the type-2 case, the output of the inference engine is a type-2 ' !
set; so we use “extended versions” (using Zadeh's extensionThe membership function for a Cartesian product of sets
principle [8], [16], [44]) of type-1 defuzzification methods.is computed by finding theneet between the membership
This extended defuzzification gives a type-1 fuzzy set. Sinb#nctions of individual sets [19], [16]; hence, (4) can be
this operation takes us from the type-2 output sets of the FiSwritten as
to a type-1 set, we call this operation “type reduction” and the
type-reduced set so obtained a “type-reduced set.” piz () = prpe (@0) O g (€2) 1= T e () T e ()
To obtain a crisp output from a type-2 FLS, we can defuzzify = prey (W) M g ()] (5)
the type-reduced set. The most natural way of doing this '
seems to be by finding the centroid of the type-reduce¢here we are using the same operation for theorm and
set, however, there exist other possibilities like choosing thige inference - - product or minimum and have used the fact
highest membership point in the type-reduced set. that type-2 membership functions commute for minimum or
From our discussions so far, we see that in order to develpgduct t-norms [19], [16].
a type-2 FLS, one needs to be able to: 1) perform the setExample 3.1:Fig. 2 shows an example of product and
theoretic operations ofinion intersection and complement minimum inference for an arbitrary single-input single-output
on type-2 sets [19]; 2) know properties (e.gommutativity type-2 FLS using Gaussian type-2 sets. Uncertainty in the
associativity identity lawd of membership grades of type-2primary membership grades of a type-2 MF consists of a dark
sets [19]; 3) deal with type-2 fuzzy relations and their compaegion that we call theootprint of uncertaintyof a type-2
sitions [19]; and 4) perform type reduction and defuzzificatioMF. The footprint of uncertainty represents the union of all
to obtain a set-valued or crisp output from the FLS [16], [15pbrimary memberships. Darker areas indicate higher secondary
memberships. Thprincipal membership function, i.e., the set
lll. INFERENCE IN A TYPE-2 FLS of primary memberships having secondary membership equal
to one, is indicated with a thick line. The product inference
function (5) in Fig. 2(c) was obtained by finding theeet
[16], [19] under productt-norm of the membership grade
B ~ of x = 4 with the membership grade of every point of
R IF i isF! andz, is F and - -and the consequent function in Fig. 2(b). Similarly, the minimum
T, is F;,THEN yis Gl (1) inference function (5) in Fig. 2(d) was obtained by finding the
) ) ~ meetunder minimum¢-norm [19], [16] of the membership
This rule represents a type-2 fuzzy relation between the '”F§+%1de ofz = 4 with the membership grade of every point
space X; x Xy x --- x X, and the output spac&” of o the consequent function. Observe that in both cases, the
the FLS. We denote the membership function of this typ@agyit of the inference is a type-2 set [Fig. 2(c) and (d)]. We
2 relation as g, (X, y), where F{ x - x T, ¢an interpret the banded behavior about the output’s principal
denotes the Cartesian product Ef, Fé,m F., andx = membership function as an indication of combined antecedent

1 pr
{z1,22,---,2p} and consequent uncertainties. O

Consider a type-2 FLS having inputs, z; € Xy, z2 €
Xo,---,x, € X, and one outpuy € Y. Let us suppose that
it has M rules where thdth rule has the form
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(© (d)

Fig. 2. lllustrations of product and minimum inference in the type-2 case. (a) Gaussian type-2 antecedent set for a single input system. The membershi

a certain input: = 4 in the principal membership function is also shown, equalk tgb) Consequent set corresponding to the antecedent set shown in (a).

(c) Scaled consequent set for= 4 using product inference. Observe that the secondary membership functions of the consequent set also change depending
upon the standard deviation of the membership grade. ¢fl) Clipped consequent set far = 4 using minimum inference.

IV. TYPE REDUCTION Similarly, the centroid of a type-2 sef, whose domain is

In a type-1 FLS the output corresponding to each fired ru@iéscrgtized intoV points, can be defined u_sing the extension
is a type-1 set in the output space. The defuzzifier combinidnciple (see [16] and [20] for more details) as follows. We

the output sets corresponding to all the fired rules in some Di = pz(@:), so that

to obtain a single output set and then finds a crisp number that N

is representative of this combined output set, e.g., the centroid Z x;0;
=1

defuzzifier finds the union of all the output sets and uses theC~ _/ / i (62) %+~ i (9]\’)]/‘
91 HN

centroid of the union as the crisp outplrt.all the defuzzifiers AT N
of interest to us, the crisp number is obtained as the centroid Z 0;
of some combined output set. i=1
For type-1 defuzzification methods, we assume that the FLS (7)

assumed type-1): and for type-reduction methods, we ass eref; € D,. E.quation~(7) can be described in words _as
y ype-1) yp uetl W X ows. Each pointz; of A has a type-1 fuzzy membership

that the FLS is type-2 (i.e., some or all of the antecedent a . o ' .
consequent sets in (1) are assumed type-2). In each case,g{ﬁ‘g?Di = pa (i) as§00|ated W'th '.t' To find the centroid, we
antecedent and consequent membership grades are assum %”t%'der every possible comb_lnat_u{ﬂl,---,eN} such that
have a continuous domain and integrals indicate logical uni N D_i‘ For every S_UCh comb|r_1at|0_n, we perform th.e type-1
The output set corresponding to each rule in (1) of thceentrmd ca!cul_atmn in (6) by using |n.place Ofpuz (:); gnd
type-2 FLS is a type-2 set (5). The type-reducer combines %ﬁl each point in the centroid we assign a member_shlp grade
these output sets in some way (just like a type-1 defuzzifi gual to thet-norm of the f!“e”.‘berSh'P grades of thein thg
combines the type-1 rule output sets) and then performsoi; If more than one combination éf gives us the same point

centroid calculation on this type-2 set, which leads to a type!l (€ centroid, we keep the one with the largest membership
set that we call the “type-reduced” set. 9

is type-1 (i.e., all the antecedent and consequent sets in (1)%;

rade. If we letxY, z,6,/S% | 6, = =, then (7) can also
The centroid of a type-1 set, whose domain is discretized be written as
into N points is given as N :/ sip [un, (01) %% jn (03)]/z ()
z {6,-,6n}
N
> zipalz) where {6,---,6x} are such that2d |, =;6,/3N | 6, = z,
O = =1 (6) and  indicates the chosettnorm.

