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Abstract—This paper presents a connection admission control
(CAC) method that uses a type-2 fuzzy logic system (FLS). Type-2
FLSs can handle linguistic uncertainties. The linguistic knowledge
about CAC is obtained from 30 computer network experts. A
methodology for representing the linguistic knowledge using
type-2 membership functions and processing surveys using type-2
FLS is proposed. The type-2 FLS provides soft decision bound-
aries, whereas a type-1 FLS provides a hard decision boundary.
The soft decision boundaries can coordinate the cell loss ratio
(CLR) and bandwidth utilization, which is impossible for the hard
decision boundary.

Index Terms—Connection admission control, fuzzy logic sys-
tems, group decision making, linguistic uncertainties, surveys,
type-2 fuzzy sets.

I. INTRODUCTION

A SYNCHRONOUS transfer mode (ATM) is the most
promising technology for supporting broadband mul-

timedia communication services. The advantages of ATM
networks are the flexibility to accommodate a diverse mixture
of traffic which possess different traffic characteristics and
quality of service (QoS) requirements. The ATM technique
provides an attractive solution to the problem of integrating dif-
ferent types of services, with widely different bit-rates, through
common interface and switching fabrics. It is a compromise
between packet switching and circuit switching techniques.

A set of traffic control functions must be provided by the
ATM network to ensure the QoS of each service and to achieve
a high network utilization. The wide range of service character-
istics, such as bit rates, burstiness factors, cell delay constraints
(latency), cell loss tolerance (accuracy), and priority combined
with the need for adaptive, and sometimes real-time services
makes the use of traditional control methods very difficult.

Although ATM networks can support a wide variety of
transmission rates and provide transmission efficiency by
asynchronous multiplexing, a cell might be lost in ATM
switches if cells are excessively fed into the networks. In order
to avoid this situation, the terminals are required to declare
their transmission rates as traffic parameters, e.g., peak cell
rate (PCR) and sustainable cell rate (SCR), in advance of
transmission. According to these declarations of transmission
rates, ATM switches judge whether the required QoS can be
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achieved. If the QoS can be met without deteriorating those
of the existing calls, then the call is admitted, otherwise it
is rejected. This traffic control function for an ATM system,
called connection admission control (CAC), decides whether
to accept or reject a call based upon availablity of capacity
required to support its QoS. Thus an estimate of the QoS is
required based on monitoring traffic patterns and buffer status,
which is important in determining the cell loss probability, cell
delay and delay variations.

Taking into consideration factors like the source traffic de-
scriptor, the amount of current network congestion along the
path of the incoming call, and QoS requirements of the new
and the pre-existing calls is a daunting task for any mathemat-
ical model. We believe that thetype of services classis the
most important class. A service is a real-time service, such as
voice and video, or a nonreal-time service, such as text data;
hence, we only study two descriptors,total average input rate
of real-time voice and video trafficandtotal averageinput rate
of nonreal-time data traffic.

Chong and Li [5] realized the CAC via a probabilistic
burstiness-curve, in which each session connection is defined
by the buffer space and transmission bandwidth. Zhang et al.
[40] presented a uniform CAC scheme based on a Chernoff
bound method that uses a simple novel traffic model requiring
only a few parameters. Evans and Everitt [10] focused on the
newly-developed CDMA cellular networks and proposed an
effective bandwidth-based CAC method.

The decision-making nature of CAC has attracted many re-
searchers to apply FLSs and neural networks to it, e.g., [8], [12],
[13]. Fuzzy logic systems (FLSs) are known to represent and
numerically manipulate linguistic rules in a natural way and for
their ability to handle problems that conventional control theory
cannot approach successfully because the latter relies on a valid
and accurate model which does not always exist, and, FLSs have
also been extensively used in system modeling, e.g., [6], [30],
[38].

Changet al.[3], [4] proposed a power-spectrum based neural
fuzzy CAC for ATM networks. They constructed a decision
hyperplane of the CAC according to the parameters of the
power spectrum. They devised rules which used the following
type-1 fuzzy sets in antecedents sets:light load, medium load,
and heavy loadand the following type-1 fuzzy sets in conse-
quent sets:straightly reject, weakly reject, weakly accept, and
straightly accept. All of these rules are based on the knowledge
from a single expert; but, words can mean different things to
different people [27]. Experts have diverse opinions about the
meaning of linguistic labels, and they often provide different
consequents for the same antecedents; so, fuzzy rules based
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on just one expert are partial; they ignore the uncertainties
associated with collecting rules from a group of experts.

