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Overcoming Time-Varying Co-Channel Interference
Using Type-2 Fuzzy Adaptive Filters

Qilian Liang and Jerry M. MendgFellow, IEEE

Abstract—This paper presents a method for overcoming type-1 fuzzy sets), but the channel and co-channel models are
time-varying co-channel interference (CCl) using type-2 fuzzy time-invariant.
adapt"’el.f"tzrs (FAg )'T T(he. tépe'z FAI‘<F IS freallzeld using an - The statistical signal processing-based approach (e.g.,
unnormalized type-2 Takagi—Sugeno—Kang fuzzy logic system. . . . .
A clustering method is used to adaptively design the parameters BayeS|.an de.C|s_|on.ruIe) is based on a probability model (e.g..,
of the FAF. We use transversal equalizer and decision feedback Gaussian distribution), whereas the FAF-based approach is
equalizer structures to eliminate the CCI. Simulation results show model free. As noted in [15], a shortcoming to model-based
that the equalizers based on type-2 FAFs perform better than statistical signal processing is.“ the assumed probability
the ”earr]eﬁ ?}e'ghbot; C|anSIerI’?1 or thf '?q“a"zﬂs basﬁd ontype-1model, for which model-based statistical signal processing
FAFs when the number of co-channels is much large than 1. results will be good if the data agrees with the model, but may
Index Terms—Co-channel interference, equalizers, time-varying not be so good if the data does not.”
channels, type-2 fuzzy adaptive filters, type-2 fuzzy logic systems. |, this paper, we assume that the co-channel models are time-
varying and the number of co-channels is much larger than 1.
|. INTRODUCTION For these situations, we demonstrate that a type-1 FAF should be
. extended to a type-2 FAF in order to overcome CCI. In a type-2
.ELLL.JLAR MOB'.LE communication systems rely an ar]FAF, the antecedent or consequent membership functions are
intelligent allocation and reuse of channels throughou r%)e_z fuzzy sets
coverage region. The reuse of channells is reglized by freque ¥he concept of type-2 fuzzy sets was introduced by Zadeh
reuse. Frequency reuse implies that in a given coverage as an extension of the concept of an ordinary fuzzy set, i.e.
there are several cells that use the same set of frequencies. T & 69-1 fuzzy set. Type-2 fuzzy sets have grades of membérshi’p
cells are called co-channel cells, and the interference betwq are themselv.es fuzzy [7]. A type-2 membership grade can
signals from these cells is called-channel interferencCCl) be any subset ifo, 1], theprimary membershirCorresponding
H?\)‘th the limitati f ilable sianal ¢ to each primary membership, there isecondary membership
vt € imitation ot avariable sighal Spectrum, one Way,,nic can also be ifD, 1]) that defines the possibilities for the
t(.) mcorpqrate more Subsc_rlbe_rs Is 0 increase frequency re ?ﬁnary membership. Type-2 fuzzy sets allow us to handle lin-
via reducing _ce||_5|ze, which mtrodu_ce_s more CCI. Fo_r C€uistic uncertainties, as typified by the adage “words can mean
lular communication systems, the radio link performance is us fferent things to different people [14].” Karnik and Mendel
ally limited by interference rather .tha.n noise and, therefore, Yoo [9] and [10]) established a complete type-2 fuzzy logic sys-
CCl. The feﬁect of CCl on the rad'o link perfqrmance depen 8ms (FLS) theory to handle linguistic and numerical uncertain-
on the ability of the radio receiver to reject it [20]. In [2], alog. Liang and Mendel [12] proposed a type-2 FAF and applied

adaptive radial basis function (RBF) network is used to ovet-o time-varying channel equalization.

come CCl. In[22], polynomial perceptrons were used for fading |, yhis naner, we interpret CCI as an uncertain disturbance

channel equallzgnon aqd co-channel mtelrf(.erence SUPDTeSSIOilaj to the channel states. Theoretical analysis shows that this
In[13], an adaptive fractionally spaced decision feedback equglize nretation matches the reason of existence for a type-2 FAF,

izer (DFE) which exploits the correlation of the cyclostationarxamely to handle unkown uncertainties. and motivates us to use
interference is used to eliminate co-channel interference i qype-'z FAFE to overcome CClI '

[nultlpath fadgglelnw;omefnt. I? [5]’(?_ Bkaye5|ar|1 D';S Wkaz used In Section Il, we provide some preliminaries that are needed
o overcome - In[8], afunctional-link neural network-base r the rest of this paper, i.e., we review an unnormalized

DFE was used for overcoming CCI. Recently, Patra, and Myl- ;
2= o utput type-1 TSK FLS, and summarize the concept of upper
grew [17] used a fuzzy adaptive filter (FAF) to eliminate CC nd lower membership functions (MFs) of a type-2 fuzzy set.