ATTN ’ Every combination{é,,---,6x} can be thought to form

Z palxi) the membership function of some type-1 et which has
i=1 the same domain a&. We call A an embedded type-1 set
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Fig. 3. A type-2 FLS can be thought of as a collection of a large number of type-1 FLS'’s. The type-reduteis setollection of the outputs of all these

embedded type-1 FLS’s. When the antecedent and consequent membership grades in the type-2 FLS have a continuous domain, the number of embedded
type-1 FLS’s is uncountable. This figure is drawn assuming that the membership grades have discrete (or discretized) domains. The memberships in the
type-reduced set represent the level of uncertainty associated with each embedded type-1 FLS. A crisp output can be obtained by aggregatisig the outpu
of all the embedded type-1 FLS'’s by, for example, finding the centroid of the type-reduced set (see Section V).

in A. The centroidCj is a type-1 set whose elements argecondary membership. Consequently, the type-reduced set
the centroids of all the embedded type-1 setsAin The will also be normal and will have only one point having unity
membership of an embedded set centroid’ip is calculated membership. This point will correspond to the centroid of the
as thet-norm of the secondary memberships corresponding poincipal membership function of the type-2 output set. If all
{61,---,6x} that make up that embedded set. the type-2 uncertainties in this FLS were to collapse to type-
Observe that if the domain of and/ory;(z) (x € A)is 1 uncertainties, i.e., if all the type-2 membership functions
continuous, the domain @f is also continuous. The numberin the FLS were to collapse to their principal membership
of all the embedded type-1 setsAnin this case is uncountable; functions, the antecedent and consequent membership grades
therefore, the domains ot and eachyi; (z) (x € A) have of each point would collapse to their unity membership points.
to be discretized for the calculation 6f; (as explained in This would cause the type-reduced set to collapse to its unity
Appendix A, we always use minimugnorm for the centroid height point. This shows that all our results are valid when
calculation of a type-2 set having a continuous domain evéH the type-2 uncertainties collapse to type-1 uncertainties, in
though we use produetnorm everywhere else). Observe fromvhich case our type-2 FLS collapses to a type-1 FLS.
(7) that if the domain of eacB; is discretized inta points,  If we think of a type-2 FLS as a “perturbed” version of a
the number of possibldé:,---,8x} combinations isM ™, type-1 FLS, due to uncertainties in the membership functions,
which can be very large even for small and V. If, however, the type-reduced set of the type-2 FLS can then be thought
the membership functions d;’s have a regular structure©f s representing the uncertainty in the crisp output due
(e.g., uniform (interval type-1 sets), Gaussian, triangular), We uncertainties in the membership functions. Some measure
can obtain the exact or approximate centroid without havirfj e spread of the type-reduced set may then be taken
to do all the calculations [16], [20]. For interval type-1 setd0 indicate the possible variation in the crisp output due
the actual centroid can be obtained relatively easily withoff@ Variations in the membership function parameters. This
performing computations for all the combinations by usinfj 2nalogous to using confidence intervals in a stochastic-
the computational procedure described in Section VI. l_mce.rte}lnty S|tuat!0n; however, what we have developed is for
The type-reduced set of a type-2 FLS is the centroid HPQUISUC uncertainties

a type-2 output set for the FLS; consequently, each elem n{n the following subsections, we present details for centroid,
of the type-reduced set is the ’centroid of so,me type-1 %lght, and center-of-sets type reduction. Details for modified

embedded in the output set of the type-2 FLS. Each of the %ight and center-of-sums type reduction can be found in [16].

embedded sets can be thought of as an output set of some ty eb id T Reduct

1 FLS and, correspondingly, the type-2 FLS can be thoudht entroid Type Reduction

of as a collection of many different type-1 FLS’s. Each of The centroid defuzzifier [21] combines the output type-1

these type-1 FLS’s i@mbeddedn the type-2 FLS, sahe Sets using &-conorm and then finds the centroid of this set.

type-reduced set is a collection of the outputs of all the typelfiwe denote the composite output fuzzy settashe centroid

FLS's embedded in the type-2 FI(See Fig. 3) and it lets us defuzzifier is given as

represent the output of the type-2 FLS as a fuzzy set rather N

than as a crisp number. Z Yl ()
It can be shown from (5) that if all the antecedent and ye(x) = i=1

consequent membership grades of the type-2 FLS are normal N

and have only one point having unity secondary membership, Z pB(yi)

then the output set membership grade of everg Y will i=1

also be normal and will have only one point having unityvhere the output sdB is discretized intaV points.

9)
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The centroid type-reducer combines all the output type-2In step 5, the centroid and membership computation has to
sets by finding their union. The membership grade;af ¥ be repeatedilf"=1 M; times and so, in general, will involve an
is given as enormous amount of computation. Computational complexity
and ways to reduce it are discussed in Section IV-E for all
1Y) = Uil g (y) (10) three of the type-reduction methods described herein.

where iz, (y) is as defined in (5). The centroid type-reduce®. Height Type Reduction

then calculates the centroid d&8. The expression for the The height defuzzifier [5] replaces each rule output set

centroid type-reduced set is an extended version of (9), i.eby a singleton at the point having maximum membership in
that output set and then calculates the centroid of the type-

' ' 1 set comprised of these singletons. The output of a height
Ye(x) = /91 "'/HV[“Dl(el)*"'*“DN(QN)] defuzzifier is given as

N M

S it > Fus @)

=L (11) un(x) = 50— (14)
Z 8; Z pe(7')
=1 =1

where7' is the point having maximum membership in thie
output set (if there is more than one such point, their average
can be taken ag'); and its membership grade in tft@ output

whereD; = ps(y;) andd; € pg(y:) (6 =1,---,N). Let

EN: b set up: (F) is given as [26]
a2 =L (12) (7)) = na (7)) * T e () (15)
Z 0, where x and 7 indicate the choser-norm (assuming the
= inference uses the same operation asttherm - - - product
/ or minimum).
D2 pp,(02) - x iy (B)- (13) )

