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Fuzzy Basis Functions: Comparisons
with Other Basis Functions

Hyun Mun Kim and Jerry M. Mendel, Fellow, IEEE

Abstract— Fuzzy basis functions (FBF’s) which have the ca-
pability of combining both numerical data and linguistic in-
formation, are compared with other basis functions. Because a
FBF network is different from other networks in that it is the
only one that can combine numerical and linguistic information,
comparisons are made when only numerical data is available.
In particular, a FBF network is compared with a radial basis
function (RBF) network from the viewpoint of function ap-
proximation. Their architectural interrelationships are discussed.
Additionally, a RBF network, which is implemented using a
regularization technique, is compared with a FBF network from
the viewpoint of overcoming ill-posed problems. A FBF network
is also compared with Specht’s Probabilistic Neural Network
and his General Regression Neural Network (GRNN) from an
architectural point of view. This is motivated by the similarities of
the FBF and GRNN formulas. Then, a FBF network is compared
with a Gaussian sum approximation in which Gaussian functions
play a central role. For comparison, we simulated a simple
function approximation problem to compare a FBF network
with a RBF network. Finally, we summarize the architectural
relationships between all the networks discussed in this paper,
and compare the different approximations from the point of view
of the assumptions made about the available data.

I. INTRODUCTION

ECENTLY, Wang and Mendel [34] introduced fuzzy ba-

sis functions (FBF’s) which have the capability of com-
bining both numerical data and linguistic information. These
basis functions are quite general. Their exact mathematical
structure depends on four choices that one must make for any
fuzzy logic system, namely, type of fuzzification, membership
function, inference mechanism, and defuzzification strategy.
Wang and Mendel frequently choose singleton fuzzification,
Gaussian membership functions, product inference, and height
method of defuzzification, in which case their FBF network
can be summarized by the following mathematical equation

> [fTew (4(27))
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where z = (z1,--,2,)7;7, and o! are real-valued parame-

ters; 2,0 = 1,---, M are coefficients; z',{ = M +1,--- N
are the points in the output space R determined by the
fuzzy rule base [34] both Z'’s are the centers of consequent
membership functions. We can represent (1) as a sum of two
functions

f(z) = fn(z) + fu(=) ?)

where fn(z) consists of basis functions which deal with
numerical data and fr(z) consists of basis functions which
deal with linguistic information. Note that in (1), the 2
coefficients of fr(x) can be obtained from the given fuzzy
rule base directly, whereas the z' coefficients of fy(z) can
be obtained using learning rules such as least squares, least
mean-squares, or back-propagation [36].

To people familiar with aspects of approximation theory for
deterministic data, the formulas for either fx (z) or fi(z) look
familiar. The radial symmetry of the Gaussian membership
functions causes us to wonder whether (1) is just a Gaussian
radial basis function expansion (others have suggested to us
privately that they are the same). We show below that it
is not; instead, it is a nonlinear function of Gaussian radial
basis functions. Interestingly enough, Gaussian radial basis
functions are themselves special cases of Generalized radial
basis functions [8] and hyper-basis functions [8]. We also
explore the relations between these more general radial basis
functions and FBF’s below.

There are other literatures in which Gaussian functions play
a central role in approximations; hence, we are motivated to
explore the relationship between (1) and results from these
approximation problems. We were intrigued by the similarity
between the formula for Specht’s generalized regression neural
network (GRNN) [30] and (1), and wondered again whether
(1) was just another GRNN. Below we explain why it is
not (see, also, Wang [36]). We also examine the relation-
ship between FBF networks and Specht’s probabilistic neural
network (PNN) [31], and FBF networks and Gaussian sum
approximations. The latter are used in nonlinear filtering. An
important difference between these approximation problems
and the ones described in the previous paragraph is that data,
including the quantities being estimated by a GRNN, PNN or
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a Gaussian sum approximation, are assumed from the very
beginning to be random. No such modeling assumption is
made or needed for FBF networks.

Our comparisons between FBF’s and the different types of
radial basis functions, or the other functions just described, is
only valid for the special case when no linguistic information
is used by the FBF network (i.e., fr(z) = 0). We make this
important point here, so that it is at once clear to the reader
that, in general, a FBF network is indeed different from all
of these other networks, because it is the only one that can
combine numerical and linguistic information (see, also, Wang
[36]). Consequently, the rest of this paper treats the special
case for a FBF network when only numerical data is available
(e, fu(z) = 0), in which case it is indeed legitimate to
question whether or not the FBF as described by (1) is new.