(we call it “type-1 FAF" because its membership functions A% Section 11, we introduce a type-2 FAF. In Section IV, a

communication system with co-channel interference (CCI),

intersymbol interference (ISl), and additive Gaussian noise
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Fig. 1. The type-2 MF for Example 1. The thick solid lines denote upper MFs, and the thick dashed lines denote lower MFs. The shaded regions anesthe footpr
of uncertainty for interval secondaries. The centers of Gaussian MFs vary from 4.5 to 5.5.

and ISI. Conclusions and future research directions are given , z2, . . . , z,,), the final output of the unnormalized first-order

in Section VII. type-1 TSK model is inferred as [21]

In this paperA denotes a type-1 fuzzy set, and the member- M
ship grade ofc € X in A is yu4(z), which is a crisp number y= Z fiyt (€H)
in [0,1]. A type-2 fuzzy set inX is A, and the membership i=1

grade ofzr € X in A'is pu3(x), which is a type-1 fuzzy set \yhere fi are rule firing strengths defined as
in [0, 1]. The elements of the domain pf; (x) are calledpri-

mary membershipsf = in A and the memberships of the pri- f'= Zlelip,g (%) @
mary memberships in; (z) are calledsecondary membershipsand7 denotes &norm (minimum or product).

of z in A. The latter defines the possibilities for the primary When Gaussian MFs are used, i.e.,
membershipp 4 (z), can be represented, for eache X, as 1 /2 —mi\>2

pa(z) = [ fo(w)/u,u € J, C [0,1] when the secondary pri (Tx) = exp l—g <Tk> ] 3)
MFs are type-1 interval sets, we call the type-2 seingerval k

type-2 setr denotesneetoperation while.| denotegoin oper- and product-norm is used, then (1) can be expressed as

ation. Meet and join are defined and explained in great detail in M P 1 i\ 2
[9]. In this paper, we only use interval type-2 sets. y=> v [[exr|-5 <7z> . 4)
i=1 k=1 2 Tk
Il. PRELIMINARIES Observe that (4) is identical to the output formula for a radial

basis function (RBF) network [3] when Gaussian MFs are used
In this section, we provide some preliminaries that are needgél the RBFs. This kind of RBF network has been applied to
for the rest of the paper. We review an unnormalized outphyesian equalization [3], [4]. Later in this paper, the unnormal-
type-1 TSKFLS, and summarize the concept of upper and lowged output type-1 TSK FLS in (4) will be used as a type-1 FAF
MFs of a type-2 fuzzy set. equalizer (for suppressing CCl and ISI), and its performance
will be compared with that of a type-2 FAF.
A. Unnormalized Output Type-1 TSK FLS

Atype-1 TSK FLSis described by fuzzs+THEN rules which
represent input-output relations of a system. The most widelyFor convenience in defining the upper and lower MFs of a
used type_l TSK FLS (the one we direct our attention at) istﬂ)e-z MF, we firstgive the definition dﬁotprlnt of Uncertainty
first-order type-1 TSK FLS. It has a rule baseXfrules, each ©of a type-2 ME

B. Upper and Lower MFs of Type-2 MFs

havingp antecedents, where thih rule, R?, is expressed as Definition 1 (Footprint of Uncertainty of a Type-2
‘ MF): Uncertainty in the primary membership grades of
R':1F 2, is F{ and=. is F{ and..andz, is F; an interval type-2 MF consists of a bounded region that we call

THREN yi=ci el +ehas - teha the footprint of uncertaintyof that MF (e.g., see Fig. 1). It is

the union of all primary membership grades.
in whichi = 1,2,.. .,M;cj ( = 0,1,...,p) are the con-  Definition 2 (Upper and Lower MFs):An upper MF and a
sequent parameterg! is the output of theth IF-THEN rule; lower MF are two type-1 MFs which are bounds for the foot-
and,Fj (k=1,2,...,p) are type-1 fuzzy sets. Given an inpufprint of uncertainty of an interval type-2 MF. The upper MF is a
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subset which has the maximum membership grade of the foafhere
print of uncertainty; and, the lower MF is a subset which has the M  is the number of rules firedf* € F*, and,
minimum membership grade of the footprint of uncertainty. 7 indicates the chosefanorm.
We use an overbar (underbar) to denote the upper (lower) MFY is called anextended weighted aragje as it reveals

For example, the upper and lower MFs of the interval type-2 the uncertainty at the output of a type-2 FLS due to

fuzzy setuz. (zx) (used in the next section) arg (z3) and antecedent uncertainties, and is itself a type-1 fuzzy
k .