Uehara and Hirota [33] studied the possibility distribution of
cell loss as a function of the number of calls per class, by a
fuzzy inference scheme based on the observed data of cell loss
ratio (CLR), and obtained the upper bound of CLR. They ap-
plied fuzzy inference to estimate the possibility distribution of
CLR, which was then a basis for admission control decisions.
Mehrvar and Le-Ngoc [25] also proposed a CAC scheme using
a type-1 FLS to estimate the level of traffic burstiness; they es-
timated hurst parameters and used them for CAC in an adaptive
environment.

Comparing the existing FLS-based CAC approaches and
other approaches, the main difference between them is that
FLSs can handle expert knowledge and numerical data in a
unified framework, and the FLS-based approach requires less
computing complexity.

In this paper, we treat the CAC as agroup decision making
problem, wheregroupmeans experts. In [7], a fusion operator
which can combine numerical and linguistic information was in-
troduced to deal with group decision making problems. In [24],
three ways to improve the pairwise group decision making based
on fuzzy preference relations were proposed, and the authors
observed the disadvantages of using type-1 fuzzy sets, and pro-
posed to extend them to type-2 fuzzy sets as their future research
directions. In addition, Tanaka and Hosaka [32] observed the
difficulties of obtaining appropriate MFs for efficient commu-
nication network control, which suggests that type-2 MFs will
be a better way to represent the uncertainty in network.

To date, type-2 sets and FLSs have been used in decision
making ([2], [37]), solving fuzzy relation equations [34],
time-series forecasting [21], MPEG video traffic modeling and
classification [22], function approximation [15], time-varying
channel equalization [18], control of mobile robots [36], and
pre-processing of data [14].

In this paper, we consider the design of a FLS that is based on
rules collected by surveying a group of experts. In this situation,
two types of uncertainties can arise.

1) Different experts often give different answers to the
same question, which results in rules having the same
antecedents, but different consequents. Consequently,
answers to rule-based questions lead to uncertain conse-
quents.

2) Because words mean different things to different people,
and membership functions are associated with words (la-
bels), if we also ask the experts about the membership
function parameters (e.g., center, spread), we are likely to
get different answers for these parameter values. This re-
sults in uncertain membership functions. Consequently,
answers to queries about membership functions lead to
uncertain antecedents and additional uncertainty about
consequents.

In this paper, we show how the above two kinds of uncertainties
can be handled in the framework of type-2 FLSs [16], [17].

This paper develops a survey-based CAC method using
type-2 FLSs. A type-2 FLS provides a new and powerful
framework to represent rule uncertainties. Rule uncertainties

occur, as we just explained, due to the use of words and their
assciated membership functions. For example, in a type-1
FLS-based CAC method, a typical rule might be: IF the total
average input rate of real-time voice and video traffic isa
moderate amount, AND the total average input rate of the
nonreal-time data traffic issome, THEN the confidence of
accepting the call isa large amount. In this case, a type-2 FLS
can effectively provide a natural mechanism to represent the
vagueness inherent in theseitalicized linguistic labels.

In Section II, we give an overview of the recently developed
theory of type-2 FLSs. In Section III, we present a survey-based
CAC using type-2 FLSs, and, in Section IV, we present our con-
clusions.

In this paper, is a type-1 fuzzy set, and the membership
grade of in is , which is a crisp number in .
A type-2 fuzzy set in is , and the membership grade of

in is , which is a type-1 fuzzy set in . The ele-
ments of the domain of are calledprimary memberships
of in and the memberships of the primary memberships in

are calledsecondary membershipsof in . The latter
defines the possibilities for the primary membership. ,
can be represented, for each , as

; when the secondary MFs are type-1 interval
sets, we call the type-2 set aninterval type-2 set.

II. TYPE-2 FUZZY LOGIC SYSTEMS: A BRIEF OVERVIEW

In a FLS, rule uncertainties can occur due to linguistic or
numerical uncertainties in the knowledge used to construct the
rules. These uncertainties can be handled by using type-2 fuzzy
sets. The concept of atype-2 fuzzy setwas introduced by Zadeh
[39] as an extension of the concept of an ordinary fuzzy set
(henceforth called atype-1 fuzzy set). A type-2 fuzzy set is char-
acterized by a fuzzy membership function, i.e., the membership
value (or membership grade) for each element of this set is a
fuzzy set in , unlike a type-1 set where the membership
grade is a crisp number in . Such sets are useful in circum-
stances, where it is difficult to determine the exact membership
function for a fuzzy set; hence, they are useful for incorporating
uncertainties.