Kosko [11] and[12] has developed the additive fuzzy system
which has the following form for correlation product encoding
or output scaling

iaz’(x)Vjcj
F(z) = =

= 3)
S ai(@)V;
7=1

where V; is the volume (area) of jth consequent fuzzy set and
c; is the centroid of it. Note that (3) reduces to (1) when the
volumes (areas) V; in (3) are identical and when a; factors
into n Gaussian sets.

In Section II, FBF’s are compared with a radial basis
function (RBF) network which is widely used for interpolation.
Because interpolation is a subset of approximation, compar-
isons are made from the viewpoint of function approximation.
Additionally, since the problem of learning a smooth mapping
from examples is ill-posed, in the sense that information in
the data is not sufficient to uniquely reconstruct the mapping
in regions where the data are not available, regularization
techniques are compared which change the ill-posed prob-
lems into well-posed problems. Finally, the constraints of a
regularization technique are interpreted from the viewpoint of
linguistic rules.

In Section III, a FBF network is compared with Specht’s
PNN and his GRNN. Because the PNN and GRNN are
based on Parzen’s window, which exploits random data, our
comparisons are made from an architectural point of view
(since the assumptions about the available data are different,
it is reasonable to make comparisons based only on network
structures).

In Section IV, a FBF network is compared with a Gaussian
sum approximation that was developed as early as 1971 to
cope with Kalman filtering for nonGaussian systems.

In Section V, we present a simulation of a simple function
approximation problem to compare a FBF network with a RBF
network.

Finally, in Section VI, we present figures which summarize
the architectural relationships between the networks discussed
in this paper, and the interrelationships of all the networks.
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Basic configuration of fuzzy logic system.

Fig. 1.

II. CoMPARISON BETWEEN FBF’s AND RBF’s

A. FBF Network

The basic configuration of a fuzzy logic system (FLS) is
shown in Fig. 1. There are four principal components in a
fuzzy logic system: 1) fuzzy rule base which comprises fuzzy
rules describing how the fuzzy system performs; 2) fuzzy
inference engine which uses the rules in the fuzzy rule base
to determine a mapping based on fuzzy logic operations; 3)
fuzzifier which maps crisp points in the input space into fuzzy
sets in the input space; and, 4) defuzzifier which maps fuzzy
sets in the output space into crisp points in the output space.
Within each component, there are many different choices that
can be made, and many combinations of these choices result
in different fuzzy logic systems. It would, therefore, be very
cumbersome to compare every case; hence, in this study, we
consider only one general case, namely, the fuzzy logic system
with: singleton fuzzifier, height method defuzzifier, product
inference, and Gaussian membership functions [36], given in
(1). We have chosen this case so that the resulting FLS can
be compared with seemingly similar systems that also use
Gaussian or radially-symmetric functions.

Our FLS can be represented as the FBF expansion

M
f(®) = fn(@) =) pi(@)6; @
j=1
where p;(z) is a FBF, defined as
H/J’Ff (zi)
pi(z) = 5 5)
ZH“F{' (z:)
j=li=1

in which ppi(z;) = exp (—(1/2)(x; — ! /07 )?) are Gaussian
membership' functions, and 6; = 2’ € R are constants. If
we fix all the parameters in p;(z) at the very beginning of
the FBF expansion design procedure, so that the only free
design parameters are 6;, then f(x) in (4) is linear in the
design parameters. The FBF network can then be regarded as
a special case of the linear regression model,

M
d(t) =Y pi(t)0; +(t) ©)



where d(t) is the desired output, §; are the unknown param-
eters, p;(t) are regressors, which are some fixed functions
of z(t), and, €(t) is an error signal which is assumed to be
orthogonal to the regressors. By providing input and desired
output pairs, the values of the 8;’s can be determined using,
for example, least squares. Note, also, that in general the
parameters of the FBF’s need not be fixed ahead of time. They
can be optimized along with the §;’s using a back-propagation
procedure [35].

B. RBF Network

The RBF network is one of the possible solutions to the
real multivariate interpolation problem, that can be stated as
follows: given N different points {z; € R*,s = 1,---,N}
and N real numbers {y; € R|¢ = 1,---, N}, find a function
F from R" to R satisfying the interpolation conditions
The RBF approach consists of choosing F' from a linear
space of dimension N that depends on the data points {z;}.
The basis of this space is chosen to be the set of functions
{¢(J|lz—=:|]),i =1, -+, N} where ||-|| denotes the Euclidean
norm. The radially symmetric function ¢(-) which maps from
R* to R is called a radial basis function [26] and [27]. Some
examples of ¢(-) are

&(r)=r, r>0 (linear approximation),
B(r) =13, >0 (cubicapproximation),
(1) = exp (—r%/20?%), r>0

(Gaussian approximation),
é(r) =r2logr, r>0
$(r) = (r? + )2,
The solution to the interpolation problem has the following
form [26]

(thin plate splines),
r>0 (multiquadrics).

