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Overcoming Time-Varying Co-Channel Interference
Using Type-2 Fuzzy Adaptive Filters

Qilian Liang and Jerry M. Mendel, Fellow, IEEE

Abstract—This paper presents a method for overcoming
time-varying co-channel interference (CCI) using type-2 fuzzy
adaptive filters (FAF). The type-2 FAF is realized using an
unnormalized type-2 Takagi–Sugeno–Kang fuzzy logic system.
A clustering method is used to adaptively design the parameters
of the FAF. We use transversal equalizer and decision feedback
equalizer structures to eliminate the CCI. Simulation results show
that the equalizers based on type-2 FAFs perform better than
the nearest neighbor classifiers or the equalizers based on type-1
FAFs when the number of co-channels is much large than 1.

Index Terms—Co-channel interference, equalizers, time-varying
channels, type-2 fuzzy adaptive filters, type-2 fuzzy logic systems.

I. INTRODUCTION

CELLULAR MOBILE communication systems rely on an
intelligent allocation and reuse of channels throughout a

coverage region. The reuse of channels is realized by frequency
reuse. Frequency reuse implies that in a given coverage area
there are several cells that use the same set of frequencies. These
cells are called co-channel cells, and the interference between
signals from these cells is calledco-channel interference(CCI)
[18].

With the limitation of available signal spectrum, one way
to incorporate more subscribers is to increase frequency reuse
via reducing cell size, which introduces more CCI. For cel-
lular communication systems, the radio link performance is usu-
ally limited by interference rather than noise and, therefore, by
CCI. The effect of CCI on the radio link performance depends
on the ability of the radio receiver to reject it [20]. In [2], an
adaptive radial basis function (RBF) network is used to over-
come CCI. In [22], polynomial perceptrons were used for fading
channel equalization and co-channel interference suppression.
In [13], an adaptive fractionally spaced decision feedback equal-
izer (DFE) which exploits the correlation of the cyclostationary
interference is used to eliminate co-channel interference in a
multipath fading enviroment. In [5], a Bayesian DFE was used
to overcome CCI. In [8], a functional-link neural network-based
DFE was used for overcoming CCI. Recently, Patra, and Mul-
grew [17] used a fuzzy adaptive filter (FAF) to eliminate CCI
(we call it “type-1 FAF” because its membership functions are
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type-1 fuzzy sets), but the channel and co-channel models are
time-invariant.

The statistical signal processing-based approach (e.g.,
Bayesian decision rule) is based on a probability model (e.g.,
Gaussian distribution), whereas the FAF-based approach is
model free. As noted in [15], a shortcoming to model-based
statistical signal processing is “ the assumed probability
model, for which model-based statistical signal processing
results will be good if the data agrees with the model, but may
not be so good if the data does not.”

In this paper, we assume that the co-channel models are time-
varying and the number of co-channels is much larger than 1.
For these situations, we demonstrate that a type-1 FAF should be
extended to a type-2 FAF in order to overcome CCI. In a type-2
FAF, the antecedent or consequent membership functions are
type-2 fuzzy sets.

The concept of type-2 fuzzy sets was introduced by Zadeh
[24] as an extension of the concept of an ordinary fuzzy set, i.e.,
a type-1 fuzzy set. Type-2 fuzzy sets have grades of membership
that are themselves fuzzy [7]. A type-2 membership grade can
be any subset in , theprimary membership. Corresponding
to each primary membership, there is asecondary membership
(which can also be in ) that defines the possibilities for the
primary membership. Type-2 fuzzy sets allow us to handle lin-
guistic uncertainties, as typified by the adage “words can mean
different things to different people [14].” Karnik and Mendel
(see [9] and [10]) established a complete type-2 fuzzy logic sys-
tems (FLS) theory to handle linguistic and numerical uncertain-
ties. Liang and Mendel [12] proposed a type-2 FAF and applied
it to time-varying channel equalization.

In this paper, we interpret CCI as an uncertain disturbance
added to the channel states. Theoretical analysis shows that this
interpretation matches the reason of existence for a type-2 FAF,
namely, to handle unkown uncertainties, and motivates us to use
a type-2 FAF to overcome CCI.