Fig. 1 shows an example of a type-2 set. The standard devia-
tions of the secondary Gaussians are the same for all. Intensity
of the shading is approximately proportional to secondary mem-
bership grades. Darker areas indicate higher secondary mem-
berships. The flat portion from about 4.5 to 5.5 appears because
primary memberships cannot be greater than 1 (since primary
memberships, themselves, are possible membership values, they
have to be in ) and so the Gaussians have to be “clipped.”
The domain of the membership grade corresponding to is
also shown. The membership grade for every point is a Gaussian
type-1 set contained in , we call such a set a “Gaussian
type-2 set”. When the membership grade for every point is a
crisp set, the domain of which is an interval contained in ,
we call such type-2 sets “interval type-2 sets” and their member-
ship grades “interval type-1 sets.” Interval type-2 sets are very
useful when we have no other knowledge about secondary mem-
berships. Since all the memberships in an interval type-1 set are
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Fig. 1. (a) Pictorial representation of a Gaussian type-2 set. The secondary
memberships in this type-1 fuzzy set are shown in (b), and are Gaussian.
Note that this set is called a Gaussian type-2 set because all its secondary
membership functions are Gaussian. The “principal” membership function
(the bold line—see [15], [16] for further discussion), which is triangular in this
case, can be of any shape.

unity, in the sequel, we represent an interval type-1 set just by its
domain interval, which can be represented by its left and right
end-points as . The two end-points are associated with two
type-1 MFs that we refer to asupperandlower MFs[21].

A. Upper and Lower MFs

For convenience in defining the upper and lower MFs of a
type-2 MF, we first give the definition offootprint of uncertainty
of a type-2 MF.

Definition 1 (Footprint of Uncertainty of a Type-2
MF): Uncertainty in the primary membership grades of a
type-2 MF consists of a bounded region, that we call the
footprint of uncertaintyof a type-2 MF. It is the union of all
primary membership grades.

Definition 2 (Upper and Lower MFs):An upper MF and a
lower MF are two type-1 MFs which are bounds for the foot-
print of uncertainty of an interval type-2 MF. The upper MF is a
subset which has the maximum membership grade of the foot-
print of uncertainty; and, the lower MF is a subset which has the
minimum membership grade of the footprint of uncertainty.

For example, in Fig. 2, the upper MF is plotted using a heavy
solid line, and the lower MF is plotted using a heavy dashed line.
We use an overbar (underbar) to denote the upper (lower) MF.
For example, the upper and lower MFs of are
and , so that can be expressed as

(1)

Fig. 2. (a) An interval type-2 set. Since all the secondary memberships are
unity, the shading is uniform all over. The domain of the membership grade
corresponding tox = 0:65 is also shown. The secondary memberships in this
type-1 set are shown in (b), and are all equal to 1, i.e., the membership grade is
an interval type-1 set.

B. Operations on Type-2 Sets

Recall that the membership grades of type-2 sets are type-1
sets; therefore, in order to perform operations like union and
intersection on type-2 sets, we need to be able to perform
-conorm and -norm operations between type-1 sets. This

is done using Zadeh’s Extension Principle [9], [15], [39]. A
binary operation between two crisp numbers can be extended
to two type-1 sets and , as

(2)

where denotes the chosen-norm. We will generally use
product or minimum-norm. For example, the extension of the
-conorm (we generally use the maximum-conorm) operation

to type-1 sets is

(3)

This is called thejoin operation [28]. Similarly, the extension of
the -norm operation to type-1 sets, which is known as themeet
operation [28], is

(4)

We next show an example of themeetoperation under product
-norm, when the sets involved are interval type-1 sets.
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Example 2.1:Let and be two interval type-1 sets with
domains and , respectively. Using (4), themeet
between and , under product-norm, can be obtained as

(5)

Observe, from (5), that 1) each term in is equal to the
product for some and , the smallest term being

and the largest and 2) since both and have con-
tinuous domains, also has a continuous domain; conse-
quently, is an interval type-1 set with domain ,
i.e.,

(6)

In a similar manner, themeet, , of interval type-1 sets
, having domains , respectively,

is an interval set with domain .
[19] gives a similar result for the multiplication of fuzzy

numbers.
Fast algorithms for computing thejoin and meetof type-1

fuzzy sets have also been developed for the cases where the
sets involved are not interval type-1 sets (see [15] and [16] for
details).

Algebraic operations between type-1 sets are also defined
using (2), e.g., the algebraic sum of and can be defined
as

(7)

Using the same reasoning as in Example 2.1, it can be shown
that when and are interval type-1 sets with domains
and , respectively, their algebraic sum is also an interval
type-1 set with domain (see [19] for a similar
result). More generally, we have the following result for interval
type-1 sets.