N
z) :ZW(IIz—xill) ®)

where £ € R"™ is the input vector; and the A;’s (1 <

i < N) are parameters. When the given sample values are

presumed to be accurate, and it is required to perform a

smooth interpolation between sample points, (8) can be solved

by imposing the interpolation conditions F(z;) = y;,j =
-, N. The solution is

A=0"1y ®
where
Ay =[A1, -, AN]T (10)
(@)i; = (||l — z;]l) (11)
and
Ynsxa = un]" (12)

Some analysis regarding the singularity of (9) is made by
Micchelli [19].

If the data are subject to measurement errors or stochastic
variations, a strict interpolation is meaningless. Consequently,
the interpolation property of the RBF network is not sufficient
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to guarantee good results. One of the solutions to this problem
is the regularization technique which exploits smoothness
constraints [8], [22], and [23]. It consists of replacing the
matrix ® by ® + al, where [ is the identity matrix, and o
is a small parameter whose magnitude is proportional to the
amount of noise in the data points. The coefficients of the
RBF network are then given by

A= (<I>+aI)‘1y (13)
Note that the original interpolation is recovered by letting «
go to zero. Interpolation is the limit of approximation when
there is no noise in the data. It is proved in [22] that, for
networks derived from regularization, and in particular for
radial basis function networks, a best approximation exists
which guarantees that the approximation problem has a unique
solution.

C. Comparisons

If we choose the parameters in (1) as 0! = o for all

i=1,2,---,nand [ = 1,2,---, M, with fr(z) =0, then
x—f’)T(z—El)
202

=
z exp [ 122 21E]
B Zp[ ||z—z’||2] ’

If we use the Gaussian radial basis function notation, then
(14) can be expressed as

M

Z
flz) = ;4

2 exp

(14)

M
> 2|l -7

fl@)= 55— (15)
> lllz =)

Comparing (15) with (8) from an architectural point of view,
we see that, whereas the RBF network is a linear combination
of radial basis functions, the FBF network is a nonlinear
combination of radial basis functions; hence, a RBF network
can be used as a FBF network with the addition of lateral
connections between the RBF’s, something suggested in [20].
Due to the height method of defuzzification operation of a
FBF network, which leads to the denominator of (15), it is
impossible to classify a FBF as a RBF.

After determining the network structure, it is natural to
ask how to determine the coefficients of (8) or (15). The
computation of the coefficients of the RBF network becomes
a very time consuming job as /N becomes large. To overcome
this, several methods have been proposed. Chen [7] uses an
orthogonal least squares (OLS) algorithm to select a subset of
significant basis functions from a given set of basis functions.
Poggio and Girosi [8] proposed a generalized RBF (GRBF)
network which has movable centers that do not necessarily
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coincide with some of the data points z;. They applied
the regularization technique to the approximation problem.
It consists of looking for the function f that minimizes the
functional

n

Hf1 =Y (v - f(=:))* + || PfI]?

i=1

(16)

where P is a constraint operator, || - ||2 is a norm on the
function space to which f belongs and o is a regularization
parameter. The structure of the operator P embodies the a
priori knowledge about the solution. Poggio and Girosi [8]
also extended the GRBF to a hyper-basis function (HyperBF)
network by choosing a different smoothing parameter for each
basis function (e.g., a different o for each Gaussian RBF). The
main idea is to consider the mapping to be approximated by
the sum of several functions, each one with its own prior,
that deals with different constraints to stabilize a system.
Consequently a FBF network with different ¢’s becomes
a nonlinear combination of HyperBF’s. In other words, a
HyperBF network can also be used as a FBF network with
the addition of lateral connections between the HyperBF’s.

From the point of view of learning as approximation, the
problem of learning a smooth mapping from examples is
ill-posed in the sense that the information in the data is
not sufficient to uniquely reconstruct the mapping in regions
where the data are not available. A priori assumptions about
the mapping are needed to make the problem well-posed.
In particular, the mapping may be smooth, which is one of
the most general constraints. We may regard this constraint
as a linguistic rule (although it is not an IF-THEN rule).
Poggio and Girosi therefore absorb linguistic rules using a
constraint operator, whereas a FBF network absorbs linguistic
rules directly into its basis functions.