In Section II, we provide some preliminaries that are needed
for the rest of this paper, i.e., we review an unnormalized
output type-1 TSK FLS, and summarize the concept of upper
and lower membership functions (MFs) of a type-2 fuzzy set.
In Section III, we introduce a type-2 FAF. In Section IV, a
communication system with co-channel interference (CCI),
intersymbol interference (ISI), and additive Gaussian noise
(AGN) is reviewed, and we explain why type-2 fuzzy sets are
needed to represent the uncertain channel states. In Section V,
we apply a type-2 FAF as a transversal equalizer (TE) for
overcoming CCI and ISI. In Section VI, we apply type-2 FAFs
to a decision feedback equalizer (DFE) for eliminating CCI

1057–7130/00$10.00 © 2000 IEEE
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Fig. 1. The type-2 MF for Example 1. The thick solid lines denote upper MFs, and the thick dashed lines denote lower MFs. The shaded regions are the footprints
of uncertainty for interval secondaries. The centers of Gaussian MFs vary from 4.5 to 5.5.

and ISI. Conclusions and future research directions are given
in Section VII.

In this paper, denotes a type-1 fuzzy set, and the member-
ship grade of in is , which is a crisp number
in . A type-2 fuzzy set in is , and the membership
grade of in is , which is a type-1 fuzzy set
in . The elements of the domain of are calledpri-
mary membershipsof in and the memberships of the pri-
mary memberships in are calledsecondary memberships
of in . The latter defines the possibilities for the primary
membership. , can be represented, for each , as

when the secondary
MFs are type-1 interval sets, we call the type-2 set aninterval
type-2 set. denotesmeetoperation while denotesjoin oper-
ation. Meet and join are defined and explained in great detail in
[9]. In this paper, we only use interval type-2 sets.

II. PRELIMINARIES

In this section, we provide some preliminaries that are needed
for the rest of the paper. We review an unnormalized output
type-1 TSK FLS, and summarize the concept of upper and lower
MFs of a type-2 fuzzy set.

A. Unnormalized Output Type-1 TSK FLS

A type-1 TSK FLS is described by fuzzyIF-THEN rules which
represent input-output relations of a system. The most widely
used type-1 TSK FLS (the one we direct our attention at) is a
first-order type-1 TSK FLS. It has a rule base of rules, each
having antecedents, where theth rule, , is expressed as

is and is and and is

in which are the con-
sequent parameters; is the output of the th IF-THEN rule;
and, are type-1 fuzzy sets. Given an input

, the final output of the unnormalized first-order
type-1 TSK model is inferred as [21]

(1)

where are rule firing strengths defined as

(2)

and denotes a-norm (minimum or product).
When Gaussian MFs are used, i.e.,

(3)

and product -norm is used, then (1) can be expressed as

(4)

Observe that (4) is identical to the output formula for a radial
basis function (RBF) network [3] when Gaussian MFs are used
as the RBFs. This kind of RBF network has been applied to
Bayesian equalization [3], [4]. Later in this paper, the unnormal-
ized output type-1 TSK FLS in (4) will be used as a type-1 FAF
equalizer (for suppressing CCI and ISI), and its performance
will be compared with that of a type-2 FAF.

B. Upper and Lower MFs of Type-2 MFs

For convenience in defining the upper and lower MFs of a
type-2 MF, we first give the definition offootprint of uncertainty
of a type-2 MF.

Definition 1 (Footprint of Uncertainty of a Type-2
MF): Uncertainty in the primary membership grades of
an interval type-2 MF consists of a bounded region that we call
the footprint of uncertaintyof that MF (e.g., see Fig. 1). It is
the union of all primary membership grades.

Definition 2 (Upper and Lower MFs):An upper MF and a
lower MF are two type-1 MFs which are bounds for the foot-
print of uncertainty of an interval type-2 MF. The upper MF is a
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subset which has the maximum membership grade of the foot-
print of uncertainty; and, the lower MF is a subset which has the
minimum membership grade of the footprint of uncertainty.

We use an overbar (underbar) to denote the upper (lower) MF.
For example, the upper and lower MFs of the interval type-2
fuzzy set (used in the next section) are and

, and, can be expressed as

(5)

Example 1: Gaussian Primary MF with Uncertain
Mean: Consider the case of a Gaussian primary MF having a
fixed standard deviation, , and an uncertain mean that takes
on values in , i.e.,

(6)

where: is the number of antecedents;
; and, is the number of rules. The upper MF,

, is (see Fig. 1)

(7)

where, for example,
. The lower MF, , is (see Fig. 1)

(8)

We use the results of this example later in Sections V and VI.