The height type reducer replaces each output set by a type-2
. ) ] singleton, i.e., by a fuzzy set whose domain consists of a single
The computation ol .(x) involves computing the tupl_(:u,b) point, the membership of which is a type-1 set{in1]. The
many times. Suppose, for examp{e, b) is computedy times; ;i gutput set is replaced by a singleton situategf avhereg’
then we can view the computation'f.(x) as the computation ¢4 pe chosen to be the point having the highest membership
of the a tuples (a,by), (az,ba), -~ (aa, ba). IMportant i, the principal membership function of output &t If B! is
information from type reduction is the domain of the's, gych that a principal membership function cannot be defined,
i.e., ay and ag, wherea;, = ming; and agp = maxai, one may choos@' as the point having the highest primary
(1 = 1,---,a), because it is the bounfh.,ar| that we mempership with a secondary membership equal to one or
associate W|th a |IHQUISIIC Conﬂdence |nterVaI. Only Stomﬁg as a point Satisfying some similar criterion. The membership

and ap, instead of allo a; reduces the storage requirementarade o7 in the type-2 case is obtained from (5) as follows:
a lot. How to efficiently use allv a; and b; to perform

defuzzification is discussed in Section V. () = ne (@) N M_ig (). (16)
The sequence of computations needed to obt4i is
as followgu putat MAiCk) | If we let D! = 5, (%'), the expression for the type-reduced
' . . . set is obtained as an extension of (14) as
1) Compute the combined output set using (10). This iss ! I X I (14)
possible, because we can first compute (y) (I = Yo(x :/ / / O -k pirn (0 /
1,---,M) for all ¥ € Y using (5). Theorem 1 (or () 6, Jo, 61 o (61) pse(B10)]
Theorem 2) in [19] is used to compute (10). M
2) Discretize the output spadéinto IV points,y1, -« -, yn. Z 70,
3) Discretize the domain of eaghs(y;) (¢ = 1,---,N) =1 (17)
into a suitable number of points. M
4) Enumerate all the embedded sets. For example, if each 291
pa(y:) is discretized intoM; points, there will be =1
I, M, embedded sets. _ “where §; € D' for I = 1,---,M. In this case,a =
5) Compute the centroid typeireduced set usjl\pg (11), LenM 7l /M 9,) andb is still given by (13).
compute the tuplega;,b;) ¢ = 1,2,---,1I;_; M;,  The sequence of computations needed to ob¥ifx) is

wherea; andb; are given in (12) and (13), respectivelyas follows.
We must use the minimuriinorm here, as explained in 1) Choose7' for each output sef = 1,2,---, M and

Appendix A. computesiz (7') in (16).
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2) Discretize the domain of eacfy, (7) into a suitable the degree of firing associated with ttth consequent set for
number of points. The discretization is carried out ih = 1,---, M. In this casea = (M, diey/SM, ¢) and
a manner similar to that for centroid type reductiory = 7,2 ¢, (di) * T M pg, (er).
the only difference is that the number of points on the The sequence of computations needed to obYay (x) is

horizontal axis is now\/ instead of V. as follows.

3) Enumerate all the possible combinatiofts, - - -, 6} 1) Discretize the output spadé into a suitable number of
such thatf, € pug (7). For example, ifz (7' is points and compute the centrait},, of each consequent
discretized intoN; points, there will bell}Z, N; set on the discretized output space using (7). This is
combinations. possible because we know (y) (I = 1,2,---, M)

4) Compute the height type-reduced set using (17). Since  for all y € Y. These consequent centroid sets can be
the domain of the combined output set is discrete, we  computed ahead of time and stored for future use.
can now use product or minimurinorm in (17), as  2) Compute the degree of firing; = MP_ piz (x;) asso-

explained in Appendix A. _ _ ciated with thelth consequent set using the results in
In step 4, the weighted sum and membership computations [16], [19] 1 = 1,2,---, M

in (17) have torbe repeated L, N; times; but, generally, Discretize the domain of eacliz, into a suitable
I}, N; < I}, N; (where N is the number of discrete number of points, sayl; (I = 1,2, --, M).

y points in case of centroid type reduction), so computing 4y pjscretize the domain of eadh into a suitable number
the height type-reduced set involves much fewer computations ~ points, sayN; (I = 1,2, ---, M).

than computing the centroid type-reduced set. Our discussiors) Enumerate all the possible combinations
about storingz;, andag in Section 1V-A applies here as well. {c1,-++,camne1, - en} such thatd, € Cs and
’ ’ ’ ’ ’ G
) e; € E;. The total number of combinations will be
C. Center-of-Sets Type Reduction ML, M;N;
i .

For reasons that will be explained in Section IV-D, we 6) Compute the type-reduced set using (19).
introduce a new center-of-sets defuzzification method in whichin step 6, the weighted sum an@norm operations in
we replace each rule consequent set by a singleton situated) have to be repeatdd}Z, M;N; times. Observe, from
at its centroid and then find the centroid of the type-1 seSections IV-A and IV-B, that this number is, in general, larger
comprised of these singletons. The expression for the outphén that required for a height type reducer, but is less than

is given as that required for a centroid type reducer. Our discussion about
M ar, andag in Section IV-A applies here as well.
N AT i (1)
Yeos (X) = 1:1\14 (18) D. Comparison of Height and Center-of-Sets Type Reducers
Z iilﬂFg (x;) ~ Inatype-1FLS, height _defuzzification is computationally
=1 inexpensive and gives satisfactory results (see, for example,

[5] and [39]). In a type-2 FLS, however, height type reduction
not perform so well. Center-of-sets type reduction does a
r job. Here we explain why this is so.

For expressions for the height and center-of-sets type-
Seduced sets, see (17) and (19), respectively. When only one

Yeos(X) = yn(x). rule_is fired corresponding tb= [, the height type-reduced

The center-of-sets type reducer replaces each consequeng gefq (assuming maximumconorm and normal membership
by its centroid (which itself is a type-1 set if the conseque%trades)

set is type-2) and finds a weighted average of these centroids,
where the weight associated with thk centroid is the degree

where 7 indicates the chosetrnorm and¢! is the centroid a
of the lth consequent set. Observe that if each consequent ggge
is symmetric, normal and conve¥ = 7' and puc: (7)) = 1

forl =1,.--, M, hence, in this (special but important) cas

of firing corresponding to théh rule, namelyr?_, sz (). 7 0,
The expression for the type-reduced set is the following Yi(x) :/ Pope! (6r) 0.
extension of (18): v b )
=[suppuy (0)1/7 =1/7° =% . (20)
Yooo(x) = / / / / T e (do) l,
dy das v e1 enm
i diey Equation (20) shows that when a single rule is fired, the height
" — type-reduced set collapses to a single point! This is certainly
* T2 i, (er) M (19) undesirable because it means that when the input is such that
Z e only one rule is fired, no uncertainty is associated with the
— output, which is generally not true.