[ (wx), and,u . (x1) can be expressed as set.

—k k

Here we focus on the very practical case when interval type-2

! (5) sets are used in the antecedents, which megnézy), (k=

nry o) = [ 1ul.
K wle[ﬁFi (Jzk),ﬁFi ()]

1,...,p) is an interval set, and we denote
Example 1: Gaussian Primary MF with Uncertain i - _ N 11
Mean: Consider the case of a Gaussian primary MF having a ~ #&; (*#) = [ﬁFi (), (x’“)} = e 7il- (1)
fixed standard deviations},, and an uncertain mean that take®ur type-2 FAF is then computed using results in the following:
on values inm!,,mi,], i.e., Theorem 1 [12]:
. 1 (a —m 2 . . . 1) In an interval type-2 FAF with meet under minimum or
pa(ex) = exp D) o ’ my, € [mi, mie] productt-norm, the firing strength in (9) for rul&’ is an
©) interval setF = [f*, f'], where(i = 1,..., M)
where: & = 1,...,p;p is the number of antecedents; f' = (e >y () = Ty £ (12)
[ =1,...,M;and,M is the number of rules. The upper MFand
Tii (), is (see Fig. 1) Fo=Tipe(w1) o * g () = T i (13)
N(mi‘lvai‘?‘xk) » Tk < mfkl ' . ! .
. _Jy U e e 5 2) The extended weighted averagér™, ..., F'M) is also
(ee) = 1, Mgy S 2k Sy (7) an interval setfy;, 4], where
N (mly,oksm0) . @i > ml, Mo
where, for exampleN (ml,,ot;z) 2 exp(—(1/2)(zx — ve= I (14)
mh, /ol)?). The lower MF i} (z), is (see Fig. 1) i;
l l .o
= 4 (mhaokin) < e © w=> v (15)
Ek Tr) = i i . =1
N (mdy ot o) “>w and
O Y =yt w1 + ChTr + -+ Ty (16)
We use the results of this example later in Sections V and V1. 3) The defuzzified output of this type-2 FAF is
M
lll. TYPE-2 FAF: AN OVERVIEW y = Zyi(f + 79 /2. (17)
In [12], a type-2 FAF for channel equalization is obtained =1

by generalizing the unnormalized output type-1 TSK FLS toBhe proof of this theorem is given in [12].
type-2 TSK FLS. In a type-2 FAF with a rule base/df rules,

where each rule hasantecedents, thi¢h rule, R?, is denoted as IV. A COMMUNICATION SYSTEM WITH CCI
Rt 1F 2, is F{ anda, is ] and..anda, is F; The discrete-time model of a communication system that
THEN y'=c}+cl o1 +chaog4telap is subject to CClI, intersymbol interference (I1SI) and additive

wherei = 1,2, ... ,M;c;’» (j = 0,1,...,p) are the conse- _Gau35|an noise (AGN) is shown in Fig. 2 [1], [5], whet&)

quent parameters that are crisp numbetss an output from is the symbol to be transmitted(%) is the noise; the CCL(%)

theith IF-THEN rule, which is a crisp number (because it will h&OMes from.V co-channels; the chann.ell orderns(n +1 .
determined by the channel state category); and ffhék = taps), and we assume that the tap coefficients are time-varying,

1,2,...,p) are type-2 fuzzy sets. Other more general type_béecause in today’s communications, such as wireless com-

TSK FLSs have been proposed by Liang and Mendel in [11].r_nun|cat|o_ns, the coefficients;(k) (i = 0,1,...,n) are
time-varying, hence;(k) can be represented as

Given an inputk = [z1,22,...,z,]7, the firing strength of
theith rule is [9], [10] r(k) = 7#(k) +u(k) + e(k)
FZZNF{(‘/El)l_lI’LFé(‘/EQ)HHuﬁ};(xp) (9) :z’n:a(k)s(k_l)‘i‘u(k)‘i‘e(k) (18)
The final output of the type-2 FAF is obtained by applying the e
Extension Principlg24] to (1), i.e., Here, we assume thafk) is binary, i.e., it is either-1 or —1

M : ili i i
. My Mo ey with equal probability. Assuming the number of taps in an equal-
Y, . F )—/l-"/MZ=1NF7(f) ny izer isp, we let
=1