III. T YPE-2 FAF: AN OVERVIEW

In [12], a type-2 FAF for channel equalization is obtained
by generalizing the unnormalized output type-1 TSK FLS to a
type-2 TSK FLS. In a type-2 FAF with a rule base of rules,
where each rule hasantecedents, theth rule, , is denoted as

is and is and and is

where are the conse-
quent parameters that are crisp numbers;is an output from
the th IF-THEN rule, which is a crisp number (because it will be
determined by the channel state category); and, the

are type-2 fuzzy sets. Other more general type-2
TSK FLSs have been proposed by Liang and Mendel in [11].

Given an input , the firing strength of
the th rule is [9], [10]

(9)

The final output of the type-2 FAF is obtained by applying the
Extension Principle[24] to (1), i.e.,

(10)

where
is the number of rules fired, , and,
indicates the chosen-norm.
is called anextended weighted average as it reveals
the uncertainty at the output of a type-2 FLS due to
antecedent uncertainties, and is itself a type-1 fuzzy
set.

Here we focus on the very practical case when interval type-2
sets are used in the antecedents, which means

is an interval set, and we denote

(11)

Our type-2 FAF is then computed using results in the following:
Theorem 1 [12]:

1) In an interval type-2 FAF with meet under minimum or
product -norm, the firing strength in (9) for rule is an
interval set, , where

(12)

and

(13)

2) The extended weighted average is also
an interval set, , where

(14)

(15)

and

(16)

3) The defuzzified output of this type-2 FAF is

(17)

The proof of this theorem is given in [12].

IV. A COMMUNICATION SYSTEM WITH CCI

The discrete-time model of a communication system that
is subject to CCI, intersymbol interference (ISI) and additive
Gaussian noise (AGN) is shown in Fig. 2 [1], [5], where
is the symbol to be transmitted; is the noise; the CCI
comes from co-channels; the channel order is(
taps), and we assume that the tap coefficients are time-varying,
because in today’s communications, such as wireless com-
munications, the coefficients are
time-varying, hence, can be represented as

(18)

Here, we assume that is binary, i.e., it is either or
with equal probability. Assuming the number of taps in an equal-
izer is , we let

(19)
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Fig. 2. Discrete time model of communication system subject to CCI, ISI, and AGN.

where is calledchannel state. Observe from (18), that
depends on the channel input sequence (an
vector), where

(20)

so each of the combinations of the channel input
sequence generates one , which we denote as ,
where . Hence, the number
of channel states is , and each channel state has a
probability of occurence equal to .

Assume the order of theth co-channel is ( taps), and
time-varying tap coefficients are ; then,
CCI can be expressed as

(21)

where is also binary, but is always blind to the equalizer,
even in the training period. As in (19), the co-channel states of
the th co-channel are

(22)

so similarly to (20), there are channel states in theth
co-channel. The total co-channel state is

(23)

(24)

where are independent, so the
number of total co-channel states is

. This leads to a large number of co-channel
states, especially when , e.g., if there are 6 co-channels
(i.e., ), and each co-channel has 3 taps (i.e., ),
and the equalizer has 2 taps (i.e., ), then there will be

co-channel states. So when , it is not
possible to perform an exact analysis of the co-channel states.

The signal-to-noise ratio (SNR), signal-to-interference ratio
(SIR), and signal-to-interference noise ratio (SINR) in decibels
are defined as (see Fig. 2)

(25)

(26)

(27)

in which and denote the standard deviation (std) of the
Gaussian additive noise and CCI , respectively.

In a time-invariant communication system with ISI and
AWGN, but no CCI, the discriminant function of a Bayesian
equalizer is [3]

(28)

where equals either or as determined by the channel
state category. Observe that (28) is structuraly identical to (4).
Hence, an unnormalized output type-1 TSK FLS can be used to
implement a Bayesian equalizer for a time-invariant channel.