We invented the center-of-sets type-reducer to avoid this
problem. It is easy to see that even when only a single rule is
fired, Y.,s(x) is a type-1 fuzzy set that equals the centroid of

where7 andx indicate the chosefinorm;d; € C; = Cg, the
centroid of thelth consequent set anrg € E; = _, i (),
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TABLE |
CoMPUTATION COMPLEXITY FOR EACH PARALLEL PROCESSOR OFDIFFERENT TYPE REDUCERS THE NUMBER OF FIRED RULES Is M.
THE NUMBER OF ANTECEDENTS IS p. THE FIRED PRIMARY MEMBERSHIP DEGREE fijs: (¢) (i = 1, , M, j =1, ,p) Is

7
SAMPLED TO N;; PoINTs. THE CONSEQUENT MEMBERSHIP DEGREE pt5 (yk) (K = 1,---, N) |s SAMPLED TO M, POINTS.
THE CENTER OF THE ¢tTH CONSEQUENT SET CONTAINS /; POINTS. THE ToTAL OuTPUT DOMAIN IS SAMPLED TO N POINTS

Type-reducer ] t-norm | multiplications ] additions [ divisions [ parallel processors
Centroid N-—1 N 2(N —1) 1 T, M
Height M-=1 M 20M - 1) 1 I Ny
Center-of-sets { 2M — 1 M-1 2(M - 1) 1 Y, [T5., KilV;;
the type-2 output set corresponding to the fired rule, i.e., V. DEFUZZIFICATION
We defuzzifythe type-reduced set to get a crisp output from
Yoool / / e, (dy s, (e )/d’@z the type-2 FLS. The most natural way of doing this seems
; Je ey to be by finding the centroid of the type-reduced set. Finding
the centroid is equivalent to finding a weighted average of
= / pe, (dy) / pw, (ey /dz the outputs of all t_he type-1 FLS’s embedded in the_z type-2
’ FLS, where the weights correspond to the memberships in the
. type-reduced set (see Fig. 3). If the type-reducedyskir an
= / ne, (dy )Sup HE,, (ey ]/ input x is discrete and consists df points, the expression
dy for its centroid is

N
= / ey (dz’)/dl’ =Cy (21) >y ()
I k= O

Cy(x) = (22)
where we have again assumed that the degree of firing
associated with theth consequent is normal. (If eagh. (x;) > ()
is normalE; = rt_ LR (z;) will also be normal (see [i6] and . . _
[19] for a detailed discussion of theeetoperation.) If the type-reduced set has only one point having unity

Finally, note that in order to measure the effectsboth membership and if we wish to reduce computational complex-
antecedent and consequent measurements when only one ifiigve may think that a more straightforward choice for the

is fired, one needs to use centroid type reduction. defuzzified value is the unity membership point in the type-
reduced set. Choosing the unity membership point, however,

means that we are doing away with all the type-2 analysis and
are choosing the output corresponding to only the principal
We have introduced three type-reduction methods. Unfafirembership function type-1 FLS that is embedded in the type-
tunately, they have high-computation complexity. Fortunatelg, FLS. Since it conveys no information about membership
however, a type-2 FLS can be thought of as a collection offanction uncertainties, it does not make sense to use the unity
large number of type-1 FLS’s. As described in the beginnirgeight point as the crisp output; unless, of course, the type-
of Section IV, the type-reduced s&t is a collection of the reduced set is convex and symmetric in which case the unity
outputs of all these embedded type-1 FLS's, as shown fiight point is the same as the centroid. In general, for arbitrary
Fig. 3. The operations for each type-1 FLS can be processa@mbership functions, the type-reduced set is not symmetrical
in parallel; hence, the computational complexity for eachnd the centroid location is different from the location of the
type-1 FLS is the same as its corresponding defuzzificatighity height point.
operation. The number of parallel processors depends orsince parallel processing is possible for type reduction,
how many type-1 FLS's are needed for a specific typghe output of each processor can be aggregated using the
reduction method and this depends on the sampling rates in fe@troid defuzzifier in (22) to obtain a crisp value; therefore,
primary membership and output domains. The computatiogsta storage will not be a problem. Currently, however, most
for a in (12) show the computational complexity in terms ofesearchers still depend on software for simulations and cannot
multiplications, additions, and divisions; and the computationgake use of parallel processing. We can, however, use a
for b in (13) give the number of operations fémorm. The recursive method to vastly reduce the memory needed for

number of parallel processors equals the number of tupkg®ring the data needed to compute the defuzzified output.
(a;,b;). In Table I, we summarize the computation complexitgxamining (22), we compute

for the three type reducers described above. For example, in

centroid type reduction, there afé — 1 ¢-norm operations, A() = AP — 1)+ yipy (vi), A0
N mu}l\'gphcaﬂons, 2(N — 1) additions and one division, B() = B(i — 1) + py (i), B(0)
and 1I;'_, M, parallel processors are required. In actual

computation, not allAf rules are fired, so the computatiorfor ¢« = 1,2,---, N. After the Nth iteration, the defuzzified
will be simplified a lot. output isCy (x) = A(N)/B(N). By this means, we just need

E. Computational Complexity

20 (23)

)
20 (24)
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to storeA and B in each iteration. Note thaty (y;) in (23)
and (24) is the same dsin (13).

VI. TYPE REDUCTION FORINTERVAL TYPE-2 FLS

A general type-2 FLS is very complicated because of type
reduction. The most general form to compute the type-reduced

set is given by

Y(Z1, - Zp, W, W)

[
ZM wi War

E wizy

* nguwl (wr) / 121\144 (25)
> w
=1
where7 andx both indicate the-norm used - - product or

minimum, w; € Wy, andz, € Z; forl =1,---, M.

Things simplify a lot when the secondary MF’s are interval

sets in which case we call the type-2 FLS iaterval type-2

651

For convenience, we let

M

E Zjuy

A =1

7w1\4) =
>
=1

S(wy,--- (27)

wherew; € [hi — Ay, iy + A andhy > Ayfori=1,---, M
andz; € [¢;—si, ci+s¢]. The maximum ofS, y,., is obtained as
follows. We setz; = ¢+, (I =1,---, M) and, without loss
of generality, assume that thg's are arranged in ascending

order, i.e.,z; < zp < -.- < zp. Then

1) setw; = hy for { = 1,---,M and computeS =
S(hy,---,hp) using (27);

2) findk (1 <k <M —1)such thatz, < 5" < 2p41;

3) setw; = hy — Ay for I < k andw; = hy + A for
[ >k+1and computes” = S(hy—Ay,---, hy — Ay,
hk+1 =+ Ak‘-l—la T h]\{ + A]\{) Hsing (27),

4) checkifS =5 ;ifyes, stop.S isthe maximum value
of S(wy,-- wM) if no, go to step 5;

5) setS equal toS ; go to step 2.