The most important advantage of the FBF network over
other networks is that linguistic IF-THEN rules can be trans-
lated into FBF’s to make the FBF network an universal
approximator. To cope with an ill-posed problem, the number
of training data must be large enough to excite all the modes
of the system. FBF’s can incorporate some linguistic [F-THEN
rules which play the role of unobserved modes. In [37], fuzzy
adaptive filters were developed with and without linguistic
rules. By incorporating some linguistic rules into the fuzzy
adaptive filters, the adaptation speed was greatly improved.

TII. COMPARISONS BETWEEN FBF
NETWORKS AND NETWORKS FOR WHICH
THE DATA ARE ASSUMED TO BE RANDOM

A. Parzen’s Estimate of a Probability Density Function

Central to nonlinear estimation and stochastic control prob-
lems is the determination of the probability density function of
the state conditioned on the available measurement data. If this
a posteriori density function is known, then an estimate of the
state for any performance criterion can be determined. Parzen
[21] showed how one may construct a family of estimates,
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fn(x), of a probability density function (PDF) f(z), as

fiw) = 53 k(2E)

i=1

which is consistent at all points z at which the PDF is
continuous. Let X7, - - -, X, be independent random variables
identically distributed as a random variable X whose distri-
bution function F(z) = P[X < z] is absolutely continuous.
Parzen’s conditions on the weighting function k(y) are

amn

sup |k(y)| <oo (18)
—oo<Ly<oo
where sup indicates the supremum
| k<o, (19)
—oo
Jim lyk(y)| =0 20)
and
o0
[ k=1 @1
-0
In (17), 0 = o(n) is chosen as a function of n such that
lim o(n) =0 (22)
and
lim no(n) = oo. (23)

n—o00

Parzen proved that the estimate f,(x) is consistent in the
mean-squared sense in that

E{|fu(z) — f(@)’} =0 as n— oo (24)

Cacoullos [6] has extended Parzen’s results to cover the
multivariate case. In the particular case of the Gaussian kernel,
the multivariate estimates can be expressed as

M
1 1 (I—Xi)T(Z—Xi)
fm(x) - (27r)1’/20'1’ R Z €xXp |:_

202

i=1

(25)

where ¢ = pattern number, m = total number of training
patterns, X; = ith training pattern, ¢ = smoothing parameter,
and p = dimensionality of measurement space, i.e., dim (z).
Observe that fo,(x) looks like (8) in which all the A;’s are
the same; hence, in retrospect, Parzen’s PDF, fn () can now
be called a RBF network. Except for a new name, Parzen’s
important result remains unchanged. Note, though, that in
Parzen’s work signal z is random, whereas RBF’s do not
assume the data is random.

Although Parzen proved the existence of a consistent esti-
mate in mean-square, he did not indicate how to choose the
weighting function on the basis of a finite set of data. Several
methods have been proposed for the practical use of Parzen’s
method. Breiman er al. [4] suggested that even better density
estimates could be obtained using Parzen windows and finite
data sets if a different o is used for each exemplar (data point).
Their suggestion stems from the observations that Parzen’s
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method can not respond appropriately to variations in the PDF
(i.e., there should be a distinction between low density regions
and high density regions); and, none of the asymptotic results
give any helpful leads on how the shape factor o should be
selected to give the best estimate of the unknown density. In
other words, the rate of convergence depends critically on the
density and its derivatives. To make the sharpness of the kernel
data-responsive, they proposed the class of variable kernel
estimates

1 emi [T X

ful(@) = ~ ;(akdl,k) K(Olkdi,k> (26)
where d; i is the distance from the point z; to its kth nearest
neighbor, ¢ is a constant multiplicative factor, m is the
dimension of £ and K is a selected kernel. Observe that in low
density regions, d; » will be large and the kernel will be spread
out. This method can be regarded as an extended version of
the kth nearest neighbor estimator [15] which is adaptive to
local sample density, but is discontinuous. The variable kernel
approach offers a combination of the desirable smoothness
properties of the Parzen-type estimators with the data-adaptive
character of the kth nearest neighbor approach. Breiman et
al., observed that the best value of ¢ for the Parzen estimator
depends on which measure of error is used, and hence would
be much more difficult to use in practice than the variable
kernel method when the PDF is unknown. They concluded,
through some simulations, that the variable kernel estimate
was superior to the Parzen estimate. The main disadvantage
of the variable kernel estimate is its lack of systematic learning
rules. It is based on a rule which tries to find the best value
of k£ by varying it from an initial guess.

Equation (1) can also be regarded as a variable kernel
estimate if we do not fix the value of ¢’s ahead of time; but,
as in the case of RBF’s, the FBF’s in (1) do not assume the
data is random.