(10) t(k) = [F(k),....7(k—p+1)]" (19)
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Fig. 2. Discrete time model of communication system subject to CCl, ISI, and AGN.

wherer(k) is calledchannel stateObserve from (18), that(k)
depends on the channel input sequesi@ge (an (n + p) x 1
vector), where

s(k) =

[s(k),s(k—1),...,s(k —n—p+1]*¥ (20)

so each of ther, = 2"*t? combinations of the channel input

sequencea(k) generates ong(k), which we denote ag; (%),

wheret; (k) = [Fi(k),...,7:(k —p+1)]*. Hence, the number
of channel states is, = 2"t? and each channel state has a

probability of occurence equal /7.

The signal-to-noise ratio (SNR), signal-to-interference ratio
(SIR), and signal-to-interference noise ratio (SINR) in decibels
are defined as (see Fig. 2)

Q
[ 3]

SNR = 10log;o - (25)
Oe
o2
SIR = 10log;q —& (26)
O
o2
SINR = 10log;y —— 27
010 092, 4 03 ( )

Assume the order of thih co-channel is; (n,;+1 taps), and

time-varying tap coefficients arkg; (¢ = 0,1,...,n;); then,
CCl u(k) can be expressed as
N N nj
u(k) = 3wy k) = 35 by k)s (k=) (21)
j=1 j=1i=0

wheres, is also binary, bus; is always blind to the equalizer,
even in the training period. As in (19), the co-channel states of

the jth co-channel are

A T

w; (k) = k), wi(k = 1), uj(k —p +1)] (22)

so similarly to (20), there ar2”*7 channel states in thgth
co-channel. The total co-channel state is

u(k) 2 u(k), w(k—1),.. ,u(k—p+ 1]  (23)
N
=2 w(k) (24)

where u;(k) (j =

number of total co-channel statessis, = Hf;l onitr —

V N n; .
2p/\+2j:1 7. This leads to a large number of co-channel
states, especially wheN > 1, e.g., if there are 6 co-channels

(i.e., N = 6), and each co-channel has 3 taps (ig.,= 2),
and the equalizer has 2 taps (i.e.= 2), then there will be
224 = 16 777 216 co-channel states. So whéh > 1, it is not

1,2,...,N) are independent, so the

in which ¢, ando,, denote the standard deviation (std) of the
Gaussian additive noisé€k) and CClu(k), respectively.

In a time-invariant communication system with ISI and
AWGN, but no CCI, the discriminant function of a Bayesian
equalizer is [3]

7k =

wherew; equals eithes-1 or —1 as determined by the channel
state category. Observe that (28) is structuraly identical to (4).
Hence, an unnormalized output type-1 TSK FLS can be used to
implement a Bayesian equalizer for a time-invariant channel.

In contrast, in a time-invariant communication system with
CCl, ISl and AWGN, the discriminant function of the Bayesian
equalizer is [17]

fx(k))
Mg Neo p—1
=22 ]w
i=1 m=1 =0
1[r(k — 1) — #4(k — 1) — ™ (k —

Dl

(29)

whereu™(k — I) is thelth element of thenth co-channel state
As we discussed above,, is a very large number iV > 1.

possible to perform an exact analysis of the co-channel statéBo simplify the problem, when SIR is high, we assume that the
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term#;(k — ) +«™(k — 1) in (29) is an uncertain value which bs; (k) = 0.5, b52(k) = 0.81, bs3(k) = 0.31. They were simu-
is dominated by*; (£ — 1). Thus, (29) can be approximated by lated the same way as we described for simulating:) and

ns p—1 b I — il —1 az(k). The std of white Gaussian noise used for generating
Z H w; exp [ [r(k = 1) — ik = V)] co-channel coefficients was fixed @tl. A\ was determined by
02 +U,2
i=1 1=0 e u SIR.
(30)

where#;(k — ) is uncertain. This point of view motivates usA Designing the Type-2 FAF

to use a type-2 FAF for CCI elimination because type-2 FAFs In our type-2 FAF design for (31) with five co-channels,
can handle the uncertainties. In addition, the channel statesthefe are eight rules (each rule corresponds to one channel
time-varying in a time-varying channel, which is another reas@t@te) where théth rule, ®!, is expressed [see (30)] as

to treat;(k — [) as an uncertain value. Observing (30), we see

RY: 1F v (k) is F! andr(k—1) IS F! THEN y'=uw,
that a Gaussian MF with an uncertain mean (see Fig. 1) is an