Theorem 1: Given interval type-1 sets , with
means and spreads , their affine
combination , where and

are crisp constants, is also an interval type-1 set with mean
, and spread .

See [15], [16] for the proof of Theorem 1.
Observe, from (2) and (4), that, when using product-norm,

the product of and is the same as themeetof and ;
hence, all our earlier discussions about themeetoperation under
product -norm apply to the multiplication of type-1 sets under
product -norm.

Using the Extension Principle, an -ary operation
on crisp numbers can be extended totype-1

fuzzy sets as [18]

(8)

where all the integrals denote logical union, and for
.

We, next, define the concept of the “centroid” of a type-2 set
using (8). This concept is required in a type-2 FLS.

Recall that the centroid of a type-1 set, whose domain is
discretized into points is given as

(9)

Similarly, the centroid of a type-2 set, whose domain is dis-
cretized into points, can be defined using (8) as follows. If
we let , then

(10)

where , and all the integrals denote logical union.
Equation (10) can be described in words as follows. Each

point of has a type-1 fuzzy membership grade,
, associated with it. To find the centroid, we consider

every possible combination such that .
For every such combination, we perform the type-1 centroid cal-
culation in (9) by using s in place of s; and, to each
point in the centroid, we assign a membership grade equal to
the -norm of the membership grades of thes in the s. If
more than one combination ofs gives us the same point in the
centroid, we keep the one with the largest membership grade.

Every combination, , considered
when computing , can be thought to form the membership
function of some type-1 set which has the same domain as

. We call anembedded type-1 setin [see Fig. 3(a) for two
examples of embedded type-1 sets]. Every embedded type-1
set also has a weight associated with it, which is calculated
as the -norm of the secondary memberships corresponding
to that make up that embedded set. The type-2
set can, therefore, be thought of as a large collection of
embedded type-1 sets, each having a weight associated with
it, and its centroid can be thought of as a type-1 set whose
elements are the centroids of all the embedded type-1 sets
in , and their memberships are the weights associated with
the corresponding embedded sets. The centroid computation
simplifies considerably when is an interval type-2 set, as we
show next.

If is an interval type-2 set, (10) simplifies to

(11)

where each belongs to some interval in . We present a
procedure for computing (11) in the Appendix .

Example 2.2:Consider the interval type-2 set in Fig. 2,
shown again in Fig. 3(a). Using the Appendix computational
procedure, we find that is an interval type-1 set with domain

. As explained in Appendix , only two sets
of computations are needed to obtain, one each for its left
and right end-points.

See [17], [15], [18] for more discussions about the centroid
of a type-2 set.
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Fig. 3. (a) The interval type-2 set shown in Fig. 2. Two embedded type-1 sets
are also shown, one with a thick dashed line and the other with a thick solid
line. (b) Centroid of the type-2 set in Fig. (a), computed using the computational
procedure described in the Appendix .

C. Type-2 Fuzzy Logic Systems

Fig. 4 shows the structure of a type-2 fuzzy logic system
(FLS). It is very similar to the structure of a type-1 FLS [26]. For
a type-1 FLS, theoutput processingblock only contains the de-
fuzzifier. When an input is applied to a type-1 FLS, the inference
engine computes the type-1 output set corresponding to each
rule. The defuzzifer then computes a crisp output from these
rule output sets. For a type-2 FLS, the antecedent and/or conse-
quent sets are type-2, so that each rule output set is type-2. “Ex-
tended” versions of type-1 defuzzification methods [obtained
using (8)] yield a type-1 set from the type-2 rule output sets.
We call this processtype-reductionrather than defuzzification,
and the resulting type-1 set, thetype-reduced set. The defuzzi-
fier in the type-2 FLS can, then, defuzzify the type-reduced set
to obtain a crisp output for the type-2 FLS. Output processing is
depicted pictorially in Fig. 5. The fuzzifier maps the crisp input
into a fuzzy set. This fuzzy set can, in general, be a type-2 set;
however, in this paper, we consider onlysingletonfuzzification,
for which the input fuzzy set has only a single point of nonzero
membership.

To see the difference between a type-1 FLS and type-2 FLS,
we first review a type-1 FLS.