FLS In this section, we focus on type reduction for interval It can easily be shown thétis iterative procedure converges
type-2 FLS’s. We present a computational procedure that I#tsat most) iterations[16], [20], where one iteration consists
us compute the type-reduced set for an interval type-2 Flab one pass through steps 2) to 5).

without actually having to consider all the combinations of The minimum ofS(wy, - - -,

the z;’s and w;’s.

For an interval type-2 FLS, eadh andW, (I =1,---, M)

wyy) can be obtained by using a
procedure similar to the one just described. Only two changes
need to be made: 1) we must set=¢;—s; forl=1,.--, M

in (25) is an interval type-1 set; then using the fact thand 2) in Step 3) we must set; = h; + A, for [ < k and

pz, (z1) = pw, (wr) = 1, (25) can be rewritten as

Y(Zlv"'vzl\lvwlv"'v

:////1/

so, in this case, type reduction means only computinig
(12) sinceb in (13) is unity.

War)

w; = h;— A for I > k+ 1 to compute the weighted average
S" = S(hi+A1, Pt D, hagr—Dgy1, - har —Ang).

This computational procedure can be used to compute
the type-reduced set for all of the type reducers, with a
vast reduction in computational complexity, and y,. can
be computed in parallel and regardless of the kind of type
reduction used, only two processors are needed. This is quite
different from the general results in Table I.

Next, we explain exactly how to apply this four-step proce-
dure to centroid, height, and center-of-sets type reduction.

1) Centroid type reductianFor an interval type-2 FLS, the
degree of firing corresponding to every rule as well as

Since all the memberships in an interval type-1 set are crisp,
in the sequel, we represent an interval set just by its domain
interval, which can be represented by its left and right end
points as[l,r] or by its center and spread §s— s,c + s,
wherec = (I +r)/2 ands = (r — 1)/2.

In a general interval type-2 FLS, eady in (26) is an
interval type-1 set having centef and spreads; (s; > 0)
and eachV; is also an interval type-1 set with center and
spreadA,, (A; > 0) (we assume thai; > A; so thatw; > 0
forl=1,---,M).Y is also an interval type-1 set; therefore,
we only need to compute its two endpoings and y,.. As
shown in [16] and [20]y; only depends om; — s; and on one
of the two endpoints ofV; andy,. only depends owr; +s; and
on one of the two endpoints &¥;. Next, we state an iterative
procedure to computg; andy, for an interval type-2 FLS.
The derivation of this procedure is given in [16] and [20].

the output set for every rule are interval type-1 sets, so
that (11) reduces to

(28)

where all the symbols have the same meaning as in
(11). Let[L;, R;] be the domain of:5(y;). To use the
computational procedure described in this section, note
that the sum in (27) now goes frointo N instead of
from 1 to M; y; plays the role oty; s, = 0 for all [ since

y, is crisp;(L; + R;)/2 = hy; and(R; — L;)/2 = Ay
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TABLE 1
REsuULTS FOR THE EXAMPLE 6.1

2) Height type reductionFor an interval type-2 FLS, (17)
reduces to

Type-reduced set H Center | Spread || Type-1 Output

M
Z 7'6, Centroid 2.8179 | 0.4918 2.7079
=1 Height 2.9026 | 0.4280 2.8341
R A A Y A (29) Center-of-sets || 2.9462 | 0.3563 2.8341
1 2 M

S0

=1

where all the svmbols have the same meaning as in (1%3 described by two Gaussians, which have the same mean and
g y i 9 _, ‘standard deviation. The two Gaussians are scaled to different
Here, 7" plays the role ofe; s; = 0 for all [ sincey

A o _5. heights. The maximum height reached by the taller Gaussian
is crisp; and the oultput set mempershlpyé,f Fpe (ﬂ) is unity, whereas that reached by the shorter Gaussianlfs
plays the rolz ofW 'R” thﬁ dzmi'n LOf ef;fmél (¥ 21 the mean and standard deviation of the Gaussiansando,
zlr?)r(e;erltz)?%l’ . thenhy = (Lo + Ri)/2 an respectively, the membership grade of a domain poin$ an

i 4 a:,—m 2 4 ac,—rn 2
3) Center-of-sets type reductiorFor an interval type-2 nterval [sexp{—0.5(27")%}, exp{-0.5(*5™)?}]. Them

FLS, (19) reduces to values for each of the antecedent detst?, andE® are 2, 5,
u and 8, respectively; the values are 1, 1, and 1, respectively;
Z dies and thes values are 0.8, 0.6, and 0.9, respectively. For the
three consequent sets}, G2, andG?, them values are 6, 2,

=1

1
N

Yeos (%) =/ / / / 1/1_134 (30) and 9, respectively; the values are 1, 1.2, and 1, respectively;
4 dar Jex en Z e and, thes values are 0.75, 0.75, and 0.8, repectively.
The applied input ist = 4 [shown in Fig. 4(a)]. It has
_ __nonzero memberships in two antecedelitsand I, so that
wherg all the symbols have_the same meaning as in (1), (yles are fired.
In this case, our computational procedure needs t0 bérpe tvne reduction results for this example are collected in
applied in two stages. In the first stage, we compute thep e | " where each interval type-reduced set is represented
centroidC; of each interval type-2 consequent set. Theging its center and spread and the center is the defuzzified
centroid of an interval type-2 set is given as [see (7)] oyt of for each type-reduction method. For comparison, in
N Table II, we also give the defuzzified output of a type-1 FLS
Z z;0; where s = 1 for all the antecedent and consequent MF’s.
C- :/ / 1/7‘: (31) The difference between the output of the type-1 FLS and the
A g
01 On defuzzified output of the comparable type-2 FLS reflects the
0 flow of antecedent and consequent uncertainties through the
=1 type-2 FLS.
where eacl¥; belongs to some interval if), 1]. To use  Just as different defuzzification methods provide different
the computational procedure described above to compuesults, different type-reduction methods also provide different
Cj, observe thatr; and 6; in (31) play the role ofz;; results. Which type-reduction method to choose is an open
andw; in (27), respectively. In this case, eaghis zero issue, as is which defuzzification method to choose. [
because each; is crisp.
In the second stage, we compute the type-reduced
set using (30). When computing the type-reduced set, VII. APPLICATION TO TIME-VARYING
C; plays the role ofZ; in (26). If the domain ofC; CHANNEL EQUALIZATION
is the interval[Lf, Rf], thenc¢, = (L7 + Rf)/2 and  Wang and Mendel [40] applied a type-1 FLS to time-
si = (Rf — Lf)/2. The degree of firingg; plays the invariant nonlinear channel equalization and demonstrated that
role of I¥;. If the domain ofE; is the interval[L;, Bi], the bit error rates (BER) of the fuzzy equalizers are close
thenh; = (L; + Ry)/2 and Ap = (B — Ly)/2. to that of the optimal equalizer [40]. Sarwal and Srinath
In each of the above cases, a crisp output for the type-2 F[35] observed that a transversal filter requires a much larger
can be found by computing the centroid of the type-reducéining set to achieve the same error rate as compared to
set. Since the type-reduced set is an interval, the centroidaiguzzy logic equalizer. Lee [22] proposed a complex fuzzy
the midpoint of its domain. adaptive filter for QAM constellation channel equalization.
Example 6.1:1In this example, we illustrate the use of théPatra and Mulgrew used a fuzzy adaptive filter to implement a
just-described type-reduction methods for an interval typeBayesian equalizer [33] and also used it to eliminate cochannel
FLS. We consider a single-input single-output type-2 FLBterference [34].
using product-norm and product inference, which has rules of All the above fuzzy approaches in the area of adaptive
the form: R": IF z is F!, THEN y is G, wherez, y € [0,10]. equalization are focused on time-invariant channels. In today’s
Fig. 4(a) and (b) depicts the antecedent and consequent seasamunication world (such as mobile communications) the
The footprints of uncertainty are uniformly shaded, becausbannels are time-varying and nonlinear. Observing this, we
the secondary MF’'s are interval sets. Each of these sets eqply our type-2 FLS to this challenging area and compare it