appropnate choice for the MFs in a type -2 TSK FAF. in which Fl and Fl are type -2 Gaussian MFs with uncertain
means, aney; is a crisp value oft-1 or —1 as determined by the

rule that the consequent is a constant, i.e., it does not depend on
In[23], the following nonlinear time-invariant channel modeJ,( k) andr(k — 1). Hence, the consequent is a special case of
was used the consequent in Section 3.
r(k) = a1(k)s(k) + az(k)s(k — 1) We used (17) to compute the output of the type-2 FAF, where
l . .
_ 0.9[&1( ) (k‘) + ag( ) ( _ 1)]3 + e(k) (31) yl = wy (l =1,.. .,8) equalsl or—l,i is obtained from (12),

=l . . .
wherea, (k) = 1 andas(k) = 0.5. We choose two taps in andjf is obtained from (13). As in (6), we chose

the transversal equahzer (TE), so this channel has eight channel 1 (-Tk — mi)Q . . .
states, i.e.n, = 8. In this section, we illustrate the design /i (Zx) = exp T2 a2y |’ My € [Mir, mis]

of a type-2 FAF for this channel, but we focus on the case

when the channel is time-varying, i.e., wher{k) andax (k) in (37)

(31) are time-varying coefficients, each simulated, as in [6], l{gee Fig. 1) and: = 1,2. In order to specify the MFsﬁ1
using a second-order Markov model in which a white Gaussiand 7, we had to spec|fy their parameters, namphy,, , mm]
noise source drives a second-order Butterworth low-pass filtgid o2 + 2. Below, we letm! = [m{;,m};]¥ andm}, =
(LPF). In our simulations below, we used the functimuiter, [mb,mQQ]T

provided by the Matlab Signal Processing Toolbox, to generateWe used a clustering approach to estimaif andm), be-

a second-order low-pass digital Butterworth filter with cut-of€ause it is computationally simple [3]. Here we briefly sum-
frequency 0.1. The functiofilter was then used to generate anarize this approach. Suppose the number of training proto-
colored Gaussian sequence which was used as a time-varyifyges, (s(k), r(k)), is N. As we see from (20) and (19(k)
channel coefficient. Note that we centeredk) about 1, and determines which clustar(k) belongs to. So, théV r(k) are

as(k) about 0.5. The input to the Butterworth filter was a whitelassified inton, = 2"*? clusters, where, in our example,
Gaussian sequence with standard deviation (3td) 2rtn — 92241 — 8 SupposeV; training prototypes belong to
So that readers may replicate our simulations, we provide tr /th cluster,(! = 1,...,8), and the mean and std of these
source code for the time-varying coefficients with length 100@(k), (k = 1,...,N;), are denotedn! (2 x 1 vector) and
l l nr £
[B,A]l=butter(2,0.1); % B (numerator) and o, = [01,09]", respectively. We let
A (denominator) of LPF m) 2 m! — ol (38)
al=1+filter(B,A,beta*randn(1,1000)); Inl2 A m + al (39)

a2=0.5+filter (B, A, betakrandn(1,1000)). where! = 1,2,...,8. Doing this assumes that each cluster

We also assumed that this communication system had figecentered am’. Consequently[m!,, m!,] is the range of
co-channelg N = 5), where the mean of the type-2 antecedent Gaussian Mﬁ and
Heo1(2) = Mb11 (k) 4+ bra(k)2™1) (32) [mb,, mb,] is the range of the mean psz In our simulations,
Hoon(2) = Mbar (k) + b (k)21 + boa(k)22)  (33) we compare our type -2 FAF with a type-1 FAF in which
s we usedm! (i.e., [m';,m!,]T) as the centers of its type-1
Heoa(7) = Abai(k) + bsa (k)27 — baa(k)= ™) (34) Gaussian antecedent MFs.
Heos(2) = Mbar (k) + baz(k)z~" + bas(k)z™?)  (35)  Tocomplete the specification of the MFs in (37), we also need
Heo5(2) = Mbs1 (k) + bsa (k)27 + bss(k)z~2). (36) the value ofs? 4 02. We let /o2 + o2 be the average of the

. . - components of all clusters, i.e.,
In our simulations, we assumed that the co-channel coefﬁmeﬁ’{g P

were also time-varying, and their nominal values are(k) = e
1,b12(k) = 0.2; byy (k) = 0.4084, bos (k) = 0.8164, bas(k) = NCETE 2n+p > Za (40)
040847 bgl(k‘) = 04077 bgg(k‘) = 0815,b33(k> = 04077 =1 =1

by (k) = 0.3482,byo(k) = 0.8704,b43(k) = 0.3482; and, In this simulation;z = 1 andp = 2.
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Fig. 3. Average BER of type-1 FAF, NNC, and type-2 FAF for 100 MC realizations vifiéR = 20 dB and the number of training prototypes is 121. (a)
Average BER versug whenSIR = 20 dB. (b) Average BER versus SIR whéh= 0.1.