In contrast, in a time-invariant communication system with
CCI, ISI and AWGN, the discriminant function of the Bayesian
equalizer is [17]

(29)

where is the th element of the th co-channel state.
As we discussed above, is a very large number if .
To simplify the problem, when SIR is high, we assume that the



LIANG AND MENDEL: OVERCOMING TIME-VARYING CO-CHANNEL INTERFERENCE USING TYPE-2 FUZZY ADAPTIVE FILTERS 1423

term in (29) is an uncertain value which
is dominated by . Thus, (29) can be approximated by

(30)

where is uncertain. This point of view motivates us
to use a type-2 FAF for CCI elimination because type-2 FAFs
can handle the uncertainties. In addition, the channel states are
time-varying in a time-varying channel, which is another reason
to treat as an uncertain value. Observing (30), we see
that a Gaussian MF with an uncertain mean (see Fig. 1) is an
appropriate choice for the MFs in a type-2 TSK FAF.

V. TRANSVERSALEQUALIZER FOROVERCOMING CCI

In [23], the following nonlinear time-invariant channel model
was used

(31)

where and . We choose two taps in
the transversal equalizer (TE), so this channel has eight channel
states, i.e., . In this section, we illustrate the design
of a type-2 FAF for this channel, but we focus on the case
when the channel is time-varying, i.e., when and in
(31) are time-varying coefficients, each simulated, as in [6], by
using a second-order Markov model in which a white Gaussian
noise source drives a second-order Butterworth low-pass filter
(LPF). In our simulations below, we used the functionbutter,
provided by the Matlab Signal Processing Toolbox, to generate
a second-order low-pass digital Butterworth filter with cut-off
frequency 0.1. The functionfilter was then used to generate a
colored Gaussian sequence which was used as a time-varying
channel coefficient. Note that we centered about 1, and

about 0.5. The input to the Butterworth filter was a white
Gaussian sequence with standard deviation (std).

So that readers may replicate our simulations, we provide the
source code for the time-varying coefficients with length 1000

We also assumed that this communication system had five
co-channels , where

(32)

(33)

(34)

(35)

(36)

In our simulations, we assumed that the co-channel coefficients
were also time-varying, and their nominal values are:

; and,

. They were simu-
lated the same way as we described for simulating and

. The std of white Gaussian noise used for generating
co-channel coefficients was fixed at . was determined by
SIR.

A. Designing the Type-2 FAF

In our type-2 FAF design for (31) with five co-channels,
there are eight rules (each rule corresponds to one channel
state) where theth rule, , is expressed [see (30)] as

is and is

in which and are type-2 Gaussian MFs with uncertain
means, and is a crisp value of or as determined by the
channel state category, which equals . Observe from this
rule that the consequent is a constant, i.e., it does not depend on

and . Hence, the consequent is a special case of
the consequent in Section 3.

We used (17) to compute the output of the type-2 FAF, where
equals or is obtained from (12),

and is obtained from (13). As in (6), we chose

(37)

(see Fig. 1) and . In order to specify the MFs
and , we had to specify their parameters, namely,
and . Below, we let and

.
We used a clustering approach to estimate and , be-

cause it is computationally simple [3]. Here we briefly sum-
marize this approach. Suppose the number of training proto-
types, , is . As we see from (20) and (19),
determines which cluster belongs to. So, the are
classified into clusters, where, in our example,

. Suppose training prototypes belong to
the th cluster, , and the mean and std of these

, are denoted ( vector) and
, respectively. We let

(38)

(39)

where . Doing this assumes that each cluster
is centered at . Consequently, is the range of
the mean of the type-2 antecedent Gaussian MF,, and

is the range of the mean of . In our simulations,
we compare our type-2 FAF with a type-1 FAF in which
we used (i.e., ) as the centers of its type-1
Gaussian antecedent MFs.

To complete the specification of the MFs in (37), we also need
the value of . We let be the average of the
std components of all clusters, i.e.,

(40)

In this simulation, and .
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Fig. 3. Average BER of type-1 FAF, NNC, and type-2 FAF for 100 MC realizations whenSNR = 20 dB and the number of training prototypes is 121. (a)
Average BER versus� whenSIR = 20 dB. (b) Average BER versus SIR when� = 0:1.

B. Simulations

We compared our type-2 FAF with an unnormalized type-1
FAF (the latter is identical to an RBF network [3] in its output
formula) and a nearest neighbor classifier (NNC) [19] for ISI
and CCI elimination of the time-varying channel in (31) and
co-channels (32)–(36). In our simulations, we chose the number
of taps of the equalizer, , and the number of rules equal
to the number of clusters, i.e., 8. We used six independent se-
quences , each of length
1000 for our experiments. The first 121 symbols in were
used for training, and the remaining 879 in were used for
testing. The training sequence established the parameters of the
antecedent MFs, as described in Section V-A. After training,

the parameters of the type-1 and type-2 FAFs were fixed, and
then testing was performed. In our simulations in this section,
we fixed dB.