KARNIK et al: TYPE-2 FUZZY LOGIC SYSTEMS 653

(b)

Fig. 4. (a) Antecedent sets (the vertical axis shows the primary membershipinahe antecedent sets) and (b) consequent sets (the vertical axis shows
the primary memberships af in the consequent sets) for the interval type-2 FLS in Example 6.1. The applied(inpat4) is shown in (a).

elk) A. Why a Type-2 FLS Is Needed for

e . Time-Varying Channel Equalization
s(k) - o (k) sk)

In a FLS-based equalizer (such as in [40]), the antecedents

Fig. 5. Block diagram of a base-band communication system subject to aier(k), r(k —1), -+, 7’(’“ -p+1), Wherep is the equalizer
and AGN. order (number of taps in the equalizer). We let

— & & J— P o —_ T
with the methods based on a type-1 FLS [33] and a nearest v(k) = [r(k), 7k = 1), (k= p+1)] (33)
neighbor classifier (NNC) [36]. The NNC approach [36] has
4 . and
been successfully used in a global system for mobile com-
munications (GSM) receiver and no complicated optimization
method [such as recursive least squares (RLS) or least means

squares (LMS)] has been used in it. We also design our type-

FLS based on a clustering method, and do not use the R{'8€"® r(k) is called thechannel state[2] and there are
or LMS methods ' ns = 2"tP channel states [2].

A block diagram of a base-band communication systemA normalized Bayesian equalizgi(r(k)) has been devel-

subject to intersymbol interference (ISI) and additive GaussigRed in [33] as
noise (AGN) is shown in Fig. 5, where(k) is the symbol

£(k) = [P(k), - 7k —p+ D" (34)

ng -1 ~
to be transmitteds(k) is the noise-free signak(k) is the Zyzpl‘[ exp l_} <7>(k—l)—7’i(k—l)>2]
noise, the channel order is (n + 1 taps), and time-varying =1 20 2 Oe¢
tap coefficients arey;(k) (¢ = 0,1,---,n); so r(k) can be J(x(k) = ns p—1 ] . 2
represented as (we assume the channel délay0) ST e l_} <7(k—l)—n(k—l)> ]
i=1 1=0 2 e
n (35)
r(k) =7(k) + e(k) = Zai(k)s(k—i) + e(k) (32) where o, is the standard deviation (std) of the additive
=0 noise, ands; is thelth (I = 1,---,p) element of theith
(¢ = 1,---,2™*P) channel state. The decision output of

where & denotes time index. Here we assume thgt) is this equalizer is based on the sign ¢fr(k)). A type-1
binary, either+1 or —1 with equal probability. Our channel FLS with Gaussian antecedent MF’s, product inference, and
equalization goal is to recover the input seques@e based height defuzzifier [as in (14)] can be used to implement the
on a sequence of(k) values without knowing (estimating) normalized Bayesian equalizer in (35) perfectly [33] because
the channel coefficients—the (k). it has the same structure as (14).
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Fig. 6. For the channel in (36): (a) time-invariant chanagl= 1 andaz = 0.5. (b) Channel states (noise free) of time invariant chanaedenotes
the categoryr(k) is +1, and + denotes the categorf(k) is —1. (c) Example of time-varying channel with = 0.1. (d) Channel states (noise
free) of the time-varying channel in (c).

TABLE 11l

NoMINAL CHANNEL STATES FOR CHANNEL MODEL (36) wiTH BINARY SymBoLS. THE CHANNEL
DELAY d = 0 AND p = 2. THE CHANNEL STATE CATEGORY IS DETERMINED BY s(k)

3

s(k) | s(k-1) | s(k - 2) 7 (k) k= 1)
1 1 1 a; + az — 0.9((11 + ag)3 a) +agy — 0.9(&1 + az)a
1 1 -1 ay +az — 0.9((11 + a2)3 a; — ag — 0.9(0.1 - a2)3
1 -1 1 ay — ag — 0.9((11 - 02)3 —ay -+ az — 0.9(—(11 + a2)3
1 -1 -1 ay — a9 — 0.9(&1 — (12)3 —ay; —ay — 0.9("‘&1 - 02)3
-1 1 1 —ay + ag — 0.9(—a; + ag)’ a; +a; — 0.9(a; + a;)°
-1 1 -1 —a; + ag — 0.9(~a; + az)’ a; —az — 0.9(a; — ag)’
-1 -1 1 —ay — a4y — 0.9(“011 - a2)3 —a; + ay — 0.9(—(11 + a2)3
)

-1

-1

-1

-a1 — az — 0.9(—(11 — a2 —a; —adg — 0.9(-—01 - (12)3

In this paper, we chose the following channel model that We focus on the case when the channel is time-varying, i.e.,

was used in [40]:

r(k) = ayrs(k) + azs(k — 1)