B. Simulations the parameters of the type-1 and type-2 FAFs were fixed, and

We compared our type-2 FAF with an unnormalized type-tfen_ testing was performed. In our simulations in this section,
FAF (the latter is identical to an RBF network [3] in its outputV® fixedSNR = 20 dB.

formula) and a nearest neighbor classifier (NNC) [19] for ISI In our first experiment, we fixed SIR at 20 dB and ran simu-
and CCI elimination of the time-varying channel in (31) anthtions for six different3, ranging from3 = 0.04to 5 = 0.24
co-channels (32)—(36). In our simulations, we chose the numlifer04 : 0.04:0.24), and we set decision detay- 0. We per-

of taps of the equalizef; = 2, and the number of rules equalformed 100 Monte Carlo (MC) simulations for eaghvalue.

to the number of clusters, i.e., 8. We used six independent &e+ig. 3(a), we plot the average bit error rate (BER) for the
quencess(k), s1(k), sa(k), s3(k), sa(k), s5(k), each of length 100 MC realizations. In a second experiment, we figeg 0.1
1000 for our experiments. The first 121 symbolssiik) were and ran simulations for six different SNR values ranging from
used for training, and the remaining 879sifk) were used for SNR = 15 dB to SNR = 25 dB (15:2:25). We again per-
testing. The training sequence established the parameters offtiemed 100 MC simulations for each SNR value. In Fig. 3(b),
antecedent MFs, as described in Section V-A. After traininge plot the average BER for the 100 MC realizations. Observe
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Fig. 4. Average BER versusin (41) for type-1 FAF, NNC, and type-2 FAF using 100 MC realizations Wi, = 20 dB andSIR = 20 dB, and the number
of training prototypes is 121. The CCl in (41) was introduced at time-index 500.
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Fig. 5. For a channel with + 1 taps and a decision delay @fthe general architecture of a DFE wjit{(p = d + 1) feedforward taps ang (¢ = n) feedback
taps. The DFE consists of a decision tree andFAFs, where each FAF hag rules.

from these figures that the type-2 fuzzy filter performs bettean be detemined based on clustering the training samples in the
than both the NNC and type-1 FAF. current frame, which means our type-2 FAF can track the system

To show the robustness of the equalizer in overcoming CQkry well. Since we do not need to use tuning algorithms such
we introduced another co-channél/ (=), during the testing as the least-mean-square (LMS) algorithm to optimize the pa-
period, beginning attime indéx= 500, and remaining through rameters, there is no convergence problem in our type-2 FAF.
k = 1000, where As shown in Theorem 1, the computation complexity of a

y 1 . 2 _3 type-2 FAF is equivalent to that of two type-1 FAFs. However, a

Heo(2) = aX(0.33 = 04277 4+0.5277 +0.69277). (41) nearest neighbor classifier (NNC) has much higher computation
The value of\ is the same as in (32)—(36); changimghanges complexity than either atype-1 or type-2 FAF because generally
the CCl strengthitH. (). In this experiment, we fixeBNR = the number of training samples is much larger than the number
20 dB andSIR = 20 dB, and ran simulations for 6 different of rules. To detect an information symbol, NNC needs to com-
ranging froma = 0.5 to « = 3 (0.5:0.5:3). We performed pute the Euclidean distances between the information symbol
100 MC simulations for each value. In Fig. 4, we plot the and all training samples, and then sort all distances and make a
average BER for the 100 MC realizations. Observe, from thilecision. However, a type-1 or type-2 FAF can detect an infor-
figure, that all three equalizers are very robust. However, th@ation symbol just based on computing the fired rules.
type-2 FAF maintains better performance than both the NNCAs described in [12], the nhumber of rules for a TEnis =
and type-1 FAF over the entire rangewf/alues. 27+P (recall thatn + 1 is the number of channel taps, apd