B. Probabilistic Neural Networks

Specht’s PNN [31] is based on a nonparametric estimation
of a probability density function, so that a Bayes decision
rule can be used for pattern classification. Consider the two-
category situation in which the state of nature S is known to
be either S4 or Sp. Let the measurements be represented by

the p-dimensional vector £ = [z1,- -+, x,|%; then, the Bayes
decision rule becomes
d(z) =84 if halafa(z)>hplpfp() 27
d(z) =Sp if halafa(z)<hplsfs(z)  (28)

where f4(z) and fg(z) are the PDF’s for categories A and
B, respectively, l4 is the loss function associated with the
decision d(zx) = Sp when S = Sy;lp is the loss function
associated with the decision d(xz) = S4 when S = Sp;h4 is
the a priori probability of occurrence of patterns from category
A; and hg = 1 — hy is the a priori probability that S = Sp.

The boundary between the region in which the Baye’s
decision d(z) = S4 and the region in which d(z) = Sp
is given by the equation

fa(z) = rfp(z) (29)
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where

T=hBlB/hAlA. (30)
The key to using (29) is the ability to estimate PDF’s based
on training patterns. Specht’s probabilistic neural network
uses Parzen’s method to estimate the PDF, consequently,
if we use Gaussian functions for the weighting function of
(17), it becomes a RBF network. When this approach was
first proposed and used for pattern recognition, however,
there were two limitations inherent in the use of Parzen’s
method: 1) the entire training set must be stored and used
during testing; and, 2) the amount of computation necessary
to classify an unknown point is proportional to the size
of the training set. Both considerations severely limited the
direct use of Parzen’s method in real time. To overcome
these limitations, Specht proposed polynomial discriminant
functions [32], which approximated Parzen’s estimates, using
Taylor series, to reduce the number of calculations. With the
advent of VLSI technology, Specht implemented the PNN
using Parzen’s method without simplification [31].

A technique similar to Specht’s polynomial discriminant
functions was explored by other researchers [1], [3], [17], who
referred to their work using the term “potential functions.” This
term first appeared in the pattern recognition literature when
the Soviets [1] introduced a simple algorithm of potentials.
Their method was originally suggested by the idea that, if
data samples are thought of as points in a multidimensional
space, and if electrical charges are placed at these points, the
electrostatic potential would serve as a useful discriminant
function.

C. General Regression Neural Networks

Specht [30] also extended his PNN to a GRNN. A more
general approach to forming an associative memory is to avoid
distinguishing between inputs and outputs. By concatenating
the input vector and the output vector into one longer mea-
surement vector, the joint PDF can be obtained. Let f(x,2)
be the joint probability density function of a random vector,
£ € R™, and a random variable, z € R. The conditional mean
of z given z (also called a mean-squared estimator) is given by

5 2f(m,2) dz

= fwna OV

Elz|z] = /oo 2f(z|z)dz =

Let (#,7!),l = 1,2, -, N, be sample values of the random
variables z and z: then, a consistent estimator of f(z, z), based
upon Parzen’s method, is given from (25) as

; 1 1
f(z-, Z) = —(27r)(n+1)/20.(7z+1) _]\7 ;

exp [_ (z - E’;Zgz - f’)}
- exp [—(i—;a—?q (32)
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Substituting (32) into (31) and performing the integration
yields the following

émp [_u—f’)T(z—f’)]

. 202
2(z) = E(2|z) = = (33)
N _(z-F)T(z-7)
Yoo |-

which is the probabilistic general regression used in Specht’s
GRNN.

D. Comparisons

Comparing (33) with (1), we see that they are almost
the same. If we choose the parameters in (1), as M =
Nool=cgforalli=1,2,---,nandl = 1,2,--- ,M,F =
the ith element of the sample vector E’, and, ' = the
sample 7', and fi(z) = 0, then the equation for the fuzzy
system (1) becomes structurally the same as the equation
for the probabilistic general regression (33). In this case,
it seems that the height method defuzzifier makes the FBF
network play the role of a mean-squared estimator. Note,
also, that the product inference rule makes the multivariate
kernel a product of univariate kernels. Poggio and Girosi
[22], [23] also showed the relation between regularization and
Bayes estimation, and demonstrated that (16) coincides with
maximum a posteriori (MAP) estimation provided that the
noise is additive and Gaussian, and the prior is Gaussian. Note
that the mean-squared estimator gives the same result as the
MAP estimator when measurements and unknown parameters
are jointly Gaussian [18].

Although there is no statistical consideration when con-
structing a fuzzy system, if we apply Parzen’s conditions
(18)—(23) to fuzzy membership function (MF) pp:U — [0, 1],
they can be easily satisfied by relaxing the constraint that the
range of the membership function satisfies (21). Equations (22)
and (23) guide the choice of the smoothing parameter, i.e.,
in the special case of (1).