1) Type-1 FLS:Consider a -input 1-output type-1 FLS,
using singleton fuzzification,center-of-setsdefuzzification
[15], [17], [31] and “IF-THEN” rules of the form [23]

IF is and is and and is

THEN is (12)

Assuming singleton fuzzification, when an input
is applied, the degree of firing corresponding to

Fig. 4. Structure of a type-2 FLS. In order to emphasize the importance
of the type-reduced set, we have shown two outputs for the type-2 FLS, the
type-reduced set and the crisp defuzzified value.

Fig. 5. Pictorial representation of theoutput processingin a type-2 FLS. For
an applied inputx, the type-reducer first combines the individual rule output
sets in some manner to obtain (a) combined output set~B, and then, from~B

(b) creates a type-1 set,Y , which we call the type-reduced set. (c) Defuzzifier
produces a crisp output,y from the type-reduced set.

the th rule is computed as

(13)

where and both indicate the chosen-norm. There are many
kinds of defuzzifiers. In this paper, we focus, for illustrative pur-
poses, on the center-of-sets defuzzifier [31]. It computes a crisp
output for the FLS by first computing the centroid, , of every
consequent set , and, then computing a weighted average of
these centroids. The weight corresponding to theth rule con-
sequent centroid is the degree of firing associated with theth
rule, [see (13)], so that

(14)

where is the number of rules in the FLS.
2) Type-2 FLS:Now, consider a -input 1-output type-2

FLS, using singleton fuzzification,center-of-setstype-reduc-
tion [15], [17] and rules of the form

IF is and is and and is

THEN is (15)

Note that, although we have shown all the antecedent and conse-
quent sets to be type-2 in (15), it need not necessarily be so. Even
if only one of the antecedents or the consequent is type-2, the
FLS is type-2. When an input is applied, the
inference engine computes the degree of firing of each rule by
performing themeetoperation (4) between the antecedent mem-
bership grades of each rule. The degree of firing corresponding
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to the th rule is [see (13)]

(16)

The center-of-sets type-reducer, then, requires the centroid
of each rule consequent. Centroid computations are done as ex-
plained in Section II-B. Once all the consequent centroids are
computed, the center-of-sets type-reduced set is computed by
using the extended version of (14) as follows [15], [17]:

(17)

where and indicate the chosen-norm; , the
centroid of theth consequent set; and, ,
the degree of firing associated with theth consequent set, for

.
A crisp output for the FLS is obtained by finding the centroid

of . This is the defuzzifier step shown in Fig. 4.
The type-reduced set of a type-2 FLS shows the possible vari-

ation in the crisp output of the FLS due to uncertain natures
of the antecedents and/or consequents. It establishes a band of
values around a crisp output value in much the same way that
a confidence interval establishes a band about a point estimate
when stochastic uncertainty is present; but, it does this for lin-
guistic uncertainties.

A general type-2 FLS has a high computation complexity, but
things simplify a lot when the secondary membership degree is
an interval. In this paper, we use an interval type-2 FLS for CAC.

The theory and design of an interval type-2 FLS is given in
[21]. Here we briefly summarize the results for computing the
firing interval when a singleton fuzzifier is used.

Theorem 2: In an interval type-2 FLS with meet under min-

imum or product -norm, the firing interval of the
th rule is

(18)

and

(19)

The proof of this Theorem is given in [21].
For an interval type-2 FLS, (17) reduces to

(20)

where (centroid of the consequent set), and
. These computations are not difficult. and can be

computed using the procedure presented in the Appendix .

III. SURVEY-BASED CAC USING TYPE-2 FLSS

We apply type-2 FLSs to CAC for ATM networks, in
which the type-2 rules are based on a survey regarding the
CAC as determined by the input traffic. We chose a type-2
FLS for CAC to give ATM network designers more room to

accomodate their own thoughts and preferences, and let their
decisions be more flexible, since requirements about cell loss
ratio (CLR) and bandwidth untilization cannot be mutually
satisfied. Lower CLR and higher bandwidth utilization are
the desired performance of CAC; but, for a fixed bandwidth
allocation scheme, lower CLR means less bandwith utilization,
and higher bandwidth untilization means higher CLR. A type-1
FLS provides a single decision boundary for CAC, which
means a compromise decision has to be made with respect to
CLR and bandwidth untilization. On the other hand, as we
demonstrate below, a type-2 FLS provides a region bounded by
two decision boundaries, so that designers are free to choose
a decision boundary to meet their preferences, e.g., higher
bandwidth utilization.

Designing a survey-based type-2 FLS includes collecting the
knowledge, setting the rules, choosing and defining antecedent
and consequent membership functions, choosing type-reduc-
tion, and extracting decision boundaries.