In real world communications such as the global systems fisrthe number of antecedents), e.g.,fioe= 4,p = 5, we need
mobile (GSM) communications, unique words (training san®12 rules. This causes huge computational complexity when the
ples) are sent in each frame, so all parameters in our type-2 F&tiannel order is high. Asin [12], we can use a decision feedback
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Fig. 6. Average BER of type-1 FAF, NNC, and type-2 FAF for 100 MC realizations vifiéR = 25 dB and the number of training prototypes is 289. (a)
Average BER versug whenSIR = 20 dB. (b) Average BER versus SIR whén= 0.1.

equalizer (DFE) which can reduce the number of rules in a FAJetential (i.e., a DFE witlh = d + 1 has the same performance
to overcome CCI. as a DFE wittp > d + 1 taps) for a giveri andn.
An architecture which can eliminate rule explosion in a FAF
VI. DEE FOR ELIMINATING CCI is proposed in [12]. In Fig. 5, we depict this general structure for

a DFE. It consists of a decision tree a2ZfdFAFs, where each
The structure of a general DFE is specified by the decisi¢gi®\F has only2? rules. Observe that only one FAF is activated

delay d, and number of channel taps,+ 1. d is chosen by at a time to obtain the value étk — d). This structure reduces
the designer, and increasimgmproves performance, but it is the number of FAF rules, and makes it easy to design each of the
required that! < n [4]. It has been shown in [4] that choosingFAFs, e.g., if a channel has five taps = 4), delayd = 4, and

the number of feedforward tapsas- d+1 (reducingd reduces we choose = d + 1 = 5 andg = n = 4, then we only need

the number of antecedents), and the number of feedback taptasesign2? = 16 FAFs, each having? = 32 rules (although

q = n, is sufficient for a DFE to achieve all the performancéhere are 16 FAFs, only one is activated at any time).
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Fig. 7. Average BER versusin (41) for type-1 FAF, NNC, and type-2 FAF using 100 MC realizations wdisiR = 25 dB andSIR = 20 dB, and the number
of training prototypes is 289. The CCl in (41) was introduced at time-index 500.

We used the following nonlinear time-varying channel in ouesting. After training, the parameters in the four type-2 FAFs
simulations of a DFE [12]: were fixed and then testing was performed. In all simulations,
we fixed SNR at 25 dB.
r(k) = ar(k)s(k) + az(k)s(k — 1) + az(k)s(k — 2) s In our first experiment, we fixed SIR at 20 dB and ran simu-
= 0.7[a1(k)s(k) + az(k)s(k — 1) + az(k)s(k — 2)]”  |ations for five different3 ranging from3 = 0.04 to 8 = 0.2
+e(k) (42) (0.04:0.04:0.20). We performed 100 MC simulations for each

) . 3 value. In Fig. 6(a), we plot the average BER for the 100 MC
where nominal values for the channel coefficients argsyizations. In a second experiment, we fixee: 0.1, and ran

ap = 0.3482,ay = 0.8704, andaz = 0.3482. We used the gin,jations for five different SIRs ranging frofiR = 15 dB to
method given in Section V to simulate the time-varying nature§R — 93 4B (15: 2: 23). We again performed 100 MC simula-
of ai(k), ax(k), and as(k). There were six co-channelsi;q s for each SIR value. In Fig. 6(b), we plot the average BER
Heor(2), ., Heos(2) are the same as those in (32)—~(36), andfor these 100 MC realizations. From these figures, we see that

H,o6(2) = Abe1 (k) + bea(k)z + bea(k)2~2 + bea(k)z—3  the DFE based on our four type-2 FAFs performs better than the

+ b (k)2 (43) NN(_: and the DFE based on four type-1 FAFs (each is an unnor-

oA malized type-1 TSK FLS). The NNC cannot work well in such
where the nominal values df; (k) = —0.2052,b62(k) = acomplicated channel because there are 16 channel states and
—0.5131, b3(k) = 0.7183,bg4(k) = 0.3695, andbgs(k) = an NNC typically needs more training prototypes than we have
0.2052. used.