We can also apply (31) to a triangular weighting function,
k(y), one that satisfies Parzen’s conditions. In this case

n

e = [ (557 (59)

i=1
(34)
and
N n 1
=110 (*57)
2(z) = E(2|z) = l:;r =1
ST (252)
. o
I=1i=1
N n —i
>0 (257)
=== — 35
A=
M1 (252)
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where A(z; — Z. /o) denotes a triangular function centered at
Eﬁ with base o and height 2/0. In (1), if we use the triangular
membership function with same o’s, we again obtain (35);
therefore, the resulting fuzzy system again turns out to be a
GRNN.

Although a FBF network and GRNN are similar in special
situations, they are quite different from many fundamental
points of view. For example, FBF networks are constructed
from a combination of sample data pairs (', 7'), and fuzzy IF-
THEN rules, whereas the GRNN is constructed only from the
sample data pairs (Z',Z'). Additionally, the data is assumed to
be random for a GRNN, whereas no such assumption is made
or needed for a FBF network. Whereas FBF networks provide
a very good framework to combine linguistic information and
measured numerical information , the GRNN can only make
use of the numerical information.

In this section, we showed that a PNN is a special case
of RBF networks. We, also showed that the structure of a
GRNN is a special case of FBF networks, i.e., given the same
set of information (sample pairs), we can construct a fuzzy
system (using fuzzy logic principles) which has exactly the
same structure as the GRNN, by modifying the range of the
MF. This can be justified by Parzen’s conditions. Also, we can
speculate that the sharper the shape of the consequent MF, the
stronger is our belief in a fuzzy set. Wang [36] mentioned this
point and claimed that the modified height method defuzzifier,
which exploits this speculation by modifying the range of the
consequent MF, would result in better performance than the
height method defuzzifier.

The principle advantages of. GRNN’s are fast learning
and convergence to the optimal regression surface as the
number of samples become very large. The disadvantage
of GRNN’s is the amount of computation required of the
trained system to estimate a new output vector. Burrascano
[5] has suggested using learning vector quantization to find
representative samples, to reduce the size of the training set for
a GRNN. Schioler and Hartmann [28] proposed an algorithm
to alleviate the computational burden based on the ideas
for automatic recruitment of new centers. The OLS learning
algorithm [7] also overcomes this problem to a large degree by
selecting a subset of significant regressors using projections.

IV. COMPARISONS BETWEEN FBF’S
AND GAUSSIAN SUM APPROXIMATIONS

A. Gaussian Sum Approximations

Gaussian sum approximations have been proposed as a
means to accomplish practical nonlinear Bayesian filtering [2],
[29]. They are motivated by the fact that the Kalman filter,
which is valid only for linear Gaussian systems, continues to be
widely (and heuristically) used for nonlinear or nonGaussian
systems.

Consider a probability density function f(z). The problem
of approximating f(z) can be conveniently considered within
the context of delta families of positive type [10]. Using
the delta families, the following result can be used for the
approximation of a density function f(x).



Theorem [10]: Let 6, belong to a delta family whose limit
function behaves like a delta function; then the sequence f, ()
which is formed by the convolution of §, and f, as

T) = /_oo 8o(z — u)f(u)du

converges uniformly to f(x) on every interior subinterval of
(—00,00).

When f has a finite number of discontinuities, the theorem
is still valid except at the points of discontinuity. If &, is
required to satisfy the condition that

/oo bs(z)dz =1

—00

(36)

37N

it follows from (36) that f, is a probability density function
for all o; therefore, in Kalman filtering, the following delta
family is a natural choice for density approximations

A 2\—(1/2) z?
6.(z) = Ny(z) = (270°) xp | —55 |-

It is shown in [24] that the Gaussian density tends to the delta
function as the variance tends to zero. Using (38), the density
approximation f, is written as

_ /_0; Ny (z — u) f (u) du.

It is this form that provides the basis for the Gaussian sum
approximations. It is clear that N, (z —u) f(u) is integrable on
(=00, 00) and is at least piecewise continuous; thus, (39) can
itself be approximated on any finite interval by a Riemann sum.
Consequently, an approximation of f, over some bounded
interval {a,b) can be written as

M
= ZaiNa(:c -z
i=1

For practical purposes, it is desirable that f be approximated
to within an acceptable accuracy by a relatively small number
of terms of the series. For the subsequent discussion, it is
convenient to write the Gaussian sum approximation as

- S e,

where 7, a; = 1, and o; > 0 for all ¢, and n < m in (40)
Unlike (40), it has been assumed in (41) that the variance a?
can vary from one term to another, to obtain greater ﬂex1b111ty
for approximations using a finite number of terms. Certainly,
as the number of terms increase, it is necessary to require that
o; tend to become equal and vanish.