A. Extracting the Knowledge for CAC

In ATM networks, input traffic is often classified into
two classes. Class 1 is real-time voice and video traffic, and
Class 2 is nonreal-time data traffic. We, therefore, used two
antecedents for our FLS-based CAC—the total average input
rate of real-time voice and video traffic, and the total average
input rate of nonreal-time data traffic. The linguistic variables
used to represent the input rate of traffic were divided into five
levels:none to very little(NVL), some(S),a moderate amount
(MOA), a large amount(LA), anda maximum amount(MAA).
The consequent—the confidence of accepting the call—was
also divided into these same five levels. We used rules ob-
tained from the knowledge of many network experts (30 USC
electrical engineering Ph.D. students who have studied EE555
broadband network architecture). We surveyed these experts
using questions such as:

IF the total average input rate of real-time voice and video
traffic is a moderate amount, and the total average input
rate of the nonreal-time data traffic isa large amount,
THEN the confidence of accepting the call is ————.

These experts were requested to choose a consequent using one
of the five linguistic variables. Different experts gave different
answers to the questions in the survey.

As pointed out in [27], “words mean different things to dif-
ferent people,” and in [24], “the decision makers may have the
same preferences to a particular alternative, e.g., highly pre-
ferred but with different degrees,” so, we created two different
kinds of surveys for the network experts. The first survey asked
the experts to locate each linguistic label in the interval
domain. We randomized the five labels, as shown in Table I, so
that they are uncorrelated. For each linguistic label, we got 30
intervals from the 30 experts, and we then computed the mean
and std of the label’s two end-points. We summarize the survey
results in Table II and Fig. 6. Observe, in Fig. 6, that overlap
betweensomeandnone to very littleand betweena moderate
amountanda large amountonly occurs due to consideration of
uncertainties.

The second survey is the CAC technical survey. Table III sum-
marizes the questions used in this survey (the questions were
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TABLE I
SURVEY TABLE: RANDOMIZED LABELS

TABLE II
PROCESSEDSURVEY RESULTS: ORDEREDLABELS

Fig. 6. All five labels, their intervals and uncertainty bands (dashed lines).

randomized in the actual survey, but are shown in their nat-
ural order for the convenience of the reader). Thirty respondents
completed the survey, and their results are shown in Table IV.

B. Representing the Linguistic Labels Using MFs

We used trapezoidal MFs to representnone to very littleand
a maximum amount, and triangle MFs to representsome, a mod-
erate amount, anda large amount(see Fig. 7).

For the linguistic labelssome, a moderate amount, and a
large amount, the mean values of their interval end-points are

and , and, the standard deviation (std) of their left end-point
is , and, the std of their right end-point is. The three break
points of a triangle type-1 MF were then located at

, and . For the linguistic labelsnone to
very littleanda maximum amount, the four break points in their
trapzoidal type-1 MFs were located at ,
and . We show these type-1 MFs in Fig. 7 as heavy
dashed lines.

There are uncertainties associated with the break points (i.e.,
and ) of triangle MFs, e.g., why not use

TABLE III
QUESTIONS FORCAC IN ATM NETWORKS. ANTECEDENT1 IS THE TOTAL

AVERAGEINPUTRATE OFREAL-TIME VOICE ANDVIDEO TRAFFIC, ANTECEDENT

2 IS THE TOTALAVERAGEINPUT RATE OF NON-REAL-TIME DATA TRAFFIC, AND

CONSEQUENTIS THE CONFIDENCE OFACCEPTING THECALL. THE EXPERTS

WERE ASKED TO FILL IN THE BLANK FOR THE CONSEQUENTUSING ONE OF

FIVE LINGUISTIC LABELS. THEY WERE GIVEN A RANDOMIZED VERSION

OF THESE25 QUESTIONS

TABLE IV
HISTOGRAMS OFEXPERT RESPONSESABOUT CAC. 30 NETWORK EXPERTS

ANSWERED THEQUESTIONS. NVL STANDS FORNONE TOVERYLITTLE;
S STANDS FOR SOME, MOA STANDS FOR A MODERATEAMOUNT, LA
STANDS FOR A LARGEAMOUNT, AND MAA STANDS FOR A MAXIMUM

AMOUNT. THE ENTRIES IN THE SECOND—SIXTH COLUMNS CORRESPOND TO

THE WEIGHTSw ; . . . ; w , RESPECTIVELY

or instead of . These uncertainties cannot be
captured using type-1 fuzzy sets; however, they can be by using



336 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 30, NO. 3, AUGUST 2000

Fig. 7. Type-2 MFs used to represent the five linguistic labels. The footprints
of uncertainty are shown shaded, and the heavy dashed lines denote the type-1
MFs used to represent the five linguistic labels.

type-2 fuzzy sets. In type-2 MFs, the footprints of uncertainty
are obtained by specifying upper and lower MFs for each fuzzy
set. Let denotea fraction of uncertainty, i.e., . Then
we construct the footprints of uncertainty as follows.