We assumed a decision deldyf one. Since channel order To show the robustness of the equalizer in overcoming CCl,
n = 2 (we assumed that is known), then it is sufficient to de- we introduced another co-channel, the one in (41), during the
sign a DFE withp = 2 andq = 2, which means the decisiontesting period beginning at time indéx= 500, and remaining
tree ha? = 4 leaves (FAFs), and each leaf (FAF) IZ#s= 4 through%k = 1000. The value of\ was the same as in the
rules. As we see from Fig. 5, in this cagé — 3) ands(k — 2) other six co-channels, and changimghanges the CClI strength
(during trainings(k — 3) ands(k — 2), because they are avail-in H (z). In this experiment, we fixedNR = 25 dB and
able) determine which FAF will be chosen. Each chosen FAHR = 20 dB, and ran simulations for five different, ranging
has2? rules, which mean®? clusters are needed. Designing thérom o = 0.5 to o« = 3 (0.5:0.5: 2.5). We performed 100 MC
rules in each of the four FAFs is the same as that of designingienulations for each value. In Fig. 7, we plot the average BER
transversal fuzzy equalizer, as described in Section V-A. In ofar the 100 MC realizations. Observe, from this figure, that all
simulations, we used (40) to determing + o2, wherep = 2  the equalizers are fairly robust. However, the type-2 FAF again
andn = 2. maintains better performance than both the NNC and type-1

Simulations were performed for channel (42) withFAF.
six co-channels, and seven independent sequence®ur DFE architecture can eliminate the rule explosion in one
s(k), s1(k), sa(k), s3(k), sa(k), s5(k),s¢(k) were used, TE FAF and reduce computational complexity. It appears to be
each of length 1000 for our experiments. The first 289 symbalsry promising for implementation using hardware for high-
were for training, and the remaining 711 symbols were farder channels.
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VIl. CONCLUSIONS ANDFUTURE WORKS [14] J. M. Mendel, “Computing with words when words can mean different
things to different people,” presented at the Int'l. ICSC Congress on

We applied type-2 FAFs to eliminate co-channel interference  computational Intelligence: Methods & Applications, Third Annual
in nonlinear and time-varying channels. TE and DFE structures ~ Symposium on Fuzzy Logic and Applications, Rochester, NY, June

were implemented for overcoming co-channel interferenc

22-25, 1999.
15] ——, “Uncertainty, fuzzy logic, and signal processinignal Proc,

Simulation results showed that both the type-2 TE and DF vol. 80, no. 6, pp. 913-933, June 2000.
FAFs performed better than either a type-1 FAF, or a neare$t6] D. L. Nicholson,Spread Spectrum Signal Design: LPE and AJ Sys-

neighbor classifier. Since no tuning procedure was used ifh

tems Rockville, MD: Computer Science, 1988.
] S. K. Patra and B. Mulgrew, “Fuzzy implementation of Bayesian equal-

the design of either type-2 FAF-based equalizer, real-time ~ izerin the presence of intersymbol and co-channel interferereg.
information processing is guaranteed. Inst. Elect. Eng.vol. 145, pp. 323-330, 1998.

Both TE and DFE have their own advantages and disadvar®!

T. S. RappaportWireless Communications Englewood Cliffs, NJ:
Prentice-Hall, 1996.

tages. A TE has higher computational complexity, and for som@i9] p. Savazzi, L. Favalli, E. Costamagna, and A. Mecocci, “A suboptimal
channels, some channel states with different categories cannot approach to channel equalization based on the nearest neighbor rule,”

be classified because it is possible that differetdads to the

IEEE J. Select. Areas Commuwol. 16, pp. 1640-1648, Dec. 1998.
] G. L. StuberMobile Communication Norwell, MA: Kluwer, 1998.

samet value. A DFE reduces computational complexity, and[21] K. Tanaka, M. Sano, and H. Watanabe, “Modeling and control of carbon
increases the performance of classification. However, as we see monoxide concentration using a neuro-fuzzy techniqUeEE Trans.

from Fig. 5, earlier decision errors will lead to a current detec-zz]

Fuzzy Systvol. 3, pp. 271-279, Aug. 1995.
Z. Xiang, G. Bo, and T. Le-Ngoc, “Polynomial perceptrons and their

tion error, known as error accumulation. A TE does not have  applications to fading channel equalization and co-channel interference
this problem. suppression,TEEE Trans. Signal Processingol. 42, pp. 2470-2480,

The data modulation used in this paper is BPSK. However,

Sept. 1994.
[23] L.-X. Wang and J. M. Mendel, “Fuzzy adaptive filters, with application

quadrature modulations are often used in today’s communica- ~ to nonlinear channel equalizatiodZEE Trans. Fuzzy Systemal. 1,
tion systems, such as in spread-spectrum communications, since Pp. 161-170, Aug. 1993.

they are more difficult to detect using feature detectors [16].[24]

L. A. Zadeh, “The concept of a linguistic variable and its application to
approximate reasoning—I|hform. Sci, vol. 8, pp. 199-249, 1975.

How to apply our type-2 FAFs to CCl and ISI elimination for
channels with QAM signal constellations, using a sequence de-
tection approach, is presently under study.
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