The problem of choosing the parameters o, pt;, and o; to
obtain the best approximation f, to some density function
has been considered [16], [20]. In many problems, it may be
desirable to cause the approximation to match some of the
moments. For example, if the mean associated with f is p,
then the constraint that f,, have mean value . would be

w= /:ixfn(x)dxz /_o;m[iaiNm(z—m)] dz

i=1
(42)

(38)

39

frm,o () (40)
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or

H= Z Qi fhi- 43)
=1
Several methods, [9] and [20], have been developed for
choosing the parameters a;,pu;, and o;. Let P denote the
Gaussian representation parameters given by

P:[(ai7 uivgi)v 121,271’”’] (44)

The optimal Gaussian sum approximation [9] is obtained by
minimizing the sum of the squared errors between samples of
the original signal and the approximation signal with respect
to the parameters P; ie.,

p= arg m}in E 45)
where
N
E =Y [f(z:) ~ falad)]. (46)
=1

The solution of (46) may be derived by solving the system of
nonlinear equations obtained by setting /0P, = 0, for [ =
1,2,---,3n (the 3n unknown parameters in P). The steepest-
descent method is a commonly used approach to the solution
of nonlinear minimization problems. While it guarantees local
convergence, it poses some restrictions in learning rate, and,
converges slowly. Some modified algorithms are proposed in
[9] to obtain an iterative optimization procedure which results
in fast convergence.

Generally, the performance of the gradient descent method
is strongly dependent on the choice of the initial parameters.
Additionally, the number of Gaussian basis functions also
affects the approximation error. In [9], a scale-space image
of the signal is used to estimate these parameters.

B. Comparisons

If we extend the 1-D Gaussian sum approximation in (41)
to the representation of m-dimensional signals, then

flz) = Z [Hexp (—-(x‘xl>2>} @)

Comparing (47) with (8), we see that they are almost the same.
If we let o} = o foralli = 1,2,---,n they are exactly the
same; hence, the Gaussian sum approximation can be regarded
as an extended version of a RBF network where the radial
basis function is Gaussian. It can also be viewed as a class of
variable kernel estimates when K in (26) is Gaussian. Note
that the data is assumed to be random for a Gaussian sum
approximation, whereas no such assumption is made or needed
for a RBF or FBF network.

In addition, a FBF network has rich kernels. To show this,
we have plotted in Fig. 2 the FBF’s when the centers of the
Gaussian MF’s are equally spaced. The two FBF’s at the cen-
ter, which are radially symmetric, look like Gaussian functions,
whereas the exterior FBF’s look like sigmoidal functions.
Although this behavior is not generally true unless the centers
of the FBF’s are equally spaced, it is quite likely that the
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Fig. 2. Four FBF's when centers are equally spaced and the MF’s are
Gaussian.
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Fig. 3. Function to be approximated using FBF network and RBF network.

MFs’ centers will be equally spaced in function approximation
problems. In [14], it is shown that Gaussian functions are
good at characterizing local properties, whereas sigmoidal
nonlinearities are good at capturing global properties; hence,
FBF’s combine the advantages of both the Gaussian basis
functions and the sigmoidal nonlinearities.

V. SIMULATION AND COMPARISONS

To compare a FBF network with a RBF network, we ap-
proximated the function shown in Fig. 3 using both networks.
This function was sampled every 0.025 sec. so that there are at
most 241 training points. Three experiments were performed:

1) The training data was sampled at four rates, 0.025 sec.,
0.1 sec., 0.2 sec. and 0.4 sec. The latter three sampling
times correspond to downsampling the data 4:1, 8:1 and
16:1, respectively. The purpose of this experiment was
to see how well the two networks performed when less
and less training data was available.

2) Using the 4:1 downsampled data, some of the training
data was removed from either its left- or right-hand
sides. Linguistic rules, that represent a priori structural
knowledge about the unknown function, were then added
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TABLE 1
MSE COMPARISONS WITH ALL Data
Sampling ratio FBF Network without linguistic rules | RBF Network
1:1 0.0204 0.0319
4:1 0.0234 0.0357
8:1 0.0321 0.0573
16:1 0.1828 0.2533

TABLE II
MSE COMPARISONS WITH MISSING DATA ON THE BOUNDARY
Missing range Rule(s) used FBF Network with | RBF Network
linguistic rules
0.0-0.5 R®) 0.0387 0.0850
5.5-6.0 R® 0.0284 0.3324
0.0-0.5 & 5.5-6.0 RO & R® 0.0364 0.9865
TABLE III
MSE COMPARISONS WITH MISSING DATA ON THE EXTREMUM
Missing range Rule(s) used FBF Network with | RBF Network
linguistic rules
0.2-0.7 R® 0.0260 0.0507
1.5-2.0 RW 0.0225 0.0398
2.7-3.2 R®) 0.0342 0.0506
4.0-4.5 R®) 0.0547 0.0639

to the FBF network to see if these rules would compen-
sate for the lost data. The rules are:

R,
R®:.