• For the triangle MFs with uncertain break points, the break
points of the upper MF are

, and , and the break points in
lower MFs is , and

.
• For the trapzoidal MFs with uncertain break points, the

break points in upper MF are
, and , and the break

points in lower MFs is
, and .

Fig. 7 depicts the footprint of uncertainty for . In this
paper, we use to illustrate our design of a type-2 FLS
and CAC decision boundaries.

C. Survey Processing Using Type-1 FLS

In our approach to forming a type-1 rule base, we chose a
single consequent for each rule (for discussions on other ways
to use the consequent data, see [15]). To do this, we averaged the
centroids of all the responses for each rule and used this average
in place of the rule consequent centroid. Doing this leads to rules
that have the following form:

: IF the total average input rate of real-time voice and
video traffic is andthe total averageinput rate of
the nonreal-time data traffic is , THEN the confi-
dence of accepting the call is

where

(21)

in which is the number of people choosing linguistic label
for the consequent of rule (see
Table IV); and, is the centroid of theth consequent set

Fig. 8. Type-1 FLS for CAC. The confidence of accepting the call,y(x ; x ),
versusx andx .

. The centroids of the five type-1 sets depicted in Fig. 7
are , and

. To illustrate the use of (21), note, for example,
that

(22)

All 25 values are listed in Table IV.
For every input , the output is computed using (14),

with replacing . For example (see Fig. 7), when the
input is , two subsets (the second and third) are fired
for , and their firing degrees are 0.6032 and 0.1052, re-
spectively, and, three subsets (the second, third, and fourth) are
fired for , and their firing degrees are 0.2275, 0.5801,
and 0.1409. Consequently (as determined from Table III), rules
7, 8, 9, 12, 13, and 14 are fired, with firing degrees 0.1372

, 0.3499, 0.0850 0.0239, 0.0610, and 0.0148,
respectively. The defuzzified output is [using (14)]

.
By repeating these calculations for , we ob-

tain a hypersurface , as plotted in Fig. 8. Observe that
is a monotonically decreasing function, because with

the increase ofthe total average input rate of real-time voice
and video trafficor the total averageinput rate of nonreal-time
data traffic, the confidence of accepting the calldecreases.

D. Survey Processing Using Type-2 FLS

Here, we adopt a similar strategy to the one in Section III-C.
Because all membership functions are now type-2, we create a
type-2 FLS, which has rules of the form

: IF the total average input rate of real-time voice and
video traffic is and IFthe total averageinput rate
of the nonreal-time data traffic is , THEN the con-
fidence of accepting the call is .

where

(23)
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denotes algebraic sum, is the centroid of
, and is the weight associated with the

th consequent for theth rule (see Table IV). The cen-
troids of the five type-2 sets [computed using (11)] are

, and
. Since each is an interval type-1 set,

(23) can be computed using Theorem 1. For example, for
rule 9, from Table IV the number of people choosing the five
linguistic labels are 0, 4, 11, 15, 0. So we calculate as

(24)

All are listed in Table IV.
We show the calculation of the type-reduced set for

. For (see Fig. 7), three subsets are fired (
, and ), and their firing degrees are

, and , respectively; for
, three subsets are also fired ( , and ),

and their firing degrees are , and
. Consequently, nine rules are fired whose antecedent

pairs are

and

i.e., rules 2, 3, 4, 7, 8, 9, 12, 13, 14 are fired (from Table III),
with firing intervals computed using (18) and (19). For example,
the firing interval , for is

(25)

and

(26)

Similarly, we can compute the other firing intervals:

, and .
The type-reduced output, obtained using the procedure given

in the Appendix , is

(27)

where , and .
Similarly, we can compute for any value

in the measurement domain, to obtain the region be-
tween the two hypersurfaces and in the
measurement domain and (Fig. 9).
Note that for any . Observe, from
Fig. 9, that and are monotonically de-
creasing functions.

Fig. 9. Type-2 FLS for CAC. The confidence interval of accepting the call,
Y (x ; x ), versusx andx .

Fig. 10. Decision boundary generated by the type-1 FLS, and decision
boundaries generated by the type-2 FLS.