In our first experiment, we fixed SIR at 20 dB and ran simu-
lations for six different , ranging from to
(0.04 : 0.04 : 0.24), and we set decision delay . We per-
formed 100 Monte Carlo (MC) simulations for eachvalue.
In Fig. 3(a), we plot the average bit error rate (BER) for the
100 MC realizations. In a second experiment, we fixed
and ran simulations for six different SNR values ranging from

dB to dB (15 : 2 : 25). We again per-
formed 100 MC simulations for each SNR value. In Fig. 3(b),
we plot the average BER for the 100 MC realizations. Observe
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Fig. 4. Average BER versus� in (41) for type-1 FAF, NNC, and type-2 FAF using 100 MC realizations whenSNR = 20 dB andSIR = 20 dB, and the number
of training prototypes is 121. The CCI in (41) was introduced at time-index 500.

Fig. 5. For a channel withn+1 taps and a decision delay ofd, the general architecture of a DFE withp (p = d+1) feedforward taps andq (q = n) feedback
taps. The DFE consists of a decision tree and2 FAFs, where each FAF has2 rules.

from these figures that the type-2 fuzzy filter performs better
than both the NNC and type-1 FAF.

To show the robustness of the equalizer in overcoming CCI,
we introduced another co-channel, , during the testing
period, beginning at time index , and remaining through

, where

(41)

The value of is the same as in (32)–(36); changingchanges
the CCI strength in . In this experiment, we fixed

dB and dB, and ran simulations for 6 different,
ranging from to (0.5 : 0.5 : 3). We performed
100 MC simulations for each value. In Fig. 4, we plot the
average BER for the 100 MC realizations. Observe, from this
figure, that all three equalizers are very robust. However, the
type-2 FAF maintains better performance than both the NNC
and type-1 FAF over the entire range ofvalues.

In real world communications such as the global systems for
mobile (GSM) communications, unique words (training sam-
ples) are sent in each frame, so all parameters in our type-2 FAF

can be detemined based on clustering the training samples in the
current frame, which means our type-2 FAF can track the system
very well. Since we do not need to use tuning algorithms such
as the least-mean-square (LMS) algorithm to optimize the pa-
rameters, there is no convergence problem in our type-2 FAF.

As shown in Theorem 1, the computation complexity of a
type-2 FAF is equivalent to that of two type-1 FAFs. However, a
nearest neighbor classifier (NNC) has much higher computation
complexity than either a type-1 or type-2 FAF because generally
the number of training samples is much larger than the number
of rules. To detect an information symbol, NNC needs to com-
pute the Euclidean distances between the information symbol
and all training samples, and then sort all distances and make a
decision. However, a type-1 or type-2 FAF can detect an infor-
mation symbol just based on computing the fired rules.

As described in [12], the number of rules for a TE is
(recall that is the number of channel taps, and

is the number of antecedents), e.g., for , we need
512 rules. This causes huge computational complexity when the
channel order is high. As in [12], we can use a decision feedback
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Fig. 6. Average BER of type-1 FAF, NNC, and type-2 FAF for 100 MC realizations whenSNR = 25 dB and the number of training prototypes is 289. (a)
Average BER versus� whenSIR = 20 dB. (b) Average BER versus SIR when� = 0:1.

equalizer (DFE) which can reduce the number of rules in a FAF
to overcome CCI.

VI. DFE FOR ELIMINATING CCI

The structure of a general DFE is specified by the decision
delay , and number of channel taps, . is chosen by
the designer, and increasingimproves performance, but it is
required that [4]. It has been shown in [4] that choosing
the number of feedforward taps as (reducing reduces
the number of antecedents), and the number of feedback taps as

, is sufficient for a DFE to achieve all the performance

potential (i.e., a DFE with has the same performance
as a DFE with taps) for a given and .