— 0.9[ars(k) + ags(k — D] + e(k)

where nominal values for the channel’'s coefficientsare- 1
anda, = 0.5, shown in Fig. 6(a). In this paper, we also assumtg

whena; andas in (36) are time-varying coefficients. The time
variations of the two coefficients were simulated, as in [4], by
using a second-order Markov model in which two independent
white Gaussian noise sources drive a second-order Butterworth
low-pass filter (LPF). We used the functibatter provided by

e Matlab Signal Processing Toolbox to generate a second-

(36)

that we know that the channel has two taps, e 1. We order low-pass digital Butterworth filter with cutoff frequency

also chose the number of equalizer taps to be equal+tal,

0.1; then the functiorfilter was used to generate a colored

i.e., p = 2. The nominal channel states are given in Table Iffaussian sequence, which we then used as the time-varying
and are plotted in Fig. 6(b). Observe that the nominal chanrslannel coefficients. Note that we centergdk) about 1 and
states are eight single points.

az(k) about 0.5. The input to the Butterworth filter is a white
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Gaussian sequence with standard deviation (stdhe source 1

code for the time-varying coefficients is 0slb |
[B,A]=butter(2,0.1)

% B (numerator) and A (denominator) of LPF 0.8r

al=1+filter(B,A beta*randn(1,1000)) 0.7}t

a2=0.5+filter(B,A,beta*randn(1,1000)).

Realizations of the time-varying coefficients and channel state
are plotted in Fig. 6(c) and (d), respectively, f6r= 0.1.

Observe that the channel states are now eight clusters inste g4}
of eight single points. These clusters illustrate tlatis
uncertain for alk = 1, - - -, 8. Each cluster has catego#yl or
—1, as determined by(k) (see Table Ill); this establishes the 0.2t
value ofg‘ as1 or —1 in (35), as determined by the Bayesian o1l
decision boundary [2], [33].

0.6F

05+

0
0

B. Designing the Type-2 FLS Equalizer 10

In our type-2 FLS design, there are eight rules (each rui¥¥: 7- The type-2 MF's for time-varying channel equalization. The shaded
regions are the footprints of uncertainty for interval secondaries. For illus-

describes one channel state corrupted by additive noise) aggle purpose, we show the centers of Gaussian MF’s varying from 4.5 to
the Ith rule R' is expressed as 5.5.

R IF7(k)isF} andr(k — 1) is F; THEN 5(k) is G' To complete the specification of the MF's in (37), we also
whereF!{ and I}, are type-2 Gaussian MF’s with uncertaimeed to estimate the std of the noise, In [3], it is shown
means andz! is a type-1 Gaussian MF with meapl or —1 that equalizer performance is not very sensitive to the value
as determined by the channel-state category. For kutee o.. In our simulations, we assumed that the valuespfis
range of the mean of anteceddtit (I'}) corresponds to the known exactly. How to handle the situation when this is not
horizontal (vertical) projection of théh cluster in Fig. 6(d). true will be reported on in a future publication.

We used height type reduction (which, in this case, is the samd3ecause we used an interval type-2 FLS, computation was
as center-of-sets type reduction because the rule conseq@ggatly simplified, i.e., we used the type reduction computation
is type-1) as described in Section IV-B, so (29) defines thgocedure described in Section VI.

structure of our type-2 FLS equalizer whereequalsl or —1

(center ofG'), 6; € D' = Mi_, e () C. Simulations
1 [ —ml 2 We compared our type-2 FLS with the type-1 FLS in [33]
Hit (z1) = exp o\ T, and the K-nearest neighbor (NN) classifier in [36]. If the
. . ¢ . number of training prototypes i%/, then K = /N is the
my, € [my, Myl (37) optimal choice ofK [9]. The parameters of the type-1 and

(see Fig. 7) and: = 1, 2. In order to specify these MF's, wetype-2 FLS's were set using the training sequence and we

need to specify their parameters, naméty},, m.,], ando.. then determined the bit error rate (BER) of the three equalizers

Below, we letm} = [m!,, m4,]7 andms! = [ml,, mb,]~. using the testing sequence. We performed our simulations for
We used a clustering approach to estimaté and ml, two cases, a small number of training prototypes and a large

because it is computationally simple. Here we briefly summBumber of training prototypes. o

frize this approach. Suppose the number of training prototypest) Small Number of Training Prototypesn this simula-

(s(k), r(k)) is N where from Table Ill, we see tha(k) = tion, the training sequence we used is of length 81 and the

[s(k), s(k — 1), s(k — 2)]7 determines to which cluste(k) = testing sequence is of length 919. In our experiment, we
[r(k),(k —1)]” belongs. Sax(1), (2), - - -, (V) are classi- fixed the SNR = 20 and ran simulations for five differerit

ranging from3 = 0.04 to 8 = 0.20 (0.04 : 0.04 : 0.20). We

ran 100 Monte Carlo (MC) simulations for ea¢hvalue. In
each realization, the channel coefficients and additive noise
were uncertain. In Fig. 8, we plot the average BER for the
100 MC realizations.

m! — ol (38) In our second experiment, we fixed = 0.1 and ran
(39) simulations for seven different signal-to-noise ratios (SNR’s)
) ranging from SNR= 15 dB to SNR= 30 dB (15 : 2.5 : 30).
Consequently[m{,, mi,] is the range of the mean of thewe ran 100 MC simulations for each SNR value. In Fig. 9,
type-2 antecedent Gaussian Mk ; similarly, [m;, mj,] IS we plot the average BER for 100 MC realizations.

the range of the mean gi;, . For the type-1 FLS design, we  2) |arge Number of Training Prototypesn this simula-
usedm, (i.e., [ml;, m’,]7) as the centers of type-1 Gaussiation, the training sequence we used is of length 169 and the
antecedent MF’s. testing sequence is of length 831. In our first experiment,

fied into2P*" clusters, where in this examplg " = 2241 =
8. Supposel; training prototypes belong to thih cluster,
I=1,---,8. The mean and std of thes¢k) arem! anda’,
respectively. We let

l
my

e e

l l l
mg m, + o,.
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Fig. 8. The average BER of type-1 FLS, nearest neighbor classifier (NN@)g. 10. The average BER of type-1 FLS, nearest neighbor classifier (NNC),
and type-2 FLS versug when SNR = 20 dB and the number of training and type-2 FLS versug when SNR= 20 dB and the number of training
prototypes is 81. Each point corresponds to an average over 100 realizatipnstotypes is 169. Each point corresponds to an average over 100 realizations.
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Fig. 9. The average BER of type-1 FLS, nearest neighbor classifier (NN®)g. 11. The average BER of type-1 FLS, nearest neighbor classifier (NNC),
and type-2 FLS versus SNR wheh = 0.1 and the number of training and type-2 FLS versus SNR wheh = 0.1 and the number of training
prototypes is 81. Each point corresponds to an average over 100 realizatipnstotypes is 169. Each point corresponds to an average over 100 realizations.

we again fixed the SNR= 20 and ran simulations for 3) Atype-1FLS is able to handle the additive noise (Figs. 8
eight different 5 ranging from3 = 0.04 to 5 = 0.32 and 10), but it does not handle channel coefficient
(0.04 : 0.04 : 0.32). We ran 100 Monte Carlo (MC) uncertainties as well. In Figs. 9 and 11, we see that for

simulations for eact# value. In Fig. 10, we plot the average higher SNR’s, (which means the channel uncertainties
bit error rate (BER) for the 100 MC realizations. In our second  are due primarily to uncertain channel coefficients), the

experiment, we again fixed = 0.1 and ran the simulations performance of the type-2 FLS is much better than that
for seven different SNR’s ranging from SNR 15 dB to of the type-1 FLS.