E. CAC Decision Boundaries

CAC is a binary decision problem—accept or reject, sothe
confidence of accepting the call the confidence of rejecting
the call . A call will be accepted ifthe confidence of ac-
cepting the call . It is then very straightforward to obtain the
decision boundary forthe confidence of accepting the call .

For the type-1 FLS, the decision boundary is ,
as plotted in Fig. 10 (solid line). When a call occurs with input
rate of traffic below the decision boundary, then it will
be accepted; similarly, if it occurs above the decision boundary,
it will be rejected. As we see, the decision boundary generated
from type-1 FLS is a hard-threshold.

The decision boundaries for the upper and lower hyper-
surfaces of the type-2 FLS output can be represented as

and , which are plotted in Fig. 10
using dashed lines. If a designer wishes to increase the band-
width utilization, he can choose the upper decision boundary.
When a call occurs with input rate of traffic below the
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upper decision boundary, then it will be accepted. If, on the
other hand, the designer wishes to decrease the cell-loss-ratio
(CLR), he can choose the lower decision boundary. If the de-
signer wishes to achieve a compromise in performance between
bandwidth utilization and CLR, he can choose any decision
boundary between the upper and lower decision boundaries.
We see, therefore, that a type-2 FLS provides a soft decision
boundary that depends on the preference of the designer; it
can be any decision boundary between the lower and upper
decision boundaries.

The lower and upper decision boundaries plotted in Fig. 10
are for the footprint of uncertainty in Fig. 7 % . By
varying , we could get families of intervals, each labeled with
different . A designer could make a choice by “thinking” in
terms of a level of uncertainty. Note that corresponds to
the type-1 FLS case.

IV. CONCLUSIONS ANDFUTURE WORKS

The type-2 FLS-based CAC method has the following fea-
tures.

1) it combines the input rate of real-time voice and video
traffic and nonreal-time data traffic in the decision of con-
nection admission;

2) it combines the experiences from lots of experts, so that
an acceptable decision boundary can be obtained;

3) it provides an interval decision, so that a soft-decision can
be made based on a design tradeoff between cell loss ratio
and bandwidth utilization.

Recently, it has been observed that video/voice/data traffic
have self-similarity [11], [20], [35]. According to Stallings [29],
“Self-similarity is such an important concept that, in a way, it is
surprising that only recently has it been applied to data com-
munications traffic analysis.” Further, “Since 1993, a number
of studies reported in the literature have documented that the
pattern of data traffic is well modeled by self-similar processes
in a wide variety of real-world networking situations.” Such
self-similarity is quite common in both natural and human-made
phenomena [29] such as the distribution of earthquakes, ocean
waves, fluctuation of the stock market. These kinds of time-se-
ries have been successfully forecasted using the Box–Jenkins
method [1]. We have used type-2 FLSs for time-series fore-
casting [21]. Video/voice/data traffic is like a time-series; so,
we can also use a type-2 FLS to forecast the future input rate of
traffic for dynamic bandwidth allocation and CAC.

We have demonstrated how a type-2 FLS can be used in de-
cision making; so, combining all the control problems in ATM
networks, such as policing, rate control, buffer management,
traffic prediction into a type-2 fuzzy logic coordinating system
is also a very promising research area.

APPENDIX

COMPUTATION OF WEIGHTED AVERAGE OF INTERVAL

TYPE-1 SETS

Consider the weighted average

(28)

where and for . If each
is replaced by an interval type-1 set and each is
replaced by an interval type-1 set , then the extension
of (28), according to (8), is

(29)

where and for , and all the
integrals denote logical union.

In [15] and [17] we developed a computational procedure to
compute the weighted average, which itself is an interval
type-1 set. We restate the procedure here. Note that, since
is an interval type-1 set, only two sets of computations are re-
quired, one for each end point of the domain interval of
and .

Let and
for . can be obtained by following the iterative
procedure. We set , and, without
loss of generality, assume that thes are arranged in ascending
order, i.e., .

1) Set for , and compute
using (28).

2) Find such that .
3) Set for and for

, and compute

using (28).
4) Check if . If yes, stop. is the right end-point of

. If no, go to step 5.
5) Set equal to . Go to step 2.
The left end-point of the domain interval of

, can be obtained by using
a procedure similar to the one described above. Only two
changes need to be made: 1) we must set for

and 2) in Step 3, we must set
for and for , to compute the
weighted average

.
This computational procedure can be used to compute the

type-reduced set of an interval type-2 FLS [see (20)], as well
as to compute the centroid of an interval type-2 set [see (11)].
In the latter case, all thes are crisp, so that, we set for

.
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