An architecture which can eliminate rule explosion in a FAF
is proposed in [12]. In Fig. 5, we depict this general structure for
a DFE. It consists of a decision tree andFAFs, where each
FAF has only rules. Observe that only one FAF is activated
at a time to obtain the value of . This structure reduces
the number of FAF rules, and makes it easy to design each of the
FAFs, e.g., if a channel has five taps , delay , and
we choose and , then we only need
to design FAFs, each having rules (although
there are 16 FAFs, only one is activated at any time).
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Fig. 7. Average BER versus� in (41) for type-1 FAF, NNC, and type-2 FAF using 100 MC realizations whenSNR = 25 dB andSIR = 20 dB, and the number
of training prototypes is 289. The CCI in (41) was introduced at time-index 500.

We used the following nonlinear time-varying channel in our
simulations of a DFE [12]:

(42)

where nominal values for the channel coefficients are:
, and . We used the

method given in Section V to simulate the time-varying natures
of , and . There were six co-channels;

are the same as those in (32)–(36), and

(43)

where the nominal values of
, and

.
We assumed a decision delayof one. Since channel order

(we assumed that is known), then it is sufficient to de-
sign a DFE with and , which means the decision
tree has leaves (FAFs), and each leaf (FAF) has
rules. As we see from Fig. 5, in this case and
(during training and , because they are avail-
able) determine which FAF will be chosen. Each chosen FAF
has rules, which means clusters are needed. Designing the
rules in each of the four FAFs is the same as that of designing a
transversal fuzzy equalizer, as described in Section V-A. In our
simulations, we used (40) to determine , where
and .

Simulations were performed for channel (42) with
six co-channels, and seven independent sequences

were used,
each of length 1000 for our experiments. The first 289 symbols
were for training, and the remaining 711 symbols were for

testing. After training, the parameters in the four type-2 FAFs
were fixed and then testing was performed. In all simulations,
we fixed SNR at 25 dB.

In our first experiment, we fixed SIR at 20 dB and ran simu-
lations for five different ranging from to
(0.04 : 0.04 : 0.20). We performed 100 MC simulations for each

value. In Fig. 6(a), we plot the average BER for the 100 MC
realizations. In a second experiment, we fixed , and ran
simulations for five different SIRs ranging from dB to

dB (15 : 2 : 23). We again performed 100 MC simula-
tions for each SIR value. In Fig. 6(b), we plot the average BER
for these 100 MC realizations. From these figures, we see that
the DFE based on our four type-2 FAFs performs better than the
NNC and the DFE based on four type-1 FAFs (each is an unnor-
malized type-1 TSK FLS). The NNC cannot work well in such
a complicated channel because there are 16 channel states and
an NNC typically needs more training prototypes than we have
used.

To show the robustness of the equalizer in overcoming CCI,
we introduced another co-channel, the one in (41), during the
testing period beginning at time index , and remaining
through . The value of was the same as in the
other six co-channels, and changingchanges the CCI strength
in . In this experiment, we fixed dB and

dB, and ran simulations for five different, ranging
from to (0.5 : 0.5 : 2.5). We performed 100 MC
simulations for each value. In Fig. 7, we plot the average BER
for the 100 MC realizations. Observe, from this figure, that all
the equalizers are fairly robust. However, the type-2 FAF again
maintains better performance than both the NNC and type-1
FAF.

Our DFE architecture can eliminate the rule explosion in one
TE FAF and reduce computational complexity. It appears to be
very promising for implementation using hardware for high-
order channels.



1428 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 12, DECEMBER 2000

VII. CONCLUSIONS ANDFUTURE WORKS

We applied type-2 FAFs to eliminate co-channel interference
in nonlinear and time-varying channels. TE and DFE structures
were implemented for overcoming co-channel interference.
Simulation results showed that both the type-2 TE and DFE
FAFs performed better than either a type-1 FAF, or a nearest
neighbor classifier. Since no tuning procedure was used in
the design of either type-2 FAF-based equalizer, real-time
information processing is guaranteed.

Both TE and DFE have their own advantages and disadvan-
tages. A TE has higher computational complexity, and for some
channels, some channel states with different categories cannot
be classified because it is possible that differentleads to the
same value. A DFE reduces computational complexity, and
increases the performance of classification. However, as we see
from Fig. 5, earlier decision errors will lead to a current detec-
tion error, known as error accumulation. A TE does not have
this problem.

The data modulation used in this paper is BPSK. However,
quadrature modulations are often used in today’s communica-
tion systems, such as in spread-spectrum communications, since
they are more difficult to detect using feature detectors [16].
How to apply our type-2 FAFs to CCI and ISI elimination for
channels with QAM signal constellations, using a sequence de-
tection approach, is presently under study.
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