IF z is close to zero, THEN yisclose to 3
IF zisclose to 6, THEN yisclose to 0.

3) Using the 4:1 downsampled data, some of the training
data was removed wherever the function has a local
extremum. Linguistic rules, that represent additional a
priori structural knowledge about the unknown function,
were then added to the FBF network to see if these rules
would compensate for the lost data. The rules are:

R®): IF zisclose t00.5, THEN yis close to 11.25
R“: IFzisclosetol.7, THEN yisclose to 2.5
R®): IF ziscloseto3, THEN yis close to 7.5
R®): 1IF ziscloseto4.3, THEN yis close to —2.7.

Gaussian kernels were used in the RBF networks, whereas
Gaussian membership functions were used in the FBF net-
works. The RBF networks had 13 kernels whose centers
ranged from 0-6 and were equally spaced at intervals of
0.5. The FBF’s used 13 rules whose Gaussian membership
functions were centered at exactly the same 13 points that
the RBF network kernels were. The phrase “z (or y) is close
to z; (or y;)” was represented by the membership function
exp (—[(z—x:)?/20?)). Let fr(x), fr1(z), and fra(z) denote
the RBF network approximation, FBF network approximation
without linguistic rules, and FBF network approximation with
linguistic rules, respectively. The formulas for these approx-
imations are

13 ($ _ w_)Q
fr(z) =) wiexp (‘T) 48)
i=1
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Fig. 4. Comparison of different approximations from the point of view of the assumptions made about the available data: (a) Nonrandom numerical
data plus linguistic information, and (b) random data.

(z - x,)z included plots for the RBF or FBF approximations because
Z“’z exp ( 2% ) they are all quite close to the original function depicted in Fig.
fri(z) = 13 . (49) 3. The results in Tables II and IIT demonstrate that linguistic
Z exp ( — T )2> information does indeed provide rich information to the FBF
network, and that such information can make a substantial
difference.

In (50), shown at the bottom of this page, r denotes the
number of linguistic rules that replace numerical data, and y;

denotes the center of the consequent membership function in VL. CoNCLUSIONS

the rule. In most cases 7 = 1. Tables II and III indicate exactly In this paper, we showed that a FBF network is a non-
which rule(s) were used. In all cases, we chose 0 = 0.6 and linear combination of RBF’s or HyperBF’s depending on the
used least squares to determine the w; weights. value of o. We interpreted the constraints of regularization

Mean-squared errors for the three experiments are summa- techniques as linguistic rules to compare how they are utilized
rized in Tables I-III. In all cases the FBF approximations in function approximation and showed that Poggio and Girosi
gave better results than the RBF approximation. We have not absorb linguistic rules using a constraint operator, whereas a

li:rwteXp< 2—$i)2> . Z ylexp( (z;x1)2>

fra(z) = =13ortl . (50)

Zexp ( z “ml)z)
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FBF network absorbs linguistic rules directly into its basis
functions. We also showed that the structure of a GRNN is a
special case of a FBF network, although the data is assumed
to be random for a GRNN, whereas it is nonrandom for a FBF
network. We also showed that the Gaussian sum approximation
can be regarded as an extended version of a Gaussian RBF
network.

We studied a simple function approximation problem, to
compare a FBF network with a RBF network. The FBF
network with and without linguistic rules showed better per-
formance than the RBF network, due to the richness of FBF
kernels, which agrees with [33].

Fig. 4 summarizes the relationships between a RBF network
(including the GRBF and the HyperBF networks) and a FBF
network, which are based on nonrandom numerical data, as
well as the relationships between the Parzen type networks
(PNN, GRNN) and the Gaussian sum approximation, from
the point of view of the assumptions made about the available
data. Note that, 1) FBF’s are architecturally different from
RBF’s and are the only basis functions that can handle
linguistic information as well as nonrandom numerical data;
2) RBF’s encompass other techniques such as Gaussian sum
approximations; and, 3) FBF’s are applied to data (and rules)
without an underlying assumption of randomness about the
data. How to apply FLS’s to “random” data is a subject for
a future study.
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