SNR=30dB (15 : 2.5 : 30). We ran 100 MC simulations

for each SNR value. In Fig. 11, we plot the average BER for VIII. CONCLUSIONS AND FUTURE WORK

100 MC realizations. In this paper, we have developed a type-2 FLS as a natural
3) Remarks: extension of a type-1 FLS and have focused on the operations
1) From Figs. 8-11, we see that our type-2 FLS perforned inference, type reduction and defuzzification for a type-2

better than the NNC and type-1 FLS in all experiment&LS. Type reduction is a new operation for a FLS; it reduces
2) The NNC does not obtain good performance when the defuzzification when all uncertainties disappear; and it is
number of training prototypes is small, but it can performomputationally intensive, except for interval type-2 FLS’s.
better than a type-1 FLS when the number of trainingp that important case, we have provided a simple five-step
prototypes is large. iterative procedure for computing the type-reduced set, and
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have shown that the complexity of an interval type-2 FLS hasd the membership af in C; [denoted ag:«(Cg)] is

been tremendously reduced.

We have applied type-2 FLS’s to time-varying channel N
equalization, for which channel uncertainty cannot be captured ne(Cp) = H po, (6:) (41)
with a type-1 FLS, whereas it can be captured by a type-2 FLS. =1
Simulation results show that our type-2 FLS outperforms vhere {91’ .. .’QN} are the primary memberships that make

type-1 FLS and a NNC. This application suggests that typeu%

the type-1 seB. Also, let A denote the principal mem-

FLS’s are very promising for engineering applications Wheligérship function ofA. Obviously, uc(Cs) = 1. Observe the

uncertainties are present.

The interval type-2 FLS we discussed in this paper uses
singleton fuzzifier. Mouzouris and Mendel [31] presented the
theory of a type-1 FLS with nonsingleton fuzzification and
applied it to Mackey—Glass chaotic time series forecasting
when the time-series is corrupted by measurement noise. In
actual time series such as the price curve for the United State
dollar versus the German mark, market volatility can change
noticeably over the course of time, so that the variance of
the noise component, which is related to volatility, need not
be constant [25]. In this case, we cannot fuzzify the crisp
input as a type-1 fuzzy set, because type-1 MF's cannot
fully represent the uncertainty associated with this linguistic
knowledge. We believe that in this important caties input
should be fuzzified into a type-2 fuzzy, $&t., a nonsingleton
type-2 FLS should be used. The theory and design for an
interval type-2 nonsingleton FLS is reported on in [24].

The two most popular fuzzy logic systems (models) used
by engineers today are the Mamdani and TSK systems. Th
type-2 FLS’s we presented in this paper are Mamdani systerﬂg.
We have developed a type-2 TSK FLS [23], and are explori
the design and applications of interval type-2 TSK FLS's.

Finally, MATLAB files for performing type-2 com-
putations discussed in this paper are available at UR
http://sipi.usc.edu/"mendel/software.

APPENDIX A
CENTROID COMPUTATION USING PRODUCT ¢-NORM

When a product-norm is used to calculate the centroid of gql

type-2 set that has a continuous domain and whose seconc{g@ . o
blem,we will always use the minimugnorm to calculate

e centroid of a type-2 set having a continuous domain.
rJ%inally, note that while performing algebraic operations on

memberships are not all unity, we obtain an unexpected resﬁft.
Here we discuss this problem and suggest a remedy.

We concentrate on type-2 sets that have a continuou
domain and whose secondary membership functions are s
that for any domain point, only one primary membershi
has a secondary membership equal to one, e.g., Gaussia
triangular type-2 sets. Lek be such a set. In the discussior?e
associated with (7), we assumed that the domainAofs
discretized intaV points. The true centroid of (assumingA
has a continuous domain) is the limit 6% in (7) asN — .
When we use the produétnorm limy ., 7, up,(0;) =
liInN_)oo Hi\;l uni(&;).

Let B be an embedded type-1 setAn The centroid ofB
is computed as

N
Z -TiNB(-Ti)
=l

U =—5
> nn(z)
i=1

(40)

following.
a1) limy oo pe(Cp) is nonzero only ifB differs from

A in at most a finite number of point$or all other
embedded setB, the product of an infinite number of
quantities less than one will cauge (Cg) to go to zero
as N — .

§) For any embedded s& whose membership function

differs from that ofA in only a finite number of points
[i.e., whenpug(z) # palx) for only a finite number
of points z] Cg = Ca. This can be explained as
follows. The (true) centroid oB is the limit of (40)
asN — oo, i.e.,,Cg = [, zup(z) dx/ [, ps(x) dzx,
wherez € B. Since A and B share the same domain
(both are embedded sets in), z € A & = € B;
and sincep,(xz) and up(z) differ only in a finite
number of pointsf, zup(z) de = [, zpa(z) de and
[, wp(x) dx = [, pa(z) dz; therefore,Cp = Ca.

rom these two observations, we can see that the only

int having nonzero membership 5 is equal toCay;
d its membership grade is equal to the supremum of the
embership grades of all the embedded type-1 sets which have
the same centroid, which is equal to one [sipegCa) = 1].
In other words,Cy = 1/Cs = Ca, e, the centroid ofA,
will be equal to a crisp number - the centroid of its principal
membership function!
This problem occurs because under the produgbrm,
limy—oo TN, pp, (6;) = imy_oo TY,; up,(8;) =0, unless

T

y a finite number ofup.(#;)'s are less than one. The

imum#-norm does not cause such a problem. To avoid this

rval sets, the choice afnorm does not matter, because
he memberships are equal to one; therefore, the problem

e rcribed above does not appear in the case of interval type-2

S [16], [19].
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